%% Parameters groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", "/images/Vertical_Axis_Camera/in_situ_absorption"]; folderPath = "C:/Users/Karthik/Documents/GitRepositories/Calculations/Imaging-Response-Function-Extractor/"; run = '0096'; folderPath = strcat(folderPath, run); cam = 5; angle = 0; center = [1137, 2023]; span = [255, 255]; fraction = [0.1, 0.1]; NA = 0.6; pixel_size = 4.6e-6; lambda = 421e-9; % The diameter of the first dark concentric ring surrounding the central intensity peak of a point spread function (or Airy disk) d = 1.22 * (lambda / NA); % Abbe limit AbbeLimit = lambda / (2 * NA); % Maximum resolvable spatial frequency for the coherent case k_cutoff = (NA/lambda) * 1e-6; % (in units of 1/µm) removeFringes = false; %% Compute OD image, rotate and extract ROI for analysis % Get a list of all files in the folder with the desired file name pattern. filePattern = fullfile(folderPath, '*.h5'); files = dir(filePattern); refimages = zeros(span(1) + 1, span(2) + 1, length(files)); absimages = zeros(span(1) + 1, span(2) + 1, length(files)); for k = 1 : length(files) baseFileName = files(k).name; fullFileName = fullfile(files(k).folder, baseFileName); fprintf(1, 'Now reading %s\n', fullFileName); atm_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle)); bkg_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle)); dark_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle)); refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)'; absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img), center, span), fraction)'; end % Fringe removal if removeFringes optrefimages = removefringesInImage(absimages, refimages); absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :); nimgs = size(absimages_fringe_removed,3); od_imgs = cell(1, nimgs); for i = 1:nimgs od_imgs{i} = absimages_fringe_removed(:, :, i); end else nimgs = size(absimages(:, :, :),3); od_imgs = cell(1, nimgs); for i = 1:nimgs od_imgs{i} = absimages(:, :, i); end end %% Compute the Density Noise Spectrum mean_subtracted_od_imgs = cell(1, length(od_imgs)); mean_od_img = mean(cat(3, od_imgs{:}), 3, 'double'); density_fft = cell(1, length(od_imgs)); density_noise_spectrum = cell(1, length(od_imgs)); [Nx, Ny] = size(mean_od_img); dx = pixel_size; dy = pixel_size; xvals = (1:Nx)*dx*1e6; yvals = (1:Ny)*dy*1e6; dvx = 1 / (Nx * dx); % reciprocal space increment in the X direction (in units of 1/dx) dvy = 1 / (Ny * dy); % reciprocal space increment in the Y direction (in units of 1/dy) % Create the frequency axes vx = (-Nx/2:Nx/2-1) * dvx; % Frequency axis in X (in units of 1/dx) vy = (-Ny/2:Ny/2-1) * dvy; % Frequency axis in Y (in units of 1/dy) % Create the Wavenumber axes kx = 2*pi*vx; % Wavenumber axis in X ky = 2*pi*vy; % Wavenumber axis in Y % Create Circular Mask n = 2^8; % size of mask mask = zeros(n); I = 1:n; x = I-n/2; % mask x-coordinates y = n/2-I; % mask y-coordinates [X,Y] = meshgrid(x,y); % create 2-D mask grid R = 32; % aperture radius A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R mask(A) = 1; % set mask elements inside aperture to 1 % Calculate Power Spectrum and plot figure(1) clf set(gcf,'Position',[100, 100, 1200, 800]) % Create tiled layout with 2 rows and 3 columns t = tiledlayout(2, 3, 'TileSpacing', 'compact', 'Padding', 'compact'); for k = 1 : length(od_imgs) mean_subtracted_od_imgs{k} = od_imgs{k} - mean_od_img; masked_img = mean_subtracted_od_imgs{k} .* mask; density_fft{k} = (1/numel(masked_img)) * abs(fftshift(fft2(masked_img))); density_noise_spectrum{k} = density_fft{k}.