New routine to plot insitu images across runs, new script to calculate interference pattern, potential for an optical accordion lattice.
This commit is contained in:
parent
64229ecd69
commit
f6981b9233
@ -4,16 +4,16 @@ groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axi
|
||||
"/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", ...
|
||||
"/images/Vertical_Axis_Camera/in_situ_absorption"];
|
||||
|
||||
folderPath = "//DyLabNAS/Data/TwoDGas/2025/04/02/";
|
||||
folderPath = "//DyLabNAS/Data/TwoDGas/2025/07/16/";
|
||||
|
||||
run = '0007';
|
||||
run = '0002';
|
||||
|
||||
folderPath = strcat(folderPath, run);
|
||||
|
||||
cam = 5;
|
||||
|
||||
angle = 0;
|
||||
center = [1285, 2100];
|
||||
center = [1430, 2025];
|
||||
span = [200, 200];
|
||||
fraction = [0.1, 0.1];
|
||||
|
||||
@ -25,13 +25,13 @@ ImagingMode = 'HighIntensity';
|
||||
PulseDuration = 5e-6;
|
||||
|
||||
% Plotting and saving
|
||||
scan_parameter = 'rot_mag_fin_pol_angle';
|
||||
scan_parameter = 'evap_rot_mag_field';
|
||||
scan_groups = 0:10:50;
|
||||
savefileName = 'DropletsToStripes';
|
||||
savefileName = 'Droplets';
|
||||
font = 'Bahnschrift';
|
||||
|
||||
% Flags
|
||||
skipUnshuffling = false;
|
||||
skipUnshuffling = true;
|
||||
|
||||
%% ===== Load and compute OD image, rotate and extract ROI for analysis =====
|
||||
% Get a list of all files in the folder with the desired file name pattern.
|
||||
@ -175,14 +175,14 @@ for k = 1 : length(od_imgs)
|
||||
'Interpreter', 'tex', 'Units', 'normalized', ...
|
||||
'HorizontalAlignment', 'right', 'VerticalAlignment', 'top');
|
||||
end
|
||||
|
||||
|
||||
colorbarHandle = colorbar;
|
||||
ylabel(colorbarHandle, 'Optical Density', 'Rotation', -90, 'FontSize', 14, 'FontName', font);
|
||||
|
||||
xlabel('x (\mum)', 'Interpreter', 'tex', 'FontSize', 14, 'FontName', font);
|
||||
ylabel('y (\mum)', 'Interpreter', 'tex', 'FontSize', 14, 'FontName', font);
|
||||
title('OD Image', 'FontSize', 16, 'FontWeight', 'bold', 'Interpreter', 'tex', 'FontName', font);
|
||||
|
||||
|
||||
drawnow;
|
||||
pause(0.5);
|
||||
end
|
||||
|
@ -0,0 +1,767 @@
|
||||
% === Parameters ===
|
||||
baseFolder = '//DyLabNAS/Data/TwoDGas/2025/04/';
|
||||
|
||||
dates = ["01", "02"];
|
||||
runs = {
|
||||
["0059", "0060", "0061"],
|
||||
["0007", "0008", "0009", "0010", "0011"]
|
||||
};
|
||||
|
||||
scan_groups = 0:10:50;
|
||||
scan_parameter = 'rot_mag_fin_pol_angle';
|
||||
cam = 5;
|
||||
|
||||
% Image cropping and alignment
|
||||
angle = 0;
|
||||
center = [1285, 2100];
|
||||
span = [200, 200];
|
||||
fraction = [0.1, 0.1];
|
||||
|
||||
% Imaging and calibration parameters
|
||||
pixel_size = 5.86e-6; % in meters
|
||||
magnification = 23.94;
|
||||
removeFringes = false;
|
||||
ImagingMode = 'LowIntensity';
|
||||
PulseDuration = 5e-6;
|
||||
|
||||
% Optional visualization / zooming
|
||||
options.zoom_size = 50;
|
||||
|
||||
% Optional flags or settings struct
|
||||
skipUnshuffling = false;
|
||||
skipPreprocessing = true;
|
||||
skipMasking = true;
|
||||
skipIntensityThresholding = true;
|
||||
skipBinarization = true;
|
||||
|
||||
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", ...
