function [Params] = setupParameters(this) CONSTANTS = Helper.PhysicsConstants; hbar = CONSTANTS.PlanckConstantReduced; % [J.s] kbol = CONSTANTS.BoltzmannConstant; % [J/K] mu0 = CONSTANTS.VacuumPermeability; % [N/A^2] muB = CONSTANTS.BohrMagneton; % [J/T] a0 = CONSTANTS.BohrRadius; % [m] m0 = CONSTANTS.AtomicMassUnit; % [kg] w0 = 2*pi*100; % Angular frequency unit [s^-1] mu0factor = 0.3049584233607396; % =(m0/me)*pi*alpha^2 -- me=mass of electron, alpha=fine struct. const. % mu0=mu0factor *hbar^2*a0/(m0*muB^2) % Number of points in each direction Params.Nx = this.NumberOfGridPoints(1); Params.Ny = this.NumberOfGridPoints(2); Params.Nz = this.NumberOfGridPoints(3); % Dimensions (in units of l0) Params.Lx = this.Dimensions(1); Params.Ly = this.Dimensions(2); Params.Lz = this.Dimensions(3); % Mass, length scale Params.m = CONSTANTS.Dy164Mass; l0 = sqrt(hbar/(Params.m*w0)); % Defining a harmonic oscillator length % Atom numbers Params.N = this.NumberOfAtoms; % Dipole angle Params.theta = this.DipolarPolarAngle; % pi/2 dipoles along x, theta=0 dipoles along z Params.phi = this.DipolarAzimuthAngle; % Dipole lengths (units of muB) Params.mu = CONSTANTS.DyMagneticMoment; % Scattering lengths Params.as = this.ScatteringLength*a0; % Trapping frequencies Params.wx = 2*pi*this.TrapFrequencies(1); Params.wy = 2*pi*this.TrapFrequencies(2); Params.wz = 2*pi*this.TrapFrequencies(3); % Tolerances Params.Etol = this.EnergyTolerance; Params.rtol = this.ResidualTolerance; Params.sim_time_cut_off = this.NumberOfTimeSteps; % sometimes the imaginary time gets a little stuck % even though the solution is good, this just stops it going on forever Params.mindt = this.MinimumTimeStepSize; % Minimum size for a time step using adaptive dt Params.njob = this.JobNumber; % ================ Parameters defined by those above ================ % % Contact interaction strength (units of l0/m) Params.gs = 4*pi*Params.as/l0; % Dipole lengths Params.add = mu0*Params.mu^2*Params.m/(12*pi*hbar^2); % DDI strength Params.gdd = 12*pi*Params.add/l0; %sometimes the 12 is a 4 --> depends on how Vdk (DDI) is defined % Trap gamma Params.gx = (Params.wx/w0)^2; Params.gy = (Params.wy/w0)^2; Params.gz = (Params.wz/w0)^2; % == Calculate LHY correction == % eps_dd = Params.add/Params.as; if eps_dd == 0 Q5 = 1; elseif eps_dd == 1 Q5 = 3*sqrt(3)/2; else yeps = (1-eps_dd)/(3*eps_dd); Q5 = (3*eps_dd)^(5/2)*( (8+26*yeps+33*yeps^2)*sqrt(1+yeps) + 15*yeps^3*log((1+sqrt(1+yeps))/sqrt(yeps)) )/48; Q5 = real(Q5); end Params.gammaQF = 128/3*sqrt(pi*(Params.as/l0)^5)*Q5; % Loading the rest into Params Params.hbar = hbar; Params.kbol = kbol; Params.mu0 = mu0; Params.muB = muB; Params.a0 = a0; Params.w0 = w0; Params.l0 = l0; end