function E = calculateVariationalEnergy(~, psi, Params, VarArray, Transf, VDk, V) VParams.ell = VarArray(1); VParams.nu = VarArray(2); g_eff = Params.gs*VParams.nu/(2^(1+1/VParams.nu)*VParams.ell*gamma(1/VParams.nu)); gamma_eff = Params.gammaQF*2^(1/VParams.nu-1.5)*5^(-1/VParams.nu)*VParams.ell*gamma(1+1/VParams.nu)*( VParams.nu/(VParams.ell*gamma(1/VParams.nu)) )^(5/2); EVar = VParams.nu^2*gamma(2-1/VParams.nu)/(8*VParams.ell^2*gamma(1/VParams.nu)) + 0.5*Params.gz*VParams.ell^2*gamma(3/VParams.nu)/gamma(1/VParams.nu); % Parameters KEop = 0.5*(Transf.KX.^2+Transf.KY.^2); normfac = Params.Lx*Params.Ly/numel(psi); % DDIs [VParams] = find_nk_fit(VParams); % Not totally sure this should be here frho = fftn(abs(psi).^2); Phi = real(ifftn(frho.*VDk)); Eddi = 0.5*Params.gdd*Phi.*abs(psi).^2/(sqrt(2*pi)*VParams.ell_eff);% Eddi = sum(Eddi(:))*Transf.dx*Transf.dy; % Kinetic energy Ekin = KEop.*abs(fftn(psi)*normfac).^2; Ekin = trapz(Ekin(:))*Transf.dkx*Transf.dky/(2*pi)^2; % Potential energy Epot = V.*abs(psi).^2; Epot = trapz(Epot(:))*Transf.dx*Transf.dy; % Contact interactions Eint = 0.5*g_eff*abs(psi).^4; Eint = trapz(Eint(:))*Transf.dx*Transf.dy; % Quantum fluctuations Eqf = 0.4*gamma_eff*abs(psi).^5; Eqf = trapz(Eqf(:))*Transf.dx*Transf.dy; E = EVar*Params.N + Ekin + Epot + Eint + Eddi + Eqf; end