%% Parameters groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", ... "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", ... "/images/Vertical_Axis_Camera/in_situ_absorption"]; folderPath = "E:/Data - Experiment/2025/05/22/"; run = '0078'; folderPath = strcat(folderPath, run); cam = 5; angle = 0; center = [1375, 2020]; span = [200, 200]; fraction = [0.1, 0.1]; pixel_size = 5.86e-6; removeFringes = false; scan_parameter = 'rot_mag_fin_pol_angle'; % scan_parameter = 'rot_mag_field'; scan_parameter_text = 'Angle = '; % scan_parameter_text = 'BField = '; font = 'Bahnschrift'; skipPreprocessing = true; skipMasking = true; skipIntensityThresholding = true; skipBinarization = true; %% Compute OD image, rotate and extract ROI for analysis % Get a list of all files in the folder with the desired file name pattern. filePattern = fullfile(folderPath, '*.h5'); files = dir(filePattern); refimages = zeros(span(1) + 1, span(2) + 1, length(files)); absimages = zeros(span(1) + 1, span(2) + 1, length(files)); for k = 1 : length(files) baseFileName = files(k).name; fullFileName = fullfile(files(k).folder, baseFileName); fprintf(1, 'Now reading %s\n', fullFileName); atm_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle)); bkg_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle)); dark_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle)); refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)'; absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img), center, span), fraction)'; end % Fringe removal if removeFringes optrefimages = removefringesInImage(absimages, refimages); absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :); nimgs = size(absimages_fringe_removed,3); od_imgs = cell(1, nimgs); for i = 1:nimgs od_imgs{i} = absimages_fringe_removed(:, :, i); end else nimgs = size(absimages(:, :, :),3); od_imgs = cell(1, nimgs); for i = 1:nimgs od_imgs{i} = absimages(:, :, i); end end %% Get rotation angles scan_parameter_values = zeros(1, length(files)); % Get information about the '/globals' group for k = 1 : length(files) baseFileName = files(k).name; fullFileName = fullfile(files(k).folder, baseFileName); info = h5info(fullFileName, '/globals'); for i = 1:length(info.Attributes) if strcmp(info.Attributes(i).Name, scan_parameter) if strcmp(scan_parameter, 'rot_mag_fin_pol_angle') scan_parameter_values(k) = 180 - info.Attributes(i).Value; else scan_parameter_values(k) = info.Attributes(i).Value; end end end end %% Extract g2 from experiment data fft_imgs = cell(1, nimgs); spectral_distribution = cell(1, nimgs); theta_values = cell(1, nimgs); N_bins = 32; Threshold = 75; Sigma = 2; N_shots = length(od_imgs); % Display the cropped image for k = 1:N_shots IMG = od_imgs{k}; [IMGFFT, IMGPR] = computeFourierTransform(IMG, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization); % Calculate the x and y limits for the cropped image y_min = center(1) - span(2) / 2; y_max = center(1) + span(2) / 2; x_min = center(2) - span(1) / 2; x_max = center(2) + span(1) / 2; % Generate x and y arrays representing the original coordinates for each pixel x_range = linspace(x_min, x_max, span(1)); y_range = linspace(y_min, y_max, span(2)); [rows, cols] = size(IMGFFT); zoom_size = 50; % Zoomed-in region around center mid_x = floor(cols/2); mid_y = floor(rows/2); fft_imgs{k} = IMGFFT(mid_y-zoom_size:mid_y+zoom_size, mid_x-zoom_size:mid_x+zoom_size); [theta_vals, S_theta] = computeNormalizedAngularSpectralDistribution(fft_imgs{k}, 10, 20, N_bins, Threshold, Sigma); spectral_distribution{k} = S_theta; theta_values{k} = theta_vals; end % Create matrix of shape (N_shots x N_bins) delta_nkr_all = zeros(N_shots, N_bins); for k = 1:N_shots delta_nkr_all(k, :) = spectral_distribution{k}; end % Grouping by scan parameter value (e.g., alpha) [unique_scan_parameter_values, ~, idx] = unique(scan_parameter_values); % Number of unique alpha values N_alpha = length(unique_scan_parameter_values); % Preallocate result arrays g2_all = zeros(N_alpha, N_bins); g2_error_all = zeros(N_alpha, N_bins); for i = 1:N_alpha group_idx = find(idx == i); % Indices of 20 shots for this alpha group_data = delta_nkr_all(group_idx, :); % (20 x N_bins) array for dtheta = 0:N_bins-1 temp = zeros(length(group_idx), 1); for j = 1:length(group_idx) profile = group_data(j, :); profile_shifted = circshift(profile, -dtheta, 2); num = mean(profile .