function [evals, modes] = solveBogoliubovdeGennesIn2D(psi, Params, VDk, VParams, muchem) wz_tilde = Params.wz / Params.w0; gs = Params.gs; gdd = Params.gdd; gammaQF = Params.gammaQF; KEop = 0.5*kx.^2 + 0.5*ky.^2; Ez = (0.25*VParams.sigma^2) + (0.25*wz_tilde^2*VParams.sigma^2); muchem_tilde = muchem - Ez; g_pf_2D = 1/(sqrt(2*pi)*VParams.sigma); gQF_pf_2D = sqrt(2/5)/(pi^(3/4)*VParams.sigma^(3/2)); % eigs only works with column vectors psi = psi.'; KEop = KEop.'; VDk = VDk.'; % Interaction Potential frho = fftn(abs(psi).^2); Phi = real(ifftn(frho.*VDk)); % Operators H = @(w) real(ifft(KEop.*fft(w))); C = @(w) (((g_pf_2D*gs*abs(psi).^2) + (g_pf_2D*gdd*Phi)).*w) + (gQF_pf_2D*gammaQF.*abs(psi).^3.*w); muHC = @(w) (-muchem_tilde .* w) + H(w) + C(w); X = @(w,psi) (psi.*real(ifft(VDk.*fft(psi.*w)))) + (3/2)*(gQF_pf_2D*gammaQF.* abs(psi).^3).*w; % Operate on g BdG = @(g) muHC(muHC(g) + (2.*X(g))); syssize = size(psi); opts.v0 = psi(:); opts.tol = 1e-16; opts.disp = 1; opts.issym = 0; opts.isreal = 1; opts.maxit = 1e4; Neigs = syssize; [g,D] = eigs(BdG,syssize,Neigs,'sr',opts); evals = diag(D); clear D; % Eigenvalues evals = sqrt(evals); BogModeCutoff = 1; if BogModeCutoff == 1 g(:,real(evals)<1e-6) = []; evals(real(evals)<1e-6) = []; Neigs = length(evals); end % Obtain f from g f = zeros(size(g)); for ii = 1:Neigs f(:,ii) = muHC(g(:,ii)) + (2.*X(g(:,ii))); end % Obtain u and v from f and g u = (f + g)/2; v = (f - g)/2; % Renormalize to \int |u|^2 - |v|^2 = 1 for ii=1:Neigs normalization = sum(abs(u(:,ii)).^2 - abs(v(:,ii)).^2)*Transf.dz; u(:,ii) = u(:,ii)/sqrt(normalization); v(:,ii) = v(:,ii)/sqrt(normalization); end modes.u = u'; modes.v = v'; modes.g = g'; modes.f = f'; end