%% Parameters groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", "/images/Vertical_Axis_Camera/in_situ_absorption"]; folderPath = "C:/Users/Karthik/Documents/GitRepositories/Calculations/Data-Analyzer/"; run = '0013'; folderPath = strcat(folderPath, run); cam = 5; angle = 0; center = [1285, 2105]; span = [200, 200]; fraction = [0.1, 0.1]; pixel_size = 5.86e-6; removeFringes = false; %% Compute OD image, rotate and extract ROI for analysis % Get a list of all files in the folder with the desired file name pattern. filePattern = fullfile(folderPath, '*.h5'); files = dir(filePattern); refimages = zeros(span(1) + 1, span(2) + 1, length(files)); absimages = zeros(span(1) + 1, span(2) + 1, length(files)); for k = 1 : length(files) baseFileName = files(k).name; fullFileName = fullfile(files(k).folder, baseFileName); fprintf(1, 'Now reading %s\n', fullFileName); atm_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle)); bkg_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle)); dark_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle)); refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)'; absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img), center, span), fraction)'; end % Fringe removal if removeFringes optrefimages = removefringesInImage(absimages, refimages); absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :); nimgs = size(absimages_fringe_removed,3); od_imgs = cell(1, nimgs); for i = 1:nimgs od_imgs{i} = absimages_fringe_removed(:, :, i); end else nimgs = size(absimages(:, :, :),3); od_imgs = cell(1, nimgs); for i = 1:nimgs od_imgs{i} = absimages(:, :, i); end end %% Display Images figure(1) clf set(gcf,'Position',[50 50 950 750]) % Calculate the x and y limits for the cropped image y_min = center(1) - span(2) / 2; y_max = center(1) + span(2) / 2; x_min = center(2) - span(1) / 2; x_max = center(2) + span(1) / 2; % Generate x and y arrays representing the original coordinates for each pixel x_range = linspace(x_min, x_max, span(1)); y_range = linspace(y_min, y_max, span(2)); % Display the cropped image for k = 1 : length(od_imgs) imagesc(x_range, y_range, od_imgs{k}) axis equal tight; hcb = colorbar; hL = ylabel(hcb, 'Optical Density', 'FontSize', 16); set(hL,'Rotation',-90); colormap jet; set(gca,'CLim',[0 3.0]); set(gca,'YDir','normal') set(gca, 'YTick', linspace(y_min, y_max, 5)); % Define y ticks set(gca, 'YTickLabel', flip(linspace(y_min, y_max, 5))); % Flip only the labels xlabel('Horizontal', 'Interpreter', 'tex','FontSize',16); ylabel('Vertical', 'Interpreter', 'tex','FontSize',16); drawnow pause(0.5) end %% Get rotation angles theta_values = zeros(1, length(files)); % Get information about the '/globals' group for k = 1 : length(files) baseFileName = files(k).name; fullFileName = fullfile(files(k).folder, baseFileName); info = h5info(fullFileName, '/globals'); for i = 1:length(info.Attributes) if strcmp(info.Attributes(i).Name, 'rot_mag_fin_pol_angle') theta_values(k) = 180 - info.Attributes(i).Value; end end end %% Run Fourier analysis over images fft_imgs = cell(1, nimgs); % Create VideoWriter object for movie videoFile = VideoWriter('Single_Shot_FFT.avi', 'Motion JPEG AVI'); videoFile.FrameRate = 2; % Set the frame rate (frames per second) open(videoFile); % Open the video file to write % Display the cropped image for k = 1 : length(od_imgs) IMG = od_imgs{k}; [IMGFFT, IMGBIN] = computeFourierTransform(IMG); figure(2); clf set(gcf,'Position',[50 50 1500 550]) set(gca,'FontSize',16,'Box','On','Linewidth',2); t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact'); % 1x2 grid % Calculate the x and y limits for the cropped image y_min = center(1) - span(2) / 2; y_max = center(1) + span(2) / 2; x_min = center(2) - span(1) / 2; x_max = center(2) + span(1) / 2; % Generate x and y arrays representing the original coordinates for each pixel x_range = linspace(x_min, x_max, span(1)); y_range = linspace(y_min, y_max, span(2)); % Display the cropped image nexttile imagesc(x_range, y_range, IMG) % Define normalized positions (relative to axis limits) x_offset = 0.025; % 5% offset from the edges y_offset = 0.025; % 5% offset from the edges % Top-right corner (normalized axis coordinates) text(1 - x_offset, 1 - y_offset, ['Angle: ', num2str(theta_values(k), '%.1f')], ... 'Color', 'white', 'FontWeight', 'bold', 'Interpreter', 'tex', 'FontSize', 20, 'Units', 'normalized', 'HorizontalAlignment', 'right', 'VerticalAlignment', 'top'); axis equal tight; hcb = colorbar; hL = ylabel(hcb, 'Optical Density', 'FontSize', 16); set(hL,'Rotation',-90); set(gca,'YDir','normal') set(gca, 'YTick', linspace(y_min, y_max, 5)); % Define y ticks set(gca, 'YTickLabel', flip(linspace(y_min, y_max, 5))); % Flip only the labels xlabel('X', 'Interpreter', 'tex','FontSize',16); ylabel('Y', 'Interpreter', 'tex','FontSize',16); nexttile imagesc(x_range, y_range, IMGBIN) axis equal tight; hcb = colorbar; set(gca,'YDir','normal') set(gca, 'YTick', linspace(y_min, y_max, 5)); % Define y ticks set(gca, 'YTickLabel', flip(linspace(y_min, y_max, 5))); % Flip only the labels xlabel('X', 'Interpreter', 'tex','FontSize',16); ylabel('Y', 'Interpreter', 'tex','FontSize',16); title('Denoised - Masked - Binarized','FontSize',16); nexttile [rows, cols] = size(IMGFFT); zoom_size = 50; % Zoomed-in region around center mid_x = floor(cols/2); mid_y = floor(rows/2); zoomedIMGFFT = IMGFFT(mid_y-zoom_size:mid_y+zoom_size, mid_x-zoom_size:mid_x+zoom_size); fft_imgs{k} = zoomedIMGFFT; imagesc(log(1 + zoomedIMGFFT)); % Define normalized positions (relative to axis limits) x_offset = 0.025; % 5% offset from the edges y_offset = 0.025; % 5% offset from the edges % Top-right corner (normalized axis coordinates) text(1 - x_offset, 1 - y_offset, ['Angle: ', num2str(theta_values(k), '%.1f')], ... 'Color', 'white', 'FontWeight', 'bold', 'Interpreter', 'tex', 'FontSize', 20, 'Units', 'normalized', 'HorizontalAlignment', 'right', 'VerticalAlignment', 'top'); axis equal tight; hcb = colorbar; set(gca,'YDir','normal') xlabel('X', 'Interpreter', 'tex','FontSize',16); ylabel('Y', 'Interpreter', 'tex','FontSize',16); title('Fourier Power Spectrum','FontSize',16); drawnow pause(0.5) % Capture the current frame and write it to the video frame = getframe(gcf); % Capture the current figure as a frame writeVideo(videoFile, frame); % Write the frame to the video end % Close the video file close(videoFile); %% Averaged FFT % Assuming od_imgs is a cell array of size 4*n n = length(fft_imgs) / 4; % Calculate n fft_imgs_avg = cell(1, n); % Initialize the new cell array to hold the averaged images for i = 1:n % Take the 4 corresponding images from od_imgs img1 = fft_imgs{4*i-3}; % 1st image in the group img2 = fft_imgs{4*i-2}; % 2nd image in the group img3 = fft_imgs{4*i-1}; % 3rd image in the group img4 = fft_imgs{4*i}; % 4th image in the group % Compute the average of these 4 images avg_img = (img1 + img2 + img3 + img4) / 4; % Store the averaged image in the new cell array fft_imgs_avg{i} = avg_img; end % Create VideoWriter object for movie videoFile = VideoWriter('Averaged_FFT.avi', 'Motion JPEG AVI'); videoFile.FrameRate = 2; % Set the frame rate (frames per second) open(videoFile); % Open the video file to write figure(3) clf set(gcf,'Position',[50 50 950 750]) % Display the cropped image for k = 1 : length(fft_imgs_avg) imagesc(log(1 + fft_imgs_avg{k})); % Define normalized positions (relative to axis limits) x_offset = 0.025; % 5% offset from the edges y_offset = 0.025; % 5% offset from the edges % Top-right corner (normalized axis coordinates) text(1 - x_offset, 1 - y_offset, ['Angle: ', num2str(theta_values(k), '%.1f')], ... 