clear all close all %% groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", ... "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", ... "/images/Vertical_Axis_Camera/in_situ_absorption"]; folderPath = "D:/Data - Experiment/2025/07/04/"; run = '0016'; folderPath = strcat(folderPath, run); cam = 5; angle = 0; center = [1430, 2040]; span = [200, 200]; fraction = [0.1, 0.1]; pixel_size = 5.86e-6; magnification = 23.94; removeFringes = false; ImagingMode = 'HighIntensity'; PulseDuration = 5e-6; % in s % Fourier analysis settings % Radial Spectral Distribution theta_min = deg2rad(0); theta_max = deg2rad(180); N_radial_bins = 500; Radial_Sigma = 2; Radial_WindowSize = 5; % Choose an odd number for a centered moving average % Angular Spectral Distribution r_min = 10; r_max = 20; N_angular_bins = 180; Angular_Threshold = 75; Angular_Sigma = 2; Angular_WindowSize = 5; zoom_size = 50; % Zoomed-in region around center % scan_parameter = 'ps_rot_mag_fin_pol_angle'; scan_parameter = 'rot_mag_field'; % scan_parameter_text = 'Angle = '; scan_parameter_text = 'BField = '; savefolderPath = 'E:/Results - Experiment/B2.35G/'; savefileName = 'Droplets'; font = 'Bahnschrift'; skipUnshuffling = true; if strcmp(savefileName, 'DropletsToStripes') scan_groups = 0:5:45; elseif strcmp(savefileName, 'StripesToDroplets') scan_groups = 45:-5:0; end skipPreprocessing = true; skipMasking = true; skipIntensityThresholding = true; skipBinarization = true; skipMovieRender = true; skipSaveFigures = true; %% Compute OD image, rotate and extract ROI for analysis % Get a list of all files in the folder with the desired file name pattern. filePattern = fullfile(folderPath, '*.h5'); files = dir(filePattern); refimages = zeros(span(1) + 1, span(2) + 1, length(files)); absimages = zeros(span(1) + 1, span(2) + 1, length(files)); for k = 1 : length(files) baseFileName = files(k).name; fullFileName = fullfile(files(k).folder, baseFileName); fprintf(1, 'Now reading %s\n', fullFileName); atm_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle)); bkg_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle)); dark_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle)); refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)'; absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img, ImagingMode, PulseDuration), center, span), fraction)'; end % Fringe removal if removeFringes optrefimages = removefringesInImage(absimages, refimages); absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :); nimgs = size(absimages_fringe_removed,3); od_imgs = cell(1, nimgs); for i = 1:nimgs od_imgs{i} = absimages_fringe_removed(:, :, i); end else nimgs = size(absimages(:, :, :),3); od_imgs = cell(1, nimgs); for i = 1:nimgs od_imgs{i} = absimages(:, :, i); end end %% Get rotation angles scan_parameter_values = zeros(1, length(files)); % Get information about the '/globals' group for k = 1 : length(files) baseFileName = files(k).name; fullFileName = fullfile(files(k).folder, baseFileName); info = h5info(fullFileName, '/globals'); for i = 1:length(info.Attributes) if strcmp(info.Attributes(i).Name, scan_parameter) if strcmp(scan_parameter, 'ps_rot_mag_fin_pol_angle') scan_parameter_values(k) = 180 - info.Attributes(i).Value; else scan_parameter_values(k) = info.Attributes(i).Value; end end end end %% Unshuffle if necessary to do so if ~skipUnshuffling n_values = length(scan_groups); n_total = length(scan_parameter_values); % Infer number