%% Across range of a_s, n % load('.\Results\ExtractingParameters_Result_Below1000.mat') % load('.\Results\ExtractingParameters_Result_Above1000.mat') load('.\Results\ExtractingParameters_Result_Above10000.mat') PlanckConstantReduced = 6.62607015E-34/(2*pi); AtomicMassUnit = 1.660539066E-27; Dy164Mass = 163.929174751*AtomicMassUnit; VacuumPermeability = 1.25663706212E-6; BohrMagneton = 9.274009994E-24; BohrRadius = 5.2917721067E-11; DyMagneticMoment = 9.93*BohrMagneton; add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length % Create a tiled layout with tighter spacing figure(17) clf set(gcf,'Position',[50 50 1800 500]) t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid % First subplot nexttile; % Equivalent to subplot(2, 2, 1) for idx = 1:length(data_struct) theta_values = data_struct(idx).theta_values; eps_dd_values = data_struct(idx).eps_dd_values; plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); hold on end xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); ylabel('$\epsilon_{dd}$', 'fontsize', 16, 'interpreter', 'latex'); grid on legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size % Second subplot nexttile; % Equivalent to subplot(2, 2, 2) for idx = 1:length(data_struct) theta_values = data_struct(idx).theta_values; n_values = data_struct(idx).n_values; plot(theta_values, n_values * 1E-15, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); hold on end xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); ylabel('$n (\times 10^{3} \mu m^{-2})$', 'fontsize', 16, 'interpreter', 'latex'); grid on legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size % Third subplot nexttile; % Equivalent to subplot(2, 2, 3) for idx = 1:length(data_struct) theta_values = data_struct(idx).theta_values; k_roton_values = data_struct(idx).k_roton_values; plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); hold on end xlabel('$\theta$','fontsize',16,'interpreter','latex'); ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex'); grid on legend('location', 'northeast','fontsize', 10, 'Interpreter','latex') % Adjust layout to minimize space t.TileSpacing = 'compact'; % Minimize space between tiles t.Padding = 'compact'; % Minimize padding around the layout % Convert to units relevant to experiment % Create a tiled layout with tighter spacing figure(18) clf set(gcf,'Position',[50 50 1800 500]) t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid % First subplot nexttile; % Equivalent to subplot(2, 2, 1) for idx = 1:length(data_struct) theta_values = data_struct(idx).theta_values; eps_dd_values = data_struct(idx).eps_dd_values; plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); hold on end xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); ylabel('$a_s (\times a_o)$', 'fontsize', 16, 'interpreter', 'latex'); grid on legend('location', 'southeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size % Second subplot nexttile; % Equivalent to subplot(2, 2, 2) for idx = 1:length(data_struct) theta_values = data_struct(idx).theta_values; n_values = data_struct(idx).n_values; Lx = 10e-6; Ly = 10e-6; AtomNumber = n_values .* Lx * Ly; plot(theta_values, AtomNumber * 1e-5, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); hold on end xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); ylabel('Atom number in a trap of area 100 $\mu m^2 (\times 10^{5})$', 'fontsize', 16, 'interpreter', 'latex'); grid on legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size % Third subplot nexttile; % Equivalent to subplot(2, 2, 3) for idx = 1:length(data_struct) theta_values = data_struct(idx).theta_values; lambda_roton_values = (2 * pi) ./ data_struct(idx).k_roton_values; plot(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); hold on end xlabel('$\theta$','fontsize',16,'interpreter','latex'); ylabel('$\lambda_{roton} (\mu m)$','fontsize',16,'interpreter','latex'); grid on legend('location', 'northeast','fontsize', 10, 'Interpreter','latex') % Adjust layout to minimize space t.TileSpacing = 'compact'; % Minimize space between tiles t.Padding = 'compact'; % Minimize padding around the layout %% Fixed Density results load('.