function [psi] = propagateWavefunction(this, psi, Params, VParams, Transf, VDk, V, t_idx, Observ) set(0,'defaulttextInterpreter','latex') set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex'); dt =-1j*abs(this.TimeStepSize); % Imaginary Time KEop = 0.5*(Transf.KX.^2+Transf.KY.^2); Observ.res = 1; AdaptIdx = 0; % Change in Energy E = this.Calculator.calculateTotalEnergy(psi,Params,VParams,Transf,VDk,V); E = E/Params.N; Observ.EVec = [Observ.EVec E]; % Chemical Potential muchem = this.Calculator.calculateChemicalPotential(psi,Params,VParams,Transf,VDk,V); Observ.mucVec = [Observ.mucVec muchem]; % Normalized residuals res = this.Calculator.calculateNormalizedResiduals(psi,Params,VParams,Transf,VDk,V,muchem); Observ.residual = [Observ.residual res]; g_eff = Params.gs*VParams.nu/(2^(1+1/VParams.nu)*VParams.ell*gamma(1/VParams.nu)); gamma_eff = Params.gammaQF*2^(1/VParams.nu-1.5)*5^(-1/VParams.nu)*VParams.ell*gamma(1+1/VParams.nu)*( VParams.nu/(VParams.ell*gamma(1/VParams.nu)) )^(5/2); EVar = VParams.nu^2*gamma(2-1/VParams.nu)/(8*VParams.ell^2*gamma(1/VParams.nu)) + 0.5*Params.gz*VParams.ell^2*gamma(3/VParams.nu)/gamma(1/VParams.nu); pb = Helper.ProgressBar(); pb.run('Running simulation in imaginary time: '); while t_idx < Params.sim_time_cut_off % kin psi = fftn(psi); psi = psi.*exp(-0.5*1i*dt*KEop); psi = ifftn(psi); % DDI frho = fftn(abs(psi).^2); Phi = real(ifftn(frho.*VDk)); % Real-space psi = psi.*exp(-1i*dt*(V + EVar + g_eff*abs(psi).^2 + gamma_eff*abs(psi).^3 + Params.gdd*Phi/(sqrt(2*pi)*VParams.ell_eff) - muchem)); % kin psi = fftn(psi); psi = psi.*exp(-0.5*1i*dt*KEop); psi = ifftn(psi); % Renorm Norm = trapz(abs(psi(:)).^2)*Transf.dx*Transf.dy; psi = sqrt(Params.N)*psi/sqrt(Norm); muchem = this.Calculator.calculateChemicalPotential(psi,Params,VParams,Transf,VDk,V); if mod(t_idx,1000) == 0 % Change in Energy E = this.Calculator.calculateTotalEnergy(psi,Params,VParams,Transf,VDk,V); E = E/Params.N; Observ.EVec = [Observ.EVec E]; % Chemical potential Observ.mucVec = [Observ.mucVec muchem]; % Normalized residuals res = this.Calculator.calculateNormalizedResiduals(psi,Params,VParams,Transf,VDk,V,muchem); Observ.residual = [Observ.residual res]; Observ.res_idx = Observ.res_idx + 1; save(sprintf('./Data/Run_%03i/psi_gs.mat',Params.njob),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V'); %Adaptive time step -- Careful, this can quickly get out of control relres = abs(Observ.residual(Observ.res_idx)-Observ.residual(Observ.res_idx-1))/Observ.residual(Observ.res_idx); if relres <1e-4 if AdaptIdx > 3 && abs(dt) > Params.mindt dt = dt / 2; fprintf('Time step changed to '); disp(dt); AdaptIdx = 0; elseif AdaptIdx > 3 && abs(dt) < Params.mindt break elseif Observ.residual(Observ.res_idx) < Params.rtol break else AdaptIdx = AdaptIdx + 1; end else AdaptIdx = 0; end end if any(isnan(psi(:))) disp('NaNs encountered!') break end t_idx=t_idx+1; end % Change in Energy E = this.Calculator.calculateTotalEnergy(psi,Params,VParams,Transf,VDk,V); E = E/Norm; Observ.EVec = [Observ.EVec E]; % Normalized residuals res = this.Calculator.calculateNormalizedResiduals(psi,Params,VParams,Transf,VDk,V,muchem); Observ.residual = [Observ.residual res]; Observ.res_idx = Observ.res_idx + 1; %Chemical potential Observ.mucVec = [Observ.mucVec muchem]; pb.run(' - Job Completed!'); disp('Saving data...'); save(sprintf('./Data/Run_%03i/psi_gs.mat',Params.njob),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V'); disp('Save complete!'); end