%% - Create solver object with specified options clc %% OptionsStruct = struct; OptionsStruct.SimulationMode = '2D'; OptionsStruct.TimeStep = 50e-06; % in s OptionsStruct.SimulationTime = 4e-03; % in s OptionsStruct.SpontaneousEmission = true; OptionsStruct.Sideband = false; OptionsStruct.PushBeam = false; OptionsStruct.Gravity = false; OptionsStruct.BackgroundCollision = true; OptionsStruct.SaveData = false; OptionsStruct.SaveDirectory = 'C:\DY LAB\MOT Simulation Project\Calculations\Code\MOT Capture Process Simulation'; options = Helper.convertstruct2cell(OptionsStruct); Simulator = MOTSimulator(options{:}); clear OptionsStruct %% - Set Initial Conditions: Run with default values Simulator.setInitialConditions(); %% - Set Initial Conditions: Set manually OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 5000; OptionsStruct.BluePower = 0.2; % in W OptionsStruct.BlueDetuning = -1.5 * Helper.PhysicsConstants.BlueLinewidth; % in Hz OptionsStruct.BlueBeamWaist = 0.016; % in m OptionsStruct.SidebandPower = 0.2; OptionsStruct.SidebandDetuning = -3 * Helper.PhysicsConstants.BlueLinewidth; % in Hz OptionsStruct.SidebandBeamWaist = 0.010; % in m OptionsStruct.PushBeamPower = 0.010; % in W OptionsStruct.PushBeamDetuning = 0; % in Hz OptionsStruct.PushBeamWaist = 0.005; % in m options = Helper.convertstruct2cell(OptionsStruct); Simulator.setInitialConditions(options{:}); clear OptionsStruct %% - Run Simulation [LoadingRate, ~] = Simulator.runSimulation(); %% - Plot initial distribution Simulator.setInitialConditions(); % - sampling the position distribution InitialPositions = Simulator.initialPositionSampling(); % - sampling the velocity distribution InitialVelocities = Simulator.initialVelocitySampling(); NumberOfBins = 100; Plotting.plotPositionAndVelocitySampling(NumberOfBins, InitialPositions, InitialVelocities); %% - Plot distributions of magnitude and direction of initial velocities NumberOfBins = 50; Plotting.plotInitialVeloctiySamplingVsAngle(Simulator, NumberOfBins) %% - Plot Magnetic Field XAxisRange = [-5 5]; YAxisRange = [-5 5]; ZAxisRange = [-5 5]; Plotting.visualizeMagneticField(Simulator, XAxisRange, YAxisRange, ZAxisRange) %% - Plot MFP & VP for different temperatures TemperatureinCelsius = linspace(750,1100,2000); % Temperature in Celsius Plotting.plotMeanFreePathAndVapourPressureVsTemp(TemperatureinCelsius) %% - Plot the Free Molecular Flux for different temperatures Temperature = [950, 1000, 1050]; % Temperature Plotting.plotFreeMolecularFluxVsTemp(Simulator,Temperature) %% - Plot Angular Distribution for different Beta Beta = [0.5, 0.1 , 0.05, 0.02, 0.01]; %Beta = 2 * radius / length of the tube Plotting.plotAngularDistributionForDifferentBeta(Simulator, Beta) %% - Plot Capture Velocity Simulator.setInitialConditions(); Plotting.plotCaptureVelocityVsAngle(Simulator); %% - Plot Phase Space Simulator.NumberOfAtoms = 100; MinimumVelocity = 0; MaximumVelocity = 150; NumberOfBins = 200; %Along each axis IncidentAtomDirection = 0*2*pi/360; IncidentAtomPosition = 0; Plotting.plotPhaseSpaceWithAccelerationField(Simulator, MinimumVelocity, MaximumVelocity, NumberOfBins, IncidentAtomDirection, IncidentAtomPosition) %% - Plot trajectories along the 3 directions Simulator.NumberOfAtoms = 100; MaximumVelocity = 150; IncidentAtomDirection = 0*2*pi/360; IncidentAtomPosition = 0; Plotting.plotDynamicalQuantities(Simulator, MaximumVelocity, IncidentAtomDirection, IncidentAtomPosition); %% - Scan parameters % ONE-PARAMETER SCAN NumberOfPointsForParam = 