^2; % Tile 1: Single-shot image nexttile(1); imagesc(xvals, yvals, od_imgs{k}) xlabel('\mum', 'Interpreter', 'tex', 'FontSize', 16) ylabel('\mum', 'Interpreter', 'tex', 'FontSize', 16) axis equal tight; colorbar colormap jet; set(gca,'YDir','normal') title('Single-shot image', 'FontSize', 16); % Tile 2: Averaged density image nexttile(2); imagesc(xvals, yvals, mean_od_img) xlabel('\mum', 'Interpreter', 'tex', 'FontSize', 16) ylabel('\mum', 'Interpreter', 'tex', 'FontSize', 16) axis equal tight; colorbar colormap jet; set(gca,'YDir','normal') title('Averaged density image', 'FontSize', 16); % Tile 3: Image noise = Single-shot - Average nexttile(3); imagesc(xvals, yvals, mean_subtracted_od_imgs{k}) xlabel('\mum', 'Interpreter', 'tex', 'FontSize', 16) ylabel('\mum', 'Interpreter', 'tex', 'FontSize', 16) axis equal tight; colorbar colormap jet; set(gca,'YDir','normal') title('Image noise = Single-shot - Average', 'FontSize', 16); % Tile 4: Masked Noise nexttile(4); imagesc(xvals, yvals, mean_subtracted_od_imgs{k} .* mask) xlabel('\mum', 'Interpreter', 'tex', 'FontSize', 16) ylabel('\mum', 'Interpreter', 'tex', 'FontSize', 16) axis equal tight; colorbar colormap jet; set(gca,'YDir','normal') title('Masked Noise', 'FontSize', 16); % Tile 5: DFT nexttile(5); imagesc(kx*1E-6, ky*1E-6, abs(log2(density_fft{k}))) xlabel('k_x (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16) ylabel('k_y (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16) axis equal tight; colorbar colormap jet; set(gca,'YDir','normal') title('DFT', 'FontSize', 16); % Tile 6: Density Noise Spectrum = |DFT|^2 nexttile(6); imagesc(kx*1E-6, ky*1E-6, abs(log2(density_noise_spectrum{k}))) xlabel('k_x (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16) ylabel('k_y (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16) axis equal tight; colorbar colormap jet; set(gca,'YDir','normal') title('Density Noise Spectrum', 'FontSize', 16); drawnow; end %% Compute the average 2D spectrum and do radial averaging to get the 1D spectrum % Compute the average power spectrum. averagePowerSpectrum = mean(cat(3, density_noise_spectrum{:}), 3, 'double'); % Plot the average power spectrum. figure(2) clf set(gcf,'Position',[100, 100, 1500, 700]) % Create tiled layout with 2 rows and 3 columns t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); nexttile(1); imagesc(abs(10*log10(averagePowerSpectrum))) axis equal tight; colorbar colormap(flip(jet)); title('Average Density Noise Spectrum', 'FontSize', 16); grid on; centers = ginput; radius = 3; % Plot where clicked. hVC = viscircles(centers, radius, 'Color', 'r', 'LineWidth', 2); xc = centers(:,1); yc = centers(:,2); [yDim, xDim] = size(averagePowerSpectrum); [xx,yy] = meshgrid(1:yDim,1:xDim); mask = false(xDim,yDim); for ii = 1:length(centers) mask = mask | hypot(xx - xc(ii), yy - yc(ii)) <= radius; end mask = not(mask); % Ask user if the circle is acceptable. message = sprintf('Is this acceptable?'); button = questdlg(message, message, 'Accept', 'Reject and Quit', 'Accept'); if contains(button, 'Accept','IgnoreCase',true) image = mask.*averagePowerSpectrum; image(image==0) = NaN; imagesc(kx*1E-6, ky*1E-6, mask.*abs(10*log10(averagePowerSpectrum))) hold on xlabel('k_x (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16) ylabel('k_y (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16) axis equal tight; colorbar colormap(flip(jet)); title('Average Density Noise Spectrum', 'FontSize', 16); grid on; elseif contains(button, 'Quit','IgnoreCase',true) delete(hVC); % Delete the circle from the overlay. image = averagePowerSpectrum; imagesc(kx*1E-6, ky*1E-6, abs(10*log10(averagePowerSpectrum))) xlabel('k_x (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16) ylabel('k_y (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16) axis equal tight; colorbar colormap(flip(jet)); title('Average Density Noise Spectrum', 'FontSize', 16); grid on; end % Fit nexttile(2); radialStep = 1; % in pixels [R, Profile] = getRadialProfile(averagePowerSpectrum, radialStep); kvec = (2 * pi) .