Compare commits

...

8 Commits

8 changed files with 53 additions and 42 deletions

View File

@ -68,7 +68,7 @@ function plotResultForOneParameterScan(XParameter, YQuantity, varargin)
if CIForYQuantity if CIForYQuantity
RescaledCIArray = CIArray .* RescalingFactorForYQuantity; RescaledCIArray = CIArray .* RescalingFactorForYQuantity;
Plotting.plotConfidenceIntervalRegion(RescaledXParameter, RescaledCIArray(:,1), RescaledCIArray(:,2)); Plotter.plotConfidenceIntervalRegion(RescaledXParameter, RescaledCIArray(:,1), RescaledCIArray(:,2));
end end
hold off hold off

View File

@ -124,14 +124,14 @@ classdef Oven < Simulator.MOTCaptureProcess & matlab.mixin.Copyable
function ret = get.AtomicBeamDensity(this) function ret = get.AtomicBeamDensity(this)
%See Background collision probability section in Barbiero %See Background collision probability section in Barbiero
ret = this.calculateFreeMolecularRegimeFlux() / (this.AverageVelocity * pi * (this.Beta*this.NozzleLength/2)^2); ret = this.calculateFreeMolecularRegimeFlux / (this.AverageVelocity * pi * (this.NozzleRadius)^2);
end end
function ret = get.MeanFreePath(this) function ret = get.MeanFreePath(this)
% Cross section = pi ( 2 * Van-der-waals radius of Dy)^2; % Cross section = pi ( 2 * Van-der-waals radius of Dy)^2;
% Van-der-waals radius of Dy = 281e-12 % Van-der-waals radius of Dy = 281e-12
%See Expected atomic flux section and Background collision probability section in Barbiero %See Expected atomic flux section and Background collision probability section in Barbiero
ret = 1/(sqrt(2) * ( pi * (2*281e-12)^2) * this.AtomicBeamDensity); ret = 1/(sqrt(2) * (pi * (2*281e-12)^2) * this.AtomicBeamDensity);
end end
function ret = get.CollisionTime(this) function ret = get.CollisionTime(this)

View File

@ -5,5 +5,5 @@ function ret = calculateClausingFactor(this)
alpha = 0.5 - (3*this.Beta^2)^-1 * ((1 - (2*this.Beta^3) + ((2*this.Beta^2) - 1) * sqrt(1+this.Beta^2)) / (sqrt(1+this.Beta^2) - (this.Beta^2 * asinh((this.Beta^2)^-1)))); alpha = 0.5 - (3*this.Beta^2)^-1 * ((1 - (2*this.Beta^3) + ((2*this.Beta^2) - 1) * sqrt(1+this.Beta^2)) / (sqrt(1+this.Beta^2) - (this.Beta^2 * asinh((this.Beta^2)^-1))));
ClausingFactorAnalytic = 1 + (2/3) * (1 - (2 * alpha)) * (this.Beta - sqrt(1 - this.Beta^2)) + (2/3) * (1 + alpha) * this.Beta^(-2) * (1 - sqrt(1 + this.Beta^2)); ClausingFactorAnalytic = 1 + (2/3) * (1 - (2 * alpha)) * (this.Beta - sqrt(1 - this.Beta^2)) + (2/3) * (1 + alpha) * this.Beta^(-2) * (1 - sqrt(1 + this.Beta^2));
ret = ClausingFactorAnalytic; ret = ClausingFactorApproximation;
end end

View File

@ -3,7 +3,8 @@ function ret = calculateFreeMolecularRegimeFlux(this)
%See Expected atomic flux section in Barbiero %See Expected atomic flux section in Barbiero
Dy164VapourPressure = 133.322*exp(11.4103-2.3785e+04./(-219.4821+this.OvenTemperatureinKelvin)).*100; % Vapor Pressure Dysprosium for the given oven temperature Dy164VapourPressure = 133.322*exp(11.4103-2.3785e+04./(-219.4821+this.OvenTemperatureinKelvin)).*100; % Vapor Pressure Dysprosium for the given oven temperature
Dy164DensityinOven = Dy164VapourPressure/(Helper.PhysicsConstants.BoltzmannConstant*this.OvenTemperatureinKelvin); Dy164DensityinOven = Dy164VapourPressure/(Helper.PhysicsConstants.BoltzmannConstant*this.OvenTemperatureinKelvin);
ret = Helper.PhysicsConstants.Dy164IsotopicAbundance * 1/4 * Dy164DensityinOven * pi * this.NozzleRadius.^2; ret = 1/4 * Dy164DensityinOven * this.AverageVelocity * pi * this.NozzleRadius.^2;
% Removed the Helper.PhysicsConstants.Dy164IsotopicAbundance multiplication
% Needs to be multiplied with the "Clausing Factor" which here would be % Needs to be multiplied with the "Clausing Factor" which here would be
% the probability not for the full solid angle but the angle subtended % the probability not for the full solid angle but the angle subtended
% by the aperture of the oven at its mouth. % by the aperture of the oven at its mouth.

