%% ===== D-S Settings ===== groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", ... "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", ... "/images/Vertical_Axis_Camera/in_situ_absorption"]; folderPath = "//DyLabNAS/Data/TwoDGas/2025/07/22/"; run = '0021'; folderPath = strcat(folderPath, run); cam = 5; angle = 0; center = [1410, 2030]; span = [200, 200]; fraction = [0.1, 0.1]; pixel_size = 5.86e-6; % in meters magnification = 23.94; removeFringes = false; ImagingMode = 'HighIntensity'; PulseDuration = 5e-6; % in s % Fourier analysis settings % Radial Spectral Distribution theta_min = deg2rad(0); theta_max = deg2rad(180); N_radial_bins = 500; Radial_Sigma = 2; Radial_WindowSize = 5; % Choose an odd number for a centered moving average % Angular Spectral Distribution r_min = 10; r_max = 20; N_angular_bins = 180; Angular_Threshold = 75; Angular_Sigma = 2; Angular_WindowSize = 5; zoom_size = 50; % Zoomed-in region around center % Plotting and saving scan_parameter = 'ps_rot_mag_fin_pol_angle'; % scan_parameter = 'rot_mag_field'; savefileName = 'DropletsToStripes'; font = 'Bahnschrift'; if strcmp(savefileName, 'DropletsToStripes') scan_groups = 0:1:40; titleString = 'Droplets to Stripes'; elseif strcmp(savefileName, 'StripesToDroplets') scan_groups = 40:-1:0; titleString = 'Stripes to Droplets'; end % Flags skipNormalization = true; skipUnshuffling = false; skipPreprocessing = true; skipMasking = true; skipIntensityThresholding = true; skipBinarization = true; skipMovieRender = true; skipSaveFigures = false; skipSaveOD = true; %% ===== Load and compute OD image, rotate and extract ROI for analysis ===== % Get a list of all files in the folder with the desired file name pattern. filePattern = fullfile(folderPath, '*.h5'); files = dir(filePattern); refimages = zeros(span(1) + 1, span(2) + 1, length(files)); absimages = zeros(span(1) + 1, span(2) + 1, length(files)); for k = 1 : length(files) baseFileName = files(k).name; fullFileName = fullfile(files(k).folder, baseFileName); fprintf(1, 'Now reading %s\n', fullFileName); atm_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle)); bkg_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle)); dark_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle)); if (isempty(atm_img) && isa(atm_img, 'double')) || ... (isempty(bkg_img) && isa(bkg_img, 'double')) || ... (isempty(dark_img) && isa(dark_img, 'double')) refimages(:,:,k) = nan(size(refimages(:,:,k))); % fill with NaNs absimages(:,:,k) = nan(size(absimages(:,:,k))); else refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)'; absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img, ImagingMode, PulseDuration), center, span), fraction)'; end end % ===== Fringe removal ===== if removeFringes optrefimages = removefringesInImage(absimages, refimages); absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :); nimgs = size(absimages_fringe_removed,3); od_imgs = cell(1, nimgs); for i = 1:nimgs od_imgs{i} = absimages_fringe_removed(:, :, i); end else nimgs = size(absimages(:, :, :),3); od_imgs = cell(1, nimgs); for i = 1:nimgs od_imgs{i} = absimages(:, :, i); end end %% ===== Get rotation angles ===== scan_parameter_values = zeros(1, length(files)); % Get information about the '/globals' group for k = 1 : length(files) baseFileName = files(k).name; fullFileName = fullfile(files(k).folder, baseFileName); info = h5info(fullFileName, '/globals'); for i = 1:length(info.Attributes) if strcmp(info.Attributes(i).Name, scan_parameter) if strcmp(scan_parameter, 'ps_rot_mag_fin_pol_angle') scan_parameter_values(k) = 180 - info.Attributes(i).Value; else scan_parameter_values(k) = info.Attributes(i).Value; end