|
||||
"/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", ...
|
||||
"/images/Vertical_Axis_Camera/in_situ_absorption"];
|
||||
%%
|
||||
|
||||
allData = {}; % now a growing list of structs per B field
|
||||
dataCounter = 1;
|
||||
|
||||
for i = 1:length(dates)
|
||||
dateStr = dates(i);
|
||||
runList = runs{i};
|
||||
|
||||
for j = 1:length(runList)
|
||||
folderPath = fullfile(baseFolder, dateStr, runList{j});
|
||||
filePattern = fullfile(folderPath, '*.h5');
|
||||
files = dir(filePattern);
|
||||
refimages = zeros(span(1) + 1, span(2) + 1, length(files));
|
||||
absimages = zeros(span(1) + 1, span(2) + 1, length(files));
|
||||
|
||||
for k = 1 : length(files)
|
||||
baseFileName = files(k).name;
|
||||
fullFileName = fullfile(files(k).folder, baseFileName);
|
||||
|
||||
fprintf(1, 'Now reading %s\n', fullFileName);
|
||||
|
||||
atm_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle));
|
||||
bkg_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
|
||||
dark_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
|
||||
|
||||
refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)';
|
||||
absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img, ImagingMode, PulseDuration), center, span), fraction)';
|
||||
end
|
||||
|
||||
% ===== Fringe removal =====
|
||||
|
||||
if removeFringes
|
||||
optrefimages = removefringesInImage(absimages, refimages);
|
||||
absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :);
|
||||
|
||||
nimgs = size(absimages_fringe_removed,3);
|
||||
od_imgs = cell(1, nimgs);
|
||||
for k = 1:nimgs
|
||||
od_imgs{k} = absimages_fringe_removed(:, :, k);
|
||||
end
|
||||
else
|
||||
nimgs = size(absimages(:, :, :),3);
|
||||
od_imgs = cell(1, nimgs);
|
||||
for k = 1:nimgs
|
||||
od_imgs{k} = absimages(:, :, k);
|
||||
end
|
||||
end
|
||||
|
||||
%% ===== Get rotation angles =====
|
||||
scan_parameter_values = zeros(1, length(files));
|
||||
|
||||
% Get information about the '/globals' group
|
||||
for k = 1 : length(files)
|
||||
baseFileName = files(k).name;
|
||||
fullFileName = fullfile(files(k).folder, baseFileName);
|
||||
info = h5info(fullFileName, '/globals');
|
||||
for i = 1:length(info.Attributes)
|
||||
if strcmp(info.Attributes(i).Name, scan_parameter)
|
||||
if strcmp(scan_parameter, 'rot_mag_fin_pol_angle')
|
||||
scan_parameter_values(k) = 180 - info.Attributes(i).Value;
|
||||
else
|
||||
scan_parameter_values(k) = info.Attributes(i).Value;
|
||||
end
|
||||
end
|
||||
if strcmp(info.Attributes(i).Name, "rot_mag_field")
|
||||
B = info.Attributes(i).Value;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% ===== Unshuffle if necessary to do so =====
|
||||
|
||||
if ~skipUnshuffling
|
||||
n_values = length(scan_groups);
|
||||
n_total = length(scan_parameter_values);
|
||||
|
||||
% Infer number of repetitions
|
||||
n_reps = n_total / n_values;
|
||||
|
||||
% Preallocate ordered arrays
|
||||
ordered_scan_values = zeros(1, n_total);
|
||||
ordered_od_imgs = cell(1, n_total);
|
||||
|
||||
counter = 1;
|
||||
|
||||
for rep = 1:n_reps
|
||||
for val = scan_groups
|
||||
% Find the next unused match for this val
|
||||
idx = find(scan_parameter_values == val, 1, 'first');
|
||||
|
||||
% Assign and remove from list to avoid duplicates
|
||||
ordered_scan_values(counter) = scan_parameter_values(idx);
|
||||
ordered_od_imgs{counter} = od_imgs{idx};
|
||||
|
||||
% Mark as used by removing
|
||||
scan_parameter_values(idx) = NaN; % NaN is safe since original values are 0:5:45
|
||||
od_imgs{idx} = []; % empty cell so it won't be matched again
|
||||
|
||||
counter = counter + 1;
|
||||
end
|
||||
end
|
||||
|
||||
% Now assign back
|
||||
scan_parameter_values = ordered_scan_values;
|
||||
od_imgs = ordered_od_imgs;
|
||||
end
|
||||
% === Reshape ===
|
||||
od_imgs_reshaped = reshape(od_imgs, [length(scan_groups), n_reps]);
|
||||
|
||||
% === Store ===
|
||||
allData{dataCounter} = struct(...