View File

@ -12,7 +12,7 @@ function ret = initialVelocitySampling(this, MOTObj)
* velocity.^3 .* exp(-velocity.^2 .* (Helper.PhysicsConstants.Dy164Mass / (2 * Helper.PhysicsConstants.BoltzmannConstant ... * velocity.^3 .* exp(-velocity.^2 .* (Helper.PhysicsConstants.Dy164Mass / (2 * Helper.PhysicsConstants.BoltzmannConstant ...
* this.OvenTemperatureinKelvin))); * this.OvenTemperatureinKelvin)));
c = integral(VelocityDistribution, 0, this.VelocityCutoff); c = integral(VelocityDistribution, 0, this.VelocityCutoff) / integral(VelocityDistribution, 0, inf);
this.ReducedFlux = c * this.ReducedClausingFactor * this.calculateFreeMolecularRegimeFlux(); this.ReducedFlux = c * this.ReducedClausingFactor * this.calculateFreeMolecularRegimeFlux();
@ -55,5 +55,6 @@ function ret = initialVelocitySampling(this, MOTObj)
ret(i,:)=[SampledVelocityMagnitude(i)*cos(SampledPolarAngle(i)), SampledVelocityMagnitude(i)*sin(SampledPolarAngle(i))*cos(SampledAzimuthalAngle(i)), ... ret(i,:)=[SampledVelocityMagnitude(i)*cos(SampledPolarAngle(i)), SampledVelocityMagnitude(i)*sin(SampledPolarAngle(i))*cos(SampledAzimuthalAngle(i)), ...
SampledVelocityMagnitude(i)*sin(SampledPolarAngle(i))*sin(SampledAzimuthalAngle(i))]; SampledVelocityMagnitude(i)*sin(SampledPolarAngle(i))*sin(SampledAzimuthalAngle(i))];
end
end end

View File

@ -18,8 +18,7 @@ function [LoadingRate, StandardError, ConfidenceInterval] = calculateLoadingRate
end end
for AtomIndex = 1:n for AtomIndex = 1:n
Position = squeeze(DynamicalQuantities(AtomIndex, TimeIndex, 1:3))'; Position = squeeze(DynamicalQuantities(AtomIndex, TimeIndex, 1:3))';
Velocity = squeeze(DynamicalQuantities(AtomIndex, TimeIndex, 4:6))'; if this.exitCondition(Position, CollisionEvents(AtomIndex))
if this.exitCondition(ovenObj, Position, Velocity, CollisionEvents(AtomIndex))
NumberOfLoadedAtoms(TimeIndex) = NumberOfLoadedAtoms(TimeIndex) + 1; NumberOfLoadedAtoms(TimeIndex) = NumberOfLoadedAtoms(TimeIndex) + 1;
end end
end end

View File

@ -1,9 +1,8 @@
function ret = exitCondition(this, ovenObj, PositionVector, VelocityVector, CollisionEvent) function ret = exitCondition(this, PositionVector, CollisionEvent)
d = Helper.calculateDistanceFromPointToLine(PositionVector, [0 0 0], [0 1 0]); d = Helper.calculateDistanceFromPointToLine(PositionVector, [0 0 0], [0 1 0]);
y = PositionVector(2); y = PositionVector(2);
DivergenceAngle = (d/abs(y)); DivergenceAngle = atan(d/abs(y));
%DivergenceAngle = atan(norm(cross(PositionVector, )) / norm(dot(PositionVector, [0 1 0]))); if (y >= 0) && (DivergenceAngle <= this.ExitDivergence) && ~CollisionEvent
if (y >= 0) && (DivergenceAngle <= this.ExitDivergence) && (abs(VelocityVector(2))<=ovenObj.VelocityCutoff) && ~CollisionEvent
ret = true; ret = true;
else else
ret = false; ret = false;