end end end %% ===== Correlation of a single (highest) peak with a possible peak between 50-70 degrees from experiment data ===== fft_imgs = cell(1, nimgs); spectral_distribution = cell(1, nimgs); theta_values = cell(1, nimgs); N_shots = length(od_imgs); % Compute FFT for all images for k = 1:N_shots IMG = od_imgs{k}; [IMGFFT, IMGPR] = computeFourierTransform(IMG, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization); [Ny, Nx] = size(IMG); dx = pixel_size / magnification; dy = dx; % assuming square pixels x = ((1:Nx) - ceil(Nx/2)) * dx * 1E6; y = ((1:Ny) - ceil(Ny/2)) * dy * 1E6; dvx = 1 / (Nx * dx); dvy = 1 / (Ny * dy); vx = (-floor(Nx/2):ceil(Nx/2)-1) * dvx; vy = (-floor(Ny/2):ceil(Ny/2)-1) * dvy; kx_full = 2 * pi * vx * 1E-6; ky_full = 2 * pi * vy * 1E-6; mid_x = floor(Nx/2); mid_y = floor(Ny/2); fft_imgs{k} = IMGFFT(mid_y-zoom_size:mid_y+zoom_size, mid_x-zoom_size:mid_x+zoom_size); kx = kx_full(mid_x - zoom_size : mid_x + zoom_size); ky = ky_full(mid_y - zoom_size : mid_y + zoom_size); [theta_vals, S_theta] = computeAngularSpectralDistribution(fft_imgs{k}, r_min, r_max, N_angular_bins, Angular_Threshold, Angular_Sigma, []); spectral_distribution{k} = S_theta; theta_values{k} = theta_vals; end % Convert spectral distribution to matrix (N_shots x N_angular_bins) delta_nkr_all = zeros(N_shots, N_angular_bins); for k = 1:N_shots delta_nkr_all(k, :) = spectral_distribution{k}; end % Group by scan parameter values (e.g., alpha, angle, etc.) [unique_scan_parameter_values, ~, idx] = unique(scan_parameter_values); N_params = length(unique_scan_parameter_values); % Define angular range and conversion angle_range = 180; angle_per_bin = angle_range / N_angular_bins; max_peak_angle = 180; max_peak_bin = round(max_peak_angle / angle_per_bin); % Parameters for search window_size = 10; angle_threshold = 100; % Initialize containers for final results mean_max_g2_values = zeros(1, N_params); skew_max_g2_angle_values = zeros(1, N_params); var_max_g2_values = zeros(1, N_params); kurt_max_g2_angle_values = zeros(1, N_params); fifth_order_cumulant_max_g2_angle_values = zeros(1, N_params); sixth_order_cumulant_max_g2_angle_values = zeros(1, N_params); % Also store raw data per group max_g2_all_per_group = cell(1, N_params); std_error_g2_values = zeros(1, N_params); for i = 1:N_params group_idx = find(idx == i); group_data = delta_nkr_all(group_idx, :); N_reps = size(group_data, 1); g2_values = zeros(1, N_reps); for j = 1:N_reps profile = group_data(j, :); % Restrict search to 0–60° for highest peak restricted_profile = profile(1:max_peak_bin); [~, peak_idx_rel] = max(restricted_profile); peak_idx = peak_idx_rel; peak_angle = (peak_idx - 1) * angle_per_bin; if peak_angle < angle_threshold offsets = round(50 / angle_per_bin) : round(70 / angle_per_bin); else offsets = -round(70 / angle_per_bin) : -round(50 / angle_per_bin); end ref_window = mod((peak_idx - window_size):(peak_idx + window_size) - 1, N_angular_bins) + 1; ref = profile(ref_window); correlations = zeros(size(offsets)); for k = 1:length(offsets) shifted_idx = mod(peak_idx + offsets(k) - 1, N_angular_bins) + 1; sec_window = mod((shifted_idx - window_size):(shifted_idx + window_size) - 1, N_angular_bins) + 1; sec = profile(sec_window); num = mean(ref .* sec); denom = mean(ref.