|
||||
'B', B, ...
|
||||
'theta_vals', scan_groups, ...
|
||||
'od_imgs', od_imgs_reshaped ...
|
||||
);
|
||||
dataCounter = dataCounter + 1;
|
||||
end
|
||||
end
|
||||
|
||||
%% === % Plot PD - 1st rep of each θ per B-field ===
|
||||
[theta_vals, ~, idx] = unique(scan_parameter_values);
|
||||
nB = numel(allData);
|
||||
nTheta = numel(theta_vals);
|
||||
|
||||
% Select every 2nd B-field index
|
||||
idxToPlot = 1:2:nB; % indices 1, 3, 5, ...
|
||||
|
||||
% Update number of B-fields to plot
|
||||
nB_new = numel(idxToPlot);
|
||||
|
||||
figure(101); clf;
|
||||
|
||||
% Make the figure wider to fit the colorbar comfortably
|
||||
set(gcf, 'Position', [100, 100, 1300, 800]);
|
||||
|
||||
% Create tiled layout with some right padding to reserve space for colorbar
|
||||
t = tiledlayout(nB_new, nTheta, 'TileSpacing', 'compact', 'Padding', 'compact');
|
||||
|
||||
font = 'Bahnschrift';
|
||||
allAxes = gobjects(nB_new, nTheta);
|
||||
|
||||
for new_i = 1:nB_new
|
||||
i = idxToPlot(new_i); % original index in allData
|
||||
data = allData{i};
|
||||
for j = 1:nTheta
|
||||
ax = nexttile((new_i-1)*nTheta + j);
|
||||
allAxes(new_i,j) = ax;
|
||||
|
||||
od = data(j).od_imgs;
|
||||
imagesc(od, 'Parent', ax);
|
||||
set(ax, 'YDir', 'normal');
|
||||
axis(ax, 'image');
|
||||
ax.XTick = [];
|
||||
ax.YTick = [];
|
||||
|
||||
colormap(ax, Colormaps.inferno());
|
||||
end
|
||||
end
|
||||
|
||||
% Use colorbar associated with the last image tile
|
||||
cb = colorbar('Location', 'eastoutside');
|
||||
cb.Layout.Tile = 'east'; % Attach it to the layout edge
|
||||
cb.FontName = font;
|
||||
cb.FontSize = 18;
|
||||
cb.Label.FontSize = 20;
|
||||
cb.Label.Rotation = 90;
|
||||
cb.Label.VerticalAlignment = 'bottom';
|
||||
cb.Label.HorizontalAlignment = 'center';
|
||||
cb.Direction = 'normal'; % Ensure ticks go bottom-to-top
|
||||
|
||||
|
||||
% Add x and y tick labels along bottom and left
|
||||
% Use bottom row for θ ticks
|
||||
for j = 1:nTheta
|
||||
ax = allAxes(end, j);
|
||||
ax.XTick = size(od,2)/2;
|
||||
ax.XTickLabel = sprintf('%d°', theta_vals(j));
|
||||
ax.XTickLabelRotation = 0;
|
||||
ax.FontName = font;
|
||||
ax.FontSize = 20;
|
||||
end
|
||||
|
||||
% Use first column for B ticks (only the plotted subset)
|
||||
for new_i = 1:nB_new
|
||||
i = idxToPlot(new_i);
|
||||
ax = allAxes(new_i, 1);
|
||||
ax.YTick = size(od,1)/2;
|
||||
ax.YTickLabel = sprintf('%.2f G', allData{i}(1).B);
|
||||
ax.FontName = font;
|
||||
ax.FontSize = 20;
|
||||
end
|
||||
|
||||
%% Helper Functions
|
||||
function [IMGFFT, IMGPR] = computeFourierTransform(I, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization)
|
||||
% computeFourierSpectrum - Computes the 2D Fourier power spectrum
|
||||
% of binarized and enhanced lattice image features, with optional central mask.