of repetitions n_reps = n_total / n_values; % Preallocate ordered arrays ordered_scan_values = zeros(1, n_total); ordered_od_imgs = cell(1, n_total); counter = 1; for rep = 1:n_reps for val = scan_groups % Find the next unused match for this val idx = find(scan_parameter_values == val, 1, 'first'); % Assign and remove from list to avoid duplicates ordered_scan_values(counter) = scan_parameter_values(idx); ordered_od_imgs{counter} = od_imgs{idx}; % Mark as used by removing scan_parameter_values(idx) = NaN; % NaN is safe since original values are 0:5:45 od_imgs{idx} = []; % empty cell so it won't be matched again counter = counter + 1; end end % Now assign back scan_parameter_values = ordered_scan_values; od_imgs = ordered_od_imgs; end %% Run Fourier analysis over images fft_imgs = cell(1, nimgs); spectral_contrast = zeros(1, nimgs); spectral_weight = zeros(1, nimgs); N_shots = length(od_imgs); avg_ps_accum = 0; avg_S_k_accum = 0; avg_S_theta_accum = 0; % Pre-allocate once sizes are known (after first run) fft_size_known = false; if ~skipMovieRender % Create VideoWriter object for movie videoFile = VideoWriter([savefileName '.mp4'], 'MPEG-4'); videoFile.Quality = 100; % Set quality to maximum (0–100) videoFile.FrameRate = 2; % Set the frame rate (frames per second) open(videoFile); % Open the video file to write end if ~skipSaveFigures % Define folder for saving images saveFolder = [savefileName '_SavedFigures']; if ~exist(saveFolder, 'dir') mkdir(saveFolder); end end % Display the cropped image for k = 1:N_shots IMG = od_imgs{k}; [IMGFFT, IMGPR] = computeFourierTransform(IMG, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization); % Size of original image (in pixels) [Ny, Nx] = size(IMG); % Real-space pixel size in micrometers after magnification dx = pixel_size / magnification; dy = dx; % assuming square pixels % Real-space axes x = ((1:Nx) - ceil(Nx/2)) * dx * 1E6; y = ((1:Ny) - ceil(Ny/2)) * dy * 1E6; % Reciprocal space increments (frequency domain, μm⁻¹) dvx = 1 / (Nx * dx); dvy = 1 / (Ny * dy); % Frequency axes vx = (-floor(Nx/2):ceil(Nx/2)-1) * dvx; vy = (-floor(Ny/2):ceil(Ny/2)-1) * dvy; % Wavenumber axes kx_full = 2 * pi * vx * 1E-6; % μm⁻¹ ky_full = 2 * pi * vy * 1E-6; % Crop FFT image around center mid_x = floor(Nx/2); mid_y = floor(Ny/2); fft_imgs{k} = IMGFFT(mid_y-zoom_size:mid_y+zoom_size, mid_x-zoom_size:mid_x+zoom_size); % Crop wavenumber axes to match fft_imgs{k} kx = kx_full(mid_x - zoom_size : mid_x + zoom_size); ky = ky_full(mid_y - zoom_size : mid_y + zoom_size); [theta_vals, S_theta] = computeAngularSpectralDistribution(fft_imgs{k}, r_min, r_max, N_angular_bins, Angular_Threshold, Angular_Sigma, []); [k_rho_vals, S_k] = computeRadialSpectralDistribution(fft_imgs{k}, kx, ky, theta_min, theta_max, N_radial_bins); S_k_smoothed = movmean(S_k, Radial_WindowSize); % % Compute moving average (use convolution) or use conv for more control spectral_contrast(k) = computeSpectralContrast(fft_imgs{k}, r_min, r_max, Angular_Threshold); spectral_weight(k) = trapz(theta_vals, S_theta); figure(1); clf set(gcf,'Position',[500 100 1000 800]) t = tiledlayout(2, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % ======= OD IMAGE (real space) ======= ax1 = nexttile; imagesc(x, y, IMG) hold on; % Convert pixel grid to µm (already done: x and y axes) % Draw ↘ diagonal (top-left to bottom-right) drawODOverlays(x(1), y(1), x(end), y(end)); % Draw ↙ diagonal (top-right to