5; %iterations of the simulation % Scan Cooling Beam Power PowerArray = linspace(0.1, 1.0, NumberOfPointsForParam) * Simulator.TotalPower; % Scan Cooling Beam Detuning % DetuningArray = linspace(-0.5,-10, NumberOfPointsForParam) * Helper.PhysicsConstants.BlueLinewidth; OptionsStruct = struct; OptionsStruct.ChangeInitialConditions = true; OptionsStruct.ParameterNameArray = {'NumberOfAtoms'}; OptionsStruct.ParameterValueArray = {5000}; options = Helper.convertstruct2cell(OptionsStruct); tStart = tic; [LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = Simulator.doOneParameterScan('BluePower', PowerArray, options{:}); tEnd = toc(tStart); fprintf('Total Computational Time: %0.1f seconds. \n', tEnd); clear OptionsStruct % - Plot results ParameterArray = PowerArray; QuantityOfInterestArray = LoadingRateArray; OptionsStruct = struct; OptionsStruct.RescalingFactorForParameter = 1000; OptionsStruct.XLabelString = 'Cooling Beam Power (mW)'; OptionsStruct.RescalingFactorForYQuantity = 1e-11; OptionsStruct.ErrorsForYQuantity = true; OptionsStruct.ErrorsArray = StandardErrorArray; OptionsStruct.CIForYQuantity = true; OptionsStruct.CIArray = ConfidenceIntervalArray; OptionsStruct.RemoveOutliers = true; OptionsStruct.YLabelString = 'Loading rate (x 10^{11} atoms/s)'; OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', Simulator.MagneticGradient * 100); options = Helper.convertstruct2cell(OptionsStruct); Plotting.plotResultForOneParameterScan(ParameterArray, QuantityOfInterestArray, options{:}) clear OptionsStruct %% TWO-PARAMETER SCAN NumberOfPointsForParam = 10; %iterations of the simulation NumberOfPointsForSecondParam = 10; % Scan Sideband Detuning and Power Ratio DetuningArray = linspace(-0.5,-10, NumberOfPointsForParam) * Helper.PhysicsConstants.BlueLinewidth; SidebandPowerArray = linspace(0.1,0.9, NumberOfPointsForSecondParam) * Simulator.TotalPower; BluePowerArray = Simulator.TotalPower - SidebandPowerArray; OptionsStruct = struct; OptionsStruct.ChangeRelatedParameter = true; OptionsStruct.Order = 2; %Change after first parameter = 1, Change after second parameter = 2 OptionsStruct.RelatedParameterName = 'BluePower'; OptionsStruct.RelatedParameterArray = BluePowerArray; OptionsStruct.ChangeInitialConditions = true; OptionsStruct.ParameterNameArray = {'NumberOfAtoms'}; OptionsStruct.ParameterValueArray = {5000}; options = Helper.convertstruct2cell(OptionsStruct); tStart = tic; [LoadingRateArray, StandardErrorArray, ConfidenceInterval] = Simulator.doTwoParameterScan('SidebandDetuning', DetuningArray, 'SidebandPower', SidebandPowerArray, options{:}); tEnd = toc(tStart); fprintf('Total Computational Time: %0.1f seconds. \n', tEnd); clear OptionsStruct % - Plot results FirstParameterArray = DetuningArray; SecondParameterArray = SidebandPowerArray; QuantityOfInterestArray = LoadingRateArray; OptionsStruct = struct; OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.BlueLinewidth)^-1; OptionsStruct.XLabelString = 'Sideband Detuning (\Delta/\Gamma)'; OptionsStruct.RescalingFactorForSecondParameter = 1000; OptionsStruct.YLabelString = 'Sideband Power (mW)'; OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-10; OptionsStruct.ZLabelString = 'Loading rate (x 10^{10} atoms/s)'; OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', Simulator.MagneticGradient * 100); options = Helper.convertstruct2cell(OptionsStruct); Plotting.plotResultForTwoParameterScan(FirstParameterArray, SecondParameterArray, QuantityOfInterestArray, options{:}) clear OptionsStruct