Compare commits
No commits in common. "2628e7c8bc51b8c8bc18a16087930c9212264be7" and "a9b7045c57e782b248ed76f543bac7d5c1eb80c1" have entirely different histories.
2628e7c8bc
...
a9b7045c57
@ -68,7 +68,7 @@ function plotResultForOneParameterScan(XParameter, YQuantity, varargin)
|
||||
|
||||
if CIForYQuantity
|
||||
RescaledCIArray = CIArray .* RescalingFactorForYQuantity;
|
||||
Plotter.plotConfidenceIntervalRegion(RescaledXParameter, RescaledCIArray(:,1), RescaledCIArray(:,2));
|
||||
Plotting.plotConfidenceIntervalRegion(RescaledXParameter, RescaledCIArray(:,1), RescaledCIArray(:,2));
|
||||
end
|
||||
|
||||
hold off
|
||||
|
@ -124,14 +124,14 @@ classdef Oven < Simulator.MOTCaptureProcess & matlab.mixin.Copyable
|
||||
|
||||
function ret = get.AtomicBeamDensity(this)
|
||||
%See Background collision probability section in Barbiero
|
||||
ret = this.calculateFreeMolecularRegimeFlux / (this.AverageVelocity * pi * (this.NozzleRadius)^2);
|
||||
ret = this.calculateFreeMolecularRegimeFlux() / (this.AverageVelocity * pi * (this.Beta*this.NozzleLength/2)^2);
|
||||
end
|
||||
|
||||
function ret = get.MeanFreePath(this)
|
||||
% Cross section = pi ( 2 * Van-der-waals radius of Dy)^2;
|
||||
% Van-der-waals radius of Dy = 281e-12
|
||||
%See Expected atomic flux section and Background collision probability section in Barbiero
|
||||
ret = 1/(sqrt(2) * (pi * (2*281e-12)^2) * this.AtomicBeamDensity);
|
||||
ret = 1/(sqrt(2) * ( pi * (2*281e-12)^2) * this.AtomicBeamDensity);
|
||||
end
|
||||
|
||||
function ret = get.CollisionTime(this)
|
||||
|
@ -5,5 +5,5 @@ function ret = calculateClausingFactor(this)
|
||||
alpha = 0.5 - (3*this.Beta^2)^-1 * ((1 - (2*this.Beta^3) + ((2*this.Beta^2) - 1) * sqrt(1+this.Beta^2)) / (sqrt(1+this.Beta^2) - (this.Beta^2 * asinh((this.Beta^2)^-1))));
|
||||
ClausingFactorAnalytic = 1 + (2/3) * (1 - (2 * alpha)) * (this.Beta - sqrt(1 - this.Beta^2)) + (2/3) * (1 + alpha) * this.Beta^(-2) * (1 - sqrt(1 + this.Beta^2));
|
||||
|
||||
ret = ClausingFactorApproximation;
|
||||
ret = ClausingFactorAnalytic;
|
||||
end
|
@ -3,8 +3,7 @@ function ret = calculateFreeMolecularRegimeFlux(this)
|
||||
%See Expected atomic flux section in Barbiero
|
||||
Dy164VapourPressure = 133.322*exp(11.4103-2.3785e+04./(-219.4821+this.OvenTemperatureinKelvin)).*100; % Vapor Pressure Dysprosium for the given oven temperature
|
||||
Dy164DensityinOven = Dy164VapourPressure/(Helper.PhysicsConstants.BoltzmannConstant*this.OvenTemperatureinKelvin);
|
||||
ret = 1/4 * Dy164DensityinOven * this.AverageVelocity * pi * this.NozzleRadius.^2;
|
||||
% Removed the Helper.PhysicsConstants.Dy164IsotopicAbundance multiplication
|
||||
ret = Helper.PhysicsConstants.Dy164IsotopicAbundance * 1/4 * Dy164DensityinOven * pi * this.NozzleRadius.^2;
|
||||
% Needs to be multiplied with the "Clausing Factor" which here would be
|
||||
% the probability not for the full solid angle but the angle subtended
|
||||
% by the aperture of the oven at its mouth.
|
||||
|
@ -12,7 +12,7 @@ function ret = initialVelocitySampling(this, MOTObj)
|
||||
* velocity.^3 .* exp(-velocity.^2 .* (Helper.PhysicsConstants.Dy164Mass / (2 * Helper.PhysicsConstants.BoltzmannConstant ...