\Results\ExtractingParameters_Result_FixedDensity_phi0.mat') PlanckConstantReduced = 6.62607015E-34/(2*pi); AtomicMassUnit = 1.660539066E-27; Dy164Mass = 163.929174751*AtomicMassUnit; VacuumPermeability = 1.25663706212E-6; BohrMagneton = 9.274009994E-24; BohrRadius = 5.2917721067E-11; DyMagneticMoment = 9.93*BohrMagneton; add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length % Create a tiled layout with tighter spacing figure(19) clf set(gcf,'Position',[50 50 1200 500]) t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid % First subplot nexttile; for idx = 1:length(data_struct) theta_values = data_struct(idx).theta_values; eps_dd_values = data_struct(idx).eps_dd_values; plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); hold on end xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); ylabel('$\epsilon_{dd}$', 'fontsize', 16, 'interpreter', 'latex'); grid on legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size % Second subplot nexttile; for idx = 1:length(data_struct) theta_values = data_struct(idx).theta_values; k_roton_values = data_struct(idx).k_roton_values; plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); hold on end xlabel('$\theta$','fontsize',16,'interpreter','latex'); ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex'); grid on legend('location', 'northeast','fontsize', 10, 'Interpreter','latex') % Adjust layout to minimize space t.TileSpacing = 'compact'; % Minimize space between tiles t.Padding = 'compact'; % Minimize padding around the layout % Create a tiled layout with tighter spacing figure(20) clf set(gcf,'Position',[50 50 1200 500]) t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid % First subplot nexttile; for idx = 1:length(data_struct) theta_values = data_struct(idx).theta_values; eps_dd_values = data_struct(idx).eps_dd_values; plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); hold on end xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); ylabel('$a_s (\times a_o)$', 'fontsize', 16, 'interpreter', 'latex'); grid on legend('location', 'northwest', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size % Second subplot nexttile; for idx = 1:length(data_struct) theta_values = data_struct(idx).theta_values; lambda_roton_values = (2 * pi) ./ data_struct(idx).k_roton_values; semilogy(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); hold on end % ylim([0 2]) xlabel('$\theta$','fontsize',16,'interpreter','latex'); ylabel('$\lambda_{roton} (\mu m)$','fontsize',16,'interpreter','latex'); grid on legend('location', 'southeast','fontsize', 10, 'Interpreter','latex') % Adjust layout to minimize space t.TileSpacing = 'compact'; % Minimize space between tiles t.Padding = 'compact'; % Minimize padding around the layout %% Fixed Density results - compare two orthogonal directions data0 = load('.\Results\ExtractingParameters_Result_FixedDensity_phi0.mat'); data90 = load('.\Results\ExtractingParameters_Result_FixedDensity_phi90.mat'); PlanckConstantReduced = 6.62607015E-34/(2*pi); AtomicMassUnit = 1.660539066E-27; Dy164Mass = 163.929174751*AtomicMassUnit; VacuumPermeability = 1.25663706212E-6; BohrMagneton = 9.274009994E-24; BohrRadius = 5.2917721067E-11; DyMagneticMoment = 9.93*BohrMagneton; add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length % Create a tiled layout with tighter spacing figure(21) clf set(gcf,'Position',[50 50 1200 500]) t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid idx = 4; % First subplot nexttile; theta_values = data0.data_struct(idx).theta_values; eps_dd_values = data0.data_struct(idx).eps_dd_values; plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']); hold on theta_values = data90.data_struct(idx).theta_values; eps_dd_values = data90.data_struct(idx).eps_dd_values; plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']); xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); ylabel('$\epsilon_{dd}$', 'fontsize', 16, 'interpreter', 'latex'); grid on legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size % Second subplot nexttile; theta_values = data0.data_struct(idx).theta_values; k_roton_values = data0.data_struct(idx).k_roton_values; plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']); hold on theta_values = data90.data_struct(idx).theta_values; k_roton_values = data90.data_struct(idx).k_roton_values; plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']); xlabel('$\theta$','fontsize',16,'interpreter','latex'); ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex'); grid on legend('location', 'northeast','fontsize', 10, 'Interpreter','latex') % Adjust layout to minimize space t.TileSpacing = 'compact'; % Minimize space between tiles t.Padding = 'compact'; % Minimize padding around the layout % Create a tiled layout with tighter spacing figure(22) clf set(gcf,'Position',[50 50 1200 500]) t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid % First subplot nexttile; theta_values = data0.data_struct(idx).theta_values; eps_dd_values = data0.data_struct(idx).eps_dd_values; plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']); hold on theta_values = data90.data_struct(idx).theta_values; eps_dd_values = data90.data_struct(idx).eps_dd_values; plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']); xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); ylabel('$a_s (\times a_o)$', 'fontsize', 16, 'interpreter', 'latex'); grid on legend('location', 'northwest', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size % Second subplot nexttile; theta_values = data0.data_struct(idx).theta_values; k_roton_values = data0.data_struct(idx).k_roton_values; lambda_roton_values = (2 * pi) ./ k_roton_values; semilogy(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']); hold on theta_values = data90.data_struct(idx).theta_values; k_roton_values = data90.data_struct(idx).k_roton_values; lambda_roton_values = (2 * pi) ./ k_roton_values; semilogy(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']); xlabel('$\theta$','fontsize',16,'interpreter','latex'); ylabel('$\lambda_{roton} (\mu m)$','fontsize',16,'interpreter','latex'); grid on legend('location', 'northwest','fontsize', 10, 'Interpreter','latex') % Adjust layout to minimize space t.TileSpacing = 'compact'; % Minimize space between tiles t.Padding = 'compact'; % Minimize padding around the layout %% %{ figure(13) clf set(gcf,'Position',[50 50 950 750]) for idx = 1:length(data_struct) theta_values = data_struct(idx).theta_values; eps_dd_values = data_struct(idx).eps_dd_values; plot(theta_values, eps_dd_values, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); hold on end xlabel('$\theta$','fontsize',16,'interpreter','latex'); ylabel('$\epsilon_{dd}$','fontsize',16,'interpreter','latex'); % title([''],'fontsize',16,'interpreter','latex') grid on legend('location', 'northeast','fontsize', 16, 'Interpreter','latex') figure(14) clf set(gcf,'Position',[50 50 950 750]) for idx = 1:length(data_struct) theta_values = data_struct(idx).theta_values; eps_dd_values = data_struct(idx).eps_dd_values; plot(theta_values, (1./eps_dd_values) * (add/BohrRadius), '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); hold on end xlabel('$\theta$','fontsize',16,'interpreter','latex'); ylabel('$a_s (\times a_o)$','fontsize',16,'interpreter','latex'); % title([''],'fontsize',16,'interpreter','latex') grid on legend('location', 'southeast','fontsize', 16, 'Interpreter','latex') figure(15) clf set(gcf,'Position',[50 50 950 750]) for idx = 1:length(data_struct) theta_values = data_struct(idx).theta_values; n_values = data_struct(idx).n_values; plot(theta_values, n_values * 1E-15, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); hold on end xlabel('$\theta$','fontsize',16,'interpreter','latex'); ylabel('$n (\times 10^{3} \mu m^{-2})$','fontsize',16,'interpreter','latex'); % title([''],'fontsize',16,'interpreter','latex') grid on legend('location', 'northeast','fontsize', 16, 'Interpreter','latex') figure(16) clf set(gcf,'Position',[50 50 950 750]) for idx = 1:length(data_struct) theta_values = data_struct(idx).theta_values; k_roton_values = data_struct(idx).k_roton_values; plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); hold on end xlabel('$\theta$','fontsize',16,'interpreter','latex'); ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex'); % title([''],'fontsize',16,'interpreter','latex') grid on legend('location', 'northeast','fontsize', 16, 'Interpreter','latex') %}