%{ theta = 0; phi = 0; % - SSD: N = 1E5, as = 86ao OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 1E5; OptionsStruct.DipolarPolarAngle = deg2rad(theta); OptionsStruct.DipolarAzimuthAngle = deg2rad(phi); OptionsStruct.ScatteringLength = 86; % AspectRatio = 2.0; % HorizontalTrapFrequency = 125; % VerticalTrapFrequency = AspectRatio * HorizontalTrapFrequency; % OptionsStruct.TrapFrequencies = [HorizontalTrapFrequency, HorizontalTrapFrequency, VerticalTrapFrequency]; OptionsStruct.TrapFrequencies = [150, 150, 300]; OptionsStruct.TrapPotentialType = 'Harmonic'; OptionsStruct.NumberOfGridPoints = [128, 128, 64]; OptionsStruct.Dimensions = [18, 18, 18]; OptionsStruct.UseApproximationForLHY = true; OptionsStruct.IncludeDDICutOff = true; OptionsStruct.CutoffType = 'Cylindrical'; OptionsStruct.SimulationMode = 'ImaginaryTimeEvolution'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution' OptionsStruct.TimeStepSize = 1E-3; % in s OptionsStruct.MinimumTimeStepSize = 2E-6; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-08; OptionsStruct.NoiseScaleFactor = 0.01; OptionsStruct.PlotLive = true; OptionsStruct.JobNumber = 0; OptionsStruct.RunOnGPU = false; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_3D/TiltedDipoles0'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct sim = Simulator.DipolarGas(options{:}); pot = Simulator.Potentials(options{:}); sim.Potential = pot.trap(); %-% Run Simulation %-% [Params, Transf, psi, V, VDk] = sim.run(); %} %% - Aspect Ratio: 2.5 theta = 45; OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 1E5; OptionsStruct.DipolarPolarAngle = deg2rad(theta); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 85; AspectRatio = 2.5; HorizontalTrapFrequency = 125; VerticalTrapFrequency = AspectRatio * HorizontalTrapFrequency; OptionsStruct.TrapFrequencies = [HorizontalTrapFrequency, HorizontalTrapFrequency, VerticalTrapFrequency]; OptionsStruct.TrapPotentialType = 'Harmonic'; OptionsStruct.NumberOfGridPoints = [128, 128, 64]; OptionsStruct.Dimensions = [12, 12, 12]; OptionsStruct.UseApproximationForLHY = true; OptionsStruct.IncludeDDICutOff = true; OptionsStruct.CutoffType = 'CustomCylindrical'; OptionsStruct.CustomCylindricalCutOffRadius = 4.5; OptionsStruct.CustomCylindricalCutOffHeight = 4.5; OptionsStruct.SimulationMode = 'ImaginaryTimeEvolution'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution' OptionsStruct.TimeStepSize = 1E-3; % in s OptionsStruct.MinimumTimeStepSize = 2E-6; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.01; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 2; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = sprintf('./Results/Data_3D/TiltedDipoles%s', strrep(num2str(round(rad2deg(OptionsStruct.DipolarPolarAngle),2)), '.', '_')); options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct sim = Simulator.DipolarGas(options{:}); pot = Simulator.Potentials(options{:}); sim.Potential = pot.trap(); %-% Run Simulation %-% [Params, Transf, psi, V, VDk] = sim.run();