|
||||
* this.OvenTemperatureinKelvin)));
|
||||
|
||||
c = integral(VelocityDistribution, 0, this.VelocityCutoff) / integral(VelocityDistribution, 0, inf);
|
||||
c = integral(VelocityDistribution, 0, this.VelocityCutoff);
|
||||
|
||||
this.ReducedFlux = c * this.ReducedClausingFactor * this.calculateFreeMolecularRegimeFlux();
|
||||
|
||||
@ -31,30 +31,29 @@ function ret = initialVelocitySampling(this, MOTObj)
|
||||
NormalizationConstantForVelocityDistribution = this.velocityDistributionFunction(MaximumVelocityAllowed);
|
||||
|
||||
parfor i = 1:n
|
||||
% Rejection Sampling of speed
|
||||
% Rejection Sampling of speed
|
||||
y = rand(1);
|
||||
x = this.VelocityCutoff * rand(1);
|
||||
while y > ((NormalizationConstantForVelocityDistribution)^-1 * this.velocityDistributionFunction(x)) %As long as this loop condition is satisfied, reject the corresponding x value
|
||||
y = rand(1);
|
||||
x = this.VelocityCutoff * rand(1);
|
||||
while y > ((NormalizationConstantForVelocityDistribution)^-1 * this.velocityDistributionFunction(x)) %As long as this loop condition is satisfied, reject the corresponding x value
|
||||
y = rand(1);
|
||||
x = this.VelocityCutoff * rand(1);
|
||||
end
|
||||
SampledVelocityMagnitude(i) = x; % When loop condition is not satisfied, accept x value and store as sample
|
||||
end
|
||||
SampledVelocityMagnitude(i) = x; % When loop condition is not satisfied, accept x value and store as sample
|
||||
|
||||
% Rejection Sampling of polar angle
|
||||
% Rejection Sampling of polar angle
|
||||
w = rand(1);
|
||||
z = this.ExitDivergence * rand(1);
|
||||
|
||||
while w > ((NormalizationConstantForAngularDistribution)^-1 * 2 * pi * this.angularDistributionFunction(z) * sin(z)) %As long as this loop condition is satisfied, reject the corresponding x value
|
||||
w = rand(1);
|
||||
z = this.ExitDivergence * rand(1);
|
||||
|
||||
while w > ((NormalizationConstantForAngularDistribution)^-1 * 2 * pi * this.angularDistributionFunction(z) * sin(z)) %As long as this loop condition is satisfied, reject the corresponding x value
|
||||
w = rand(1);
|
||||
z = this.ExitDivergence * rand(1);
|
||||
end
|
||||
SampledPolarAngle(i) = z; %When loop condition is not satisfied, accept x value and store as sample
|
||||
|
||||
% Sampling of azimuthal angle
|
||||
SampledAzimuthalAngle(i)= 2 * pi * rand(1);
|
||||
|
||||
ret(i,:)=[SampledVelocityMagnitude(i)*cos(SampledPolarAngle(i)), SampledVelocityMagnitude(i)*sin(SampledPolarAngle(i))*cos(SampledAzimuthalAngle(i)), ...
|
||||
SampledVelocityMagnitude(i)*sin(SampledPolarAngle(i))*sin(SampledAzimuthalAngle(i))];
|
||||
end
|
||||
SampledPolarAngle(i) = z; %When loop condition is not satisfied, accept x value and store as sample
|
||||
|
||||
% Sampling of azimuthal angle
|
||||
SampledAzimuthalAngle(i)= 2 * pi * rand(1);
|
||||
|
||||
ret(i,:)=[SampledVelocityMagnitude(i)*cos(SampledPolarAngle(i)), SampledVelocityMagnitude(i)*sin(SampledPolarAngle(i))*cos(SampledAzimuthalAngle(i)), ...
|
||||
SampledVelocityMagnitude(i)*sin(SampledPolarAngle(i))*sin(SampledAzimuthalAngle(i))];
|
||||
end
|
||||
|
||||
|
@ -18,7 +18,8 @@ function [LoadingRate, StandardError, ConfidenceInterval] = calculateLoadingRate
|
||||
end
|
||||
for AtomIndex = 1:n
|
||||
Position = squeeze(DynamicalQuantities(AtomIndex, TimeIndex, 1:3))';
|
||||
if this.exitCondition(Position, CollisionEvents(AtomIndex))
|
||||
Velocity = squeeze(DynamicalQuantities(AtomIndex, TimeIndex, 4:6))';
|
||||
if this.exitCondition(ovenObj, Position, Velocity, CollisionEvents(AtomIndex))
|
||||
NumberOfLoadedAtoms(TimeIndex) = NumberOfLoadedAtoms(TimeIndex) + 1;
|
||||
end
|
||||
end
|
||||
|
@ -1,8 +1,9 @@
|
||||
function ret = exitCondition(this, PositionVector, CollisionEvent)
|
||||
function ret = exitCondition(this, ovenObj, PositionVector, VelocityVector, CollisionEvent)
|
||||
d = Helper.calculateDistanceFromPointToLine(PositionVector, [0 0 0], [0 1 0]);
|
||||
y = PositionVector(2);
|
||||
DivergenceAngle = atan(d/abs(y));
|
||||
if (y >= 0) && (DivergenceAngle <= this.ExitDivergence) && ~CollisionEvent
|
