import math import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as mtick from scipy import signal, interpolate from scipy.optimize import curve_fit from astropy import units as u, constants as ac ##################################################################### # HELPER FUNCTIONS # ##################################################################### def orderOfMagnitude(number): return math.floor(math.log(number, 10)) def rotation_matrix(axis, theta): """ Return the rotation matrix associated with counterclockwise rotation about the given axis by theta radians. In 2-D it is just, thetaInRadians = np.radians(theta) c, s = np.cos(thetaInRadians), np.sin(thetaInRadians) R = np.array(((c, -s), (s, c))) In 3-D, one way to do it is use the Euler-Rodrigues Formula as is done here """ axis = np.asarray(axis) axis = axis / math.sqrt(np.dot(axis, axis)) a = math.cos(theta / 2.0) b, c, d = -axis * math.sin(theta / 2.0) aa, bb, cc, dd = a * a, b * b, c * c, d * d bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)], [2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)], [2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]]) def find_nearest(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx def modulation_function(mod_amp, n_points, func = 'arccos'): if func == 'sin': phi = np.linspace(0, 2*np.pi, n_points) mod_func = mod_amp * np.sin(phi) elif func == 'arccos': # phi = np.linspace(0, 2*np.pi, n_points) # mod_func = mod_amp * (2/np.pi * np.arccos(phi/np.pi-1) - 1) phi = np.linspace(0, 2*np.pi, int(n_points/2)) tmp_1 = 2/np.pi * np.arccos(phi/np.pi-1) - 1 tmp_2 = np.flip(tmp_1) mod_func = mod_amp * np.concatenate((tmp_1, tmp_2)) elif func == 'triangle': phi = np.linspace(0, 2*np.pi, n_points) mod_func = mod_amp * signal.sawtooth(phi, width = 0.5) # width of 0.5 gives symmetric rising triangle ramp elif func == 'square': phi = np.linspace(0, 1.99*np.pi, n_points) mod_func = mod_amp * signal.square(phi, duty = 0.5) else: mod_func = None if mod_func is not None: dx = (max(mod_func) - min(mod_func))/(2*n_points) return dx, mod_func ##################################################################### # BEAM PARAMETERS # ##################################################################### # Rayleigh length def z_R(w_0, lamb)->np.ndarray: return np.pi*w_0**2/lamb # Beam Radius def w(pos, w_0, lamb): return w_0*np.sqrt(1+(pos / z_R(w_0, lamb))**2) ##################################################################### # COLLISION RATES, PSD # ##################################################################### def meanThermalVelocity(T, m = 164*u.u): return 4 * np.sqrt((ac.k_B * T) /(np.pi * m)) def particleDensity(w_x, w_z, Power, Polarizability, N, T, m = 164*u.u, use_measured_tf = False): # For a thermal cloud if not use_measured_tf: v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x') v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y') v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z') return N * (2 * np.pi)**3 * (v_x * v_y * v_z) * (m / (2 * np.pi * ac.k_B * T))**(3/2) else: fin_mod_dep = [0.5, 0.3, 0.7, 0.9, 0.8, 1.0, 0.6, 0.4, 0.2, 0.1] v_x = [0.28, 0.690, 0.152, 0.102, 0.127, 0.099, 0.205, 0.404, 1.441, 2.813] * u.kHz dv_x = [0.006, 0.005, 0.006, 0.003, 0.002, 0.002,0.002, 0.003, 0.006, 0.024] * u.kHz v_z = [1.278, 1.719, 1.058, 0.923, 0.994, 0.911, 1.157, 1.446, 2.191, 2.643] * u.kHz dv_z = [0.007, 0.009, 0.007, 0.005, 0.004, 0.004, 0.005, 0.007, 0.009, 0.033] * u.kHz sorted_fin_mod_dep, sorted_v_x = zip(*sorted(zip(fin_mod_dep, v_x))) sorted_fin_mod_dep, sorted_dv_x = zip(*sorted(zip(fin_mod_dep, dv_x))) sorted_fin_mod_dep, sorted_v_z = zip(*sorted(zip(fin_mod_dep, v_z))) sorted_fin_mod_dep, sorted_dv_z = zip(*sorted(zip(fin_mod_dep, dv_z))) fin_mod_dep = [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1] v_y = [3.08, 3.13, 3.27, 3.46, 3.61, 3.82, 3.51, 3.15, 3.11, 3.02] * u.Hz dv_y = [0.03, 0.04, 0.04, 0.05, 0.07, 0.06, 0.11, 0.07, 0.1, 1.31] * u.Hz sorted_fin_mod_dep, sorted_v_y = zip(*sorted(zip(fin_mod_dep, v_y))) sorted_fin_mod_dep, sorted_dv_y = zip(*sorted(zip(fin_mod_dep, dv_y))) alpha_x = [(v_x[0]/x)**(2/3) for x in v_x] dalpha_x = [alpha_x[i] * np.sqrt((dv_x[0]/v_x[0])**2 + (dv_x[i]/v_x[i])**2) for i in range(len(v_x))] alpha_y = [(v_z[0]/y)**2 for y in v_z] dalpha_y = [alpha_y[i] * np.sqrt((dv_z[0]/v_z[0])**2 + (dv_z[i]/v_z[i])**2) for i in range(len(v_z))] avg_alpha = [(g + h) / 2 for g, h in zip(alpha_x, alpha_y)] sorted_fin_mod_dep, new_aspect_ratio = zip(*sorted(zip(fin_mod_dep, (w_x * avg_alpha) / w_z))) fin_mod_dep = [1.0, 0.8, 0.6, 0.4, 0.2, 0.9, 0.7, 0.5, 0.3, 0.1] T_x = [22.1, 27.9, 31.7, 42.2, 145.8, 27.9, 33.8, 42.4, 61.9, 136.1] * u.uK dT_x = [1.7, 2.6, 2.4, 3.7, 1.1, 2.2, 3.2, 1.7, 2.2, 1.2] * u.uK T_y = [13.13, 14.75, 18.44, 26.31, 52.55, 13.54, 16.11, 21.15, 35.81, 85.8] * u.uK dT_y = [0.05, 0.05, 0.07, 0.16, 0.28, 0.04, 0.07, 0.10, 0.21, 0.8] * u.uK avg_T = [(g + h) / 2 for g, h in zip(T_x, T_y)] avg_dT = [0.5 * np.sqrt(g**2 + h**2) for g, h in zip(dT_x, dT_y)] sorted_fin_mod_dep, sorted_avg_T = zip(*sorted(zip(fin_mod_dep, avg_T))) sorted_fin_mod_dep, sorted_avg_dT = zip(*sorted(zip(fin_mod_dep, avg_dT))) pd = np.zeros(len(fin_mod_dep)) dpd = np.zeros(len(fin_mod_dep)) for i in range(len(fin_mod_dep)): particle_density = (N * (2 * np.pi)**3 * (sorted_v_x[i] * sorted_v_y[i] * sorted_v_z[i]) * (m / (2 * np.pi * ac.k_B * sorted_avg_T[i]))**(3/2)).decompose() pd[i] = particle_density.value dpd[i] = (((N * (2 * np.pi)**3 * (m / (2 * np.pi * ac.k_B * sorted_avg_T[i]))**(3/2)) * ((sorted_dv_x[i] * sorted_v_y[i] * sorted_v_z[i]) + (sorted_v_x[i] * sorted_dv_y[i] * sorted_v_z[i]) + (sorted_v_x[i] * sorted_v_y[i] * sorted_dv_z[i]) - (1.5*(sorted_v_x[i] * sorted_v_y[i] * sorted_v_z[i])*(sorted_avg_dT[i]/sorted_avg_T[i])))).decompose()).value pd = pd*particle_density.unit dpd = dpd*particle_density.unit return pd, dpd, sorted_avg_T, sorted_avg_dT, new_aspect_ratio, sorted_fin_mod_dep def thermaldeBroglieWavelength(T, m = 164*u.u): return np.sqrt((2*np.pi*ac.hbar**2)/(m*ac.k_B*T)) def scatteringLength(B, FR_choice = 1, ABKG_choice = 1): # Dy 164 a_s versus B in 0 to 8G range # should match SupMat of PhysRevX.9.021012, fig S5 and descrption # https://journals.aps.org/prx/supplemental/10.1103/PhysRevX.9.021012/Resubmission_Suppmat.pdf if FR_choice == 1: # new values if ABKG_choice == 1: a_bkg = 85.5 * ac.a0 elif ABKG_choice == 2: a_bkg = 93.5 * ac.a0 elif ABKG_choice == 3: a_bkg = 77.5 * ac.a0 #FR resonances #[B11 B12 B2 B3 B4 B51 B52 B53 B6 B71 B72 B81 B82 B83 B9] resonanceB = [1.295, 1.306, 2.174, 2.336, 2.591, 2.74, 2.803, 2.78, 3.357, 4.949, 5.083, 7.172, 7.204, 7.134, 76.9] * u.G #resonance position #[wB11 wB12 wB2 wB3 wB4 wB51 wB52 wB53 wB6 wB71 wB72 wB81 wB82 wB83 wB9] resonancewB = [0.009, 0.010, 0.0005, 0.0005, 0.001, 0.0005, 0.021, 0.015, 0.043, 0.0005, 0.130, 0.024, 0.0005, 0.036, 3.1] * u.G #resonance width else: # old values if ABKG_choice == 1: a_bkg = 87.2 * ac.a0 elif ABKG_choice == 2: a_bkg = 95.2 * ac.a0 elif ABKG_choice == 3: a_bkg = 79.2 * ac.a0 #FR resonances #[B1 B2 B3 B4 B5 B6 B7 B8] resonanceB = [1.298, 2.802, 3.370, 5.092, 7.154, 2.592, 2.338, 2.177] * u.G #resonance position #[wB1 wB2 wB3 wB4 wB5 wB6 wB7 wB8] resonancewB = [0.018, 0.047, 0.048, 0.145, 0.020, 0.008, 0.001, 0.001] * u.G #resonance width #Get scattering length np.seterr(divide='ignore') a_s = a_bkg * np.prod([(1 - resonancewB[j] / (B - resonanceB[j])) for j in range(len(resonanceB))]) return a_s, a_bkg def dipolarLength(mu = 9.93 * ac.muB, m = 164*u.u): return (m * ac.mu0 * mu**2) / (12 * np.pi * ac.hbar**2) def scatteringCrossSection(B): return 8 * np.pi * scatteringLength(B)[0]**2 + ((32*np.pi)/45) * dipolarLength()**2 def calculateElasticCollisionRate(w_x, w_z, Power, Polarizability, N, T, B): #For a 3D Harmonic Trap return (particleDensity(w_x, w_z, Power, Polarizability, N, T) * scatteringCrossSection(B) * meanThermalVelocity(T) / (2 * np.sqrt(2))).decompose() def calculatePSD(w_x, w_z, Power, Polarizability, N, T): return (particleDensity(w_x, w_z, Power, Polarizability, N, T, m = 164*u.u) * thermaldeBroglieWavelength(T)**3).decompose() def convert_modulation_depth_to_alpha(modulation_depth): fin_mod_dep = [0, 0.5, 0.3, 0.7, 0.9, 0.8, 1.0, 0.6, 0.4, 0.2, 0.1] fx = [3.135, 0.28, 0.690, 0.152, 0.102, 0.127, 0.099, 0.205, 0.404, 1.441, 2.813] dfx = [0.016, 0.006, 0.005, 0.006, 0.003, 0.002, 0.002,0.002, 0.003, 0.006, 0.024] fz = [2.746, 1.278, 1.719, 1.058, 0.923, 0.994, 0.911, 1.157, 1.446, 2.191, 2.643] dfz = [0.014, 0.007, 0.009, 0.007, 0.005, 0.004, 0.004, 0.005, 0.007, 0.009, 0.033] alpha_x = [(fx[0]/x)**(2/3) for x in fx] dalpha_x = [alpha_x[i] * np.sqrt((dfx[0]/fx[0])**2 + (dfx[i]/fx[i])**2) for i in range(len(fx))] alpha_z = [(fz[0]/z)**2 for z in fz] dalpha_z = [alpha_z[i] * np.sqrt((dfz[0]/fz[0])**2 + (dfz[i]/fz[i])**2) for i in range(len(fz))] avg_alpha = [(g + h) / 2 for g, h in zip(alpha_x, alpha_z)] sorted_fin_mod_dep, sorted_avg_alpha = zip(*sorted(zip(fin_mod_dep, avg_alpha))) f = interpolate.interp1d(sorted_fin_mod_dep, sorted_avg_alpha) return f(modulation_depth), fin_mod_dep, alpha_x, alpha_z, dalpha_x, dalpha_z def convert_modulation_depth_to_temperature(modulation_depth): fin_mod_dep = [1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.9, 0.7, 0.5, 0.3, 0.1] T_x = [22.1, 27.9, 31.7, 42.2, 98.8, 145.8, 27.9, 33.8, 42.4, 61.9, 136.1] dT_x = [1.7, 2.6, 2.4, 3.7, 1.1, 0.6, 2.2, 3.2, 1.7, 2.2, 1.2] T_y = [13.13, 14.75, 18.44, 26.31, 52.55, 92.9, 13.54, 16.11, 21.15, 35.81, 85.8] dT_y = [0.05, 0.05, 0.07, 0.16, 0.28, 0.7, 0.04, 0.07, 0.10, 0.21, 0.8] avg_T = [(g + h) / 2 for g, h in zip(T_x, T_y)] sorted_fin_mod_dep, sorted_avg_T = zip(*sorted(zip(fin_mod_dep, avg_T))) f = interpolate.interp1d(sorted_fin_mod_dep, sorted_avg_T) return f(modulation_depth), fin_mod_dep, T_x, T_y, dT_x, dT_y ##################################################################### # POTENTIALS # ##################################################################### def gravitational_potential(positions, m): return m * ac.g0 * positions def single_gaussian_beam_potential(positions, waists, alpha, P=1, wavelength=1.064*u.um): A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength)) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2)) return U def astigmatic_single_gaussian_beam_potential(positions, waists, del_y, alpha, P=1, wavelength=1.064*u.um): A = 2*P/(np.pi*w(positions[1,:] - (del_y/2), waists[0], wavelength)*w(positions[1,:] + (del_y/2), waists[1], wavelength)) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:] - (del_y/2), waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:] + (del_y/2), waists[1], wavelength))**2)) return U def modulated_single_gaussian_beam_potential(positions, waists, alpha, P=1, wavelength=1.064*u.um, mod_amp=1): mod_amp = mod_amp * waists[0] n_points = len(positions[0,:]) dx, x_mod = modulation_function(mod_amp, n_points, func = 'arccos') A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength)) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) dU = np.zeros(2*n_points) for i in range(len(x_mod)): dU = np.vstack((dU, np.exp(-2 * (np.subtract(x_mod[i], positions[0,:])/w(positions[1,:], waists[0], wavelength))**2))) U = - U_tilde * A * 1/(2*mod_amp) * np.trapz(dU, dx = dx, axis = 0) return U def harmonic_potential(pos, v, xoffset, yoffset, m = 164*u.u): U_Harmonic = ((0.5 * m * (2 * np.pi * v*u.Hz)**2 * (pos*u.um - xoffset*u.um)**2)/ac.k_B).to(u.uK) + yoffset*u.uK return U_Harmonic.value def gaussian_potential(pos, amp, waist, xoffset, yoffset): U_Gaussian = amp * np.exp(-2 * ((pos + xoffset) / waist)**2) + yoffset return U_Gaussian def crossed_beam_potential(positions, theta, waists, P, alpha, wavelength=1.064*u.um): beam_1_positions = positions A_1 = 2*P[0]/(np.pi*w(beam_1_positions[1,:], waists[0][0], wavelength)*w(beam_1_positions[1,:], waists[0][1], wavelength)) U_1_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U_1 = - U_1_tilde * A_1 * np.exp(-2 * ((beam_1_positions[0,:]/w(beam_1_positions[1,:], waists[0][0], wavelength))**2 + (beam_1_positions[2,:]/w(beam_1_positions[1,:], waists[0][1], wavelength))**2)) R = rotation_matrix([0, 0, 1], np.radians(theta)) beam_2_positions = np.dot(R, beam_1_positions) A_2 = 2*P[1]/(np.pi*w(beam_2_positions[1,:], waists[1][0], wavelength)*w(beam_2_positions[1,:], waists[1][1], wavelength)) U_2_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U_2 = - U_2_tilde * A_2 * np.exp(-2 * ((beam_2_positions[0,:]/w(beam_2_positions[1,:], waists[1][0], wavelength))**2 + (beam_2_positions[2,:]/w(beam_2_positions[1,:], waists[1][1], wavelength))**2)) U = U_1 + U_2 return U ##################################################################### # COMPUTE/EXTRACT TRAP POTENTIAL AND PARAMETERS # ##################################################################### def trap_depth(w_1, w_2, P, alpha): return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) def calculateTrapFrequency(w_x, w_z, Power, Polarizability, m = 164*u.u, dir = 'x'): TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability) TrapFrequency = np.nan if dir == 'x': TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth / (m*w_x**2))).decompose() elif dir == 'y': zReff = np.sqrt(2) * z_R(w_x, 1.064*u.um) * z_R(w_z, 1.064*u.um) / np.sqrt(z_R(w_x, 1.064*u.um)**2 + z_R(w_z, 1.064*u.um)**2) TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(2 * TrapDepth/ (m*zReff**2))).decompose() elif dir == 'z': TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth/ (m*w_z**2))).decompose() return round(TrapFrequency.value, 2)*u.Hz def extractTrapFrequency(Positions, TrappingPotential, axis): tmp_pos = Positions[axis, :] tmp_pot = TrappingPotential[axis] center_idx = np.argmin(tmp_pot) lb = int(round(center_idx - len(tmp_pot)/500, 1)) ub = int(round(center_idx + len(tmp_pot)/500, 1)) xdata = tmp_pos[lb:ub] Potential = tmp_pot[lb:ub] p0=[1e3, tmp_pos[center_idx].value, -100] popt, pcov = curve_fit(harmonic_potential, xdata, Potential, p0) v = popt[0] dv = pcov[0][0]**0.5 return v, dv, popt, pcov def computeTrapPotential(w_x, w_z, Power, Polarizability, options): axis = options['axis'] extent = options['extent'] gravity = options['gravity'] astigmatism = options['astigmatism'] modulation = options['modulation'] crossed = options['crossed'] if modulation: aspect_ratio = options['aspect_ratio'] current_ar = w_x/w_z w_x = w_x * (aspect_ratio / current_ar) TrappingPotential = [] TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability) IdealTrapDepthInKelvin = (TrapDepth/ac.k_B).to(u.uK) projection_axis = np.array([0, 1, 0]) # default if axis == 0: projection_axis = np.array([1, 0, 0]) # radial direction (X-axis) elif axis == 1: projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis) elif axis == 2: projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis) else: projection_axis = np.array([1, 1, 1]) # vertical direction (Z-axis) x_Positions = np.arange(-extent, extent, 0.05)*u.um y_Positions = np.arange(-extent, extent, 0.05)*u.um z_Positions = np.arange(-extent, extent, 0.05)*u.um Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis] if not crossed: IdealTrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) IdealTrappingPotential = IdealTrappingPotential * (np.ones((3, len(IdealTrappingPotential))) * projection_axis[:, np.newaxis]) IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK) else: theta = options['delta'] waists = np.vstack((np.asarray([w_x[0].value, w_z[0].value])*u.um, np.asarray([w_x[1].value, w_z[1].value])*u.um)) IdealTrappingPotential = crossed_beam_potential(Positions, theta, waists, P = Power, alpha = Polarizability) IdealTrappingPotential = IdealTrappingPotential * (np.ones((3, len(IdealTrappingPotential))) * projection_axis[:, np.newaxis]) IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK) if gravity and not astigmatism: # Influence of Gravity m = 164*u.u gravity_axis = np.array([0, 0, 1]) tilt_gravity = options['tilt_gravity'] theta = options['theta'] tilt_axis = options['tilt_axis'] if tilt_gravity: R = rotation_matrix(tilt_axis, np.radians(theta)) gravity_axis = np.dot(R, gravity_axis) gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis] TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m) TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) elif not gravity and astigmatism: # Influence of Astigmatism disp_foci = options['disp_foci'] TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability) TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) elif gravity and astigmatism: # Influence of Gravity and Astigmatism m = 164*u.u gravity_axis = np.array([0, 0, 1]) tilt_gravity = options['tilt_gravity'] theta = options['theta'] tilt_axis = options['tilt_axis'] disp_foci = options['disp_foci'] if tilt_gravity: R = rotation_matrix(tilt_axis, np.radians(theta)) gravity_axis = np.dot(R, gravity_axis) gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis] TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability) TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m) TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) else: TrappingPotential = IdealTrappingPotential if not crossed: infls = np.where(np.diff(np.sign(np.gradient(np.gradient(TrappingPotential[axis].value)))))[0] if TrappingPotential[axis][0] > TrappingPotential[axis][-1]: EffectiveTrapDepthInKelvin = max(TrappingPotential[axis][infls[1]:-1]) - min(TrappingPotential[axis][infls[0]:infls[1]]) elif TrappingPotential[axis][0] < TrappingPotential[axis][-1]: EffectiveTrapDepthInKelvin = max(TrappingPotential[axis][0:infls[0]]) - min(TrappingPotential[axis][infls[0]:infls[1]]) else: EffectiveTrapDepthInKelvin = IdealTrapDepthInKelvin TrapDepthsInKelvin = [IdealTrapDepthInKelvin, EffectiveTrapDepthInKelvin] v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x') v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y') v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z') CalculatedTrapFrequencies = [v_x, v_y, v_z] v, dv, popt, pcov = extractTrapFrequency(Positions, IdealTrappingPotential, axis) if np.isinf(v): v = np.nan if np.isinf(dv): dv = np.nan IdealTrapFrequency = [v, dv] if options['extract_trap_frequencies']: v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, axis) if