import math import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit from astropy import units as u, constants as ac def orderOfMagnitude(number): return math.floor(math.log(number, 10)) def rotation_matrix(axis, theta): """ Return the rotation matrix associated with counterclockwise rotation about the given axis by theta radians. In 2-D it is just, thetaInRadians = np.radians(theta) c, s = np.cos(thetaInRadians), np.sin(thetaInRadians) R = np.array(((c, -s), (s, c))) In 3-D, one way to do it is use the Euler-Rodrigues Formula as is done here """ axis = np.asarray(axis) axis = axis / math.sqrt(np.dot(axis, axis)) a = math.cos(theta / 2.0) b, c, d = -axis * math.sin(theta / 2.0) aa, bb, cc, dd = a * a, b * b, c * c, d * d bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)], [2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)], [2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]]) # Rayleigh range def z_R(w_0:np.ndarray, lamb:float)->np.ndarray: return np.pi*w_0**2/lamb # Beam Radius def w(pos, w_0, lamb): return w_0*np.sqrt(1+(pos / z_R(w_0, lamb))**2) def trap_depth(w_1:"float|u.quantity.Quantity", w_2:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity", alpha:float)->"float|u.quantity.Quantity": return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) def gravitational_potential(positions: "np.ndarray|u.quantity.Quantity", m:"float|u.quantity.Quantity"): return m * ac.g0 * positions def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray: A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength)) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2)) return U def astigmatic_single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", del_y:"float|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray: A = 2*P/(np.pi*w(positions[1,:] - (del_y/2), waists[0], wavelength)*w(positions[1,:] + (del_y/2), waists[1], wavelength)) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:] - (del_y/2), waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:] + (del_y/2), waists[1], wavelength))**2)) return U def single_gaussian_beam_potential_harmonic_approximation(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", depth:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray: U = - depth * (1 - (2 * (positions[0,:]/waists[0])**2) - (2 * (positions[2,:]/waists[1])**2) - (0.5 * positions[1,:]**2 * np.sum(np.reciprocal(z_R(waists, wavelength)))**2)) return U def harmonic_potential(pos, v, offset, m = 164*u.u): U_Harmonic = ((0.5 * m * (2 * np.pi * v*u.Hz)**2 * (pos*u.um)**2)/ac.k_B).to(u.uK) + offset*u.uK return U_Harmonic.value def calculateTrapFrequency(w_x, w_z, Power, Polarizability, m = 164*u.u, dir = 'x'): TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability) TrapFrequency = np.nan if dir == 'x': TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth / (m*w_x**2))).decompose() elif dir == 'y': zReff = np.sqrt(2) * z_R(w_x, 1.064*u.um) * z_R(w_z, 1.064*u.um) / np.sqrt(z_R(w_x, 1.064*u.um)**2 + z_R(w_z, 1.064*u.um)**2) TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(2 * TrapDepth/ (m*zReff**2))).decompose() elif dir == 'z': TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth/ (m*w_z**2))).decompose() return round(TrapFrequency.value, 2)*u.Hz def extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, axis): tmp_pos = Positions[axis, :] center_idx = np.where(tmp_pos == 0)[0][0] lb = int(round(center_idx - len(tmp_pos)/20, 1)) ub = int(round(center_idx + len(tmp_pos)/20, 1)) xdata = tmp_pos[lb:ub] tmp_pot = TrappingPotential[axis] Potential = tmp_pot[lb:ub] p0=[1e3, -TrapDepthInKelvin.value] popt, pcov = curve_fit(harmonic_potential, xdata, Potential, p0) v = popt[0] dv = pcov[0][0]**0.5 return v, dv, popt, pcov def meanThermalVelocity(T, m = 164*u.u): return 4 * np.sqrt((ac.k_B * T) /(np.pi * m)) def particleDensity(w_x, w_z, Power, Polarizability, N, T, m = 164*u.u): # For a thermal cloud v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x') v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y') v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z') return