%% Tilting of the dipoles % Atom Number = 1250 ppum % System size = [sf * unitcell_x, sf * unitcell_x] ppum = 1250; % Atom Number Density in per micrometers %% v_z = 500, theta = 0: a_s = 75.00 a = 1.8058; scalingfactor = 5; lx = scalingfactor*a; ly = scalingfactor*sqrt(3)*a; % Initialize OptionsStruct OptionsStruct = struct; % Assign values to OptionsStruct OptionsStruct.NumberOfAtoms = ppum * (lx*ly); OptionsStruct.DipolarPolarAngle = deg2rad(0); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 75.00; OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [lx, ly]; OptionsStruct.TimeStepSize = 1E-3; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.IncludeDDICutOff = false; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 1.15; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 1e-2; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 0; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/AdjustedSystemSize/Hz500'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 500, theta = 5: a_s = 75.00 a = 1.795; scalingfactor = 5; lx = scalingfactor*a; ly = scalingfactor*sqrt(3)*a; % Initialize OptionsStruct OptionsStruct = struct; % Assign values to OptionsStruct OptionsStruct.NumberOfAtoms = ppum * (lx*ly); OptionsStruct.DipolarPolarAngle = deg2rad(5); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 75.00; OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [lx, ly]; OptionsStruct.TimeStepSize = 1E-3; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.IncludeDDICutOff = false; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 1.15; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 1e-2; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 1; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/AdjustedSystemSize/Hz500'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 500, theta = 7.5: a_s = 75.00 a = 2.055; scalingfactor = 5; lx = scalingfactor*a; ly = scalingfactor*sqrt(3)*a; % Initialize OptionsStruct OptionsStruct = struct; % Assign values to OptionsStruct OptionsStruct.NumberOfAtoms = ppum * (lx*ly); OptionsStruct.DipolarPolarAngle = deg2rad(7.5); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 75.00; OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [lx, ly]; OptionsStruct.TimeStepSize = 1E-3; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.IncludeDDICutOff = false; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 1.15; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 1e-2; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 2; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/AdjustedSystemSize/Hz500'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 500, theta = 10: a_s = 75.00 a = 2.055; scalingfactor = 5; lx = scalingfactor*a; ly = scalingfactor*sqrt(3)*a; % Initialize OptionsStruct OptionsStruct = struct; % Assign values to OptionsStruct OptionsStruct.NumberOfAtoms = ppum * (lx*ly); OptionsStruct.DipolarPolarAngle = deg2rad(10); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 75.00; OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [lx, ly]; OptionsStruct.TimeStepSize = 1E-3; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.IncludeDDICutOff = false; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 1.15; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 1e-2; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 3; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/AdjustedSystemSize/Hz500'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 500, theta = 15: a_s = 75.00 a = 2.0875; scalingfactor = 5; lx = scalingfactor*a; ly = scalingfactor*sqrt(3)*a; % Initialize OptionsStruct OptionsStruct = struct; % Assign values to OptionsStruct OptionsStruct.NumberOfAtoms = ppum * (lx*ly); OptionsStruct.DipolarPolarAngle = deg2rad(15); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 75.00; OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [lx, ly]; OptionsStruct.TimeStepSize = 1E-3; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.IncludeDDICutOff = false; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 1.15; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 1e-2; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 4; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/AdjustedSystemSize/Hz500'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run();