function [Params] = setupParameters() %%--%% Parameters %%--%% %========= Simulation =========% pert = 0; % 0 = no perturbation during real-time, 1=perturbation %method=1; % 0 = normal dipolar potential, 1=spherical cut-off, 2=cylindrical cut-off % Tolerances Params.Etol = 5e-10; Params.rtol = 1e-5; Params.cut_off = 2e6; % sometimes the imaginary time gets a little stuck % even though the solution is good, this just stops it going on forever %========= Constants =========% hbar = 1.0545718e-34; % Planck constant [J.s] kbol = 1.38064852e-23; % Boltzmann Constant [J/K] mu0 = 1.25663706212e-6; % Vacuum Permeability [N/A^2] -- muB = 9.274009994e-24; % Bohr Magneton [J/T] a0 = 5.2917721067e-11; % Bohr radius [m] m0 = 1.660539066e-27; % Atomic mass [kg] w0 = 2*pi*100; % Angular frequency unit [s^-1] mu0factor = 0.3049584233607396; % =(m0/me)*pi*alpha^2 -- me=mass of electron, alpha=fine struct. const. % mu0=mu0factor *hbar^2*a0/(m0*muB^2) %=============================% % Number of points in each direction Params.Nx = 64; Params.Ny = 64; Params.Nz = 48; % Dimensions (in units of l0) Params.Lx = 40; Params.Ly = 40; Params.Lz = 20; % Masses Params.m = 164*m0; l0 = sqrt(hbar/(Params.m*w0)); % Defining a harmonic oscillator length % Atom numbers % Params.ppum = 2500; % particles per micron % Params.N = Params.Lz*Params.ppum*l0*1e6; Params.N = 10^6; % Dipole angle Params.theta = pi/2; % pi/2 dipoles along x, theta=0 dipoles along z % Dipole lengths (units of muB) Params.mu = 9.93*muB; % Scattering lengths Params.as = 86*a0; % Trapping frequencies Params.wx = 2*pi*125; Params.wy = 2*pi*125; Params.wz = 2*pi*250; % Time step Params.dt = 0.0005; Params.mindt = 1e-6; %Minimum size for a time step using adaptive dt % Stochastic GPE Params.gamma_S = 7.5*10^(-3); % gamma for the stochastic GPE Params.muchem = 12.64*Params.wz/w0; % fixing the chemical potential for the stochastic GPE % ================ Parameters defined by those above ================ % % Contact interaction strength (units of l0/m) Params.gs = 4*pi*Params.as/l0; % Dipole lengths Params.add = mu0*Params.mu^2*Params.m/(12*pi*hbar^2); % DDI strength Params.gdd = 12*pi*Params.add/l0; %sometimes the 12 is a 4? --> depends on how Vdk (DDI) is defined % Trap gamma Params.gx=(Params.wx/w0)^2; Params.gy=(Params.wy/w0)^2; Params.gz=(Params.wz/w0)^2; % == Calculating quantum fluctuations == % eps_dd = Params.add/Params.as; if eps_dd == 0 Q5 = 1; elseif eps_dd == 1 Q5 = 3*sqrt(3)/2; else yeps = (1-eps_dd)/(3*eps_dd); Q5 = (3*eps_dd)^(5/2)*( (8+26*yeps+33*yeps^2)*sqrt(1+yeps) + 15*yeps^3*log((1+sqrt(1+yeps))/sqrt(yeps)) )/48; Q5 = real(Q5); end Params.gammaQF = 128/3*sqrt(pi*(Params.as/l0)^5)*Q5; % Loading the rest into Params Params.hbar = hbar; Params.kbol = kbol; Params.mu0 = mu0; Params.muB = muB; Params.a0 = a0; Params.w0 = w0; Params.l0 = l0; end