^2); g2 = num / denom; correlations(k) = g2; end [max_corr, max_idx] = max(correlations); g2_values(j) = max_corr; end % Store raw values max_g2_all_per_group{i} = g2_values; % Compute cumulants kappa = computeCumulants(g2_values(:), 6); % Final stats mean_max_g2_values(i) = kappa(1); var_max_g2_values(i) = kappa(2); N_eff = sum(~isnan(g2_values)); std_error_g2_values(i) = sqrt(kappa(2)) / sqrt(N_eff); skew_max_g2_angle_values(i) = kappa(3); kurt_max_g2_angle_values(i) = kappa(4); fifth_order_cumulant_max_g2_angle_values(i) = kappa(5); sixth_order_cumulant_max_g2_angle_values(i) = kappa(6); end %% Plot PDF of order parameter if ~skipSaveFigures % Define folder for saving images saveFolder = [savefileName '_SavedFigures']; if ~exist(saveFolder, 'dir') mkdir(saveFolder); end end figure(2); % one persistent figure set(gcf, 'Color', 'w', 'Position', [100 100 950 750]) for val = scan_groups % Find the index i that matches this scan parameter value i = find(unique_scan_parameter_values == val, 1); % Skip if not found (sanity check) if isempty(i) continue; end g2_vals = max_g2_all_per_group{i}; g2_vals = g2_vals(~isnan(g2_vals)); if isempty(g2_vals) continue; end % KDE estimation [f, xi] = ksdensity(g2_vals, 'NumPoints', 200); clf; histogram(g2_vals, 'Normalization', 'pdf', ... 'NumBins', 10, ... 'FaceAlpha', 0.3, ... 'EdgeColor', 'none', ... 'FaceColor', [0.3 0.5 0.8]); hold on; plot(xi, f, 'LineWidth', 2, 'Color', [0 0.2 0.6]); set(gca, 'FontSize', 16); title(sprintf('%s: \\boldmath$\\alpha = %.1f^{\\circ}$', titleString, val), ... 'FontSize', 16, 'Interpreter', 'latex'); xlabel('$\mathrm{max}[g^{(2)}_{[50,70]}(\delta\theta)]$', 'Interpreter', 'latex', 'FontSize', 14); ylabel('PDF', 'FontSize', 14); xlim([0.0, 1.5]); grid on; drawnow; % ==== Save Figure ==== if ~skipSaveFigures % Create a filename for each averaged plot fileNamePNG = fullfile(saveFolder, sprintf('max_g2_analysis_param_%03d.png', val)); % Save current figure as PNG with high resolution print(gcf, fileNamePNG, '-dpng', '-r300'); % 300 dpi for high quality else pause(0.5) end end %% Plot all cumulants figure(3) set(gcf, 'Color', 'w', 'Position', [100 100 950 750]) scan_vals = unique_scan_parameter_values; % Define font style for consistency axis_fontsize = 14; label_fontsize = 16; title_fontsize = 16; % 1. Mean with error bars subplot(3,2,1); errorbar(scan_vals, mean_max_g2_values, std_error_g2_values, 'o-', ... 'LineWidth', 1.5, 'MarkerSize', 6); title('Mean of $\mathrm{max}[g^{(2)}_{[50,70]}(\delta\theta)]$', ... 'Interpreter', 'latex', 'FontSize', title_fontsize); xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex', ... 'FontSize', label_fontsize); ylabel('$\kappa_1$', 'Interpreter', 'latex', ... 'FontSize', label_fontsize); set(gca, 'FontSize', axis_fontsize); grid on; % 2. Variance subplot(3,2,2); plot(scan_vals, var_max_g2_values, 's-', 'LineWidth', 1.5, 'MarkerSize', 6); title('Variance of $\mathrm{max}[g^{(2)}_{[50,70]}(\delta\theta)]$', ... 'Interpreter', 'latex', 'FontSize', title_fontsize); xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex', ... 'FontSize', label_fontsize); ylabel('$\kappa_2$', 'Interpreter', 'latex', ... 'FontSize', label_fontsize); set(gca, 'FontSize', axis_fontsize); grid on; % 3. Skewness subplot(3,2,3); plot(scan_vals, skew_max_g2_angle_values, 'd-', 'LineWidth', 1.5, 'MarkerSize', 6); title('Skewness of $\mathrm{max}[g^{(2)}_{[50,70]}(\delta\theta)]$', ... 'Interpreter', 'latex', 'FontSize', title_fontsize); xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex', ... 'FontSize', label_fontsize); ylabel('$\kappa_3$', 'Interpreter', 'latex', ... 'FontSize', label_fontsize); set(gca, 'FontSize', axis_fontsize); grid on; % 4. Kurtosis subplot(3,2,4); plot(scan_vals, kurt_max_g2_angle_values, '^-', 'LineWidth', 1.5, 'MarkerSize', 6); title('Kurtosis of $\mathrm{max}[g^{(2)}_{[50,70]}(\delta\theta)]$', ... 'Interpreter', 'latex', 'FontSize', title_fontsize); xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex', ... 'FontSize', label_fontsize); ylabel('$\kappa_4$', 'Interpreter', 'latex', ... 