N * (2 * np.pi)**3 * (v_x * v_y * v_z) * (m / (2 * np.pi * ac.k_B * T))**(3/2) def thermaldeBroglieWavelength(T, m = 164*u.u): return np.sqrt((2*np.pi*ac.hbar**2)/(m*ac.k_B*T)) def scatteringLength(B): a_bkg = 87 * ac.a0 #resonanceWidth = 0.005 * u.G #resonanceB = 0.5 * u.G #return a_bkg * (1 - resonanceWidth/(B - resonanceB)) return a_bkg def dipolarLength(mu = 9.93 * ac.muB, m = 164*u.u): return (m * ac.mu0 * mu**2) / (8 * np.pi * ac.hbar**2) def scatteringCrossSection(B): return 8 * np.pi * scatteringLength(B)**2 + ((32*np.pi)/45) * dipolarLength()**2 def calculateElasticCollisionRate(w_x, w_z, Power, Polarizability, N, T, B): #For a 3D Harmonic Trap return (particleDensity(w_x, w_z, Power, Polarizability, N, T) * scatteringCrossSection(B) * meanThermalVelocity(T) / (2 * np.sqrt(2))).decompose() def calculatePSD(w_x, w_z, Power, Polarizability, N, T): return (particleDensity(w_x, w_z, Power, Polarizability, N, T, m = 164*u.u) * thermaldeBroglieWavelength(T)**3).decompose() def computeTrapPotential(w_x, w_z, Power, Polarizability, options): axis = options['axis'] extent = options['extent'] gravity = options['gravity'] astigmatism = options['astigmatism'] TrappingPotential = [] TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability) IdealTrapDepthInKelvin = (TrapDepth/ac.k_B).to(u.uK) projection_axis = np.array([0, 1, 0]) # default if axis == 0: projection_axis = np.array([1, 0, 0]) # radial direction (X-axis) elif axis == 1: projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis) elif axis == 2: projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis) x_Positions = np.arange(-extent, extent, 1)*u.um y_Positions = np.arange(-extent, extent, 1)*u.um z_Positions = np.arange(-extent, extent, 1)*u.um Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis] IdealTrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) IdealTrappingPotential = IdealTrappingPotential * (np.ones((3, len(IdealTrappingPotential))) * projection_axis[:, np.newaxis]) IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK) if gravity and not astigmatism: # Influence of Gravity m = 164*u.u gravity_axis = np.array([0, 0, 1]) tilt_gravity = options['tilt_gravity'] theta = options['theta'] tilt_axis = options['tilt_axis'] if tilt_gravity: R = rotation_matrix(tilt_axis, np.radians(theta)) gravity_axis = np.dot(R, gravity_axis) gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis] TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m) TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) elif not gravity and astigmatism: # Influence of Astigmatism disp_foci = options['disp_foci'] TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability) TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) elif gravity and astigmatism: # Influence of Gravity and Astigmatism m = 164*u.u gravity_axis = np.array([0, 0, 1]) tilt_gravity = options['tilt_gravity'] theta = options['theta'] tilt_axis = options['tilt_axis'] disp_foci = options['disp_foci'] if tilt_gravity: R = rotation_matrix(tilt_axis, np.radians(theta)) gravity_axis = np.dot(R, gravity_axis) gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis] TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability) TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m) TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) else: TrappingPotential = IdealTrappingPotential if TrappingPotential[axis][0] > TrappingPotential[axis][-1]: EffectiveTrapDepthInKelvin = TrappingPotential[axis][-1] - min(TrappingPotential[axis]) elif TrappingPotential[axis][0] < TrappingPotential[axis][-1]: EffectiveTrapDepthInKelvin = TrappingPotential[axis][0] - min(TrappingPotential[axis]) TrapDepthsInKelvin = [IdealTrapDepthInKelvin, EffectiveTrapDepthInKelvin] v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x') v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y') v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z') CalculatedTrapFrequencies = [v_x, v_y, v_z] v, dv, popt, pcov = extractTrapFrequency(Positions, IdealTrappingPotential, IdealTrapDepthInKelvin, axis) IdealTrapFrequency = [v, dv] v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, EffectiveTrapDepthInKelvin, axis) TrapFrequency = [v, dv] ExtractedTrapFrequencies = [IdealTrapFrequency, TrapFrequency] # Gamma_elastic = calculateElasticCollisionRate(w_x, w_z, Power, Polarizability, N = 1.13 * 1e7, T = 22 * u.uK, B = 0 * u.G) # PSD = calculatePSD(w_x, w_z, Power, Polarizability, N = 1.13 * 1e7, T = 22 * u.uK).decompose() return Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies def plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt, pcov): v = popt[0] dv = pcov[0][0]**0.5 happrox = harmonic_potential(Positions[axis, :].value, *popt) plt.figure() plt.plot(Positions[axis, :].value, happrox, '-r', label = '\u03BD = %.1f \u00B1 %.2f Hz'% tuple([v,dv])) plt.plot(Positions[axis, :], TrappingPotential[axis], 'ob', label = 'Gaussian Potential') plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.ylim([-TrapDepthInKelvin.value, max(TrappingPotential[axis].value)]) plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.show() def generate_label(v, dv): unit = 'Hz' if v <= 0.0: v = np.nan dv = np.nan unit = 'Hz' elif v > 0.0 and orderOfMagnitude(v) > 2: v = v / 1e3 # in kHz dv = dv / 1e3 # in kHz unit = 'kHz' tf_label = '\u03BD = %.1f \u00B1 %.2f %s'% tuple([v,dv,unit]) return tf_label def plotPotential(Positions, ComputedPotentials, axis, Params = [], listToIterateOver = [], save = False): plt.figure(figsize=(9, 7)) for i in range(np.size(ComputedPotentials, 0)): if i % 2 == 0: j = int(i / 2) else: j = int((i - 1) / 2) IdealTrapDepthInKelvin = Params[j][0][0] EffectiveTrapDepthInKelvin = Params[j][0][1] idealv = Params[j][2][0][0] idealdv = Params[j][2][0][1] v = Params[j][2][1][0] dv = Params[j][2][1][1] if listToIterateOver: if np.size(ComputedPotentials, 0) == len(listToIterateOver): plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv)) else: if i % 2 == 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv)) elif i % 2 != 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv)) else: if i % 2 == 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv)) elif i % 2 != 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv)) if axis == 0: dir = 'X' elif axis == 1: dir = 'Y' else: dir = 'Z' plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(loc=3, prop={'size': 12, 'weight': 'bold'}) if save: plt.savefig('pot_' + dir + '.png') plt.show() if __name__ == '__main__': Power = 40*u.W Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability w_x, w_z = 27.5*u.um, 33.8*u.um # Beam Waists in the x and y directions options = { 'axis': 1, # axis referenced to the beam along which you want the dipole trap potential 'extent': 1e4, # range of spatial coordinates in one direction to calculate trap potential over 'gravity': True, 'astigmatism': False, 'tilt_gravity': True, 'theta': 5, # in degrees 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam 'disp_foci': 3 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism) } ComputedPotentials = [] Params = [] Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, Power, Polarizability, options) ComputedPotentials.append(IdealTrappingPotential) ComputedPotentials.append(TrappingPotential) Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies]) ComputedPotentials = np.asarray(ComputedPotentials) plotPotential(Positions, ComputedPotentials, options['axis'], Params) # v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, options['axis']) # plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, options['axis'], popt, pcov) # Power = [10, 20, 25, 30, 35, 40]*u.W # Single Beam Power # for p in Power: # Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, p, Polarizability, options) # ComputedPotentials.append(IdealTrappingPotential) # ComputedPotentials.append(TrappingPotential) # Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies]) # ComputedPotentials = np.asarray(ComputedPotentials) # plotPotential(Positions, ComputedPotentials, options['axis'], Params)