%% % To reproduce results from the Blair Blakie paper: % (n*add^2, as/add) % Critical point: (0.0978, 0.784); Triangular phase: (0.0959, 0.750); Stripe phase: (0.144, 0.765); Honeycomb phase: (0.192, 0.780) % N = ((n*add^2)/Params.add^2) * (Params.Lx *1E-6)^2 % Critical point: N = 2.0427e+07; Triangular phase: N = 2.0030e+07; Stripe phase: N = 3.0077e+07; Honeycomb phase: N = 4.0102e+07 for dimensions fixed to 100 % as = ((as/add)*Params.add)/Params.a0 % Critical point: 102.5133; Triangular phase: 98.0676; Stripe phase: 100.0289; Honeycomb phase: 101.9903 %% - Create Variational2D and Calculator object with specified options OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 2.0030e+07; OptionsStruct.DipolarPolarAngle = 0; OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 98.0676; OptionsStruct.TrapFrequencies = [0, 0, 72.4]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [100, 100]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 5; OptionsStruct.WidthLowerBound = 1; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 1; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Data_TriangularPhase'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% - Create Variational2D and Calculator object with specified options OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 3.0077e+07; OptionsStruct.DipolarPolarAngle = 0; OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 100.0289; OptionsStruct.TrapFrequencies = [0, 0, 72.4]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [100, 100]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 5; OptionsStruct.WidthLowerBound = 1; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 2; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Data_StripePhase'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% - Create Variational2D and Calculator object with specified options OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 4.0102e+07; OptionsStruct.DipolarPolarAngle = 0; OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 101.9903; OptionsStruct.TrapFrequencies = [0, 0, 72.4]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [100, 100]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 6; OptionsStruct.WidthLowerBound = 1; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 3; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Data_HoneycombPhase'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% %{ % Solve BdG equations % Load data Data = load(sprintf(horzcat(solver.SaveDirectory, '/Run_%03i/psi_gs.mat'),solver.JobNumber),'psi','Transf','Params','VParams','V'); Transf = Data.Transf; Params = Data.Params; VParams = Data.VParams; V = Data.V; if isgpuarray(Data.psi) psi = gather(Data.psi); else psi = Data.psi; end % == DDI potential == % VDk = solver.Calculator.calculateVDkWithCutoff(Transf, Params, VParams.ell); % == Chemical potential == % muchem = solver.Calculator.calculateChemicalPotential(psi,Params,VParams,Transf,VDk,V); [evals, modes] = BdGSolver2D.solveBogoliubovdeGennesIn2D(psi, Params, VDk, VParams, Transf, muchem); % Save the eigenvalues and eigenvectors to a .mat file save(sprintf(strcat(solver.SaveDirectory, '/Run_%03i/bdg_eigen_data.mat'),solver.JobNumber), 'evals', 'modes', '-v7.3'); %}