%% - Create Variational2D and Calculator object with specified options OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 2.0573e+07; OptionsStruct.DipolarPolarAngle = 0; OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 102.2518; % Critical point: 102.515; Triangular phase: 98.0676; Stripe phase: 102.2518; Honeycomb phase: 102.6441 OptionsStruct.TrapFrequencies = [10, 10, 72.4]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [100, 100]; % Critical point: 6.996; Triangular phase: 7.5; Stripe phase: 6.972; Honeycomb phase: 6.239 for both for Atom Number fixed to 1E5 OptionsStruct.TimeStepSize = 100E-6; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-04; OptionsStruct.NoiseScaleFactor = 4; OptionsStruct.MaxIterations = 20; OptionsStruct.VariationalWidth = 5.7; OptionsStruct.WidthLowerBound = 0.2; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 1e-2; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 1; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Data'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run();