* R(2:end) .* (sqrt(dvx^2 + dvy^2) * radialStep) * 1E-6; % in units of micrometers^-1 NormalisedProfile = (Profile(2:end) - min(Profile(2:end)))./(max(Profile(2:end)) - min(Profile(2:end))); kmax = k_cutoff; % Define the objective function to minimize (the difference between model and data) objectiveFunction = @(C, k) RadialImagingResponseFunction(C, k, kmax) - NormalisedProfile; % Initial guess for the parameters [C1, C2, C3, C4, C5, C6] initialGuess = [2E6, 1E-6, 1E-6, 1E-6, 1E-6, 0.8]; % Set upper and lower bounds for the parameters (optional) lb = [-Inf, -Inf, -Inf, -Inf, -Inf, 0]; % Lower bounds ub = [Inf, Inf, Inf, Inf, Inf, 1]; % Upper bounds % Perform the non-linear least squares fitting using lsqcurvefit options = optimoptions('lsqcurvefit', 'Display', 'iter'); % Display iterations during fitting [C_fit, resnorm] = lsqcurvefit(objectiveFunction, initialGuess, kvec, NormalisedProfile, lb, ub, options); % Plot the fitted result against the data k_new = linspace(kvec(1), kvec(end), 1000); fittedProfile = RadialImagingResponseFunction(C_fit, k_new, kmax); nexttile(2) plot(kvec, NormalisedProfile, 'o-', 'MarkerSize', 4, 'MarkerFaceColor', 'none', 'DisplayName', 'Radial (average) profile'); hold on plot(k_new, fittedProfile, 'r-', 'DisplayName', 'Fitted Curve'); set(gca, 'XScale', 'log'); % Setting x-axis to log scale xlabel('k_\rho (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16) ylabel('Normalised amplitude', 'FontSize', 16) title('Modulation Transfer Function', 'FontSize', 16); legend('FontSize', 16); grid on; %% Helper Functions function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction) % image must be a 2D numerical array [dim1, dim2] = size(img); s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction)); s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2); s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction)); s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2); ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]); end function ret = subtractBackgroundOffset(img, fraction) % Remove the background from the image. % :param dataArray: The image % :type dataArray: xarray DataArray % :param x_fraction: The fraction of the pixels used in x axis % :type x_fraction: float % :param y_fraction: The fraction of the pixels used in y axis % :type y_fraction: float % :return: The image after removing background % :rtype: xarray DataArray x_fraction = fraction(1); y_fraction = fraction(2); offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction); ret = img - offset; end function ret = cropODImage(img, center, span) % Crop the image according to the region of interest (ROI). % :param dataSet: The images % :type dataSet: xarray DataArray or DataSet % :param center: The center of region of interest (ROI) % :type center: tuple % :param span: The span of region of interest (ROI) % :type span: tuple % :return: The cropped images % :rtype: xarray DataArray or DataSet x_start = floor(center(1) - span(1) / 2); x_end = floor(center(1) + span(1) / 2); y_start = floor(center(2) - span(2) / 2); y_end = floor(center(2) + span(2) / 2); ret = img(y_start:y_end, x_start:x_end); end function ret = calculateODImage(imageAtom, imageBackground, imageDark) % Calculate the OD image for absorption imaging. % :param imageAtom: The image with atoms % :type imageAtom: numpy array % :param imageBackground: The image without atoms % :type imageBackground: numpy array % :param imageDark: The image without light % :type imageDark: numpy array % :return: The OD images % :rtype: numpy array numerator = imageBackground - imageDark; denominator = imageAtom - imageDark; numerator(numerator == 0) = 1; denominator(denominator == 0) = 1; ret = -log(double(abs(denominator ./ numerator))); if numel(ret) == 