bottom-left) drawODOverlays(x(end), y(1), x(1), y(end)); hold off; axis equal tight; set(gca, 'FontSize', 14, 'YDir', 'normal') colormap(ax1, 'sky'); hcb = colorbar; ylabel(hcb, 'Optical Density', 'Rotation', -90, 'FontSize', 14, 'FontName', font); xlabel('x (\mum)', 'Interpreter', 'tex', 'FontSize', 14, 'FontName', font); ylabel('y (\mum)', 'Interpreter', 'tex', 'FontSize', 14, 'FontName', font); title('OD Image', 'FontSize', 16, 'FontWeight', 'bold', 'Interpreter', 'tex', 'FontName', font); text(0.975, 0.975, [scan_parameter_text, num2str(scan_parameter_values(k), '%.2f'), ' G'], ... 'Color', 'black', 'FontWeight', 'bold', 'FontSize', 14, ... 'Interpreter', 'tex', 'Units', 'normalized', ... 'HorizontalAlignment', 'right', 'VerticalAlignment', 'top'); % ======= FFT POWER SPECTRUM (reciprocal space) ======= ax2 = nexttile; imagesc(kx, ky, log(1 + abs(fft_imgs{k}).^2)); axis image; set(gca, 'FontSize', 14, 'YDir', 'normal') xlabel('k_x [\mum^{-1}]', 'Interpreter', 'tex', 'FontSize', 14, 'FontName', font); ylabel('k_y [\mum^{-1}]', 'Interpreter', 'tex', 'FontSize', 14, 'FontName', font); title('Power Spectrum - S(k_x,k_y)', 'Interpreter', 'tex', ... 'FontSize', 16, 'FontWeight', 'bold', 'FontName', font); colorbar; colormap(ax2, Colormaps.inferno()); drawPSOverlays(kx, ky, r_min, r_max) % ======= RADIAL DISTRIBUTION (S(k)) ======= nexttile; plot(k_rho_vals, S_k_smoothed, 'LineWidth', 2); set(gca, 'FontSize', 14, 'YScale', 'log', 'XLim', [min(k_rho_vals), max(k_rho_vals)]); xlabel('k_\rho [\mum^{-1}]', 'Interpreter', 'tex', 'FontSize', 14, 'FontName', font); ylabel('Magnitude (a.u.)', 'Interpreter', 'tex', 'FontSize', 14, 'FontName', font); title('Radial Spectral Distribution - S(k_\rho)', 'Interpreter', 'tex', ... 'FontSize', 16, 'FontWeight', 'bold', 'FontName', font); grid on; % ======= ANGULAR DISTRIBUTION (S(θ)) ======= nexttile; plot(theta_vals/pi, S_theta, 'LineWidth', 2); set(gca, 'FontSize', 14, 'YScale', 'log', 'YLim', [1E4, 1E7]); xlabel('\theta/\pi [rad]', 'Interpreter', 'tex', 'FontSize', 14, 'FontName', font); ylabel('Magnitude (a.u.)', 'Interpreter', 'tex', 'FontSize', 14, 'FontName', font); title('Angular Spectral Distribution - S(\theta)', 'Interpreter', 'tex', ... 'FontSize', 16, 'FontWeight', 'bold', 'FontName', font); grid on; % Enable major grid ax = gca; ax.MinorGridLineStyle = ':'; % Optional: make minor grid dotted ax.MinorGridColor = [0.7 0.7 0.7]; % Optional: light gray minor grid color ax.MinorGridAlpha = 0.5; % Optional: transparency for minor grid ax.XMinorGrid = 'on'; % Enable minor grid for x-axis ax.YMinorGrid = 'on'; % Enable minor grid for y-axis (if desired) drawnow; if ~fft_size_known fft_sz = size(fft_imgs{k}); N_radial_bins_used = length(S_k_smoothed); N_angular_bins_used = length(S_theta); avg_ps_accum = zeros(fft_sz); avg_S_k_accum = zeros(1, N_radial_bins_used); avg_S_theta_accum = zeros(1, N_angular_bins_used); fft_size_known = true; end avg_ps_accum = avg_ps_accum + abs(fft_imgs{k}).