|
||||
%
|
||||
% Inputs:
|
||||
% I - Grayscale or RGB image matrix
|
||||
%
|
||||
% Output:
|
||||
% F_mag - 2D Fourier power spectrum (shifted)
|
||||
|
||||
if ~skipPreprocessing
|
||||
% Preprocessing: Denoise
|
||||
filtered = imgaussfilt(I, 10);
|
||||
IMGPR = I - filtered; % adjust sigma as needed
|
||||
else
|
||||
IMGPR = I;
|
||||
end
|
||||
|
||||
if ~skipMasking
|
||||
[rows, cols] = size(IMGPR);
|
||||
[X, Y] = meshgrid(1:cols, 1:rows);
|
||||
% Elliptical mask parameters
|
||||
cx = cols / 2;
|
||||
cy = rows / 2;
|
||||
|
||||
% Shifted coordinates
|
||||
x = X - cx;
|
||||
y = Y - cy;
|
||||
|
||||
% Ellipse semi-axes
|
||||
rx = 0.4 * cols;
|
||||
ry = 0.2 * rows;
|
||||
|
||||
% Rotation angle in degrees -> radians
|
||||
theta_deg = 30; % Adjust as needed
|
||||
theta = deg2rad(theta_deg);
|
||||
|
||||
% Rotated ellipse equation
|
||||
cos_t = cos(theta);
|
||||
sin_t = sin(theta);
|
||||
|
||||
x_rot = (x * cos_t + y * sin_t);
|
||||
y_rot = (-x * sin_t + y * cos_t);
|
||||
|
||||
ellipseMask = (x_rot.^2) / rx^2 + (y_rot.^2) / ry^2 <= 1;
|
||||
|
||||
% Apply cutout mask
|
||||
IMGPR = IMGPR .* ellipseMask;
|
||||
end
|
||||
|
||||
if ~skipIntensityThresholding
|
||||
% Apply global intensity threshold mask
|
||||
intensity_thresh = 0.20;
|
||||
intensity_mask = IMGPR > intensity_thresh;
|
||||
IMGPR = IMGPR .* intensity_mask;
|
||||
end
|
||||
|
||||
if ~skipBinarization
|
||||
% Adaptive binarization and cleanup
|
||||
IMGPR = imbinarize(IMGPR, 'adaptive', 'Sensitivity', 0.0);
|
||||
IMGPR = imdilate(IMGPR, strel('disk', 2));
|
||||
IMGPR = imerode(IMGPR, strel('disk', 1));
|
||||
IMGPR = imfill(IMGPR, 'holes');
|
||||
F = fft2(double(IMGPR)); % Compute 2D Fourier Transform
|
||||
IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center
|
||||
else
|
||||
F = fft2(double(IMGPR)); % Compute 2D Fourier Transform
|
||||
IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center
|
||||
end
|
||||
end
|
||||
|
||||
function [k_rho_vals, S_radial] = computeRadialSpectralDistribution(IMGFFT, kx, ky, thetamin, thetamax, num_bins)
|
||||
% IMGFFT : 2D FFT image (fftshifted and cropped)
|
||||
% kx, ky : 1D physical wavenumber axes [μm⁻¹] matching FFT size
|
||||
% thetamin : Minimum angle (in radians)
|
||||
% thetamax : Maximum angle (in radians)
|
||||
% num_bins : Number of radial bins
|
||||
