function [evals, modes] = solveBogoliubovdeGennesIn2D(psi, Params, VDk, VParams, Transf, muchem) gs = Params.gs; gdd = Params.gdd; gammaQF = Params.gammaQF; KEop = 0.5*(Transf.KX.^2+Transf.KY.^2); g_pf_2D = 1/(sqrt(2*pi)*VParams.ell); gQF_pf_2D = sqrt(2/5)/(pi^(3/4)*VParams.ell^(3/2)); Ez = (0.25/VParams.ell^2) + (0.25*Params.gz*VParams.ell^2); muchem_tilde = muchem - Ez; % eigs only works with column vectors psi = psi.'; KEop = KEop.'; VDk = VDk.'; % Interaction Potential frho = fftn(abs(psi).^2); Phi = real(ifftn(frho.*VDk)); % Operators H = @(w) real(ifft(KEop.*fft(w))); C = @(w) (((g_pf_2D*gs*abs(psi).^2) + (g_pf_2D*gdd*Phi)).*w) + (gQF_pf_2D*gammaQF*abs(psi).^3.*w); muHC = @(w) (-muchem_tilde * w) + H(w) + C(w); X = @(w) (psi.*real(ifft(VDk.*fft(psi.*w)))) + (3/2)*(gQF_pf_2D*gammaQF*abs(psi).^3).*w; % 2-D matrix will be unravelled to a single column vector and the corresponding BdG matrix of (N^2)^2 elements solved for. Size = length(psi(:)); Neigs = length(psi(:)); opts.tol = 1e-16; opts.disp = 1; opts.issym = 0; opts.isreal = 1; opts.maxit = 1e4; BdGVec = @(g) BdGSolver2D.BdGMatrix(g, psi, Params, VDk, VParams, Transf, muchem); % This function takes a column vector as input and returns a % matrix-vector product which is also a column vector [g,D] = eigs(BdGVec,Size,Neigs,'sr',opts); evals = diag(D); clear D; % Eigenvalues evals = sqrt(evals); % Obtain f from g for ii = 1:Neigs gres = reshape(g(:,ii), size(psi)); f(:,ii) = reshape((1/evals(ii)) * (muHC(gres) + (2.*X(gres))), [], 1); end % Obtain u and v from f and g u = (f + g)/2; v = (f - g)/2; % Renormalize to \int |u|^2 - |v|^2 = 1 for ii=1:Neigs normalization = sum(abs(u(:,ii)).^2 - abs(v(:,ii)).^2); u(:,ii) = u(:,ii)/sqrt(normalization); v(:,ii) = v(:,ii)/sqrt(normalization); end modes.u = u'; modes.v = v'; modes.g = g'; modes.f = f'; end