function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V) format long; % Define the function handle f = @(X) this.Calculator.calculateTotalEnergy(X, Params, Transf, VDk, V)/Params.N; % Convergence Criteria: Epsilon = 1E-5; % Gradient Calculation J = compute_gradient(psi, Params, Transf, VDk, V); % Gradient at initial point S = -J; % Initial search direction % Iteration Counter: i = 1; % Minimization while norm(S(:)) > Epsilon % Halting Criterion % Step Size Optimization (Line Search) alpha = optimize_step_size(f, psi, S, Params, Transf, VDk, V); % Update the solution x_o_new = psi + alpha * S; % Update the gradient and search direction J_old = J; J = compute_gradient(x_o_new, Params, Transf, VDk, V); S = update_search_direction(S, J, J_old); % Update for next iteration psi = x_o_new; Norm = sum(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz; psi = sqrt(Params.N)*psi/sqrt(Norm); i = i + 1; end disp('Minimum found!'); fprintf('Number of Iterations for Convergence: %d\n\n', i); muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V); disp('Saving data...'); save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','muchem','Transf','Params','VDk','V'); disp('Save complete!'); end %% Helper functions % Numerical Gradient Calculation using the finite differences method function J = compute_gradient(psi, Params, Transf, VDk, V) % Kinetic energy KEop = 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2); H_o = KEop + V; %Contact interactions Hint = Params.gs*abs(psi).^2; % DDIs frho = fftn(abs(psi).^2); Phi = real(ifftn(frho.*VDk)); Hddi = Params.gdd*Phi; %Quantum fluctuations Hqf = Params.gammaQF*abs(psi).^3; H = H_o + Hint + Hddi + Hqf; J = H.*psi; end % Line Search (Step Size Optimization) function alpha = optimize_step_size(f, X, S, Params, Transf, VDk, V) alpha = 1; % Initial step size rho = 0.5; % Step size reduction factor c = 1E-4; % Armijo condition constant max_iter = 100; % Max iterations for backtracking tol = 1E-8; % Tolerance for stopping grad = compute_gradient(X, Params, Transf, VDk, V); % Compute gradient once f_X = f(X); % Evaluate f(X) once for k = 1:max_iter % Evaluate Armijo condition with precomputed f(X) and grad if f(X + alpha * S) <= f_X + c * alpha * (S(:)' * grad(:)) break; else alpha = rho * alpha; % Reduce the step size end % Early stopping if step size becomes too small if alpha < tol break; end end end % Update Search Direction (Polak-Ribiere method) function S_new = update_search_direction(S, J_new, J_old) beta = (norm(J_new(:))^2) / (norm(J_old(:))^2); S_new = -J_new + beta * S; end