'Color', 'white', 'FontWeight', 'bold', 'Interpreter', 'tex', 'FontSize', 20, 'Units', 'normalized', 'HorizontalAlignment', 'right', 'VerticalAlignment', 'top'); axis equal tight; hcb = colorbar; set(gca,'YDir','normal') xlabel('X', 'Interpreter', 'tex','FontSize',16); ylabel('Y', 'Interpreter', 'tex','FontSize',16); title('Averaged Fourier Power Spectrum','FontSize',16); drawnow pause(0.5) % Capture the current frame and write it to the video frame = getframe(gcf); % Capture the current figure as a frame writeVideo(videoFile, frame); % Write the frame to the video end % Close the video file close(videoFile); %% Helper Functions function [IMGFFT, IMGBIN] = computeFourierTransform(I) % computeFourierSpectrum - Computes the 2D Fourier power spectrum % of binarized and enhanced lattice image features, with optional central mask. % % Inputs: % I - Grayscale or RGB image matrix % % Output: % F_mag - 2D Fourier power spectrum (shifted) % Preprocessing: Denoise I_filt = imgaussfilt(I, 1); % adjust sigma as needed % Elliptical mask parameters [rows, cols] = size(I_filt); [X, Y] = meshgrid(1:cols, 1:rows); cx = cols / 2; cy = rows / 2; % Shifted coordinates x = X - cx; y = Y - cy; % Ellipse semi-axes rx = 0.4 * cols; ry = 0.2 * rows; % Rotation angle in degrees -> radians theta_deg = 30; % Adjust as needed theta = deg2rad(theta_deg); % Rotated ellipse equation cos_t = cos(theta); sin_t = sin(theta); x_rot = (x * cos_t + y * sin_t); y_rot = (-x * sin_t + y * cos_t); ellipseMask = (x_rot.^2) / rx^2 + (y_rot.^2) / ry^2 <= 1; % Apply cutout mask I_masked = I_filt .* ellipseMask; % Apply global intensity threshold mask intensity_thresh = 0.8; intensity_mask = I_masked > intensity_thresh; I_masked = I_masked .* intensity_mask; % Adaptive binarization IMGBIN = imbinarize(I_masked, 'adaptive', 'Sensitivity', 0.0); % Compute 2D Fourier Transform F = fft2(double(I)); IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center % Define the radius for the circular region to exclude region_radius = 4; % Adjust the radius as needed % Create a circular mask [~, center_idx] = max(IMGFFT(:)); [cx, cy] = ind2sub(size(IMGFFT), center_idx); % Equation for a circle (centered at cx, cy) center_region = (X - cx).^2 + (Y - cy).^2 <= region_radius^2; % Define a scaling factor for the central region (e.g., reduce amplitude by 90%) scaling_factor = 0.1; % Scale center region by 10% % Apply the scaling factor to the center region IMGFFT(center_region) = IMGFFT(center_region) * scaling_factor; end function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction) % image must be a 2D numerical array [dim1, dim2] = size(img); s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction)); s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2); s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction)); s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2); ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]); end function ret = subtractBackgroundOffset(img, fraction) % Remove the background from the image. % :param dataArray: The image % :type dataArray: xarray DataArray % :param x_fraction: The fraction of the pixels used in x axis % :type x_fraction: float % :param y_fraction: The fraction of the pixels used in y axis % :type y_fraction: float % :return: The image after removing background % :rtype: xarray DataArray x_fraction = fraction(1); y_fraction = fraction(2); offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction); ret = img - offset; end function ret = cropODImage(img, center, span) % Crop