function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V,Observ) format long; % Define the function handle f = @(X) this.Calculator.calculateTotalEnergy(X, Params, Transf, VDk, V)/Params.N; % Convergence Criteria: Epsilon = 1E-5; % Iteration Counter: i = 1; Observ.residual = 1; Observ.res = 1; % Initialize the PrematureExitFlag to false PrematureExitFlag = false; if this.PlotLive Plotter.plotLive(psi,Params,Transf,Observ) drawnow end % Minimization Loop while true % Compute gradient J = compute_gradient(psi, Params, Transf, VDk, V); % Check stopping criterion (Gradient norm) if norm(J(:)) < Epsilon disp('Tolerance reached: Gradient norm is below the specified epsilon.'); PrematureExitFlag = true; % Set flag to indicate premature exit break; elseif i >= this.MaxIterationsForCGD disp('Maximum number of iterations for CGD reached.'); PrematureExitFlag = true; % Set flag to indicate premature exit break; end % Initialize search direction if first iteration if i == 1 S = -J; else % Update search direction S = update_search_direction(S, J, J_old); end % Step Size Optimization (Line Search) alpha = optimize_step_size(f, psi, S, Params, Transf, VDk, V); % Update solution psi = psi + alpha * S; % Normalize psi Norm = sum(abs(psi(:)).^2) * Transf.dx * Transf.dy * Transf.dz; psi = sqrt(Params.N) * psi / sqrt(Norm); % Store old gradient J_old = J; i = i + 1; muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V); if mod(i,500) == 0 % Change in Energy E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V); E = E/Norm; Observ.EVec = [Observ.EVec E]; % Chemical potential Observ.mucVec = [Observ.mucVec muchem]; % Normalized residuals res = this.Calculator.calculateNormalizedResiduals(psi,Params,Transf,VDk,V,muchem); Observ.residual = [Observ.residual res]; Observ.res_idx = Observ.res_idx + 1; if this.PlotLive Plotter.plotLive(psi,Params,Transf,Observ) drawnow end save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','muchem','Observ','Transf','Params','VDk','V'); end end % Check if loop ended prematurely if PrematureExitFlag disp('Optimizer ended prematurely without convergence to a minimum.'); else fprintf('Minimum found! Number of Iterations for Convergence: %d\n\n', i); end % Change in Energy E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V); E = E/Norm; Observ.EVec = [Observ.EVec E]; disp('Saving data...'); save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','muchem','Observ','Transf','Params','VDk','V'); disp('Save complete!'); end %% Helper functions % Numerical Gradient Calculation using the finite differences method function J = compute_gradient(psi, Params, Transf, VDk, V) % Operators % Kinetic energy KEop = 0.5 * (Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2); HKin = @(w) real(ifft(KEop.*fft(w))); % Trap Potential HV = @(w) V.*w; % Contact interactions Hint = @(w) (Params.gs*abs(psi).^2).*w; % DDIs frho = fftn(abs(psi).^2); Phi = real(ifftn(frho.*VDk)); Hddi = @(w) (Params.gdd*Phi).*w; % Quantum fluctuations Hqf = @(w) (Params.gammaQF*abs(psi).^3).*w; H = @(w) HKin(w) + HV(w) + Hint(w) + Hddi(w) + Hqf(w); J = H(psi); end % Line Search (Step Size Optimization) function alpha = optimize_step_size(f, X, S, Params, Transf, VDk, V) alpha = 1; % Initial step size rho = 0.5; % Step size reduction factor c = 1E-4; % Armijo condition constant max_iter = 100; % Max iterations for backtracking tol = 1E-4; % Tolerance for stopping grad = compute_gradient(X, Params, Transf, VDk, V); % Compute gradient once f_X = f(X); % Evaluate f(X) once for k = 1:max_iter % Evaluate Armijo condition with precomputed f(X) and grad if f(X + alpha * S) <= f_X + c * alpha * (S(:)' * grad(:)) break; else alpha = rho * alpha; % Reduce the step size end % Early stopping if step size becomes too small if alpha < tol break; end end end % Update Search Direction function S_new = update_search_direction(S, J_new, J_old) % (Fletcher-Reeves method) % beta = (norm(J_new(:))^2) / (norm(J_old(:))^2); % S_new = -J_new + beta * S; % (Polak-Ribiere method) beta = max(0, (J_new(:)' * (J_new(:) - J_old(:))) / (norm(J_old(:))^2)); S_new = -J_new + beta * S; end