^2; avg_S_k_accum = avg_S_k_accum + S_k_smoothed; avg_S_theta_accum = avg_S_theta_accum + S_theta; if ~skipMovieRender % Capture the current frame and write it to the video frame = getframe(gcf); % Capture the current figure as a frame writeVideo(videoFile, frame); % Write the frame to the video end if ~skipSaveFigures % Construct a filename for each image fileNamePNG = fullfile(saveFolder, sprintf('fft_analysis_img_%03d.png', k)); % Save current figure as PNG with high resolution print(gcf, fileNamePNG, '-dpng', '-r100'); % 300 dpi for high quality end if skipMovieRender & skipSaveFigures pause(0.5); end end if ~skipMovieRender % Close the video file close(videoFile); end %% ===== Final Averages ===== avg_ps = avg_ps_accum / N_shots; avg_S_k = avg_S_k_accum / N_shots; avg_S_theta = avg_S_theta_accum / N_shots; % Generate figure with 3 subplots figure('Name', 'Average Spectral Analysis', 'Position', [400 200 1200 400]); tavg = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact'); % ==== 1. Average FFT Power Spectrum ==== nexttile; imagesc(kx, ky, log(1 + avg_ps)); axis image; set(gca, 'FontSize', 14, 'YDir', 'normal') xlabel('k_x [\mum^{-1}]', 'Interpreter', 'tex', 'FontSize', 14, 'FontName', font); ylabel('k_y [\mum^{-1}]', 'Interpreter', 'tex', 'FontSize', 14, 'FontName', font); title('Average Power Spectrum', 'FontSize', 16, 'FontWeight', 'bold'); colorbar; colormap(Colormaps.inferno()); % ==== 2. Average Radial Spectral Distribution ==== nexttile; plot(k_rho_vals, avg_S_k, 'LineWidth', 2); xlabel('k_\rho [\mum^{-1}]', 'Interpreter', 'tex', 'FontSize', 14); ylabel('Magnitude (a.u.)', 'Interpreter', 'tex', 'FontSize', 14); title('Average S(k_\rho)', 'FontSize', 16, 'FontWeight', 'bold'); set(gca, 'FontSize', 14, 'YScale', 'log', 'XLim', [min(k_rho_vals), max(k_rho_vals)]); grid on; % ==== 3. Average Angular Spectral Distribution ==== nexttile; plot(theta_vals/pi, avg_S_theta, 'LineWidth', 2); xlabel('\theta/\pi [rad]', 'Interpreter', 'tex', 'FontSize', 14); ylabel('Magnitude (a.u.)', 'Interpreter', 'tex', 'FontSize', 14); title('Average S(\theta)', 'FontSize', 16, 'FontWeight', 'bold'); set(gca, 'FontSize', 14, 'YScale', 'log'); grid on; ax = gca; ax.XMinorGrid = 'on'; ax.YMinorGrid = 'on'; %% Helper Functions function [IMGFFT, IMGPR] = computeFourierTransform(I, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization) % computeFourierSpectrum - Computes the 2D Fourier power spectrum % of binarized and enhanced lattice image features, with optional central mask. % % Inputs: % I - Grayscale or RGB image matrix % % Output: % F_mag - 2D Fourier power spectrum (shifted) if ~skipPreprocessing % Preprocessing: Denoise filtered = imgaussfilt(I, 10); IMGPR = I - filtered; % adjust sigma as needed else IMGPR = I; end if ~skipMasking [rows, cols] = size(IMGPR); [X, Y] = meshgrid(1:cols, 1:rows); % Elliptical mask parameters cx = cols / 2; cy = rows / 2; % Shifted coordinates x = X - cx; y = Y - cy; % Ellipse semi-axes rx = 0.4 * cols; ry = 0.2 * rows; % Rotation angle in degrees -> radians theta_deg = 30; % Adjust as needed theta = deg2rad(theta_deg); % Rotated ellipse equation cos_t = cos(theta); sin_t = sin(theta); x_rot = (x * cos_t + y * sin_t); y_rot = (-x * sin_t + y * cos_t); ellipseMask = (x_rot.^2) / rx^2 + (y_rot.^2) / ry^2 <= 1; % Apply cutout mask IMGPR = IMGPR .* ellipseMask; end if ~skipIntensityThresholding % Apply global intensity threshold mask intensity_thresh = 0.20; intensity_mask = IMGPR > intensity_thresh; IMGPR = IMGPR .