%% Tilting of the dipoles % Atom Number = 1.00e+05 % System size = [5 * l_rot, 5 * l_rot] %% v_z = 500, theta = 0: a_s = 76.41 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 101250; OptionsStruct.DipolarPolarAngle = 0; OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 76.41; OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [9, 9]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 1.2; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 1; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/AdjustedSystemSize/Hz500'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 500, theta = 15: a_s = 77.45 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 101250; OptionsStruct.DipolarPolarAngle = deg2rad(15); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 77.45; OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [9, 9]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 1.2; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 2; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/AdjustedSystemSize/Hz500'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 750, theta = 0: a_s = 70.5 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 61250; OptionsStruct.DipolarPolarAngle = 0; OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 70.5; OptionsStruct.TrapFrequencies = [0, 0, 750]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [7, 7]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.85; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 1; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/AdjustedSystemSize/Hz750'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 750, theta = 15: a_s = 72.5 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 61250; OptionsStruct.DipolarPolarAngle = deg2rad(15); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 72.5; OptionsStruct.TrapFrequencies = [0, 0, 750]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [7, 7]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.85; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 2; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/AdjustedSystemSize/Hz750'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 1000, theta = 0: a_s = 65.95 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 45000; OptionsStruct.DipolarPolarAngle = 0; OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 65.95; OptionsStruct.TrapFrequencies = [0, 0, 1000]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [6, 6]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.7; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 1; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/AdjustedSystemSize/Hz1000'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 1000, theta = 15: a_s = 67.25 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 45000; OptionsStruct.DipolarPolarAngle = deg2rad(15); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 67.25; OptionsStruct.TrapFrequencies = [0, 0, 1000]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [6, 6]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.7; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 2; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/AdjustedSystemSize/Hz1000'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 2000, theta = 0: a_s = 54.90 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 31250; OptionsStruct.DipolarPolarAngle = 0; OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 54.90; OptionsStruct.TrapFrequencies = [0, 0, 2000]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [5, 5]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.5; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 1; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/AdjustedSystemSize/Hz2000'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 2000, theta = 15: a_s = 55.5 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 31250; OptionsStruct.DipolarPolarAngle = deg2rad(15); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 55.5; OptionsStruct.TrapFrequencies = [0, 0, 2000]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [5, 5]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.5; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 2; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/AdjustedSystemSize/Hz2000'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run();