Cosmetic changes, a few new additions.

This commit is contained in:
Karthik 2021-07-11 14:41:40 +02:00
parent b4e28e09db
commit f7f48bd623

View File

@ -2,30 +2,36 @@ function reinitializeSimulator(this)
%% PHYSICAL CONSTANTS %% PHYSICAL CONSTANTS
pc = Helper.PhysicsConstants; pc = Helper.PhysicsConstants;
%% SIMULATION PARAMETERS %% SIMULATION PARAMETERS
this.NozzleLength = 60e-3; this.NozzleLength = 60e-3;
this.NozzleRadius = 2.50e-3; this.NozzleRadius = 2.60e-3;
this.Beta = 2 * (this.NozzleRadius/this.NozzleLength); this.Beta = 2 * (this.NozzleRadius/this.NozzleLength);
this.ApertureCut = max(2.5e-3,this.NozzleRadius); this.ClausingFactor = this.calculateClausingFactor();
this.OvenDistance = (25+12.5)*1e-3 + (this.NozzleRadius + this.ApertureCut) / tan(15/360 * 2 * pi); this.ApertureCut = max(2.5e-3,this.NozzleRadius);
this.OvenDistance = (25+12.5)*1e-3 + (this.NozzleRadius + this.ApertureCut) / tan(15/360 * 2 * pi);
% Distance between the nozzle and the 2-D MOT chamber center % Distance between the nozzle and the 2-D MOT chamber center
% 25 is the beam radius/sqrt(2) % 25 is the beam radius/sqrt(2)
% 12.5 is the radius of the oven % 12.5 is the radius of the oven
% 15 eg is the angle between the 2-D MOT chamber center and the nozzle % 15 eg is the angle between the 2-D MOT chamber center and the nozzle
this.OvenTemperature = 1000; % Temperature in Celsius this.OvenTemperature = 1000; % Temperature in Celsius
this.MOTDistance = 320e-3; % Distance between the 2-D MOT the 3-D MOT this.MOTDistance = 0.32; % Distance between the 2-D MOT the 3-D MOT
this.BlueWaveVector = 2*pi/pc.BlueWavelength; this.BlueWaveNumber = 2*pi/pc.BlueWavelength;
this.BlueSaturationIntensity = 2*pi^2*pc.PlanckConstantReduced*pc.SpeedOfLight*pc.BlueLinewidth/3/(pc.BlueWavelength)^3/10; this.BlueSaturationIntensity = 0.1 * (2 * pi^2 / 3) * ((pc.PlanckConstantReduced * pc.SpeedOfLight * pc.BlueLinewidth) / (pc.BlueWavelength)^3);
this.OrangeWaveVector = 2*pi/pc.OrangeWavelength; this.OrangeWaveNumber = 2*pi/pc.OrangeWavelength;
this.OrangeSaturationIntensity = 2*pi^2*pc.PlanckConstantReduced*pc.SpeedOfLight*pc.OrangeLinewidth/3/(pc.OrangeWavelength)^3/10; this.OrangeSaturationIntensity = 0.1 * (2 * pi^2 / 3) * ((pc.PlanckConstantReduced * pc.SpeedOfLight * pc.OrangeLinewidth) / (pc.OrangeWavelength)^3);
this.BlueBeamRadius = min(0.035/2,sqrt(2)/2*this.OvenDistance); % Diameter of CF40 flange = 0.035 this.BlueBeamRadius = min(0.035/2,sqrt(2)/2*this.OvenDistance); % Diameter of CF40 flange = 0.035
Theta_Nozzle = atan((this.NozzleRadius+this.BlueBeamRadius*sqrt(2))/this.OvenDistance); % The angle of capture region towards the oven nozzle Theta_Nozzle = atan((this.NozzleRadius+this.BlueBeamRadius*sqrt(2))/this.OvenDistance); % The angle of capture region towards the oven nozzle
Theta_Aperture = 15/360*2*pi; % The limitation angle of the second aperture in the oven Theta_Aperture = 15/360*2*pi; % The limitation angle of the second aperture in the oven
this.NozzleExitDivergence = min(Theta_Nozzle,Theta_Aperture); this.NozzleExitDivergence = min(Theta_Nozzle,Theta_Aperture);
this.MOTExitDivergence = 0.016; % The limitation angle between 2D-MOT and 3D-MOT this.MOTExitDivergence = 16e-3; % The limitation angle between 2D-MOT and 3D-MOT
this.TotalPower = 0.4; this.TimeSpentInInteractionRegion = this.SimulationTime;
this.OrangeBeamRadius = 1.2e-03; this.TotalPower = 0.8;
this.PushBeamRadius = 0.000; this.OrangeBeamRadius = 1.2e-3;
this.PushBeamDistance = 0.32; this.PushBeamRadius = 1.2e-3;
this.PushBeamDistance = 0.32;
this.PushBeamLinewidth = Helper.PhysicsConstants.OrangeLinewidth;
this.PushBeamWaveNumber = this.OrangeWaveNumber;
this.PushBeamSaturationIntensity = this.OrangeSaturationIntensity;
this.ZeemanSlowerBeamRadius = 0.035;
this.ZeemanSlowerBeamSaturationIntensity = this.BlueSaturationIntensity;
this.DistanceBetweenPushBeamAnd3DMOTCenter = 0; this.DistanceBetweenPushBeamAnd3DMOTCenter = 0;
this.ZeemanSlowerBeamRadius = 1;
end end