%% Tilting of the dipoles % Atom Number = 1.00e+05 % System size = [10, 10] %% v_z = 500, theta = 0: a_s = 76.41 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 1.00e+05; OptionsStruct.DipolarPolarAngle = 0; OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 76.41; OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [10, 10]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 2; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 1; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 500, theta = 15: a_s = 77.45 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 1.00e+05; OptionsStruct.DipolarPolarAngle = deg2rad(15); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 77.45; OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [10, 10]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 2; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 2; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 500, theta = 25: a_s = 79.29 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 1.00e+05; OptionsStruct.DipolarPolarAngle = deg2rad(25); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 79.29; OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [10, 10]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 2; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 3; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 500, theta = 45: a_s = 85.17 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 1.00e+05; OptionsStruct.DipolarPolarAngle = deg2rad(45); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 75.00; OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [10, 10]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 5E5; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.15; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 1; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 4; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 500, theta = 65: a_s = 93.41 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 1.00e+05; OptionsStruct.DipolarPolarAngle = deg2rad(65); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 81.00; OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [10, 10]; OptionsStruct.TimeStepSize = 0.0025; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 5E5; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.15; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 1; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 5; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 500, theta = 75: a_s = 98.11 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 1.00e+05; OptionsStruct.DipolarPolarAngle = deg2rad(75); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 85.00; OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [10, 10]; OptionsStruct.TimeStepSize = 0.001; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 5E5; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 1; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 6; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% v_z = 500, theta = 85: a_s = 102.56 OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 1.00e+05; OptionsStruct.DipolarPolarAngle = deg2rad(85); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 90.00; OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [10, 10]; OptionsStruct.TimeStepSize = 0.001; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 5E5; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 1; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = 7; OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run();