the image according to the region of interest (ROI). % :param dataSet: The images % :type dataSet: xarray DataArray or DataSet % :param center: The center of region of interest (ROI) % :type center: tuple % :param span: The span of region of interest (ROI) % :type span: tuple % :return: The cropped images % :rtype: xarray DataArray or DataSet x_start = floor(center(1) - span(1) / 2); x_end = floor(center(1) + span(1) / 2); y_start = floor(center(2) - span(2) / 2); y_end = floor(center(2) + span(2) / 2); ret = img(y_start:y_end, x_start:x_end); end function ret = calculateODImage(imageAtom, imageBackground, imageDark) % Calculate the OD image for absorption imaging. % :param imageAtom: The image with atoms % :type imageAtom: numpy array % :param imageBackground: The image without atoms % :type imageBackground: numpy array % :param imageDark: The image without light % :type imageDark: numpy array % :return: The OD images % :rtype: numpy array numerator = imageBackground - imageDark; denominator = imageAtom - imageDark; numerator(numerator == 0) = 1; denominator(denominator == 0) = 1; ret = -log(double(abs(denominator ./ numerator))); if numel(ret) == 1 ret = ret(1); end end function [optrefimages] = removefringesInImage(absimages, refimages, bgmask) % removefringesInImage - Fringe removal and noise reduction from absorption images. % Creates an optimal reference image for each absorption image in a set as % a linear combination of reference images, with coefficients chosen to % minimize the least-squares residuals between each absorption image and % the optimal reference image. The coefficients are obtained by solving a % linear set of equations using matrix inverse by LU decomposition. % % Application of the algorithm is described in C. F. Ockeloen et al, Improved % detection of small atom numbers through image processing, arXiv:1007.2136 (2010). % % Syntax: % [optrefimages] = removefringesInImage(absimages,refimages,bgmask); % % Required inputs: % absimages - Absorption image data, % typically 16 bit grayscale images % refimages - Raw reference image data % absimages and refimages are both cell arrays containing % 2D array data. The number of refimages can differ from the % number of absimages. % % Optional inputs: % bgmask - Array specifying background region used, % 1=background, 0=data. Defaults to all ones. % Outputs: % optrefimages - Cell array of optimal reference images, % equal in size to absimages. % % Dependencies: none % % Authors: Shannon Whitlock, Caspar Ockeloen % Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and % S. Whitlock, Improved detection of small atom numbers through % image processing, arXiv:1007.2136 % Email: % May 2009; Last revision: 11 August 2010 % Process inputs % Set variables, and flatten absorption and reference images nimgs = size(absimages,3); nimgsR = size(refimages,3); xdim = size(absimages(:,:,1),2); ydim = size(absimages(:,:,1),1); R = single(reshape(refimages,xdim*ydim,nimgsR)); A = single(reshape(absimages,xdim*ydim,nimgs)); optrefimages=zeros(size(absimages)); % preallocate if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end k = find(bgmask(:)==1); % Index k specifying background region % Ensure there are no duplicate reference images % R=unique(R','rows')'; % comment this line if you run out of memory % Decompose B = R*R' using singular value or LU decomposition [L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition for j=1:nimgs b=R(k,:)'*A(k,j); % Obtain coefficients c which minimise least-square residuals lower.LT = true; upper.UT = true; c = linsolve(U,linsolve(L,b(p,:),lower),upper); % Compute optimised reference image optrefimages(:,:,j)=reshape(R*c,[ydim xdim]); end end