* intensity_mask; end if ~skipBinarization % Adaptive binarization and cleanup IMGPR = imbinarize(IMGPR, 'adaptive', 'Sensitivity', 0.0); IMGPR = imdilate(IMGPR, strel('disk', 2)); IMGPR = imerode(IMGPR, strel('disk', 1)); IMGPR = imfill(IMGPR, 'holes'); F = fft2(double(IMGPR)); % Compute 2D Fourier Transform IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center else F = fft2(double(IMGPR)); % Compute 2D Fourier Transform IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center end end function [k_rho_vals, S_radial] = computeRadialSpectralDistribution(IMGFFT, kx, ky, thetamin, thetamax, num_bins) % IMGFFT : 2D FFT image (fftshifted and cropped) % kx, ky : 1D physical wavenumber axes [μm⁻¹] matching FFT size % thetamin : Minimum angle (in radians) % thetamax : Maximum angle (in radians) % num_bins : Number of radial bins [KX, KY] = meshgrid(kx, ky); K_rho = sqrt(KX.^2 + KY.^2); Theta = atan2(KY, KX); if thetamin < thetamax angle_mask = (Theta >= thetamin) & (Theta <= thetamax); else angle_mask = (Theta >= thetamin) | (Theta <= thetamax); end power_spectrum = abs(IMGFFT).^2; r_min = min(K_rho(angle_mask)); r_max = max(K_rho(angle_mask)); r_edges = linspace(r_min, r_max, num_bins + 1); k_rho_vals = 0.5 * (r_edges(1:end-1) + r_edges(2:end)); S_radial = zeros(1, num_bins); for i = 1:num_bins r_low = r_edges(i); r_high = r_edges(i + 1); radial_mask = (K_rho >= r_low) & (K_rho < r_high); full_mask = radial_mask & angle_mask; S_radial(i) = sum(power_spectrum(full_mask)); end end function [theta_vals, S_theta] = computeAngularSpectralDistribution(IMGFFT, r_min, r_max, num_bins, threshold, sigma, windowSize) % Apply threshold to isolate strong peaks IMGFFT(IMGFFT < threshold) = 0; % Prepare polar coordinates [ny, nx] = size(IMGFFT); [X, Y] = meshgrid(1:nx, 1:ny); cx = ceil(nx/2); cy = ceil(ny/2); R = sqrt((X - cx).^2 + (Y - cy).^2); Theta = atan2(Y - cy, X - cx); % range [-pi, pi] % Choose radial band radial_mask = (R >= r_min) & (R <= r_max); % Initialize angular structure factor S_theta = zeros(1, num_bins); theta_vals = linspace(0, pi, num_bins); % Loop through angle bins for i = 1:num_bins angle_start = (i-1) * pi / num_bins; angle_end = i * pi / num_bins; angle_mask = (Theta >= angle_start & Theta < angle_end); bin_mask = radial_mask & angle_mask; fft_angle = IMGFFT .* bin_mask; S_theta(i) = sum(sum(abs(fft_angle).^2)); end % Smooth using either Gaussian or moving average if exist('sigma', 'var') && ~isempty(sigma) % Gaussian convolution half_width = ceil(3 * sigma); x = -half_width:half_width; gauss_kernel = exp(-x.^2 / (2 * sigma^2)); gauss_kernel = gauss_kernel / sum(gauss_kernel); % Circular convolution S_theta = conv([S_theta(end-half_width+1:end), S_theta, S_theta(1:half_width)], ... gauss_kernel, 'same'); S_theta = S_theta(half_width+1:end-half_width); elseif exist('windowSize', 'var') && ~isempty(windowSize) % Moving average via convolution (circular) pad = floor(windowSize / 2); kernel = ones(1, windowSize) / windowSize; S_theta = conv([S_theta(end-pad+1:end), S_theta, S_theta(1:pad)], kernel, 'same'); S_theta = S_theta(pad+1:end-pad); end end function contrast = computeSpectralContrast(IMGFFT, r_min, r_max, threshold) % Apply threshold to isolate strong peaks IMGFFT(IMGFFT < threshold) = 0; % Prepare polar coordinates [ny, nx] = size(IMGFFT); [X, Y] = meshgrid(1:nx, 1:ny); cx = ceil(nx/2); cy = ceil(ny/2); R = sqrt((X - cx).^2 + (Y - cy).^2); % Ring region (annulus) mask ring_mask = (R >= r_min) & (R <= r_max); % Squared magnitude in the ring ring_power = abs(IMGFFT).^2 .