%% Tilting of the dipoles % Atom Number = 1250 ppum % System size = [5 * l_rot, 5 * l_rot] theta_values = 1:1:14; %% v_z = 500 as_values_500 = [76.41, 76.54, 76.54, 76.54, 76.54, 76.67, 76.67, 76.80, 76.80, 76.93, 77.06, 77.06, 77.19, 77.32]; num_iterations = length(theta_values); for i = 1:num_iterations OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 101250; OptionsStruct.DipolarPolarAngle = deg2rad(theta_values(i)); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = as_values_500(i); OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [9, 9]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 1.2; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = i; % Assign a unique JobNumber per iteration OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz500'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); % Run Solver [Params, Transf, psi, V, VDk] = solver.run(); end %% v_z = 750 as_values_750 = [70.52, 70.52, 70.52, 70.52, 70.52, 70.65, 70.65, 70.78, 70.79, 70.92, 71.05, 71.05, 71.18, 71.31, 71.44, 71.70]; num_iterations = length(theta_values); for i = 1:num_iterations OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 61250; OptionsStruct.DipolarPolarAngle = deg2rad(theta_values(i)); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = as_values_750(i); OptionsStruct.TrapFrequencies = [0, 0, 750]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [7, 7]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.85; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = i; % Assign a unique JobNumber per iteration OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz750'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); % Run Solver [Params, Transf, psi, V, VDk] = solver.run(); end %% v_z = 1000 as_values_1000 = [65.95, 65.95, 65.95, 65.95, 66.08, 66.08, 66.08, 66.21, 66.34, 66.34, 66.47, 66.60, 66.73, 66.86, 66.99, 67.26]; num_iterations = length(theta_values); for i = 1:num_iterations OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 45000; OptionsStruct.DipolarPolarAngle = deg2rad(theta_values(i)); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = as_values_1000(i); OptionsStruct.TrapFrequencies = [0, 0, 1000]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [6, 6]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.7; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = i; % Assign a unique JobNumber per iteration OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz1000'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); % Run Solver [Params, Transf, psi, V, VDk] = solver.run(); end %% v_z = 2000 as_values_2000 = [53.92, 53.92, 53.92, 54.05, 54.05, 54.05, 54.18, 54.31, 54.31, 54.44, 54.57, 54.70, 54.96, 55.1, 55.23, 55.49]; num_iterations = length(theta_values); for i = 1:num_iterations OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 31250; OptionsStruct.DipolarPolarAngle = deg2rad(theta_values(i)); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = as_values_2000(i); OptionsStruct.TrapFrequencies = [0, 0, 2000]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [5, 5]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.5; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = i; % Assign a unique JobNumber per iteration OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz2000'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); % Run Solver [Params, Transf, psi, V, VDk] = solver.run(); end