function conductPCA(od_imgs, scan_reference_values, scan_parameter_values, doPlot, doSave, saveDir) %% Performs PCA on optical density images, visualizes and optionally saves results. % % Inputs: % od_imgs - cell array of OD images % scan_reference_values - array of unique control parameter values % scan_parameter_values - array mapping each image to a control parameter % doPlot - logical, true to plot figures % doSave - logical, true to save figures % saveDir - directory to save figures if doSave is true % % Requires: % +Calculator/computeCumulants.m if nargin < 4, doPlot = true; end if nargin < 5, doSave = false; end if nargin < 6, saveDir = pwd; end %% PCA computation allImgs3D = cat(3, od_imgs{:}); [Nx, Ny] = size(allImgs3D(:,:,1)); Xall = reshape(allImgs3D, [], numel(od_imgs))'; [coeff, score, ~, ~, explained] = pca(Xall); figCount = 1; %% --- Figure 1: PC1 Image --- if doPlot pc1_vector = coeff(:,1); pc1_image = reshape(pc1_vector, Nx, Ny); figure(figCount); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]); imagesc(pc1_image); axis image off; colormap(Colormaps.coolwarm()); colorbar; title(sprintf('First Principal Component (PC1) Image - Explains %.2f%% Variance', explained(1))); if doSave, saveas(gcf, fullfile(saveDir, 'PC1_Image.png')); end figCount = figCount + 1; end %% --- Figure 2: PC1 Scores Scatter --- if doPlot numGroups = numel(scan_reference_values); colors = lines(numGroups); figure(figCount); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]); hold on; for g = 1:numGroups idx = scan_parameter_values == scan_reference_values(g); scatter(repmat(scan_reference_values(g), sum(idx),1), score(idx,1), 36, colors(g,:), 'filled'); end xlabel('Control Parameter'); ylabel('PC1 Score'); title('Evolution of PC1 Scores'); grid on; if doSave, saveas(gcf, fullfile(saveDir, 'PC1_Scatter.png')); end figCount = figCount + 1; end %% --- Figure 3: PC1 Distributions --- if doPlot figure(figCount); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]); hold on; for g = 1:numGroups idx = scan_parameter_values == scan_reference_values(g); data = score(idx,1); histogram(data, 'Normalization', 'pdf', 'FaceColor', colors(g,:), 'FaceAlpha', 0.3); [f, xi] = ksdensity(data); plot(xi, f, 'Color', colors(g,:), 'LineWidth', 2); end xlabel('PC1 Score'); ylabel('Probability Density'); title('PC1 Score Distributions by Group'); legend(arrayfun(@num2str, scan_reference_values, 'UniformOutput', false), 'Location', 'Best'); grid on; if doSave, saveas(gcf, fullfile(saveDir, 'PC1_Distributions.png')); end figCount = figCount + 1; end %% --- Figure 4: Boxplot of PC1 Scores --- if doPlot figure(figCount); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]); boxplot(score(:,1), scan_parameter_values); xlabel('Control Parameter'); ylabel('PC1 Score'); title('PC1 Score Boxplots by Group'); grid on; if doSave, saveas(gcf, fullfile(saveDir, 'PC1_Boxplot.png')); end figCount = figCount + 1; end %% --- Figure 5: Mean ± SEM of PC1 Scores --- if doPlot meanScores = arrayfun(@(g) mean(score(scan_parameter_values == g,1)), scan_reference_values); semScores = arrayfun(@(g) std(score(scan_parameter_values == g,1))/sqrt(sum(scan_parameter_values == g)), scan_reference_values); figure(figCount); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]); errorbar(scan_reference_values, meanScores, semScores, '-o', 'LineWidth', 2); xlabel('Control Parameter'); ylabel('Mean PC1 Score ± SEM'); title('Mean ± SEM of PC1 Scores'); grid on; if doSave, saveas(gcf, fullfile(saveDir, 'PC1_MeanSEM.png')); end figCount = figCount + 1; end %% --- Figure 6: Binder Cumulant --- if doPlot binderVals = arrayfun(@(g) ... Calculator.computeCumulants(score(scan_parameter_values == g,1)), ... scan_reference_values); figure(figCount); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]); plot(scan_reference_values, binderVals, '-o', 'LineWidth', 2); xlabel('Control Parameter'); ylabel('Binder Cumulant (PC1)'); title('Binder Cumulant of PC1 Scores'); grid on; if doSave, saveas(gcf, fullfile(saveDir, 'PC1_BinderCumulant.png')); end end %% --- ANOVA Test --- p = anova1(score(:,1), arrayfun(@num2str, scan_parameter_values, 'UniformOutput', false), 'off'); fprintf('ANOVA p-value for PC1 score differences between groups: %.4e\n', p); end