* ring_mask; % Maximum power in the ring ring_max = max(ring_power(:)); % Power at the DC component dc_power = abs(IMGFFT(cy, cx))^2; % Avoid division by zero if dc_power == 0 contrast = Inf; % or NaN or 0, depending on how you want to handle this else contrast = ring_max / dc_power; end end function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction) % image must be a 2D numerical array [dim1, dim2] = size(img); s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction)); s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2); s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction)); s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2); ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]); end function ret = subtractBackgroundOffset(img, fraction) % Remove the background from the image. % :param dataArray: The image % :type dataArray: xarray DataArray % :param x_fraction: The fraction of the pixels used in x axis % :type x_fraction: float % :param y_fraction: The fraction of the pixels used in y axis % :type y_fraction: float % :return: The image after removing background % :rtype: xarray DataArray x_fraction = fraction(1); y_fraction = fraction(2); offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction); ret = img - offset; end function ret = cropODImage(img, center, span) % Crop the image according to the region of interest (ROI). % :param dataSet: The images % :type dataSet: xarray DataArray or DataSet % :param center: The center of region of interest (ROI) % :type center: tuple % :param span: The span of region of interest (ROI) % :type span: tuple % :return: The cropped images % :rtype: xarray DataArray or DataSet x_start = floor(center(1) - span(1) / 2); x_end = floor(center(1) + span(1) / 2); y_start = floor(center(2) - span(2) / 2); y_end = floor(center(2) + span(2) / 2); ret = img(y_start:y_end, x_start:x_end); end function imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime) %CALCULATEODIMAGE Calculates the optical density (OD) image for absorption imaging. % % imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime) % % Inputs: % imageAtom - Image with atoms % imageBackground - Image without atoms % imageDark - Image without light % mode - 'LowIntensity' (default) or 'HighIntensity' % exposureTime - Required only for 'HighIntensity' [in seconds] % % Output: % imageOD - Computed OD image % arguments imageAtom (:,:) {mustBeNumeric} imageBackground (:,:) {mustBeNumeric} imageDark (:,:) {mustBeNumeric} mode char {mustBeMember(mode, {'LowIntensity', 'HighIntensity'})} = 'LowIntensity' exposureTime double = NaN end % Compute numerator and denominator numerator = imageBackground - imageDark; denominator = imageAtom - imageDark; % Avoid division by zero numerator(numerator == 0) = 1; denominator(denominator == 0) = 1; % Calculate OD based on mode switch mode case 'LowIntensity' imageOD = -log(abs(denominator ./ numerator)); case 'HighIntensity' if isnan(exposureTime) error('Exposure time must be provided for HighIntensity mode.'); end imageOD = abs(denominator ./ numerator); imageOD = -log(imageOD) + (numerator - denominator) ./ (7000 * (exposureTime / 5e-6)); end end function drawODOverlays(x1, y1, x2, y2) % Parameters tick_spacing = 10; % µm between ticks tick_length = 2; % µm tick mark length line_color = [0.5 0.5 0.5]; tick_color = [0.5 0.5 0.5]; font_size = 10; % Vector from start to end dx = x2 - x1; dy = y2 - y1; L = sqrt(dx^2 + dy^2); % Unit direction vector along diagonal ux = dx / L; uy = dy / L; % Perpendicular unit vector for ticks perp_ux = -uy; perp_uy = ux; % Midpoint (center) xc = (x1 + x2) / 2; yc = (y1 + y2) / 2; % Number of positive and negative ticks n_ticks = floor(L / (2 * tick_spacing)); % Draw main diagonal line plot([x1 x2], [y1 y2], '--', 'Color', line_color, 'LineWidth', 1.2); for i = -n_ticks:n_ticks d = i * tick_spacing; xt = xc + d * ux; yt = yc + d * uy; % Tick line endpoints xt1 = xt - 0.5 * tick_length * perp_ux; yt1 = yt - 0.5 * tick_length * perp_uy; xt2 = xt + 0.5 * tick_length * perp_ux; yt2 = yt + 0.5 * tick_length * perp_uy; % Draw tick plot([xt1 xt2], [yt1 yt2], '--', 'Color', tick_color, 'LineWidth', 1); % Label: centered at tick, offset slightly along diagonal if d ~= 0 text(xt, yt, sprintf('%+d', d), ... 