function [fitResults, rawCurves] = fitSingleGaussianCurvesToRadialSpectralDistribution(S_k_all, k_rho_vals, varargin) %% fitSingleGaussianCurvesToRadialSpectralDistribution % Fits a single-Gaussian model to multiple radial spectral curves (S(k_rho)), % truncating each curve to user-specified k_rho range. % % Inputs: % S_k_all - 1xN cell array of radial spectral curves % k_rho_vals - vector of corresponding k_rho values % % Optional name-value pairs: % 'KRhoRange' - [k_min, k_max] (default: [min(k_rho_vals), max(k_rho_vals)]) % 'ResidualThreshold' - threshold for residual validation (default: 0.3) % % Outputs: % fitResults - struct array with fields: % .pFit, .kFit, .xFit, .yFit, .kFine, .isValid, .residual, .maxAbs, .R2, .fitMaxKRho % rawCurves - struct array of truncated raw curves for plotting % --- Parse optional inputs --- p = inputParser; addParameter(p, 'KRhoRange', [min(k_rho_vals), max(k_rho_vals)], @(x) isnumeric(x) && numel(x)==2); addParameter(p, 'ResidualThreshold', 0.3, @(x) isnumeric(x) && isscalar(x)); parse(p, varargin{:}); opts = p.Results; Ncurves = numel(S_k_all); fitResults = struct('pFit',[],'kFit',[],'xFit',[],'yFit',[],... 'kFine',[],'isValid',[],'residual',[],'maxAbs',[],'R2',[],'fitMaxKRho',[]); rawCurves = struct('x', cell(1, Ncurves), 'k', cell(1, Ncurves)); for k = 1:Ncurves % --- Truncate curve to k_rho and amplitude ranges --- xRaw = S_k_all{k}; % --- Normalize and smooth --- xNorm = xRaw / max(xRaw); xSmooth = smooth(xNorm, 5, 'moving'); mask = (k_rho_vals(:) >= opts.KRhoRange(1)) & (k_rho_vals(:) <= opts.KRhoRange(2)); x = xSmooth(mask); kVals = k_rho_vals(mask); rawCurves(k).x = x; rawCurves(k).k = kVals; if any(isnan(xRaw)) warning('Curve %d has NaNs, skipping.', k); fitResults(k) = fillNaNStructRadial(); continue; elseif numel(x) < 5 warning('Curve %d has too few points after truncation, skipping.', k); fitResults(k) = fillNaNStructRadial(); continue; elseif isempty(x) warning('Curve %d is empty after truncation.', k); fitResults(k) = fillZeroStructRadial(kVals, opts.KRhoRange(2)); continue; end try %% Single Gaussian fit with offset: A*exp(-(k-mu)^2/(2*sigma^2)) + C singleGauss = @(p,k) p(1) * exp(-0.5*((k - p(2))/max(p(3),1e-6)).^2) + p(4); % Initial guess [~, idxMax] = max(x); A_guess = x(idxMax) - min(x); % amplitude above baseline mu_guess = kVals(idxMax); sigma_guess = 0.1 * (opts.KRhoRange(2)-opts.KRhoRange(1)); C_guess = min(x); % baseline offset p0 = [A_guess, mu_guess, sigma_guess, C_guess]; lb = [0, opts.KRhoRange(1), 1e-6, -Inf]; ub = [2*max(x), opts.KRhoRange(2), opts.KRhoRange(2), Inf]; optsLSQ = optimoptions('lsqcurvefit','Display','off', ... 'MaxFunctionEvaluations',1e4,'MaxIterations',1e4); pFit = lsqcurvefit(singleGauss, p0, kVals(:), x(:), lb, ub, optsLSQ); % --- Post-fit diagnostics --- r = x(:) - singleGauss(pFit, kVals(:)); residualRMS = sqrt(mean(r.^2)); maxAbsR = max(abs(r)); kFine = linspace(min(kVals), max(kVals), 500); yFit = singleGauss(pFit, kFine); fitMaxKRho = pFit(2); SS_res = sum(r.^2); SS_tot = sum((x(:) - mean(x(:))).^2); R2 = 1 - SS_res/SS_tot; % Store results fitResults(k).pFit = pFit; fitResults(k).kFit = kVals; fitResults(k).xFit = x; fitResults(k).kFine = kFine; fitResults(k).yFit = yFit; fitResults(k).isValid = residualRMS <= opts.ResidualThreshold; fitResults(k).residual = residualRMS; fitResults(k).maxAbs = maxAbsR; fitResults(k).R2 = R2; fitResults(k).fitMaxKRho = fitMaxKRho; catch warning('Curve %d fit failed completely.', k); fitResults(k) = fillNaNStructRadial(); end end end %% --- Helper: NaN struct for failed fits --- function s = fillNaNStructRadial() s = struct( ... 'pFit', nan(1,3), ... 'kFit', nan, ... 'xFit', nan, ... 'yFit', nan, ... 'kFine', nan, ... 'isValid', false, ... 'residual', nan, ... 'maxAbs', nan, ... 'R2', nan, ... 'fitMaxKRho', nan ... ); end %% --- Helper: Zero struct for empty curves --- function s = fillZeroStructRadial(kVals, MaxKRho) s = struct( ... 'pFit', zeros(1,3), ... 'kFit', kVals, ... 'xFit', zeros(size(kVals)), ... 'yFit', zeros(size(kVals)), ... 'kFine', zeros(1,500), ... 'isValid', false, ... 'residual', zeros(size(kVals)), ... 'maxAbs', zeros(size(kVals)), ... 'R2', zeros(size(kVals)), ... 'fitMaxKRho', MaxKRho ... ); end