import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as mtick from astropy import units as u, constants as ac from Calculator import * from Helpers import * from Potentials import * ##################################################################### # PLOTTING # ##################################################################### def generate_label(v, dv): unit = 'Hz' if v <= 0.0: v = np.nan dv = np.nan unit = 'Hz' elif v > 0.0 and orderOfMagnitude(v) > 2: v = v / 1e3 # in kHz dv = dv / 1e3 # in kHz unit = 'kHz' tf_label = '\u03BD = %.1f \u00B1 %.2f %s'% tuple([v,dv,unit]) return tf_label def plotHarmonicFit(Positions, TrappingPotential, TrapDepthsInKelvin, axis, popt, pcov): v = popt[0] dv = pcov[0][0]**0.5 happrox = harmonic_potential(Positions[axis, :].value, *popt) fig = plt.figure(figsize=(12, 6)) ax = fig.add_subplot(121) ax.set_title('Fit to Potential') plt.plot(Positions[axis, :].value, happrox, '-r', label = '\u03BD = %.1f \u00B1 %.2f Hz'% tuple([v,dv])) plt.plot(Positions[axis, :], TrappingPotential[axis], 'ob', label = 'Gaussian Potential') plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.ylim([-TrapDepthsInKelvin[0].value, max(TrappingPotential[axis].value)]) plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) bx = fig.add_subplot(122) bx.set_title('Fit Residuals') plt.plot(Positions[axis, :].value, TrappingPotential[axis].value - happrox, 'ob') plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold') plt.ylabel('$U_{trap} - U_{Harmonic}$', fontsize= 12, fontweight='bold') plt.xlim([-10, 10]) plt.ylim([-1e-2, 1e-2]) plt.grid(visible=1) plt.tight_layout() plt.show() def plotGaussianFit(Positions, TrappingPotential, popt, pcov): extracted_waist = popt[1] dextracted_waist = pcov[1][1]**0.5 gapprox = gaussian_potential(Positions, *popt) fig = plt.figure(figsize=(12, 6)) ax = fig.add_subplot(121) ax.set_title('Fit to Potential') plt.plot(Positions, gapprox, '-r', label = 'waist = %.1f \u00B1 %.2f um'% tuple([extracted_waist,dextracted_waist])) plt.plot(Positions, TrappingPotential, 'ob', label = 'Gaussian Potential') plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.ylim([min(TrappingPotential), max(TrappingPotential)]) plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) bx = fig.add_subplot(122) bx.set_title('Fit Residuals') plt.plot(Positions, TrappingPotential - gapprox, 'ob') plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold') plt.ylabel('$U_{trap} - U_{Gaussian}$', fontsize= 12, fontweight='bold') plt.xlim([-10, 10]) plt.ylim([-1, 1]) plt.grid(visible=1) plt.tight_layout() plt.show() def plotPotential(Positions, ComputedPotentials, options, Params = [], listToIterateOver = [], save = False): axis = options['axis'] plt.figure(figsize=(9, 7)) for i in range(np.size(ComputedPotentials, 0)): if i % 2 == 0: j = int(i / 2) else: j = int((i - 1) / 2) IdealTrapDepthInKelvin = Params[j][0][0] EffectiveTrapDepthInKelvin = Params[j][0][1] idealv = Params[j][2][0][0] idealdv = Params[j][2][0][1] if options['extract_trap_frequencies']: v = Params[j][2][1][0] dv = Params[j][2][1][1] else: v = np.nan dv = np.nan if listToIterateOver: if np.size(ComputedPotentials, 