'FontSize', label_fontsize); set(gca, 'FontSize', axis_fontsize); grid on; % 5. 5th-order cumulant subplot(3,2,5); plot(scan_vals, fifth_order_cumulant_max_g2_angle_values, 'v-', 'LineWidth', 1.5, 'MarkerSize', 6); title('Fifth-order cumulant of $\mathrm{max}[g^{(2)}_{[50,70]}(\delta\theta)]$', ... 'Interpreter', 'latex', 'FontSize', title_fontsize); xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex', ... 'FontSize', label_fontsize); ylabel('$\kappa_5$', 'Interpreter', 'latex', ... 'FontSize', label_fontsize); set(gca, 'FontSize', axis_fontsize); grid on; % 6. 6th-order cumulant subplot(3,2,6); plot(scan_vals, sixth_order_cumulant_max_g2_angle_values, '>-', 'LineWidth', 1.5, 'MarkerSize', 6); title('Sixth-order cumulant of $\mathrm{max}[g^{(2)}_{[50,70]}(\delta\theta)]$', ... 'Interpreter', 'latex', 'FontSize', title_fontsize); xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex', ... 'FontSize', label_fontsize); ylabel('$\kappa_6$', 'Interpreter', 'latex', ... 'FontSize', label_fontsize); set(gca, 'FontSize', axis_fontsize); grid on; % Super title sgtitle(sprintf('Cumulants of Peak Offset Angular Correlation - %s', titleString), ... 'FontWeight', 'bold', 'FontSize', 16, 'Interpreter', 'latex'); %% ── Mean ± Std vs. scan parameter ────────────────────────────────────── % Plot mean ± SEM figure(1); set(gcf, 'Color', 'w', 'Position',[100 100 950 750]) set(gca, 'FontSize', 14); % For tick labels only errorbar(unique_scan_parameter_values, ... % x-axis mean_max_g2_values, ... % y-axis (mean) std_error_g2_values, ... % ± SEM '--o', 'LineWidth', 1.8, 'MarkerSize', 6 ); set(gca, 'FontSize', 14, 'YLim', [0, 1]); hXLabel = xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex'); hYLabel = ylabel('$\mathrm{max}[g^{(2)}_{[50,70]}(\delta\theta)]$', 'Interpreter', 'latex'); hTitle = title(titleString, 'Interpreter', 'tex'); % set([hXLabel, hYLabel], 'FontName', font); set([hXLabel, hYLabel], 'FontSize', 14); set(hTitle, 'FontName', font, 'FontSize', 16, 'FontWeight', 'bold'); grid on; % Define folder for saving images saveFolder = [savefileName '_SavedFigures']; if ~exist(saveFolder, 'dir') mkdir(saveFolder); end save([saveFolder savefileName '.mat'], 'unique_scan_parameter_values', 'mean_max_g2_values', 'std_error_g2_values'); %% Helper Functions function [IMGFFT, IMGPR] = computeFourierTransform(I, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization) % computeFourierSpectrum - Computes the 2D Fourier power spectrum % of binarized and enhanced lattice image features, with optional central mask. % % Inputs: % I - Grayscale or RGB image matrix % % Output: % F_mag - 2D Fourier power spectrum (shifted) if ~skipPreprocessing % Preprocessing: Denoise filtered = imgaussfilt(I, 10); IMGPR = I - filtered; % adjust sigma as needed else IMGPR = I; end if ~skipMasking [rows, cols] = size(IMGPR); [X, Y] = meshgrid(1:cols, 1:rows); % Elliptical mask parameters cx = cols / 2; cy = rows / 2; % Shifted coordinates x = X - cx; y = Y - cy; % Ellipse semi-axes rx = 0.4 * cols; ry = 0.2 * rows; % Rotation angle in degrees -> radians theta_deg = 30; % Adjust as needed theta = deg2rad(theta_deg); % Rotated ellipse equation cos_t = cos(theta); sin_t = sin(theta); x_rot = (x * cos_t + y * sin_t); y_rot = (-x * sin_t + y * cos_t); ellipseMask = (x_rot.^2) / rx^2 + (y_rot.^2) / ry^2 <= 1; % Apply cutout mask IMGPR = IMGPR .* ellipseMask; end if ~skipIntensityThresholding % Apply global intensity threshold mask intensity_thresh = 0.20; intensity_mask = IMGPR > intensity_thresh; IMGPR = IMGPR .* intensity_mask; end if ~skipBinarization % Adaptive binarization and cleanup IMGPR = imbinarize(IMGPR, 'adaptive', 'Sensitivity', 0.0); IMGPR = imdilate(IMGPR, strel('disk', 2)); IMGPR = imerode(IMGPR, strel('disk', 1)); IMGPR = imfill(IMGPR, 'holes'); F = fft2(double(IMGPR)); % Compute 2D Fourier Transform IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center else F = fft2(double(IMGPR)); % Compute 2D Fourier Transform IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center end end function [theta_vals, S_theta] = computeAngularSpectralDistribution(IMGFFT, r_min, r_max, num_bins, threshold, sigma, windowSize) % Apply threshold to isolate strong peaks IMGFFT(IMGFFT < threshold) = 0; % Prepare polar coordinates [ny, nx] = size(IMGFFT); [X, Y] = meshgrid(1:nx, 1:ny); cx = ceil(nx/2); cy = ceil(ny/2); R = sqrt((X - cx).^2 + (Y - cy).^2); Theta = atan2(Y - cy, X - cx); % range [-pi, pi] % Choose radial band radial_mask = (R >= r_min) & (R <= r_max); % Initialize angular structure factor S_theta = zeros(1, num_bins); theta_vals = linspace(0, pi, num_bins); % Loop through angle bins for i = 1:num_bins angle_start = (i-1) * pi / num_bins; angle_end = i * pi / num_bins; angle_mask = (Theta >= angle_start & Theta < angle_end); bin_mask = radial_mask & angle_mask; fft_angle = IMGFFT .* bin_mask; S_theta(i) = sum(sum(abs(fft_angle).^2)); end % Smooth using either Gaussian or moving average if exist('sigma', 'var') && ~isempty(sigma) % Gaussian convolution half_width = ceil(3 * sigma); x = -half_width:half_width; gauss_kernel = exp(-x.^2 / (2 * sigma^2)); gauss_kernel = gauss_kernel / sum(gauss_kernel); % Circular convolution S_theta = conv([S_theta(end-half_width+1:end), S_theta, S_theta(1:half_width)], ... gauss_kernel, 'same'); S_theta = S_theta(half_width+1:end-half_width); elseif exist('windowSize', 'var') && ~isempty(windowSize) % Moving average via convolution (circular) pad = floor(windowSize / 2); kernel = ones(1, windowSize) / windowSize; S_theta = conv([S_theta(end-pad+1:end), S_theta, S_theta(1:pad)], kernel, 'same'); S_theta = S_theta(pad+1:end-pad); end end function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction) % image must be a 2D numerical array [dim1, dim2] = size(img); s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction)); s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2); s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction)); s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2); ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]); end function ret = subtractBackgroundOffset(img, fraction) % Remove the background from the image. % :param dataArray: The image % :type dataArray: xarray DataArray % :param x_fraction: The fraction of the pixels used in x axis % :type x_fraction: float % :param y_fraction: The fraction of the pixels used in y axis % :type y_fraction: float % :return: The image after removing background % :rtype: xarray DataArray x_fraction = fraction(1); y_fraction = fraction(2); offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction); ret = img - offset; end function ret = cropODImage(img, center, span) % Crop the image according to the region of interest (ROI). % :param dataSet: The images % :type dataSet: xarray DataArray or DataSet % :param center: The center of region of interest (ROI) % :type center: tuple % :param span: The span of region of interest (ROI) % :type span: tuple % :return: The cropped images % :rtype: xarray DataArray or DataSet x_start = floor(center(1) - span(1) / 2); x_end = floor(center(1) + span(1) / 2); y_start = floor(center(2) - span(2) / 2); y_end = floor(center(2) + span(2) / 2); ret = img(y_start:y_end, x_start:x_end); end function imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime) %CALCULATEODIMAGE Calculates the optical density (OD) image for absorption imaging. % % imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime) % % Inputs: % imageAtom - Image with atoms % imageBackground - Image without atoms % imageDark - Image without light % mode - 'LowIntensity' (default) or 'HighIntensity' % exposureTime - Required only for 'HighIntensity' [in seconds] % % Output: % imageOD - Computed OD image % arguments imageAtom (:,:) {mustBeNumeric} imageBackground (:,:) {mustBeNumeric} imageDark (:,:) {mustBeNumeric} mode char {mustBeMember(mode, {'LowIntensity', 'HighIntensity'})} = 'LowIntensity' exposureTime double = NaN end % Compute numerator and denominator numerator = imageBackground - imageDark; denominator = imageAtom - imageDark; % Avoid division by zero numerator(numerator == 0) = 1; denominator(denominator == 0) = 1; % Calculate OD based on mode switch mode case 'LowIntensity' imageOD = -log(abs(denominator ./ numerator)); case 'HighIntensity' if isnan(exposureTime) error('Exposure time must be provided for HighIntensity mode.'); end imageOD = abs(denominator ./ numerator); imageOD = -log(imageOD) + (numerator - denominator) ./ (7000 * (exposureTime / 5e-6)); end end function [optrefimages] = removefringesInImage(absimages, refimages, bgmask) % removefringesInImage - Fringe removal and noise reduction from absorption images. % Creates an optimal reference image for each absorption image in a set as % a linear combination of reference images, with coefficients chosen to % minimize the least-squares residuals between each absorption image and % the optimal reference image. The coefficients are obtained by solving a % linear set of equations using matrix inverse by LU decomposition. % % Application of the algorithm is described in C. F. Ockeloen et al, Improved % detection of small atom numbers through image processing, arXiv:1007.2136 (2010). % % Syntax: % [optrefimages] = removefringesInImage(absimages,refimages,bgmask); % % Required inputs: % absimages - Absorption image data, % typically 16 bit grayscale images % refimages - Raw reference image data % absimages and refimages are both cell arrays containing % 2D array data. The number of refimages can differ from the % number of absimages. % % Optional inputs: % bgmask - Array specifying background region used, % 1=background, 0=data. Defaults to all ones. % Outputs: % optrefimages - Cell array of optimal reference images, % equal in size to absimages. % % Dependencies: none % % Authors: Shannon Whitlock, Caspar Ockeloen % Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and % S. Whitlock, Improved detection of small atom numbers through % image processing, arXiv:1007.2136 % Email: % May 2009; Last revision: 11 August 2010 % Process inputs % Set variables, and flatten absorption and reference images nimgs = size(absimages,3); nimgsR = size(refimages,3); xdim = size(absimages(:,:,1),2); ydim = size(absimages(:,:,1),1); R = single(reshape(refimages,xdim*ydim,nimgsR)); A = single(reshape(absimages,xdim*ydim,nimgs)); optrefimages=zeros(size(absimages)); % preallocate if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end k = find(bgmask(:)==1); % Index k specifying background region % Ensure there are no duplicate reference images % R=unique(R','rows')'; % comment this line if you run out of memory % Decompose B = R*R' using singular value or LU decomposition [L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition for j=1:nimgs b=R(k,:)'*A(k,j); % Obtain coefficients c which minimise least-square residuals lower.LT = true; upper.UT = true; c = linsolve(U,linsolve(L,b(p,:),lower),upper); % Compute optimised reference image optrefimages(:,:,j)=reshape(R*c,[ydim xdim]); end end