'Color', tick_color, ... 'FontSize', font_size, ... 'HorizontalAlignment', 'center', ... 'VerticalAlignment', 'bottom', ... 'Rotation', atan2d(dy, dx)); end end end function drawPSOverlays(kx, ky, r_min, r_max) % drawFFTOverlays - Draw overlays on existing FFT plot: % - Radial lines every 30° % - Annular highlight with white (upper half) and gray (lower half) circles between r_min and r_max % - Horizontal white bands at ky=0 in annulus region % - Scale ticks and labels every 1 μm⁻¹ along each radial line % % Inputs: % kx, ky - reciprocal space vectors (μm⁻¹) % r_min - inner annulus radius offset index (integer) % r_max - outer annulus radius offset index (integer) % % Example: % hold on; % drawFFTOverlays(kx, ky, 10, 30); hold on % === Overlay Radial Lines + Scales === [kx_grid, ky_grid] = meshgrid(kx, ky); [~, kr_grid] = cart2pol(kx_grid, ky_grid); % kr_grid in μm⁻¹ max_kx = max(kx); max_ky = max(ky); for angle = 0 : pi/6 : pi x_line = [0, max_kx] * cos(angle); y_line = [0, max_ky] * sin(angle); % Plot radial lines plot(x_line, y_line, '--', 'Color', [0.5 0.5 0.5], 'LineWidth', 1.2); plot(x_line, -y_line, '--', 'Color', [0.5 0.5 0.5], 'LineWidth', 1.2); % Draw scale ticks along positive radial line drawTicksAlongLine(0, 0, x_line(2), y_line(2)); % Draw scale ticks along negative radial line (reflect y) drawTicksAlongLine(0, 0, x_line(2), -y_line(2)); end % === Overlay Annular Highlight: White (r_min to r_max), Gray elsewhere === theta_full = linspace(0, 2*pi, 500); center_x = ceil(size(kr_grid, 2) / 2); center_y = ceil(size(kr_grid, 1) / 2); k_min = kr_grid(center_y, center_x + r_min); k_max = kr_grid(center_y, center_x + r_max); % Upper half: white dashed circles x1_upper = k_min * cos(theta_full(theta_full <= pi)); y1_upper = k_min * sin(theta_full(theta_full <= pi)); x2_upper = k_max * cos(theta_full(theta_full <= pi)); y2_upper = k_max * sin(theta_full(theta_full <= pi)); plot(x1_upper, y1_upper, 'w--', 'LineWidth', 1.2); plot(x2_upper, y2_upper, 'w--', 'LineWidth', 1.2); % Lower half: gray dashed circles x1_lower = k_min * cos(theta_full(theta_full > pi)); y1_lower = k_min * sin(theta_full(theta_full > pi)); x2_lower = k_max * cos(theta_full(theta_full > pi)); y2_lower = k_max * sin(theta_full(theta_full > pi)); plot(x1_lower, y1_lower, '--', 'Color', [0.5 0.5 0.5], 'LineWidth', 1.0); plot(x2_lower, y2_lower, '--', 'Color', [0.5 0.5 0.5], 'LineWidth', 1.0); % === Highlight horizontal band across k_y = 0 === x_vals = kx; xW1 = x_vals((x_vals >= -k_max) & (x_vals < -k_min)); xW2 = x_vals((x_vals > k_min) & (x_vals <= k_max)); plot(xW1, zeros(size(xW1)), 'w--', 'LineWidth', 1.2); plot(xW2, zeros(size(xW2)), 'w--', 'LineWidth', 1.2); hold off % --- Nested helper function to draw ticks along a radial line --- function drawTicksAlongLine(x_start, y_start, x_end, y_end) % Tick parameters tick_spacing = 1; % spacing between ticks in μm⁻¹ tick_length = 0.05 * sqrt((x_end - x_start)^2 + (y_end - y_start)^2); % relative tick length line_color = [0.5 0.5 0.5]; tick_color = [0.5 0.5 0.5]; font_size = 8; % Vector along the line dx = x_end - x_start; dy = y_end - y_start; L = sqrt(dx^2 + dy^2); ux = dx / L; uy = dy / L; % Perpendicular vector for ticks perp_ux = -uy; perp_uy = ux; % Number of ticks (from 0 up to max length) n_ticks = floor(L / tick_spacing); for i = 1:n_ticks % Position of tick along the line xt = x_start + i * tick_spacing * ux; yt = y_start + i * tick_spacing * uy; % Tick endpoints xt1 = xt - 0.5 * tick_length * perp_ux; yt1 = yt - 0.5 * tick_length * perp_uy; xt2 = xt + 0.5 * tick_length * perp_ux; yt2 = yt + 0.5 * tick_length * perp_uy; % Draw tick plot([xt1 xt2], [yt1 yt2], '-', 'Color', tick_color, 'LineWidth', 1); % Label with distance (integer) text(xt, yt, sprintf('%d', i), ... 'Color', tick_color, ... 'FontSize', font_size, ... 'HorizontalAlignment', 'center', ... 'VerticalAlignment', 'bottom', ... 'Rotation', atan2d(dy, dx)); end end end function [optrefimages] = removefringesInImage(absimages, refimages, bgmask) % removefringesInImage - Fringe removal and noise reduction from absorption images. % Creates an optimal reference image for each absorption image in a set as % a linear combination of reference images, with coefficients chosen to % minimize the least-squares residuals between each absorption image and % the optimal reference image. The coefficients are obtained by solving a % linear set of equations using matrix inverse by LU decomposition. % % Application of the algorithm is described in C. F. Ockeloen et al, Improved % detection of small atom numbers through image processing, arXiv:1007.2136 (2010). % % Syntax: % [optrefimages] = removefringesInImage(absimages,refimages,bgmask); % % Required inputs: % absimages - Absorption image data, % typically 16 bit grayscale images % refimages - Raw reference image data % absimages and refimages are both cell arrays containing % 2D array data. The number of refimages can differ from the % number of absimages. % % Optional inputs: % bgmask - Array specifying background region used, % 1=background, 0=data. Defaults to all ones. % Outputs: % optrefimages - Cell array of optimal reference images, % equal in size to absimages. % % Dependencies: none % % Authors: Shannon Whitlock, Caspar Ockeloen % Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and % S. Whitlock, Improved detection of small atom numbers through % image processing, arXiv:1007.2136 % Email: % May 2009; Last revision: 11 August 2010 % Process inputs % Set variables, and flatten absorption and reference images nimgs = size(absimages,3); nimgsR = size(refimages,3); xdim = size(absimages(:,:,1),2); ydim = size(absimages(:,:,1),1); R = single(reshape(refimages,xdim*ydim,nimgsR)); A = single(reshape(absimages,xdim*ydim,nimgs)); optrefimages=zeros(size(absimages)); % preallocate if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end k = find(bgmask(:)==1); % Index k specifying background region % Ensure there are no duplicate reference images % R=unique(R','rows')'; % comment this line if you run out of memory % Decompose B = R*R' using singular value or LU decomposition [L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition for j=1:nimgs b=R(k,:)'*A(k,j); % Obtain coefficients c which minimise least-square residuals lower.LT = true; upper.UT = true; c = linsolve(U,linsolve(L,b(p,:),lower),upper); % Compute optimised reference image optrefimages(:,:,j)=reshape(R*c,[ydim xdim]); end end