View File

@ -24,10 +24,20 @@ MOT2D = Simulator.TwoDimensionalMOT(options{:});
Beams = MOT2D.Beams; Beams = MOT2D.Beams;
%% - Run Simulation %% - Run Simulation
poolobj = gcp('nocreate'); % Check if pool is open % poolobj = gcp('nocreate'); % Check if pool is open
if isempty(poolobj) % if isempty(poolobj)
parpool; % parpool;
end % end
MOT2D.NumberOfAtoms = 5000;
MOT2D.Sideband = false;
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
CoolingBeam.Power = 0.4;
CoolingBeam.Waist = 13.3e-03;
CoolingBeam.Detuning = -1.67*Helper.PhysicsConstants.BlueLinewidth;
PushBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Push'), Beams)};
PushBeam.Power = 0.025;
PushBeam.Waist = 0.81e-03;
PushBeam.Detuning = 0;
[LoadingRate, ~] = MOT2D.runSimulation(Oven); [LoadingRate, ~] = MOT2D.runSimulation(Oven);
%% - Plot initial distribution %% - Plot initial distribution
% - sampling the position distribution % - sampling the position distribution
@ -118,13 +128,13 @@ QuantityOfInterestArray = LoadingRateArray;
OptionsStruct = struct; OptionsStruct = struct;
OptionsStruct.RescalingFactorForParameter = 1000; OptionsStruct.RescalingFactorForParameter = 1000;
OptionsStruct.XLabelString = 'Cooling Beam Power (mW)'; OptionsStruct.XLabelString = 'Cooling Beam Power (mW)';
OptionsStruct.RescalingFactorForYQuantity = 1e-10; OptionsStruct.RescalingFactorForYQuantity = 1e-11;
OptionsStruct.ErrorsForYQuantity = true; OptionsStruct.ErrorsForYQuantity = true;
OptionsStruct.ErrorsArray = StandardErrorArray; OptionsStruct.ErrorsArray = StandardErrorArray;
OptionsStruct.CIForYQuantity = true; OptionsStruct.CIForYQuantity = true;
OptionsStruct.CIArray = ConfidenceIntervalArray; OptionsStruct.CIArray = ConfidenceIntervalArray;
OptionsStruct.RemoveOutliers = true; OptionsStruct.RemoveOutliers = true;
OptionsStruct.YLabelString = 'Loading rate (x 10^{10} atoms/s)'; OptionsStruct.YLabelString = 'Loading rate (x 10^{11} atoms/s)';
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100); OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
options = Helper.convertstruct2cell(OptionsStruct); options = Helper.convertstruct2cell(OptionsStruct);
@ -135,9 +145,9 @@ clear OptionsStruct
%% - Scan parameters: Two-Parameter Scan %% - Scan parameters: Two-Parameter Scan
MOT2D.NumberOfAtoms = 5000; MOT2D.NumberOfAtoms = 50;
MOT2D.TotalPower = 0.6; MOT2D.TotalPower = 0.6;
MOT2D.Sideband = true; MOT2D.Sideband = false;
SidebandBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'BlueSideband'), Beams)}; SidebandBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'BlueSideband'), Beams)};
NumberOfPointsForFirstParam = 10; %iterations of the simulation NumberOfPointsForFirstParam = 10; %iterations of the simulation
@ -145,8 +155,9 @@ NumberOfPointsForSecondParam = 10;
% Scan Sideband Detuning and Power Ratio % Scan Sideband Detuning and Power Ratio
DetuningArray = linspace(-0.5,-10, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth; DetuningArray = linspace(-0.5,-10, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth;
SidebandPowerArray = linspace(0.1,0.9, NumberOfPointsForSecondParam) * MOT2D.TotalPower; % SidebandPowerArray = linspace(0.1,0.9, NumberOfPointsForSecondParam) * MOT2D.TotalPower;
BluePowerArray = MOT2D.TotalPower - SidebandPowerArray; % BluePowerArray = MOT2D.TotalPower - SidebandPowerArray;
BluePowerArray = linspace(0.1,0.9, NumberOfPointsForSecondParam) * MOT2D.TotalPower;
LoadingRateArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam); LoadingRateArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam);
StandardErrorArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam); StandardErrorArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam);
@ -177,8 +188,8 @@ OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.B
OptionsStruct.XLabelString = 'Sideband Detuning (\Delta/\Gamma)'; OptionsStruct.XLabelString = 'Sideband Detuning (\Delta/\Gamma)';
OptionsStruct.RescalingFactorForSecondParameter = 1000; OptionsStruct.RescalingFactorForSecondParameter = 1000;
OptionsStruct.YLabelString = 'Sideband Power (mW)'; OptionsStruct.YLabelString = 'Sideband Power (mW)';
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-10; OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-11;
OptionsStruct.ZLabelString = 'Loading rate (x 10^{10} atoms/s)'; OptionsStruct.ZLabelString = 'Loading rate (x 10^{11} atoms/s)';
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100); OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
options = Helper.convertstruct2cell(OptionsStruct); options = Helper.convertstruct2cell(OptionsStruct);