* profile_shifted); denom = mean(profile)^2; temp(j) = num / denom - 1; end g2_all(i, dtheta+1) = mean(temp); g2_error_all(i, dtheta+1) = std(temp) / sqrt(length(group_idx)); % Standard error end end % Reconstruct theta axis from any one of the stored values theta_vals = theta_values{1}; % assuming it's in radians % Number of unique alpha values nAlpha = size(g2_all, 1); % Generate a colormap with enough unique colors cmap = sky(nAlpha); % You can also try 'jet', 'turbo', 'hot', etc. figure(1); clf; set(gcf,'Position',[100 100 950 750]) hold on; legend_entries = cell(nAlpha, 1); for i = 1:nAlpha errorbar(theta_vals/pi, g2_all(i, :), g2_error_all(i, :), ... 'o-', 'Color', cmap(i,:), 'LineWidth', 1.2, ... 'MarkerSize', 5, 'CapSize', 3); legend_entries{i} = sprintf('$\\alpha = %g^\\circ$', unique_scan_parameter_values(i)); end ylim([-1.5 3.0]); % Set y-axis limits here set(gca, 'FontSize', 14); hXLabel = xlabel('$\delta\theta / \pi$', 'Interpreter', 'latex'); hYLabel = ylabel('$g^{(2)}(\delta\theta)$', 'Interpreter', 'latex'); hTitle = title('B = 2.45 G - Droplets to Stripes', 'Interpreter', 'tex'); legend(legend_entries, 'Interpreter', 'latex', 'Location', 'bestoutside'); set([hXLabel, hYLabel], 'FontName', font) set([hXLabel, hYLabel], 'FontSize', 14) set(hTitle, 'FontName', font, 'FontSize', 16, 'FontWeight', 'bold'); % Set font and size for title grid on; %% Helper Functions function [IMGFFT, IMGPR] = computeFourierTransform(I, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization) % computeFourierSpectrum - Computes the 2D Fourier power spectrum % of binarized and enhanced lattice image features, with optional central mask. % % Inputs: % I - Grayscale or RGB image matrix % % Output: % F_mag - 2D Fourier power spectrum (shifted) if ~skipPreprocessing % Preprocessing: Denoise filtered = imgaussfilt(I, 10); IMGPR = I - filtered; % adjust sigma as needed else IMGPR = I; end if ~skipMasking [rows, cols] = size(IMGPR); [X, Y] = meshgrid(1:cols, 1:rows); % Elliptical mask parameters cx = cols / 2; cy = rows / 2; % Shifted coordinates x = X - cx; y = Y - cy; % Ellipse semi-axes rx = 0.4 * cols; ry = 0.2 * rows; % Rotation angle in degrees -> radians theta_deg = 30; % Adjust as needed theta = deg2rad(theta_deg); % Rotated ellipse equation cos_t = cos(theta); sin_t = sin(theta); x_rot = (x * cos_t + y * sin_t); y_rot = (-x * sin_t + y * cos_t); ellipseMask = (x_rot.^2) / rx^2 + (y_rot.^2) / ry^2 <= 1; % Apply cutout mask IMGPR = IMGPR .* ellipseMask; end if ~skipIntensityThresholding % Apply global intensity threshold mask intensity_thresh = 0.20; intensity_mask = IMGPR > intensity_thresh; IMGPR = IMGPR .* intensity_mask; end if ~skipBinarization % Adaptive binarization and cleanup IMGPR = imbinarize(IMGPR, 'adaptive', 'Sensitivity', 0.0); IMGPR = imdilate(IMGPR, strel('disk', 2)); IMGPR = imerode(IMGPR, strel('disk', 1)); IMGPR = imfill(IMGPR, 'holes'); F = fft2(double(IMGPR)); % Compute 2D Fourier Transform IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center else F = fft2(double(IMGPR)); % Compute 2D Fourier Transform IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center end end function [theta_vals, S_theta] = computeNormalizedAngularSpectralDistribution(IMGFFT, r_min, r_max, num_bins, threshold, sigma) % Apply threshold to isolate strong peaks IMGFFT(IMGFFT < threshold) = 0; % Prepare polar coordinates [ny, nx] = size(IMGFFT); [X, Y] = meshgrid(1:nx, 1:ny); cx = ceil(nx/2); cy = ceil(ny/2); R = sqrt((X - cx).^2 + (Y - cy).^2); Theta = atan2(Y - cy, X - cx); % range [-pi, pi] % Choose radial band radial_mask = (R >= r_min) & (R <= r_max); % Initialize the angular structure factor array S_theta = zeros(1, num_bins); % Pre-allocate for 180 angle bins % Define the angle values for the x-axis theta_vals = linspace(0, pi, num_bins); % Loop through each angle bin for i = 1:num_bins angle_start = (i-1) * pi / num_bins; angle_end = i * pi / num_bins; % Define a mask for the given angle range angle_mask = (Theta >= angle_start & Theta < angle_end); bin_mask = radial_mask & angle_mask; % Extract the Fourier components for the given angle fft_angle = IMGFFT .* bin_mask; % Integrate the Fourier components over the radius at the angle S_theta(i) = sum(sum(abs(fft_angle).^2)); % sum of squared magnitudes end % Create a 1D Gaussian kernel half_width = ceil(3 * sigma); x = -half_width:half_width; gauss_kernel = exp(-x.