||||
DivergenceAngle = (d/abs(y));
|
||||
%DivergenceAngle = atan(norm(cross(PositionVector, )) / norm(dot(PositionVector, [0 1 0])));
|
||||
if (y >= 0) && (DivergenceAngle <= this.ExitDivergence) && (abs(VelocityVector(2))<=ovenObj.VelocityCutoff) && ~CollisionEvent
|
||||
ret = true;
|
||||
else
|
||||
ret = false;
|
||||
|
@ -24,20 +24,10 @@ MOT2D = Simulator.TwoDimensionalMOT(options{:});
|
||||
Beams = MOT2D.Beams;
|
||||
|
||||
%% - Run Simulation
|
||||
% poolobj = gcp('nocreate'); % Check if pool is open
|
||||
% if isempty(poolobj)
|
||||
% parpool;
|
||||
% end
|
||||
MOT2D.NumberOfAtoms = 5000;
|
||||
MOT2D.Sideband = false;
|
||||
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
|
||||
CoolingBeam.Power = 0.4;
|
||||
CoolingBeam.Waist = 13.3e-03;
|
||||
CoolingBeam.Detuning = -1.67*Helper.PhysicsConstants.BlueLinewidth;
|
||||
PushBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Push'), Beams)};
|
||||
PushBeam.Power = 0.025;
|
||||
PushBeam.Waist = 0.81e-03;
|
||||
PushBeam.Detuning = 0;
|
||||
poolobj = gcp('nocreate'); % Check if pool is open
|
||||
if isempty(poolobj)
|
||||
parpool;
|
||||
end
|
||||
[LoadingRate, ~] = MOT2D.runSimulation(Oven);
|
||||
%% - Plot initial distribution
|
||||
% - sampling the position distribution
|
||||
@ -128,13 +118,13 @@ QuantityOfInterestArray = LoadingRateArray;
|
||||
OptionsStruct = struct;
|
||||
OptionsStruct.RescalingFactorForParameter = 1000;
|
||||
OptionsStruct.XLabelString = 'Cooling Beam Power (mW)';
|
||||
OptionsStruct.RescalingFactorForYQuantity = 1e-11;
|
||||
OptionsStruct.RescalingFactorForYQuantity = 1e-10;
|
||||
OptionsStruct.ErrorsForYQuantity = true;
|
||||
OptionsStruct.ErrorsArray = StandardErrorArray;
|
||||
OptionsStruct.CIForYQuantity = true;
|
||||
OptionsStruct.CIArray = ConfidenceIntervalArray;
|
||||
OptionsStruct.RemoveOutliers = true;
|
||||
OptionsStruct.YLabelString = 'Loading rate (x 10^{11} atoms/s)';
|
||||
OptionsStruct.YLabelString = 'Loading rate (x 10^{10} atoms/s)';
|
||||
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
|
||||
|
||||
options = Helper.convertstruct2cell(OptionsStruct);
|
||||
@ -145,9 +135,9 @@ clear OptionsStruct
|
||||
|
||||
%% - Scan parameters: Two-Parameter Scan
|
||||
|
||||
MOT2D.NumberOfAtoms = 50;
|
||||
MOT2D.NumberOfAtoms = 5000;
|
||||
MOT2D.TotalPower = 0.6;
|
||||
MOT2D.Sideband = false;
|
||||
MOT2D.Sideband = true;
|
||||
SidebandBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'BlueSideband'), Beams)};
|
||||
|
||||
NumberOfPointsForFirstParam = 10; %iterations of the simulation
|
||||
@ -155,9 +145,8 @@ NumberOfPointsForSecondParam = 10;
|
||||
|
||||
% Scan Sideband Detuning and Power Ratio
|
||||
DetuningArray = linspace(-0.5,-10, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth;
|
||||
% SidebandPowerArray = linspace(0.1,0.9, NumberOfPointsForSecondParam) * MOT2D.TotalPower;
|
||||
% BluePowerArray = MOT2D.TotalPower - SidebandPowerArray;
|
||||
BluePowerArray = linspace(0.1,0.9, NumberOfPointsForSecondParam) * MOT2D.TotalPower;
|
||||
SidebandPowerArray = linspace(0.1,0.9, NumberOfPointsForSecondParam) * MOT2D.TotalPower;
|
||||
BluePowerArray = MOT2D.TotalPower - SidebandPowerArray;
|
||||
|
||||
LoadingRateArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam);
|
||||
StandardErrorArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam);
|
||||
@ -188,8 +177,8 @@ OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.B
|
||||
OptionsStruct.XLabelString = 'Sideband Detuning (\Delta/\Gamma)';
|
||||
OptionsStruct.RescalingFactorForSecondParameter = 1000;
|
||||
OptionsStruct.YLabelString = 'Sideband Power (mW)';
|
||||
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-11;
|
||||
OptionsStruct.ZLabelString = 'Loading rate (x 10^{11} atoms/s)';
|
||||
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-10;
|
||||
OptionsStruct.ZLabelString = 'Loading rate (x 10^{10} atoms/s)';
|
||||
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
|
||||
|
||||
options = Helper.convertstruct2cell(OptionsStruct);
|
||||
|
Loading…
Reference in New Issue
Block a user