%% Direction solution to the unconstrained optimization problem with the Conjugate Gradient technique clc; clear; format long; % Define the function (now accepts a 3D array) f = @(X) sum(X(:).^4) - 4*sum(X(:).^3) + 6*sum(X(:).^2) + 5; % Initial Guess: Now we use a 3D array x_o = rand(3, 3, 3); % Random 3D array as the initial guess fprintf('Initial Objective Function Value: %.6f\n\n', f(x_o)); % Convergence Criteria: Epsilon = 1E-5; % Gradient Calculation (numerical) J = compute_gradient(f, x_o); % Gradient at initial point S = -J; % Initial search direction % Iteration Counter: i = 1; % Minimization while norm(S(:)) > Epsilon % Halting Criterion % Step Size Optimization (Line Search) lambda = optimize_step_size(f, x_o, S); % Update the solution x_o_new = x_o + lambda * S; % Update the gradient and search direction J_old = J; J = compute_gradient(f, x_o_new); S = update_search_direction(S, J, J_old); % Update for next iteration x_o = x_o_new; i = i + 1; end % Output fprintf('Number of Iterations for Convergence: %d\n\n', i); fprintf('Objective Function Minimum Value: %.6f\n\n', f(x_o)); %% Visualize the optimization clc; clear; format long; % Define the function (now accepts a 3D array) f = @(X) sum(X(:).^4) - 4*sum(X(:).^3) + 6*sum(X(:).^2) + 5; % Initial Guess: Now we use a 3D array x_o = rand(3, 3, 3); % Random 3D array as the initial guess fprintf('Initial Objective Function Value: %.6f\n\n', f(x_o)); % Convergence Criteria: Epsilon = 1E-5; % Gradient Calculation (numerical) J = compute_gradient(f, x_o); % Gradient at initial point S = -J; % Initial search direction % Iteration Counter: i = 1; % Prepare for visualization fig = figure; clf set(gcf,'Position',[50 50 950 750]) set(gca,'FontSize',16,'Box','On','Linewidth',2); hold on; % Create a mesh grid for visualization [X1, X2] = meshgrid(-2:0.1:2, -2:0.1:2); % Adjust domain based on your function Z = arrayfun(@(x1, x2) f([x1, x2, 0]), X1, X2); % Example 2D slice: f([X1, X2, 0]) % Plot the surface surf(X1, X2, Z); xlabel('X1'); ylabel('X2'); zlabel('f(X)'); title('Conjugate Gradient Optimization Process'); colorbar; scatter3(x_o(1), x_o(2), f(x_o), 'r', 'filled'); % Initial point % Set the 3D view view(75, 30); % Example 3D view: azimuth 45°, elevation 30° % Minimization with visualization while norm(S(:)) > Epsilon % Halting Criterion % Step Size Optimization (Line Search) lambda = optimize_step_size(f, x_o, S); % Update the solution x_o_new = x_o + lambda * S; % Update the gradient and search direction J_old = J; J = compute_gradient(f, x_o_new); S = update_search_direction(S, J, J_old); % Update for next iteration x_o = x_o_new; i = i + 1; % Visualization Update scatter3(x_o(1), x_o(2), f(x_o), 'g', 'filled'); % Current point drawnow; % Update the plot end % Output fprintf('Number of Iterations for Convergence: %d\n\n', i); fprintf('Objective Function Minimum Value: %.6f\n\n', f(x_o)); %% % Numerical Gradient Calculation using the finite differences method for 3D function J = compute_gradient(f, X) epsilon = 1E-5; % Step size for numerical differentiation J = zeros(size(X)); % Gradient with the same size as the input % Loop over all elements of the 3D array for i = 1:numel(X) X1 = X; X2 = X; % Perturb the element X(i) in both directions X1(i) = X1(i) + epsilon; X2(i) = X2(i) - epsilon; % Central difference formula for gradient J(i) = (f(X1) - f(X2)) / (2 * epsilon); end end % Line Search (Step Size Optimization) function lambda = optimize_step_size(f, X, S) alpha = 1; % Initial step size rho = 0.5; % Step size reduction factor c = 1E-4; % Armijo condition constant max_iter = 100; % Max iterations for backtracking for k = 1:max_iter % Check if the Armijo condition is satisfied grad = compute_gradient(f, X); % Compute gradient if f(X + alpha * S) <= f(X) + c * alpha * (S(:)' * grad(:)) break; else alpha = rho * alpha; % Reduce the step size end end lambda = alpha; % Return the optimized step size end % Update Search Direction (Polak-Ribiere method) function S_new = update_search_direction(S, J_new, J_old) beta = (norm(J_new(:))^2) / (norm(J_old(:))^2); S_new = -J_new + beta * S; end %{ function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V,Observ) format long; % Define the function handle f = @(X) this.Calculator.calculateTotalEnergy(X, Params, Transf, VDk, V)/Params.N; % Convergence Criteria: Epsilon = 1E-5; % Iteration Counter: i = 1; Observ.residual = 1; Observ.res = 1; % Initialize the PrematureExitFlag to false PrematureExitFlag = false; if this.PlotLive Plotter.plotLive(psi,Params,Transf,Observ) drawnow end % Minimization Loop while true % Compute gradient J = compute_gradient(psi, Params, Transf, VDk, V); % Check stopping criterion (Gradient norm) if norm(J(:)) < Epsilon disp('Tolerance reached: Gradient norm is below the specified epsilon.'); PrematureExitFlag = true; % Set flag to indicate premature exit break; elseif i >= this.MaxIterationsForCGD disp('Maximum number of iterations for CGD reached.'); PrematureExitFlag = true; % Set flag to indicate premature exit break; end % Initialize search direction if first iteration if i == 1 S = -J; else % Update search direction S = update_search_direction(S, J, J_old); end % Step Size Optimization (Line Search) alpha = optimize_step_size(f, psi, S, Params, Transf, VDk, V); % Update solution psi = psi + alpha * S; % Normalize psi Norm = sum(abs(psi(:)).^2) * Transf.dx * Transf.dy * Transf.dz; psi = sqrt(Params.N) * psi / sqrt(Norm); % Store old gradient J_old = J; i = i + 1; muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V); if mod(i,500) == 0 % Change in Energy E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V); E = E/Norm; Observ.EVec = [Observ.EVec E]; % Chemical potential Observ.mucVec = [Observ.mucVec muchem]; % Normalized residuals res = this.Calculator.calculateNormalizedResiduals(psi,Params,Transf,VDk,V,muchem); Observ.residual = [Observ.residual res]; Observ.res_idx = Observ.res_idx + 1; if this.PlotLive Plotter.plotLive(psi,Params,Transf,Observ) drawnow end save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','muchem','Observ','Transf','Params','VDk','V'); end end % Check if loop ended prematurely if PrematureExitFlag disp('Optimizer ended prematurely without convergence to a minimum.'); else fprintf('Minimum found! Number of Iterations for Convergence: %d\n\n', i); end % Change in Energy E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V); E = E/Norm; Observ.EVec = [Observ.EVec E]; disp('Saving data...'); save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','muchem','Observ','Transf','Params','VDk','V'); disp('Save complete!'); end %% Helper functions % Numerical Gradient Calculation using the finite differences method function J = compute_gradient(psi, Params, Transf, VDk, V) % Operators % Kinetic energy KEop = 0.5 * (Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2); HKin = @(w) real(ifft(KEop.*fft(w))); % Trap Potential HV = @(w) V.*w; % Contact interactions Hint = @(w) (Params.gs*abs(psi).^2).*w; % DDIs frho = fftn(abs(psi).^2); Phi = real(ifftn(frho.*VDk)); Hddi = @(w) (Params.gdd*Phi).*w; % Quantum fluctuations Hqf = @(w) (Params.gammaQF*abs(psi).^3).*w; H = @(w) HKin(w) + HV(w) + Hint(w) + Hddi(w) + Hqf(w); J = H(psi); end % Line Search (Step Size Optimization) function alpha = optimize_step_size(f, X, S, Params, Transf, VDk, V) alpha = 1; % Initial step size rho = 0.5; % Step size reduction factor c = 1E-4; % Armijo condition constant max_iter = 100; % Max iterations for backtracking tol = 1E-4; % Tolerance for stopping grad = compute_gradient(X, Params, Transf, VDk, V); % Compute gradient once f_X = f(X); % Evaluate f(X) once for k = 1:max_iter % Evaluate Armijo condition with precomputed f(X) and grad if f(X + alpha * S) <= f_X + c * alpha * (S(:)' * grad(:)) break; else alpha = rho * alpha; % Reduce the step size end % Early stopping if step size becomes too small if alpha < tol break; end end end % Update Search Direction function S_new = update_search_direction(S, J_new, J_old) % (Fletcher-Reeves method) % beta = (norm(J_new(:))^2) / (norm(J_old(:))^2); % S_new = -J_new + beta * S; % (Polak-Ribiere method) beta = max(0, (J_new(:)' * (J_new(:) - J_old(:))) / (norm(J_old(:))^2)); S_new = -J_new + beta * S; end %}