np.isinf(v): v = np.nan if np.isinf(dv): dv = np.nan TrapFrequency = [v, dv] ExtractedTrapFrequencies = [IdealTrapFrequency, TrapFrequency] else: ExtractedTrapFrequencies = [IdealTrapFrequency] return Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies else: return Positions, TrappingPotential def extractWaist(Positions, TrappingPotential): tmp_pos = Positions.value tmp_pot = TrappingPotential.value center_idx = np.argmin(tmp_pot) TrapMinimum = tmp_pot[center_idx] TrapCenter = tmp_pos[center_idx] lb = int(round(center_idx - len(tmp_pot)/30, 1)) ub = int(round(center_idx + len(tmp_pot)/30, 1)) xdata = tmp_pos[lb:ub] Potential = tmp_pot[lb:ub] p0=[TrapMinimum, 30, TrapCenter, 0] popt, pcov = curve_fit(gaussian_potential, xdata, Potential, p0) return popt, pcov def computeIntensityProfileAndPotentials(Power, waists, alpha, wavelength, options): w_x = waists[0] w_z = waists[1] extent = options['extent'] modulation = options['modulation'] mod_func = options['modulation_function'] if not modulation: extent = 50 x_Positions = np.arange(-extent, extent, 1)*u.um y_Positions = np.arange(-extent, extent, 1)*u.um z_Positions = np.arange(-extent, extent, 1)*u.um idx = np.where(y_Positions==0)[0][0] alpha = Polarizability wavelength = 1.064*u.um xm,ym,zm = np.meshgrid(x_Positions, y_Positions, z_Positions, sparse=True, indexing='ij') ## Single Gaussian Beam A = 2*Power/(np.pi*w(ym, w_x, wavelength)*w(ym, w_z, wavelength)) intensity_profile = A * np.exp(-2 * ((xm/w(ym, w_x, wavelength))**2 + (zm/w(ym, w_z, wavelength))**2)) I = intensity_profile[:, idx, :].to(u.MW/(u.cm*u.cm)) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U = - U_tilde * I U = (U/ac.k_B).to(u.uK) return [x_Positions, z_Positions], [w_x.value, 0, w_z.value, 0], I, U, [0, 0, 0, 0] else: mod_amp = options['modulation_amplitude'] x_Positions = np.arange(-extent, extent, 1)*u.um y_Positions = np.arange(-extent, extent, 1)*u.um z_Positions = np.arange(-extent, extent, 1)*u.um mod_amp = mod_amp * w_x n_points = len(x_Positions) dx, xmod_Positions = modulation_function(mod_amp, n_points, func = mod_func) idx = np.where(y_Positions==0)[0][0] xm,ym,zm,xmodm = np.meshgrid(x_Positions, y_Positions, z_Positions, xmod_Positions, sparse=True, indexing='ij') ## Single Modulated Gaussian Beam A = 2*Power/(np.pi*w(y_Positions[idx] , w_x, wavelength)*w(y_Positions[idx], w_z, wavelength)) intensity_profile = A * 1/(2*mod_amp) * np.trapz(np.exp(-2 * (((xmodm - xm)/w(ym, w_x, wavelength))**2 + (zm/w(ym, w_z, wavelength))**2)), dx = dx, axis = -1) I = intensity_profile[:, idx, :].to(u.MW/(u.cm*u.cm)) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U = - U_tilde * I U = (U/ac.k_B).to(u.uK) poptx, pcovx = extractWaist(x_Positions, U[:, np.where(z_Positions==0)[0][0]]) poptz, pcovz = extractWaist(z_Positions, U[np.where(x_Positions==0)[0][0], :]) extracted_waist_x = poptx[1] dextracted_waist_x = pcovx[1][1]**0.5 extracted_waist_z = poptz[1] dextracted_waist_z = pcovz[1][1]**0.5 return [x_Positions, z_Positions], [extracted_waist_x, dextracted_waist_x, extracted_waist_z, dextracted_waist_z], I, U, [poptx, pcovx, poptz, pcovz] ##################################################################### # PLOTTING # ##################################################################### def generate_label(v, dv): unit = 'Hz' if v <= 0.0: v = np.nan dv = np.nan unit = 'Hz' elif v > 0.0 and orderOfMagnitude(v) > 2: v = v / 1e3 # in kHz dv = dv / 1e3 # in kHz unit = 'kHz' tf_label = '\u03BD = %.1f \u00B1 %.2f %s'% tuple([v,dv,unit]) return tf_label def plotHarmonicFit(Positions, TrappingPotential, TrapDepthsInKelvin, axis, popt, pcov): v = popt[0] dv = pcov[0][0]**0.5 happrox = harmonic_potential(Positions[axis, :].value, *popt) fig = plt.figure(figsize=(12, 6)) ax = fig.add_subplot(121) ax.set_title('Fit to Potential') plt.plot(Positions[axis, :].value, happrox, '-r', label = '\u03BD = %.1f \u00B1 %.2f Hz'% tuple([v,dv])) plt.plot(Positions[axis, :], TrappingPotential[axis], 'ob', label = 'Gaussian Potential') plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.ylim([-TrapDepthsInKelvin[0].value, max(TrappingPotential[axis].value)]) plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) bx = fig.add_subplot(122) bx.set_title('Fit Residuals') plt.plot(Positions[axis, :].value, TrappingPotential[axis].value - happrox, 'ob') plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold') plt.ylabel('$U_{trap} - U_{Harmonic}$', fontsize= 12, fontweight='bold') plt.xlim([-10, 10]) plt.ylim([-1e-2, 1e-2]) plt.grid(visible=1) plt.tight_layout() plt.show() def plotGaussianFit(Positions, TrappingPotential, popt, pcov): extracted_waist = popt[1] dextracted_waist = pcov[1][1]**0.5 gapprox = gaussian_potential(Positions, *popt) fig = plt.figure(figsize=(12, 6)) ax = fig.add_subplot(121) ax.set_title('Fit to Potential') plt.plot(Positions, gapprox, '-r', label = 'waist = %.1f \u00B1 %.2f um'% tuple([extracted_waist,dextracted_waist])) plt.plot(Positions, TrappingPotential, 'ob', label = 'Gaussian Potential') plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.ylim([min(TrappingPotential), max(TrappingPotential)]) plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) bx = fig.add_subplot(122) bx.set_title('Fit Residuals') plt.plot(Positions, TrappingPotential - gapprox, 'ob') plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold') plt.ylabel('$U_{trap} - U_{Gaussian}$', fontsize= 12, fontweight='bold') plt.xlim([-10, 10]) plt.ylim([-1, 1]) plt.grid(visible=1) plt.tight_layout() plt.show() def plotPotential(Positions, ComputedPotentials, options, Params = [], listToIterateOver = [], save = False): axis = options['axis'] plt.figure(figsize=(9, 7)) for i in range(np.size(ComputedPotentials, 0)): if i % 2 == 0: j = int(i / 2) else: j = int((i - 1) / 2) IdealTrapDepthInKelvin = Params[j][0][0] EffectiveTrapDepthInKelvin = Params[j][0][1] idealv = Params[j][2][0][0] idealdv = Params[j][2][0][1] if options['extract_trap_frequencies']: v = Params[j][2][1][0] dv = Params[j][2][1][1] else: v = np.nan dv = np.nan if listToIterateOver: if np.size(ComputedPotentials, 0) == len(listToIterateOver): plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv)) else: if i % 2 == 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv)) elif i % 2 != 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv)) else: if i % 2 == 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv)) elif i % 2 != 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv)) if axis == 0: dir = 'X - Horizontal' elif axis == 1: dir = 'Y - Propagation' else: dir = 'Z - Vertical' plt.ylim(top = 0) plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(loc=3, prop={'size': 12, 'weight': 'bold'}) if save: plt.savefig('pot_' + dir + '.png') plt.show() def plotIntensityProfileAndPotentials(positions, waists, I, U): x_Positions = positions[0] z_Positions = positions[1] w_x = waists[0] dw_x = waists[1] w_z = waists[2] dw_x = waists[3] ar = w_x/w_z dar = ar * np.sqrt((dw_x/w_x)**2 + (dw_x/w_z)**2) fig = plt.figure(figsize=(12, 6)) ax = fig.add_subplot(121) ax.set_title('Intensity Profile ($MW/cm^2$)\n Aspect Ratio = %.2f \u00B1 %.2f um'% tuple([ar,dar])) im = plt.imshow(np.transpose(I.value), cmap="coolwarm", extent=[np.min(x_Positions.value), np.max(x_Positions.value), np.min(z_Positions.value), np.max(z_Positions.value)]) plt.xlabel('X - Horizontal (um)', fontsize= 12, fontweight='bold') plt.ylabel('Z - Vertical (um)', fontsize= 12, fontweight='bold') ax.set_aspect('equal') fig.colorbar(im, fraction=0.046, pad=0.04, orientation='vertical') bx = fig.add_subplot(122) bx.set_title('Trap Potential') plt.plot(x_Positions, U[:, np.where(z_Positions==0)[0][0]], label = 'X - Horizontal') plt.plot(z_Positions, U[np.where(x_Positions==0)[0][0], :], label = 'Z - Vertical') plt.ylim(top = 0) plt.xlabel('Extent (um)', fontsize= 12, fontweight='bold') plt.ylabel('Depth (uK)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.show() def plotAlphas(): modulation_depth = np.arange(0, 1.1, 0.1) Alphas, fin_mod_dep, alpha_x, alpha_y, dalpha_x, dalpha_y = convert_modulation_depth_to_alpha(modulation_depth) plt.figure() plt.errorbar(fin_mod_dep, alpha_x, yerr = dalpha_x, fmt= 'ob', label = 'From Horz TF', markersize=5, capsize=5) plt.errorbar(fin_mod_dep, alpha_y, yerr = dalpha_y, fmt= 'or', label = 'From Vert TF', markersize=5, capsize=5) plt.plot(modulation_depth, Alphas, '--g') plt.xlabel('Modulation depth', fontsize= 12, fontweight='bold') plt.ylabel('$\\alpha$', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.show() def plotTemperatures(w_x, w_z, plot_against_mod_depth = True): modulation_depth = np.arange(0, 1.1, 0.1) w_xs = w_x * convert_modulation_depth_to_alpha(modulation_depth)[0] new_aspect_ratio = w_xs / w_z Temperatures, fin_mod_dep, T_x, T_y, dT_x, dT_y = convert_modulation_depth_to_temperature(modulation_depth) measured_aspect_ratio = (w_x * convert_modulation_depth_to_alpha(fin_mod_dep)[0]) / w_z plt.figure() if plot_against_mod_depth: plt.errorbar(fin_mod_dep, T_x, yerr = dT_x, fmt= 'ob', label = 'Horz direction', markersize=5, capsize=5) plt.errorbar(fin_mod_dep, T_y, yerr = dT_y, fmt= 'or', label = 'Vert direction', markersize=5, capsize=5) plt.plot(modulation_depth, Temperatures, '--g') xlabel = 'Modulation depth' else: plt.errorbar(measured_aspect_ratio, T_x, yerr = dT_x, fmt= 'ob', label = 'Horz direction', markersize=5, capsize=5) plt.errorbar(measured_aspect_ratio, T_y, yerr = dT_y, fmt= 'or', label = 'Vert direction', markersize=5, capsize=5) plt.plot(new_aspect_ratio, Temperatures, '--g') xlabel = 'Aspect Ratio' plt.xlabel(xlabel, fontsize= 12, fontweight='bold') plt.ylabel('Temperature (uK)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.show() def plotTrapFrequencies(v_x, v_y, v_z, modulation_depth, new_aspect_ratio, plot_against_mod_depth = True): fig, ax3 = plt.subplots(figsize=(8, 6)) if plot_against_mod_depth: ln1 = ax3.plot(modulation_depth, v_x, '-or', label = 'v_x') ln2 = ax3.plot(modulation_depth, v_z, '-^b', label = 'v_z') ax4 = ax3.twinx() ln3 = ax4.plot(modulation_depth, v_y, '-*g', label = 'v_y') xlabel = 'Modulation depth' else: ln1 = ax3.plot(new_aspect_ratio, v_x, '-or', label = 'v_x') ln2 = ax3.plot(new_aspect_ratio, v_z, '-^b', label = 'v_z') ax4 = ax3.twinx() ln3 = ax4.plot(new_aspect_ratio, v_y, '-*g', label = 'v_y') xlabel = 'Aspect Ratio' ax3.set_xlabel(xlabel, fontsize= 12, fontweight='bold') ax3.set_ylabel('Trap Frequency (Hz)', fontsize= 12, fontweight='bold') ax3.tick_params(axis="y", labelcolor='b') ax4.set_ylabel('Trap Frequency (Hz)', fontsize= 12, fontweight='bold') ax4.tick_params(axis="y", labelcolor='g') plt.tight_layout() plt.grid(visible=1) lns = ln1+ln2+ln3 labs = [l.get_label() for l in lns] ax3.legend(lns, labs, prop={'size': 12, 'weight': 'bold'}) plt.show() def plotMeasuredTrapFrequencies(w_x, w_z, plot_against_mod_depth = True): fin_mod_dep = [0, 0.5, 0.3, 0.7, 0.9, 0.8, 1.0, 0.6, 0.4, 0.2, 0.1] fx = [3.135, 0.28, 0.690, 0.152, 0.102, 0.127, 0.099, 0.205, 0.404, 1.441, 2.813] dfx = [0.016, 0.006, 0.005, 0.006, 0.003, 0.002, 0.002,0.002, 0.003, 0.006, 0.024] fz = [2.746, 1.278, 1.719, 1.058, 0.923, 0.994, 0.911, 1.157, 1.446, 2.191, 2.643] dfz = [0.014, 0.007, 0.009, 0.007, 0.005, 0.004, 0.004, 0.005, 0.007, 0.009, 0.033] fin_mod_dep_y = [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1] fy = [3.08, 3.13, 3.27, 3.46, 3.61, 3.82, 3.51, 3.15, 3.11, 3.02] dfy = [0.03, 0.04, 0.04, 0.05, 0.07, 0.06, 0.11, 0.07, 0.1, 1.31] alpha_x = [(fx[0]/x)**(2/3) for x in fx] dalpha_x = [alpha_x[i] * np.sqrt((dfx[0]/fx[0])**2 + (dfx[i]/fx[i])**2) for i in range(len(fx))] alpha_y = [(fy[0]/y)**2 for y in fy] dalpha_y = [alpha_y[i] * np.sqrt((dfy[0]/fy[0])**2 + (dfy[i]/fy[i])**2) for i in range(len(fy))] avg_alpha = [(g + h) / 2 for g, h in zip(alpha_x, alpha_y)] new_aspect_ratio = (w_x * avg_alpha) / w_z if plot_against_mod_depth: fig, ax1 = plt.subplots(figsize=(8, 6)) ax2 = ax1.twinx() ax1.errorbar(fin_mod_dep, fx, yerr = dfx, fmt= 'or', label = 'v_x', markersize=5, capsize=5) ax2.errorbar(fin_mod_dep_y, fy, yerr = dfy, fmt= '*g', label = 'v_y', markersize=5, capsize=5) ax1.errorbar(fin_mod_dep, fz, yerr = dfz, fmt= '^b', label = 'v_z', markersize=5, capsize=5) ax1.set_xlabel('Modulation depth', fontsize= 12, fontweight='bold') ax1.set_ylabel('Trap Frequency (kHz)', fontsize= 12, fontweight='bold') ax1.tick_params(axis="y", labelcolor='b') ax2.set_ylabel('Trap Frequency (Hz)', fontsize= 12, fontweight='bold') ax2.tick_params(axis="y", labelcolor='g') h1, l1 = ax1.get_legend_handles_labels() h2, l2 = ax2.get_legend_handles_labels() ax1.legend(h1+h2, l1+l2, loc=0, prop={'size': 12, 'weight': 'bold'}) else: plt.figure() plt.errorbar(new_aspect_ratio, fx, yerr = dfx, fmt= 'or', label = 'v_x', markersize=5, capsize=5) plt.errorbar(new_aspect_ratio, fz, yerr = dfz, fmt= '^b', label = 'v_z', markersize=5, capsize=5) plt.xlabel('Aspect Ratio', fontsize= 12, fontweight='bold') plt.ylabel('Trap Frequency (kHz)', fontsize= 12, fontweight='bold') plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.tight_layout() plt.grid(visible=1) plt.show() def plotRatioOfTrapFrequencies(plot_against_mod_depth = True): modulation_depth = [0.5, 0.3, 0.7, 0.9, 0.8, 1.0, 0.6, 0.4, 0.2, 0.1] w_xs = w_x * convert_modulation_depth_to_alpha(modulation_depth)[0] new_aspect_ratio = w_xs / w_z v_x = np.zeros(len(modulation_depth)) v_y = np.zeros(len(modulation_depth)) v_z = np.zeros(len(modulation_depth)) for i in range(len(modulation_depth)): v_x[i] = calculateTrapFrequency(w_xs[i], w_z, Power, Polarizability, dir = 'x').value / 1e3 v_y[i] = calculateTrapFrequency(w_xs[i], w_z, Power, Polarizability, dir = 'y').value v_z[i] = calculateTrapFrequency(w_xs[i], w_z, Power, Polarizability, dir = 'z').value / 1e3 fx = [0.28, 0.690, 0.152, 0.102, 0.127, 0.099, 0.205, 0.404, 1.441, 2.813] dfx = [0.006, 0.005, 0.006, 0.003, 0.002, 0.002,0.002, 0.003, 0.006, 0.024] fy = [3.08, 3.13, 3.27, 3.46, 3.61, 3.82, 3.51, 3.15, 3.11, 3.02] dfy = [0.03, 0.04, 0.04, 0.05, 0.07, 0.06, 0.11, 0.07, 0.1, 1.31] fz = [1.278, 1.719, 1.058, 0.923, 0.994, 0.911, 1.157, 1.446, 2.191, 2.643] dfz = [0.007, 0.009, 0.007, 0.005, 0.004, 0.004, 0.005, 0.007, 0.009, 0.033] plt.figure() if plot_against_mod_depth: plt.errorbar(modulation_depth, fx/v_x, yerr = dfx/v_x, fmt= 'or', label = 'b/w horz TF', markersize=5, capsize=5) plt.errorbar(modulation_depth, fy/v_y, yerr = dfy/v_y, fmt= '*g', label = 'b/w axial TF', markersize=5, capsize=5) plt.errorbar(modulation_depth, fz/v_z, yerr = dfz/v_z, fmt= '^b', label = 'b/w vert TF', markersize=5, capsize=5) xlabel = 'Modulation depth' else: plt.errorbar(new_aspect_ratio, fx/v_x, yerr = dfx/v_x, fmt= 'or', label = 'b/w horz TF', markersize=5, capsize=5) plt.errorbar(new_aspect_ratio, fy/v_y, yerr = dfy/v_y, fmt= '*g', label = 'b/w axial TF', markersize=5, capsize=5) plt.errorbar(new_aspect_ratio, fz/v_z, yerr = dfz/v_z, fmt= '^b', label = 'b/w vert TF', markersize=5, capsize=5) xlabel = 'Aspect Ratio' plt.xlabel(xlabel, fontsize= 12, fontweight='bold') plt.ylabel('Ratio', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.show() def plotScatteringLengths(B_range = [0, 2.59]): BField = np.arange(B_range[0], B_range[1], 1e-3) * u.G a_s_array = np.zeros(len(BField)) * ac.a0 for idx in range(len(BField)): a_s_array[idx], a_bkg = scatteringLength(BField[idx]) rmelmIdx = [i for i, x in enumerate(np.isinf(a_s_array.value)) if x] for x in rmelmIdx: a_s_array[x-1] = np.inf * ac.a0 plt.figure(figsize=(9, 7)) plt.plot(BField, a_s_array/ac.a0, '-b') plt.axhline(y = a_bkg/ac.a0, color = 'r', linestyle = '--') plt.text(min(BField.value) + 0.5, (a_bkg/ac.a0).value + 1, '$a_{bkg}$ = %.2f a0' %((a_bkg/ac.a0).value), fontsize=14, fontweight='bold') plt.xlim([min(BField.value), max(BField.value)]) plt.ylim([65, 125]) plt.xlabel('B field (G)', fontsize= 12, fontweight='bold') plt.ylabel('Scattering length (a0)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.show() def plotCollisionRatesAndPSD(Gamma_elastic, PSD, modulation_depth, new_aspect_ratio, plot_against_mod_depth = True): fig, ax1 = plt.subplots(figsize=(8, 6)) ax2 = ax1.twinx() if plot_against_mod_depth: ax1.plot(modulation_depth, Gamma_elastic, '-ob') ax2.plot(modulation_depth, PSD, '-*r') ax2.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.1e')) xlabel = 'Modulation depth' else: ax1.plot(new_aspect_ratio, Gamma_elastic, '-ob') ax2.plot(new_aspect_ratio, PSD, '-*r') ax2.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.1e')) xlabel = 'Aspect Ratio' ax1.set_xlabel(xlabel, fontsize= 12, fontweight='bold') ax1.set_ylabel('Elastic Collision Rate', fontsize= 12, fontweight='bold') ax1.tick_params(axis="y", labelcolor='b') ax2.set_ylabel('Phase Space Density', fontsize= 12, fontweight='bold') ax2.tick_params(axis="y", labelcolor='r') plt.tight_layout() plt.grid(visible=1) plt.show() ##################################################################### # RUN SCRIPT WITH OPTIONS BELOW # ##################################################################### if __name__ == '__main__': Power = 0.420*u.W Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability Wavelength = 1.064*u.um w_x, w_z = 30*u.um, 30*u.um # Beam Waists in the x and y directions # Power = 11*u.W # Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability # w_x, w_z = 54.0*u.um, 54.0*u.um # Beam Waists in the x and y directions options = { 'axis': 1, # axis referenced to the beam along which you want the dipole trap potential 'extent': 1e4, # range of spatial coordinates in one direction to calculate trap potential over 'crossed': False, 'delta': 70, # angle between arms in degrees 'modulation': False, 'aspect_ratio': 4, # required aspect ratio of modulated arm 'gravity': True, 'tilt_gravity': True, 'theta': 0.1, # gravity tilt angle in degrees 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam 'astigmatism': False, 'disp_foci': 0.9 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um, # difference in position of the foci along the propagation direction (Astigmatism) 'extract_trap_frequencies': True } # """Plot ideal trap potential resulting for given parameters only""" ComputedPotentials = [] Params = [] Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, Power, Polarizability, options) ComputedPotentials.append(IdealTrappingPotential) ComputedPotentials.append(TrappingPotential) Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies]) ComputedPotentials = np.asarray(ComputedPotentials) plotPotential(Positions, ComputedPotentials, options, Params) """Plot harmonic fit for trap potential resulting for given parameters only""" # v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, options['axis']) # plotHarmonicFit(Positions, TrappingPotential, TrapDepthsInKelvin, options['axis'], popt, pcov) """Plot trap potential resulting for given parameters (with one parameter being a list of values and the potential being computed for each of these values) only""" # ComputedPotentials = [] # Params = [] # Power = [10, 20, 25, 30, 35, 40]*u.W # Single Beam Power # for p in Power: # Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, p, Polarizability, options) # ComputedPotentials.append(IdealTrappingPotential) # ComputedPotentials.append(TrappingPotential) # Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies]) # ComputedPotentials = np.asarray(ComputedPotentials) # plotPotential(Positions, ComputedPotentials, options, Params) """Plot transverse intensity profile and trap potential resulting for given parameters only""" # options = { # 'extent': 60, # range of spatial coordinates in one direction to calculate trap potential over # 'modulation': True, # 'modulation_function': 'arccos', # 'modulation_amplitude': 2.16 # } # positions, waists, I, U, p = computeIntensityProfileAndPotentials(Power, [w_x, w_z], Polarizability, Wavelength, options) # plotIntensityProfileAndPotentials(positions, waists, I, U) """Plot gaussian fit for trap potential resulting from modulation for given parameters only""" # x_Positions = positions[0].value # z_Positions = positions[1].value # x_Potential = U[:, np.where(z_Positions==0)[0][0]].value # z_Potential = U[np.where(x_Positions==0)[0][0], :].value # poptx, pcovx = p[0], p[1] # poptz, pcovz = p[2], p[3] # plotGaussianFit(x_Positions, x_Potential, poptx, pcovx) # plotGaussianFit(z_Positions, z_Potential, poptz, pcovz) """Calculate relevant parameters for evaporative cooling""" # AtomNumber = 1.00 * 1e7 # BField = 2.5 * u.G # modulation = True # if modulation: # modulation_depth = 0.6 # w_x = w_x * convert_modulation_depth_to_alpha(modulation_depth)[0] # Temperature = convert_modulation_depth_to_temperature(modulation_depth)[0] * u.uK # else: # modulation_depth = 0.0 # Temperature = convert_modulation_depth_to_temperature(modulation_depth)[0] * u.uK # n = particleDensity(w_x, w_z, Power, Polarizability, N = AtomNumber, T = Temperature, m = 164*u.u).decompose().to(u.cm**(-3)) # Gamma_elastic = calculateElasticCollisionRate(w_x, w_z, Power, Polarizability, N = AtomNumber, T = Temperature, B = BField) # PSD = calculatePSD(w_x, w_z, Power, Polarizability, N = AtomNumber, T = Temperature).decompose() # print('Particle Density = %.2E ' % (n.value) + str(n.unit)) # print('Elastic Collision Rate = %.2f ' % (Gamma_elastic.value) + str(Gamma_elastic.unit)) # print('PSD = %.2E ' % (PSD.value)) # v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x') # v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y') # v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z') # print('v_x = %.2f ' %(v_x.value) + str(v_x.unit)) # print('v_y = %.2f ' %(v_y.value) + str(v_y.unit)) # print('v_z = %.2f ' %(v_z.value) + str(v_z.unit)) # print('a_s = %.2f ' %(scatteringLength(BField)[0] / ac.a0)) """Calculate relevant parameters for evaporative cooling for different modulation depths, temperatures""" # AtomNumber = 1.00 * 1e7 # BField = 1.4 * u.G # modulation_depth = np.arange(0, 1.0, 0.08) # w_xs = w_x * convert_modulation_depth_to_alpha(modulation_depth)[0] # new_aspect_ratio = w_xs / w_z # Temperatures = convert_modulation_depth_to_temperature(modulation_depth)[0] * u.uK # plot_against_mod_depth = True # # n = np.zeros(len(modulation_depth)) # Gamma_elastic = np.zeros(len(modulation_depth)) # PSD = np.zeros(len(modulation_depth)) # v_x = np.zeros(len(modulation_depth)) # v_y = np.zeros(len(modulation_depth)) # v_z = np.zeros(len(modulation_depth)) # for i in range(len(modulation_depth)): # # n[i] = particleDensity(w_xs[i], w_z, Power, Polarizability, N = AtomNumber, T = Temperatures[i], m = 164*u.u).decompose().to(u.cm**(-3)) # Gamma_elastic[i] = calculateElasticCollisionRate(w_xs[i], w_z, Power, Polarizability, N = AtomNumber, T = Temperatures[i], B = BField).value # PSD[i] = calculatePSD(w_xs[i], w_z, Power, Polarizability, N = AtomNumber, T = Temperatures[i]).decompose().value # v_x[i] = calculateTrapFrequency(w_xs[i], w_z, Power, Polarizability, dir = 'x').value # v_y[i] = calculateTrapFrequency(w_xs[i], w_z, Power, Polarizability, dir = 'y').value # v_z[i] = calculateTrapFrequency(w_xs[i], w_z, Power, Polarizability, dir = 'z').value """Plot alphas""" # plotAlphas() """Plot Temperatures""" # plotTemperatures(w_x, w_z, plot_against_mod_depth = plot_against_mod_depth) """Plot trap frequencies""" # plotTrapFrequencies(v_x, v_y, v_z, modulation_depth, new_aspect_ratio, plot_against_mod_depth = plot_against_mod_depth) # plotMeasuredTrapFrequencies(w_x, w_z, plot_against_mod_depth = plot_against_mod_depth) # plotRatioOfTrapFrequencies(plot_against_mod_depth = plot_against_mod_depth) """Plot Feshbach Resonances""" # plotScatteringLengths(B_range = [0, 3.6]) """Plot Collision Rates and PSD""" # plotCollisionRatesAndPSD(Gamma_elastic, PSD, modulation_depth, new_aspect_ratio, plot_against_mod_depth = plot_against_mod_depth) """Plot Collision Rates and PSD from only measured trap frequencies""" # pd, dpd, T, dT, new_aspect_ratio, modulation_depth = particleDensity(w_x, w_z, Power, Polarizability, AtomNumber, 0, m = 164*u.u, use_measured_tf = True) # Gamma_elastic = [(pd[i] * scatteringCrossSection(BField) * meanThermalVelocity(T[i]) / (2 * np.sqrt(2))).decompose() for i in range(len(pd))] # Gamma_elastic_values = [(Gamma_elastic[i]).value for i in range(len(Gamma_elastic))] # dGamma_elastic = [(Gamma_elastic[i] * ((dpd[i]/pd[i]) + (dT[i]/(2*T[i])))).decompose() for i in range(len(Gamma_elastic))] # dGamma_elastic_values = [(dGamma_elastic[i]).value for i in range(len(dGamma_elastic))] # PSD = [((pd[i] * thermaldeBroglieWavelength(T[i])**3).decompose()).value for i in range(len(pd))] # dPSD = [((PSD[i] * ((dpd[i]/pd[i]) - (1.5 * dT[i]/T[i]))).decompose()).value for i in range(len(Gamma_elastic))] # fig, ax1 = plt.subplots(figsize=(8, 6)) # ax2 = ax1.twinx() # ax1.errorbar(modulation_depth, Gamma_elastic_values, yerr = dGamma_elastic_values, fmt = 'ob', markersize=5, capsize=5) # ax2.errorbar(modulation_depth, PSD, yerr = dPSD, fmt = '-^r', markersize=5, capsize=5) # ax2.