|
||||
[KX, KY] = meshgrid(kx, ky);
|
||||
K_rho = sqrt(KX.^2 + KY.^2);
|
||||
Theta = atan2(KY, KX);
|
||||
|
||||
if thetamin < thetamax
|
||||
angle_mask = (Theta >= thetamin) & (Theta <= thetamax);
|
||||
else
|
||||
angle_mask = (Theta >= thetamin) | (Theta <= thetamax);
|
||||
end
|
||||
|
||||
power_spectrum = abs(IMGFFT).^2;
|
||||
|
||||
r_min = min(K_rho(angle_mask));
|
||||
r_max = max(K_rho(angle_mask));
|
||||
r_edges = linspace(r_min, r_max, num_bins + 1);
|
||||
k_rho_vals = 0.5 * (r_edges(1:end-1) + r_edges(2:end));
|
||||
S_radial = zeros(1, num_bins);
|
||||
|
||||
for i = 1:num_bins
|
||||
r_low = r_edges(i);
|
||||
r_high = r_edges(i + 1);
|
||||
radial_mask = (K_rho >= r_low) & (K_rho < r_high);
|
||||
full_mask = radial_mask & angle_mask;
|
||||
S_radial(i) = sum(power_spectrum(full_mask));
|
||||
end
|
||||
end
|
||||
|
||||
function [theta_vals, S_theta] = computeAngularSpectralDistribution(IMGFFT, r_min, r_max, num_bins, threshold, sigma, windowSize)
|
||||
% Apply threshold to isolate strong peaks
|
||||
IMGFFT(IMGFFT < threshold) = 0;
|
||||
|
||||
% Prepare polar coordinates
|
||||
[ny, nx] = size(IMGFFT);
|
||||
[X, Y] = meshgrid(1:nx, 1:ny);
|
||||
cx = ceil(nx/2);
|
||||
cy = ceil(ny/2);
|
||||
R = sqrt((X - cx).^2 + (Y - cy).^2);
|
||||
Theta = atan2(Y - cy, X - cx); % range [-pi, pi]
|
||||
|
||||
% Choose radial band
|
||||
radial_mask = (R >= r_min) & (R <= r_max);
|
||||
|
||||
% Initialize angular structure factor
|
||||
S_theta = zeros(1, num_bins);
|
||||
theta_vals = linspace(0, pi, num_bins);
|
||||
|
||||
% Loop through angle bins
|
||||
for i = 1:num_bins
|
||||
angle_start = (i-1) * pi / num_bins;
|
||||
angle_end = i * pi / num_bins;
|
||||
angle_mask = (Theta >= angle_start & Theta < angle_end);
|
||||
bin_mask = radial_mask & angle_mask;
|
||||
fft_angle = IMGFFT .* bin_mask;
|
||||
S_theta(i) = sum(sum(abs(fft_angle).^2));
|
||||
end
|
||||
|
||||
% Smooth using either Gaussian or moving average
|
||||
if exist('sigma', 'var') && ~isempty(sigma)
|
||||
% Gaussian convolution
|
||||
half_width = ceil(3 * sigma);
|
||||
x = -half_width:half_width;
|
||||
gauss_kernel = exp(-x.^2 / (2 * sigma^2));
|
||||
gauss_kernel = gauss_kernel / sum(gauss_kernel);
|
||||
% Circular convolution
|
||||
S_theta = conv([S_theta(end-half_width+1:end), S_theta, S_theta(1:half_width)], ...
