import math import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit from astropy import units as u, constants as ac def orderOfMagnitude(number): return math.floor(math.log(number, 10)) def rotation_matrix(axis, theta): """ Return the rotation matrix associated with counterclockwise rotation about the given axis by theta radians. In 2-D it is just, thetaInRadians = np.radians(theta) c, s = np.cos(thetaInRadians), np.sin(thetaInRadians) R = np.array(((c, -s), (s, c))) In 3-D, one way to do it is use the Euler-Rodrigues Formula as is done here """ axis = np.asarray(axis) axis = axis / math.sqrt(np.dot(axis, axis)) a = math.cos(theta / 2.0) b, c, d = -axis * math.sin(theta / 2.0) aa, bb, cc, dd = a * a, b * b, c * c, d * d bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)], [2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)], [2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]]) # Rayleigh range def z_R(w_0:np.ndarray, lamb:float)->np.ndarray: return np.pi*w_0**2/lamb # Beam Radius def w(pos, w_0, lamb): return w_0*np.sqrt(1+(pos / z_R(w_0, lamb))**2) def trap_depth(w_1:"float|u.quantity.Quantity", w_2:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity", alpha:float)->"float|u.quantity.Quantity": return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) def gravitational_potential(positions: "np.ndarray|u.quantity.Quantity", m:"float|u.quantity.Quantity"): return m * ac.g0 * positions def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray: A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength)) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2)) return U def astigmatic_single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", del_y:"float|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray: A = 2*P/(np.pi*w(positions[1,:] - (del_y/2), waists[0], wavelength)*w(positions[1,:] + (del_y/2), waists[1], wavelength)) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:] - (del_y/2), waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:] + (del_y/2), waists[1], wavelength))**2)) return U def single_gaussian_beam_potential_harmonic_approximation(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", depth:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray: U = - depth * (1 - (2 * (positions[0,:]/waists[0])**2) - (2 * (positions[2,:]/waists[1])**2) - (0.5 * positions[1,:]**2 * np.sum(np.reciprocal(z_R(waists, wavelength)))**2)) return U def harmonic_potential(pos, v, offset): U_Harmonic = ((0.5 * 164*u.u * (2 * np.pi * v*u.Hz)**2 * (pos*u.um)**2)/ac.k_B).to(u.uK) + offset*u.uK return U_Harmonic.value def extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, axis): tmp_pos = Positions[axis, :] center_idx = np.where(tmp_pos == 0)[0][0] lb = int(round(center_idx - len(tmp_pos)/20, 1)) ub = int(round(center_idx + len(tmp_pos)/20, 1)) xdata = tmp_pos[lb:ub] tmp_pot = TrappingPotential[axis] Potential = tmp_pot[lb:ub] p0=[1e3, -TrapDepthInKelvin.value] popt, pcov = curve_fit(harmonic_potential, xdata, Potential, p0) v = popt[0] dv = pcov[0][0]**0.5 return v, dv, popt, pcov def plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt, pcov): v = popt[0] dv = pcov[0][0]**0.5 happrox = harmonic_potential(Positions[axis, :].value, *popt) plt.figure() plt.plot(Positions[axis, :].value, happrox, '-r', label = '\u03BD = %.1f \u00B1 %.2f Hz'% tuple([v,dv])) plt.plot(Positions[axis, :], TrappingPotential[axis], 'ob', label = 'Gaussian Potential') plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.ylim([-TrapDepthInKelvin.value, max(TrappingPotential[axis].value)]) plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.show() def plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels): ## plot of the measured parameter vs. scan parameter plt.figure(figsize=(9, 7)) j = 0 for i in range(np.size(ComputedPotentials, 0)): v, dv, popt, pcov = extractTrapFrequency(Positions, ComputedPotentials[i], TrapDepthInKelvin, axis) unit = 'Hz' if v <= 0.0: v = np.nan dv = np.nan unit = 'Hz' elif v > 0.0 and orderOfMagnitude(v) > 2: v = v / 1e3 # in kHz dv = dv / 1e3 # in kHz unit = 'kHz' tf_label = '\u03BD = %.1f \u00B1 %.2f %s'% tuple([v,dv,unit]) if i % 2 == 0 and j < len(Powers): plt.plot(Positions[axis], ComputedPotentials[i][axis], '--',label = 'P = ' + str(Powers[j]) + ' W; ' + TrapDepthLabels[j] + '; ' + tf_label) elif i % 2 != 0 and j < len(Powers): plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[j]) + ' W; ' + tf_label) j = j + 1 if axis == 0: dir = 'X' elif axis == 1: dir = 'Y' else: dir = 'Z' plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(loc=3, prop={'size': 12, 'weight': 'bold'}) plt.show() # plt.savefig('pot_' + dir + '.png') if __name__ == '__main__': # Powers = [0.1, 0.5, 2] # Powers = [5, 10, 20, 30, 40] Powers = [40] Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability w_x, w_z = 34*u.um, 27.5*u.um # Beam Waists in the x and y directions # w_x, w_z = 30*u.um, 30*u.um # Beam Waists in the x and y directions # w_x, w_z = 20.5*u.um, 20.5*u.um axis = 1 # axis referenced to the beam along which you want the dipole trap potential extent = 1e4 # range of spatial coordinates in one direction to calculate trap potential over TrappingPotential = [] ComputedPotentials = [] TrapDepthLabels = [] gravity = False astigmatism = True tilt_gravity = True theta = 1 # in degrees tilt_axis = [1, 0, 0] # lab space coordinates are rotated about x-axis in reference frame of beam disp_foci = 1.5 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism) for p in Powers: Power = p*u.W # Single Beam Power TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability) TrapDepthInKelvin = (TrapDepth/ac.k_B).to(u.uK) TrapDepthLabels.append("Trap Depth = " + str(round(TrapDepthInKelvin.value, 2)) + " " + str(TrapDepthInKelvin.unit)) projection_axis = np.array([0, 1, 0]) # default if axis == 0: projection_axis = np.array([1, 0, 0]) # radial direction (X-axis) elif axis == 1: projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis) elif axis == 2: projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis) x_Positions = np.arange(-extent, extent, 1)*u.um y_Positions = np.arange(-extent, extent, 1)*u.um z_Positions = np.arange(-extent, extent, 1)*u.um Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis] IdealTrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) IdealTrappingPotential = IdealTrappingPotential + np.zeros((3, len(IdealTrappingPotential))) * IdealTrappingPotential.unit IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK) if gravity and not astigmatism: ComputedPotentials.append(IdealTrappingPotential) # Influence of Gravity m = 164*u.u gravity_axis = np.array([0, 0, 1]) if tilt_gravity: R = rotation_matrix(tilt_axis, np.radians(theta)) gravity_axis = np.dot(R, gravity_axis) gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis] TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) + gravitational_potential(gravity_axis_positions, m) TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) elif not gravity and astigmatism: ComputedPotentials.append(IdealTrappingPotential) # Influence of Astigmatism TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability) TrappingPotential = TrappingPotential + np.zeros((3, len(TrappingPotential))) * TrappingPotential.unit TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) elif gravity and astigmatism: ComputedPotentials.append(IdealTrappingPotential) # Influence of Gravity and Astigmatism m = 164*u.u gravity_axis = np.array([0, 0, 1]) if tilt_gravity: R = rotation_matrix(tilt_axis, np.radians(theta)) gravity_axis = np.dot(R, gravity_axis) gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis] TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability) + gravitational_potential(gravity_axis_positions, m) TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) else: TrappingPotential = IdealTrappingPotential # v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, axis) # plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt, pcov) ComputedPotentials.append(TrappingPotential) # print(np.shape(ComputedPotentials)) ComputedPotentials = np.asarray(ComputedPotentials) plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels)