%% - Scaling at Aspect Ratio: 2.8 % N = 5E5 for labyrinth at a_s = 85, AR = 2.8 % We require N = sqrt(ScalingFactor) * N_labyrinth = 1E5/8E4 % This implies ScalingFactor = (1/5)^2/(0.8/5)^2 % We have to scale the Horizontal Trap Frequency by 1/ScalingFactor % The Vertical Trap Frequency will still be AR * Horizontal Trap Frequency %% - N = 1E5 ScalingFactor = (1/5)^2; OptionsStruct = struct; OptionsStruct.NumberOfAtoms = sqrt(ScalingFactor) * 5E5; OptionsStruct.DipolarPolarAngle = deg2rad(0); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 85; AspectRatio = 2.8; HorizontalTrapFrequency = 125/ScalingFactor; VerticalTrapFrequency = AspectRatio * HorizontalTrapFrequency; OptionsStruct.TrapFrequencies = [HorizontalTrapFrequency, HorizontalTrapFrequency, VerticalTrapFrequency]; OptionsStruct.TrapPotentialType = 'Harmonic'; OptionsStruct.NumberOfGridPoints = [128, 128, 64]; OptionsStruct.Dimensions = [4, 4, 4]; OptionsStruct.UseApproximationForLHY = true; OptionsStruct.IncludeDDICutOff = true; OptionsStruct.CutoffType = 'Cylindrical'; OptionsStruct.SimulationMode = 'ImaginaryTimeEvolution'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution' OptionsStruct.TimeStepSize = 1E-4; % in s OptionsStruct.MinimumTimeStepSize = 2E-6; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-08; OptionsStruct.NoiseScaleFactor = 0.01; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 0; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = sprintf('./Results/Data_3D/ApproximateLHY/AspectRatio%s', strrep(num2str(AspectRatio), '.', '_')); options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct sim = Simulator.DipolarGas(options{:}); pot = Simulator.Potentials(options{:}); sim.Potential = pot.trap(); %-% Run Simulation %-% [Params, Transf, psi, V, VDk] = sim.run(); %% - N = 8E4 ScalingFactor = (0.8/5)^2; OptionsStruct = struct; OptionsStruct.NumberOfAtoms = sqrt(ScalingFactor) * 5E5; OptionsStruct.DipolarPolarAngle = deg2rad(0); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 85; AspectRatio = 2.8; HorizontalTrapFrequency = 125/ScalingFactor; VerticalTrapFrequency = AspectRatio * HorizontalTrapFrequency; OptionsStruct.TrapFrequencies = [HorizontalTrapFrequency, HorizontalTrapFrequency, VerticalTrapFrequency]; OptionsStruct.TrapPotentialType = 'Harmonic'; OptionsStruct.NumberOfGridPoints = [128, 128, 64]; OptionsStruct.Dimensions = [4, 4, 4]; OptionsStruct.UseApproximationForLHY = true; OptionsStruct.IncludeDDICutOff = true; OptionsStruct.CutoffType = 'Cylindrical'; OptionsStruct.SimulationMode = 'ImaginaryTimeEvolution'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution' OptionsStruct.TimeStepSize = 1E-4; % in s OptionsStruct.MinimumTimeStepSize = 2E-6; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-08; OptionsStruct.NoiseScaleFactor = 0.01; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 1; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = sprintf('./Results/Data_3D/ApproximateLHY/AspectRatio%s', strrep(num2str(AspectRatio), '.', '_')); options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct sim = Simulator.DipolarGas(options{:}); pot = Simulator.Potentials(options{:}); sim.Potential = pot.trap(); %-% Run Simulation %-% [Params, Transf, psi, V, VDk] = sim.run();