1 ret = ret(1); end end function [optrefimages] = removefringesInImage(absimages, refimages, bgmask) % removefringesInImage - Fringe removal and noise reduction from absorption images. % Creates an optimal reference image for each absorption image in a set as % a linear combination of reference images, with coefficients chosen to % minimize the least-squares residuals between each absorption image and % the optimal reference image. The coefficients are obtained by solving a % linear set of equations using matrix inverse by LU decomposition. % % Application of the algorithm is described in C. F. Ockeloen et al, Improved % detection of small atom numbers through image processing, arXiv:1007.2136 (2010). % % Syntax: % [optrefimages] = removefringesInImage(absimages,refimages,bgmask); % % Required inputs: % absimages - Absorption image data, % typically 16 bit grayscale images % refimages - Raw reference image data % absimages and refimages are both cell arrays containing % 2D array data. The number of refimages can differ from the % number of absimages. % % Optional inputs: % bgmask - Array specifying background region used, % 1=background, 0=data. Defaults to all ones. % Outputs: % optrefimages - Cell array of optimal reference images, % equal in size to absimages. % % Dependencies: none % % Authors: Shannon Whitlock, Caspar Ockeloen % Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and % S. Whitlock, Improved detection of small atom numbers through % image processing, arXiv:1007.2136 % Email: % May 2009; Last revision: 11 August 2010 % Process inputs % Set variables, and flatten absorption and reference images nimgs = size(absimages,3); nimgsR = size(refimages,3); xdim = size(absimages(:,:,1),2); ydim = size(absimages(:,:,1),1); R = single(reshape(refimages,xdim*ydim,nimgsR)); A = single(reshape(absimages,xdim*ydim,nimgs)); optrefimages=zeros(size(absimages)); % preallocate if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end k = find(bgmask(:)==1); % Index k specifying background region % Ensure there are no duplicate reference images % R=unique(R','rows')'; % comment this line if you run out of memory % Decompose B = R*R' using singular value or LU decomposition [L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition for j=1:nimgs b=R(k,:)'*A(k,j); % Obtain coefficients c which minimise least-square residuals lower.LT = true; upper.UT = true; c = linsolve(U,linsolve(L,b(p,:),lower),upper); % Compute optimised reference image optrefimages(:,:,j)=reshape(R*c,[ydim xdim]); end end function [M] = ImagingResponseFunction(B) x = -100:100; y = x; [X,Y] = meshgrid(x,y); R = sqrt(X.^2+Y.^2); PHI = atan2(X,Y)+pi; %fit parameters tau = B(1); alpha = B(2); S0 = B(3); phi = B(4); beta = B(5); delta = B(6); A = B(7); C = B(8); a = B(9); U = heaviside(1-R/a).*exp(-R.^2/a^2/tau^2); THETA = S0*(R/a).^4 + alpha*(R/a).^2.*cos(2*PHI-2*phi) + beta*(R/a).^2; p = U.*exp(1i.*THETA); M = A*abs((ifft2(real(exp(1i*delta).*fftshift(fft2(p)))))).^2 + C; end function [R, Zr] = getRadialProfile(data, radialStep) x = (1:size(data,2))-size(data,2)/2; y = (1:size(data,1))-size(data,1)/2; % coordinate grid: [X,Y] = meshgrid(x,y); % creating circular layers Z_integer = round(abs(X+1i*Y)/radialStep)+1; % very fast MatLab calculations: R = accumarray(Z_integer(:),abs(X(:)+1i*Y(:)),[],@mean); Zr = accumarray(Z_integer(:),data(:),[],@mean); end function [RadialResponseFunc] = RadialImagingResponseFunction(C, k, kmax) A = heaviside(1 - k/kmax) .* exp(-C(1) * k.^4); W = C(2) + C(3) * k.^2 + C(4) * k.^4; RadialResponseFunc = 0; for n = -30:30 RadialResponseFunc = RadialResponseFunc + ... besselj(n, C(5) * k.^2).^2 + ... besselj(n, C(5) * k.^2) .* besselj(-n, C(5) * k.^2) .* cos(2 * W); end RadialResponseFunc = C(6) * 1/2 * A .* RadialResponseFunc; end