0) == len(listToIterateOver): plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv)) else: if i % 2 == 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv)) elif i % 2 != 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv)) else: if i % 2 == 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv)) elif i % 2 != 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv)) if axis == 0: dir = 'X - Horizontal' elif axis == 1: dir = 'Y - Propagation' else: dir = 'Z - Vertical' plt.ylim(top = 0) plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(loc=3, prop={'size': 12, 'weight': 'bold'}) if save: plt.savefig('pot_' + dir + '.png') plt.show() def plotIntensityProfileAndPotentials(positions, waists, I, U): x_Positions = positions[0] z_Positions = positions[1] w_x = waists[0] dw_x = waists[1] w_z = waists[2] dw_x = waists[3] ar = w_x/w_z dar = ar * np.sqrt((dw_x/w_x)**2 + (dw_x/w_z)**2) fig = plt.figure(figsize=(12, 6)) ax = fig.add_subplot(121) ax.set_title('Intensity Profile ($MW/cm^2$)\n Aspect Ratio = %.2f \u00B1 %.2f um'% tuple([ar,dar])) im = plt.imshow(np.transpose(I.value), cmap="coolwarm", extent=[np.min(x_Positions.value), np.max(x_Positions.value), np.min(z_Positions.value), np.max(z_Positions.value)]) plt.xlabel('X - Horizontal (um)', fontsize= 12, fontweight='bold') plt.ylabel('Z - Vertical (um)', fontsize= 12, fontweight='bold') ax.set_aspect('equal') fig.colorbar(im, fraction=0.046, pad=0.04, orientation='vertical') bx = fig.add_subplot(122) bx.set_title('Trap Potential') plt.plot(x_Positions, U[:, np.where(z_Positions==0)[0][0]], label = 'X - Horizontal') plt.plot(z_Positions, U[np.where(x_Positions==0)[0][0], :], label = 'Z - Vertical') plt.ylim(top = 0) plt.xlabel('Extent (um)', fontsize= 12, fontweight='bold') plt.ylabel('Depth (uK)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.show() def plotAlphas(): modulation_depth = np.arange(0, 1.1, 0.1) Alphas, fin_mod_dep, alpha_x, alpha_y, dalpha_x, dalpha_y = convert_modulation_depth_to_alpha(modulation_depth) plt.figure() plt.errorbar(fin_mod_dep, alpha_x, yerr = dalpha_x, fmt= 'ob', label = 'From Horz TF', markersize=5, capsize=5) plt.errorbar(fin_mod_dep, alpha_y, yerr = dalpha_y, fmt= 'or', label = 'From Vert TF', markersize=5, capsize=5) plt.plot(modulation_depth, Alphas, '--g') plt.xlabel('Modulation depth', fontsize= 12, fontweight='bold') plt.ylabel('$\\alpha$', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.show() def plotTemperatures(w_x, w_z, plot_against_mod_depth = True): modulation_depth = np.arange(0, 1.1, 0.1) w_xs = w_x * convert_modulation_depth_to_alpha(modulation_depth)[0] new_aspect_ratio = w_xs / w_z Temperatures, fin_mod_dep, T_x, T_y, dT_x, dT_y = convert_modulation_depth_to_temperature(modulation_depth) measured_aspect_ratio = (w_x * convert_modulation_depth_to_alpha(fin_mod_dep)[0]) / w_z plt.figure() if plot_against_mod_depth: plt.errorbar(fin_mod_dep, T_x, yerr = dT_x, fmt= 'ob', label = 'Horz direction', markersize=5, capsize=5) plt.errorbar(fin_mod_dep, T_y, yerr = dT_y, fmt= 'or', label = 'Vert direction', markersize=5, capsize=5) plt.plot(modulation_depth, Temperatures, '--g') xlabel = 'Modulation depth' else: plt.errorbar(measured_aspect_ratio, T_x, yerr = dT_x, fmt= 'ob', label = 'Horz direction', markersize=5, capsize=5) plt.errorbar(measured_aspect_ratio, T_y, yerr = dT_y, fmt= 'or', label = 'Vert direction', markersize=5, capsize=5) plt.plot(new_aspect_ratio, Temperatures, '--g') xlabel = 'Aspect Ratio' plt.xlabel(xlabel, fontsize= 12, fontweight='bold') plt.ylabel('Temperature (uK)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.show() def plotTrapFrequencies(v_x, v_y, v_z, modulation_depth, new_aspect_ratio, plot_against_mod_depth = True): fig, ax3 = plt.subplots(figsize=(8, 6)) if plot_against_mod_depth: ln1 = ax3.plot(modulation_depth, v_x, '-or', label = 'v_x') ln2 = ax3.plot(modulation_depth, v_z, '-^b', label = 'v_z') ax4 = ax3.twinx() ln3 = ax4.plot(modulation_depth, v_y, '-*g', label = 'v_y') xlabel = 'Modulation depth' else: ln1 = ax3.plot(new_aspect_ratio, v_x, '-or', label = 'v_x') ln2 = ax3.plot(new_aspect_ratio, v_z, '-^b', label = 'v_z') ax4 = ax3.twinx() ln3 = ax4.plot(new_aspect_ratio, v_y, '-*g', label = 'v_y') xlabel = 'Aspect Ratio' ax3.set_xlabel(xlabel, fontsize= 12, fontweight='bold') ax3.set_ylabel('Trap Frequency (Hz)', fontsize= 12, fontweight='bold') ax3.tick_params(axis="y", labelcolor='b') ax4.set_ylabel('Trap Frequency (Hz)', fontsize= 12, fontweight='bold') ax4.tick_params(axis="y", labelcolor='g') plt.tight_layout() plt.grid(visible=1) lns = ln1+ln2+ln3 labs = [l.get_label() for l in lns] ax3.legend(lns, labs, prop={'size': 12, 'weight': 'bold'}) plt.show() def plotMeasuredTrapFrequencies(fx, dfx, fy, dfy, fz, dfz, modulation_depth_radial, modulation_depth_axial, w_x, w_z, plot_against_mod_depth = True): alpha_x = [(fx[0]/x)**(2/3) for x in fx] dalpha_x = [alpha_x[i] * np.sqrt((dfx[0]/fx[0])**2 + (dfx[i]/fx[i])**2) for i in range(len(fx))] alpha_y = [(fy[0]/y)**2 for y in fy] dalpha_y = [alpha_y[i] * np.sqrt((dfy[0]/fy[0])**2 + (dfy[i]/fy[i])**2) for i in range(len(fy))] avg_alpha = [(g + h) / 2 for g, h in zip(alpha_x, alpha_y)] new_aspect_ratio = (w_x * avg_alpha) / w_z if plot_against_mod_depth: fig, ax1 = plt.subplots(figsize=(8, 6)) ax2 = ax1.twinx() ax1.errorbar(modulation_depth_radial, fx, yerr = dfx, fmt= 'or', label = 'v_x', markersize=5, capsize=5) ax2.errorbar(modulation_depth_axial, fy, yerr = dfy, fmt= '*g', label = 'v_y', markersize=5, capsize=5) ax1.errorbar(modulation_depth_radial, fz, yerr = dfz, fmt= '^b', label = 'v_z', markersize=5, capsize=5) ax1.set_xlabel('Modulation depth', fontsize= 12, fontweight='bold') ax1.set_ylabel('Trap Frequency (kHz)', fontsize= 12, fontweight='bold') ax1.tick_params(axis="y", labelcolor='b') ax2.set_ylabel('Trap Frequency (Hz)', fontsize= 12, fontweight='bold') ax2.tick_params(axis="y", labelcolor='g') h1, l1 = ax1.get_legend_handles_labels() h2, l2 = ax2.get_legend_handles_labels() ax1.legend(h1+h2, l1+l2, loc=0, prop={'size': 12, 'weight': 'bold'}) else: plt.figure() plt.errorbar(new_aspect_ratio, fx, yerr = dfx, fmt= 'or', label = 'v_x', markersize=5, capsize=5) plt.errorbar(new_aspect_ratio, fz, yerr = dfz, fmt= '^b', label = 'v_z', markersize=5, capsize=5) plt.xlabel('Aspect