^2 / (2 * sigma^2)); gauss_kernel = gauss_kernel / sum(gauss_kernel); % normalize % Apply convolution (circular padding to preserve periodicity) S_theta = conv([S_theta(end-half_width+1:end), S_theta, S_theta(1:half_width)], gauss_kernel, 'same'); S_theta = S_theta(half_width+1:end-half_width); % crop back to original size % Normalize to 1 S_theta = S_theta / max(S_theta); end function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction) % image must be a 2D numerical array [dim1, dim2] = size(img); s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction)); s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2); s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction)); s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2); ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]); end function ret = subtractBackgroundOffset(img, fraction) % Remove the background from the image. % :param dataArray: The image % :type dataArray: xarray DataArray % :param x_fraction: The fraction of the pixels used in x axis % :type x_fraction: float % :param y_fraction: The fraction of the pixels used in y axis % :type y_fraction: float % :return: The image after removing background % :rtype: xarray DataArray x_fraction = fraction(1); y_fraction = fraction(2); offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction); ret = img - offset; end function ret = cropODImage(img, center, span) % Crop the image according to the region of interest (ROI). % :param dataSet: The images % :type dataSet: xarray DataArray or DataSet % :param center: The center of region of interest (ROI) % :type center: tuple % :param span: The span of region of interest (ROI) % :type span: tuple % :return: The cropped images % :rtype: xarray DataArray or DataSet x_start = floor(center(1) - span(1) / 2); x_end = floor(center(1) + span(1) / 2); y_start = floor(center(2) - span(2) / 2); y_end = floor(center(2) + span(2) / 2); ret = img(y_start:y_end, x_start:x_end); end function ret = calculateODImage(imageAtom, imageBackground, imageDark) % Calculate the OD image for absorption imaging. % :param imageAtom: The image with atoms % :type imageAtom: numpy array % :param imageBackground: The image without atoms % :type imageBackground: numpy array % :param imageDark: The image without light % :type imageDark: numpy array % :return: The OD images % :rtype: numpy array numerator = imageBackground - imageDark; denominator = imageAtom - imageDark; numerator(numerator == 0) = 1; denominator(denominator == 0) = 1; ret = -log(double(abs(denominator ./ numerator))); if numel(ret) == 1 ret = ret(1); end end function [optrefimages] = removefringesInImage(absimages, refimages, bgmask) % removefringesInImage - Fringe removal and noise reduction from absorption images. % Creates an optimal reference image for each absorption image in a set as % a linear combination of reference images, with coefficients chosen to % minimize the least-squares residuals between each absorption image and % the optimal reference image. The coefficients are obtained by solving a % linear set of equations using matrix inverse by LU decomposition. % % Application of the algorithm is described in C. F. Ockeloen et al, Improved % detection of small atom numbers through image processing, arXiv:1007.2136 (2010). % % Syntax: % [optrefimages] = removefringesInImage(absimages,refimages,bgmask); % % Required inputs: % absimages - Absorption image data, % typically 16 bit grayscale images % refimages - Raw reference image data % absimages and refimages are both cell arrays containing % 2D array data. The number of refimages can differ from the % number of absimages. % % Optional inputs: % bgmask - Array specifying background region used, % 1=background, 0=data. Defaults to all ones. % Outputs: % optrefimages - Cell array of optimal reference images, % equal in size to absimages. % % Dependencies: none % % Authors: Shannon Whitlock, Caspar Ockeloen % Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and % S. Whitlock, Improved detection of small atom numbers through % image processing, arXiv:1007.2136 % Email: % May 2009; Last revision: 11 August 2010 % Process inputs % Set variables, and flatten absorption and reference images nimgs = size(absimages,3); nimgsR = size(refimages,3); xdim = size(absimages(:,:,1),2); ydim = size(absimages(:,:,1),1); R = single(reshape(refimages,xdim*ydim,nimgsR)); A = single(reshape(absimages,xdim*ydim,nimgs)); optrefimages=zeros(size(absimages)); % preallocate if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end k = find(bgmask(:)==1); % Index k specifying background region % Ensure there are no duplicate reference images % R=unique(R','rows')'; % comment this line if you run out of memory % Decompose B = R*R' using singular value or LU decomposition [L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition for j=1:nimgs b=R(k,:)'*A(k,j); % Obtain coefficients c which minimise least-square residuals lower.LT = true; upper.UT = true; c = linsolve(U,linsolve(L,b(p,:),lower),upper); % Compute optimised reference image optrefimages(:,:,j)=reshape(R*c,[ydim xdim]); end end