%% Physical constants PlanckConstant = 6.62607015E-34; PlanckConstantReduced = 6.62607015E-34/(2*pi); FineStructureConstant = 7.2973525698E-3; ElectronMass = 9.10938291E-31; GravitationalConstant = 6.67384E-11; ProtonMass = 1.672621777E-27; AtomicMassUnit = 1.660539066E-27; BohrRadius = 5.2917721067E-11; BohrMagneton = 9.274009994E-24; BoltzmannConstant = 1.38064852E-23; StandardGravityAcceleration = 9.80665; SpeedOfLight = 299792458; StefanBoltzmannConstant = 5.670373E-8; ElectronCharge = 1.602176634E-19; VacuumPermeability = 1.25663706212E-6; DielectricConstant = 8.8541878128E-12; ElectronGyromagneticFactor = -2.00231930436153; AvogadroConstant = 6.02214076E23; ZeroKelvin = 273.15; GravitationalAcceleration = 9.80553; VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 % Dy specific constants Dy164Mass = 163.929174751*AtomicMassUnit; Dy164IsotopicAbundance = 0.2826; DyMagneticMoment = 9.93*BohrMagneton; %% Scaling of the QF term wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length gdd = VacuumPermeability*DyMagneticMoment^2/3; nadd2s = 0.05:0.01:0.25; as_to_add = 0.76:0.01:0.81; QF = zeros(length(as_to_add), length(nadd2s)); ScatteringLengths = zeros(length(as_to_add), 1); AtomNumber = zeros(length(nadd2s), 1); w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length tsize = 10 * l0; x0 = 5; Aineq = []; Bineq = []; Aeq = []; Beq = []; lb = [1]; ub = [10]; nonlcon = []; fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); for idx = 1:length(nadd2s) for jdx = 1:length(as_to_add) AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms AtomNumber(idx) = AtomNumberDensity*tsize^2; as = (as_to_add(jdx) * add); % Scattering length gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength ScatteringLengths(jdx) = as/BohrRadius; TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); eps_dd = add/as; % Relative interaction strength % == Quantum Fluctuations term == % MeanWidth = sigma * lz; gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); gQF = gamma5 * gammaQF; QF(jdx, idx) = 3 * gQF * AtomNumberDensity^(3/2); end end figure(7) clf set(gcf,'Position',[50 50 950 750]) imagesc(AtomNumber*1E-5, ScatteringLengths, QF * 1E31); % Specify x and y data for axes set(gca, 'YDir', 'normal'); % Correct the y-axis direction cbar1 = colorbar; cbar1.Label.Interpreter = 'latex'; ylabel(cbar1,'$(\times 10^{-31})$','FontSize',16,'Rotation',270) xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex'); ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex'); title('Scaling of the quantum fluctuations term','fontsize',16,'interpreter','latex')