Ratio', fontsize= 12, fontweight='bold') plt.ylabel('Trap Frequency (kHz)', fontsize= 12, fontweight='bold') plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.tight_layout() plt.grid(visible=1) plt.show() def plotRatioOfTrapFrequencies(fx, fy, fz, dfx, dfy, dfz, v_x, v_y, v_z, modulation_depth, w_x, w_z, plot_against_mod_depth = True): w_xs = w_x * convert_modulation_depth_to_alpha(modulation_depth)[0] new_aspect_ratio = w_xs / w_z plt.figure() if plot_against_mod_depth: plt.errorbar(modulation_depth, fx/v_x, yerr = dfx/v_x, fmt= 'or', label = 'b/w horz TF', markersize=5, capsize=5) plt.errorbar(modulation_depth, fy/v_y, yerr = dfy/v_y, fmt= '*g', label = 'b/w axial TF', markersize=5, capsize=5) plt.errorbar(modulation_depth, fz/v_z, yerr = dfz/v_z, fmt= '^b', label = 'b/w vert TF', markersize=5, capsize=5) xlabel = 'Modulation depth' else: plt.errorbar(new_aspect_ratio, fx/v_x, yerr = dfx/v_x, fmt= 'or', label = 'b/w horz TF', markersize=5, capsize=5) plt.errorbar(new_aspect_ratio, fy/v_y, yerr = dfy/v_y, fmt= '*g', label = 'b/w axial TF', markersize=5, capsize=5) plt.errorbar(new_aspect_ratio, fz/v_z, yerr = dfz/v_z, fmt= '^b', label = 'b/w vert TF', markersize=5, capsize=5) xlabel = 'Aspect Ratio' plt.xlabel(xlabel, fontsize= 12, fontweight='bold') plt.ylabel('Ratio', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.show() def plotScatteringLengths(B_range = [0, 2.59]): BField = np.arange(B_range[0], B_range[1], 1e-3) * u.G a_s_array = np.zeros(len(BField)) * ac.a0 for idx in range(len(BField)): a_s_array[idx], a_bkg = scatteringLength(BField[idx]) rmelmIdx = [i for i, x in enumerate(np.isinf(a_s_array.value)) if x] for x in rmelmIdx: a_s_array[x-1] = np.inf * ac.a0 plt.figure(figsize=(9, 7)) plt.plot(BField, a_s_array/ac.a0, '-b') plt.axhline(y = a_bkg/ac.a0, color = 'r', linestyle = '--') plt.text(min(BField.value) + 0.5, (a_bkg/ac.a0).value + 1, '$a_{bkg}$ = %.2f a0' %((a_bkg/ac.a0).value), fontsize=14, fontweight='bold') plt.xlim([min(BField.value), max(BField.value)]) plt.ylim([65, 125]) plt.xlabel('B field (G)', fontsize= 12, fontweight='bold') plt.ylabel('Scattering length (a0)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.show() def plotCollisionRatesAndPSD(Gamma_elastic, PSD, modulation_depth, new_aspect_ratio, plot_against_mod_depth = True): fig, ax1 = plt.subplots(figsize=(8, 6)) ax2 = ax1.twinx() if plot_against_mod_depth: ax1.plot(modulation_depth, Gamma_elastic, '-ob') ax2.plot(modulation_depth, PSD, '-*r') ax2.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.1e')) xlabel = 'Modulation depth' else: ax1.plot(new_aspect_ratio, Gamma_elastic, '-ob') ax2.plot(new_aspect_ratio, PSD, '-*r') ax2.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.1e')) xlabel = 'Aspect Ratio' ax1.set_xlabel(xlabel, fontsize= 12, fontweight='bold') ax1.set_ylabel('Elastic Collision Rate', fontsize= 12, fontweight='bold') ax1.tick_params(axis="y", labelcolor='b') ax2.set_ylabel('Phase Space Density', fontsize= 12, fontweight='bold') ax2.tick_params(axis="y", labelcolor='r') plt.tight_layout() plt.grid(visible=1) plt.show() #####################################################################