%% This script is testing the functionalities of the MOT Capture Process Simulation Classes % % Important: Run only sectionwise!! %% - Testing the MOTCaptureProcess-Class % - Create MOTCaptureProcess object with specified options % - Automatically creates Beams objects OptionsStruct = struct; OptionsStruct.ErrorEstimationMethod = 'bootstrap'; % 'jackknife' | 'bootstrap' OptionsStruct.TimeStep = 50e-06; % in s OptionsStruct.SimulationTime = 4e-03; % in s OptionsStruct.SpontaneousEmission = true; OptionsStruct.Sideband = false; OptionsStruct.PushBeam = true; OptionsStruct.Gravity = true; OptionsStruct.BackgroundCollision = true; OptionsStruct.SaveData = true; % OptionsStruct.SaveDirectory = ''; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct Oven = Simulator.Oven(options{:}); MOT2D = Simulator.TwoDimensionalMOT(options{:}); Beams = MOT2D.Beams; %% - Run Simulation MOT2D.NumberOfAtoms = 5000; MOT2D.SidebandBeam = false; CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)}; CoolingBeam.Power = 0.4; CoolingBeam.Waist = 13.3e-03; CoolingBeam.Detuning = -1.67*Helper.PhysicsConstants.BlueLinewidth; PushBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Push'), Beams)}; PushBeam.Power = 0.025; PushBeam.Waist = 0.81e-03; PushBeam.Detuning = 0; [LoadingRate, ~] = MOT2D.runSimulation(Oven); %% - Plot initial distribution % - sampling the position distribution InitialPositions = Oven.initialPositionSampling(); % - sampling the velocity distribution InitialVelocities = Oven.initialVelocitySampling(MOT2D); NumberOfBins = 100; Plotter.plotPositionAndVelocitySampling(NumberOfBins, InitialPositions, InitialVelocities); %% - Plot distributions of magnitude and direction of initial velocities NumberOfBins = 50; Plotter.plotInitialVeloctiySamplingVsAngle(Oven, MOT2D, NumberOfBins) %% - Plot Magnetic Field XAxisRange = [-5 5]; YAxisRange = [-5 5]; ZAxisRange = [-5 5]; Plotter.visualizeMagneticField(MOT2D, XAxisRange, YAxisRange, ZAxisRange) %% - Plot MFP & VP for different temperatures TemperatureinCelsius = linspace(750,1100,2000); % Temperature in Celsius Plotter.plotMeanFreePathAndVapourPressureVsTemp(TemperatureinCelsius) %% - Plot the Free Molecular Flux for different temperatures Temperature = [950, 1000, 1050]; % Temperature Plotter.plotFreeMolecularFluxVsTemp(Oven,Temperature) %% - Plot Angular Distribution for different Beta Beta = [0.5, 0.1 , 0.05, 0.02, 0.01]; %Beta = 2 * radius / length of the tube Plotter.plotAngularDistributionForDifferentBeta(Oven, Beta) %% - Plot Capture Velocity Plotter.plotCaptureVelocityVsAngle(Oven, MOT2D); % Takes a long time to plot! %% - Plot Phase Space with Acceleration Field MOT2D.SidebandBeam = true; CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)}; CoolingBeam.Power = 0.2; CoolingBeam.Detuning = -1.67*Helper.PhysicsConstants.BlueLinewidth; SidebandBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'BlueSideband'), Beams)}; SidebandBeam.Power = 0.2; SidebandBeam.Detuning = -3.35*Helper.PhysicsConstants.BlueLinewidth; MOT2D.NumberOfAtoms = 50; MinimumVelocity = 0; MaximumVelocity = 150; NumberOfBins = 200; %Along each axis IncidentAtomDirection = 0*2*pi/360; IncidentAtomPosition = 0; Plotter.plotPhaseSpaceWithAccelerationField(Oven, MOT2D, MinimumVelocity, MaximumVelocity, NumberOfBins, IncidentAtomDirection, IncidentAtomPosition) %% - Plot Trajectories along the 3 directions MOT2D.NumberOfAtoms = 100; MaximumVelocity = 150; IncidentAtomDirection = 0*2*pi/360; IncidentAtomPosition = 0; %% - Positions Plotter.plotDynamicalQuantities(Oven, MOT2D, MaximumVelocity, IncidentAtomDirection, IncidentAtomPosition, 'PlotPositions', true); %% - Velocities Plotter.plotDynamicalQuantities(Oven, MOT2D, MaximumVelocity, IncidentAtomDirection, IncidentAtomPosition, 'PlotVelocities', true); %% - Scan parameters: One-Parameter Scan MOT2D.NumberOfAtoms = 5000; MOT2D.TotalPower = 0.4; NumberOfPointsForFirstParam = 5; %iterations of the simulation ParameterArray = linspace(0.1, 1.0, NumberOfPointsForFirstParam) * MOT2D.TotalPower; tStart = tic; [LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = Simulator.Scan.doOneParameter(Oven, MOT2D, 'Blue', 'Power', ParameterArray); tEnd = toc(tStart); fprintf('Total Computational Time: %0.1f seconds. \n', tEnd); % - Plot results OptionsStruct = struct; OptionsStruct.RescalingFactorForParameter = 1000; OptionsStruct.XLabelString = 'Cooling Beam Power (mW)'; OptionsStruct.RescalingFactorForYQuantity = 1e-10; OptionsStruct.ErrorsForYQuantity = true; OptionsStruct.ErrorsArray = StandardErrorArray; OptionsStruct.CIForYQuantity = true; OptionsStruct.CIArray = ConfidenceIntervalArray; OptionsStruct.RemoveOutliers = true; OptionsStruct.YLabelString = 'Loading rate (x 10^{10} atoms/s)'; OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100); options = Helper.convertstruct2cell(OptionsStruct); Plotter.plotResultForOneParameterScan(ParameterArray, LoadingRateArray, options{:}) clear OptionsStruct %% - Scan parameters: Two-Parameter Scan % COOLING BEAM POWER VS DETUNING MOT2D.NumberOfAtoms = 5000; MOT2D.TotalPower = 0.6; NumberOfPointsForFirstParam = 10; %iterations of the simulation NumberOfPointsForSecondParam = 10; FirstParameterArray = linspace(-0.5, -2.5, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth; SecondParameterArray = linspace(0.3, 1.0, NumberOfPointsForSecondParam) * MOT2D.TotalPower; tStart = tic; [LoadingRateArray, ~, ~] = Simulator.Scan.doTwoParameters(Oven, MOT2D, 'Blue', 'Detuning', FirstParameterArray, 'Power', SecondParameterArray); tEnd = toc(tStart); fprintf('Total Computational Time: %0.1f seconds. \n', tEnd); % - Plot results OptionsStruct = struct; OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.BlueLinewidth)^-1; OptionsStruct.XLabelString = 'Cooling Beam Detuning (\Delta/\Gamma)'; OptionsStruct.RescalingFactorForSecondParameter = 1000; OptionsStruct.YLabelString = 'Cooling Beam Power (mW)'; OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-9; OptionsStruct.ZLabelString = 'Loading rate (x 10^{9} atoms/s)'; OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100); options = Helper.convertstruct2cell(OptionsStruct); Plotter.plotResultForTwoParameterScan(FirstParameterArray, SecondParameterArray, LoadingRateArray, options{:}) clear OptionsStruct %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % COOLING BEAM WAIST VS DETUNING MOT2D.NumberOfAtoms = 5000; CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)}; CoolingBeam.Power = 0.4; NumberOfPointsForFirstParam = 10; %iterations of the simulation NumberOfPointsForSecondParam = 10; FirstParameterArray = linspace(-0.5, -2.0, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth; SecondParameterArray = linspace(10, 25, NumberOfPointsForSecondParam) * 1e-03; tStart = tic; [LoadingRateArray, ~, ~] = Simulator.Scan.doTwoParameters(Oven, MOT2D, 'Blue', 'Detuning', FirstParameterArray, 'Waist', SecondParameterArray); tEnd = toc(tStart); fprintf('Total Computational Time: %0.1f seconds. \n', tEnd); % - Plot results OptionsStruct = struct; OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.BlueLinewidth)^-1; OptionsStruct.XLabelString = 'Cooling Beam Detuning (\Delta/\Gamma)'; OptionsStruct.RescalingFactorForSecondParameter = 1000; OptionsStruct.YLabelString = 'Cooling Beam Waist (mm)'; OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-9; OptionsStruct.ZLabelString = 'Loading rate (x 10^{9} atoms/s)'; OptionsStruct.TitleString = sprintf('Cooling Beam Power = %d (mW); Magnetic Gradient = %.0f (G/cm)', CoolingBeam.Power*1000, MOT2D.MagneticGradient * 100); options = Helper.convertstruct2cell(OptionsStruct); Plotter.plotResultForTwoParameterScan(FirstParameterArray, SecondParameterArray, LoadingRateArray, options{:}) clear OptionsStruct %% - Scan parameters: Three-Parameter Scan % COOLING BEAM WAIST VS DETUNING FOR DIFFERENT MAGNETIC FIELD GRADIENTS MOT2D.NumberOfAtoms = 5000; CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)}; CoolingBeam.Power = 0.4; NumberOfPointsForFirstParam = 10; %iterations of the simulation NumberOfPointsForSecondParam = 10; NumberOfPointsForThirdParam = 6; FirstParameterArray = linspace(-0.5, -2.0, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth; SecondParameterArray = linspace(10, 25, NumberOfPointsForSecondParam) * 1e-03; ThirdParameterArray = linspace(30, 50, NumberOfPointsForThirdParam) * 1e-02; tStart = tic; LoadingRateArray = Simulator.Scan.doThreeParameters(Oven, MOT2D, 'Blue', 'Detuning', FirstParameterArray, ... 'Waist', SecondParameterArray, ... 'MagneticGradient', ThirdParameterArray); tEnd = toc(tStart); fprintf('Total Computational Time: %0.1f seconds. \n', tEnd); % - Plot results OptionsStruct = struct; OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.BlueLinewidth)^-1; OptionsStruct.XLabelString = 'Cooling Beam Detuning (\Delta/\Gamma)'; OptionsStruct.RescalingFactorForSecondParameter = 1000; OptionsStruct.YLabelString = 'Cooling Beam Waist (mm)'; OptionsStruct.RescalingFactorForThirdParameter = 100; OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-9; OptionsStruct.ZLabelString = 'Loading rate (x 10^{9} atoms/s)'; OptionsStruct.PlotTitleString = 'Magnetic Gradient = %.0f (G/cm)'; OptionsStruct.FigureTitleString = sprintf('Oven-2DMOT Distance = %.1f (mm); Cooling Beam Power = %d (mW)', Oven.OvenDistance * 1000, CoolingBeam.Power*1000); options = Helper.convertstruct2cell(OptionsStruct); Plotter.plotResultForThreeParameterScan(FirstParameterArray, SecondParameterArray, ThirdParameterArray, LoadingRateArray, options{:}) clear OptionsStruct