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.1e')) # ax1.set_xlabel('Modulation depth', fontsize= 12, fontweight='bold') # ax1.set_ylabel('Elastic Collision Rate (' + str(Gamma_elastic[0].unit) + ')', fontsize= 12, fontweight='bold') # ax1.tick_params(axis="y", labelcolor='b') # ax2.set_ylabel('Phase Space Density', fontsize= 12, fontweight='bold') # ax2.tick_params(axis="y", labelcolor='r') # plt.tight_layout() # plt.grid(visible=1) # plt.show() """ Investigate deviation in alpha""" # Power = 40*u.W # Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability # Wavelength = 1.064*u.um # w_x, w_z = 27.5*u.um, 33.8*u.um # options = { # 'axis': 0, # axis referenced to the beam along which you want the dipole trap potential # 'extent': 3e2, # range of spatial coordinates in one direction to calculate trap potential over # 'crossed': False, # 'theta': 0, # 'modulation': False, # 'gravity': True, # 'tilt_gravity': True, # 'theta': 10, # in degrees # 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam # 'astigmatism': True, # 'disp_foci': 0.9 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism) # } # modulation_depth = np.arange(0, 1.1, 0.1) # Alphas, fin_mod_dep, meas_alpha_x, meas_alpha_z, dalpha_x, dalpha_z = convert_modulation_depth_to_alpha(modulation_depth) # meas_alpha_deviation = [(g - h) for g, h in zip(meas_alpha_x, meas_alpha_z)] # sorted_fin_mod_dep, sorted_meas_alpha_deviation = zip(*sorted(zip(fin_mod_dep, meas_alpha_deviation))) # avg_alpha = [(g + h) / 2 for g, h in zip(meas_alpha_x, meas_alpha_z)] # sorted_fin_mod_dep, new_aspect_ratio = zip(*sorted(zip(fin_mod_dep, (w_x * avg_alpha) / w_z))) # current_ar = w_x/w_z # aspect_ratio = np.arange(current_ar, 10*current_ar, 0.8) # w_x = w_x * (aspect_ratio / current_ar) # v_x = np.zeros(len(w_x)) # #v_y = np.zeros(len(w_x)) # v_z = np.zeros(len(w_x)) # for i in range(len(w_x)): # options['axis'] = 0 # ExtractedTrapFrequencies = computeTrapPotential(w_x[i], w_z, Power, Polarizability, options)[5] # tmp = ExtractedTrapFrequencies[1][0] # v_x[i] = tmp if not np.isinf(tmp) else np.nan # #options['axis'] = 1 # #ExtractedTrapFrequencies = computeTrapPotential(w_x[i], w_z, Power, Polarizability, options)[5] # #tmp = ExtractedTrapFrequencies[1][0] # #v_y[i] = tmp if not np.isinf(tmp) else np.nan # options['axis'] = 2 # ExtractedTrapFrequencies = computeTrapPotential(w_x[i], w_z, Power, Polarizability, options)[5] # tmp = ExtractedTrapFrequencies[1][0] # v_z[i] = tmp if not np.isinf(tmp) else np.nan # #v_x[i] = calculateTrapFrequency(w_x[i], w_z, Power, Polarizability, dir = 'x').value # #v_y[i] = calculateTrapFrequency(w_x[i], w_z, Power, Polarizability, dir = 'y').value # #v_z[i] = calculateTrapFrequency(w_x[i], w_z, Power, Polarizability, dir = 'z').value # alpha_x = [(v_x[0]/v)**(2/3) for v in v_x] # alpha_z = [(v_z[0]/v)**2 for v in v_z] # calc_alpha_deviation = [(g - h) for g, h in zip(alpha_x, alpha_z)] # plt.figure() # plt.plot(aspect_ratio, alpha_x, '-o', label = 'From horz TF') # plt.plot(aspect_ratio, alpha_z, '-^', label = 'From vert TF') # plt.xlabel('Aspect Ratio', fontsize= 12, fontweight='bold') # plt.ylabel('$\\alpha$', fontsize= 12, fontweight='bold') # plt.tight_layout() # plt.grid(visible=1) # plt.legend(prop={'size': 12, 'weight': 'bold'}) # plt.show() # plt.figure() # plt.plot(aspect_ratio, calc_alpha_deviation, '--ob', label = 'Extracted') # plt.plot(new_aspect_ratio, sorted_meas_alpha_deviation, '-or', label = 'Measured') # plt.xlabel('Aspect Ratio', fontsize= 12, fontweight='bold') # plt.ylabel('$\\Delta \\alpha$', fontsize= 12, fontweight='bold') # plt.ylim([-0.5, 1]) # plt.tight_layout() # plt.grid(visible=1) # plt.legend(prop={'size': 12, 'weight': 'bold'}) # plt.show() """Plot ideal crossed beam trap potential resulting for given parameters only""" # Powers = [40, 10] * u.W # Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability # Wavelength = 1.064*u.um # w_x = [27.5, 54]*u.um # Beam Waists in the x direction # w_z = [33.8, 54]*u.um # Beam Waists in the y direction # Powers = [30, 8] * u.W # Polarizability = 136 # in a.u, most precise measured value of Dy polarizability # Wavelength = 1.064*u.um # w_x = [20.5, 101.3]*u.um # Beam Waists in the x direction # w_z = [20.5, 95.0]*u.um # Beam Waists in the y direction # options = { # 'axis': 1, # axis referenced to the beam along which you want the dipole trap potential # 'extent': 2e3, # range of spatial coordinates in one direction to calculate trap potential over # 'crossed': True, # 'delta': 70, # 'modulation': False, # 'aspect_ratio': 5, # 'gravity': False, # 'tilt_gravity': False, # 'theta': 5, # in degrees # 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam # 'astigmatism': False, # 'disp_foci': 3 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism) # } # Positions, TrapPotential = computeTrapPotential(w_x, w_z, Powers, Polarizability, options) # plt.rcParams["figure.figsize"] = [7.00, 3.50] # plt.rcParams["figure.autolayout"] = True # fig = plt.figure() # ax = fig.add_subplot(111, projection='3d') # ax.scatter(TrapPotential[0], TrapPotential[1], TrapPotential[2], c=TrapPotential[2], alpha=1) # plt.show() # plt.figure() # plt.plot(Positions[options['axis']], TrapPotential[options['axis']], label = 'Crossed beam potential') # plt.xlim([-500, 500]) # plt.ylim([-1800, -200]) # plt.legend() # plt.show()