|
||||
gauss_kernel, 'same');
|
||||
S_theta = S_theta(half_width+1:end-half_width);
|
||||
elseif exist('windowSize', 'var') && ~isempty(windowSize)
|
||||
% Moving average via convolution (circular)
|
||||
pad = floor(windowSize / 2);
|
||||
kernel = ones(1, windowSize) / windowSize;
|
||||
S_theta = conv([S_theta(end-pad+1:end), S_theta, S_theta(1:pad)], kernel, 'same');
|
||||
S_theta = S_theta(pad+1:end-pad);
|
||||
end
|
||||
end
|
||||
|
||||
function contrast = computeRadialSpectralContrast(IMGFFT, r_min, r_max, threshold)
|
||||
% Apply threshold to isolate strong peaks
|
||||
IMGFFT(IMGFFT < threshold) = 0;
|
||||
|
||||
% Prepare polar coordinates
|
||||
[ny, nx] = size(IMGFFT);
|
||||
[X, Y] = meshgrid(1:nx, 1:ny);
|
||||
cx = ceil(nx/2);
|
||||
cy = ceil(ny/2);
|
||||
R = sqrt((X - cx).^2 + (Y - cy).^2);
|
||||
|
||||
% Ring region (annulus) mask
|
||||
ring_mask = (R >= r_min) & (R <= r_max);
|
||||
|
||||
% Squared magnitude in the ring
|
||||
ring_power = abs(IMGFFT).^2 .* ring_mask;
|
||||
|
||||
% Maximum power in the ring
|
||||
ring_max = max(ring_power(:));
|
||||
|
||||
% Power at the DC component
|
||||
dc_power = abs(IMGFFT(cy, cx))^2;
|
||||
|
||||
% Avoid division by zero
|
||||
if dc_power == 0
|
||||
contrast = Inf; % or NaN or 0, depending on how you want to handle this
|
||||
else
|
||||
contrast = ring_max / dc_power;
|
||||
end
|
||||
end
|
||||
|
||||
function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction)
|
||||
% image must be a 2D numerical array
|
||||
[dim1, dim2] = size(img);
|
||||
|
||||
s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction));
|
||||
s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2);
|
||||
s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction));
|
||||
s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2);
|
||||
|
||||
ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
|
||||
end
|
||||
|
||||
function ret = subtractBackgroundOffset(img, fraction)
|
||||
% Remove the background from the image.
|
||||
% :param dataArray: The image
|
||||
% :type dataArray: xarray DataArray
|
||||
% :param x_fraction: The fraction of the pixels used in x axis
|
||||
% :type x_fraction: float
|
||||
% :param y_fraction: The fraction of the pixels used in y axis
|
||||
% :type y_fraction: float
|
||||
% :return: The image after removing background
|
||||
% :rtype: xarray DataArray
|
||||
|
||||
x_fraction = fraction(1);
|
||||
y_fraction = fraction(2);
|
||||
offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction);
|
||||
ret = img - offset;
|
||||
end
|
||||
|
||||
function ret = cropODImage(img, center, span)
|
||||
% Crop the image according to the region of interest (ROI).
|
||||
% :param dataSet: The images
|
||||
% :type dataSet: xarray DataArray or DataSet
|
||||
% :param center: The center of region of interest (ROI)
|
||||
% :type center: tuple
|
||||
% :param span: The span of region of interest (ROI)
|
||||
% :type span: tuple
|
||||
% :return: The cropped images
|
||||
% :rtype: xarray DataArray or DataSet
|
||||
|
||||
x_start = floor(center(1) - span(1) / 2);
|
||||
x_end = floor(center(1) + span(1) / 2);
|
||||
y_start = floor(center(2) - span(2) / 2);
|
||||
y_end = floor(center(2) + span(2) / 2);
|
||||
|
||||
ret = img(y_start:y_end, x_start:x_end);
|
||||
end
|
||||
|
||||
function imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime)
|
||||
%CALCULATEODIMAGE Calculates the optical density (OD) image for absorption imaging.
|
||||
%
|
||||
% imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime)
|
||||
%
|
||||
% Inputs:
|
||||
% imageAtom - Image with atoms
|
||||
% imageBackground - Image without atoms
|
||||
% imageDark - Image without light
|
||||
% mode - 'LowIntensity' (default) or 'HighIntensity'
|
||||
% exposureTime - Required only for 'HighIntensity' [in seconds]
|
||||
%
|
||||
% Output:
|
||||
% imageOD - Computed OD image
|
||||
%
|
||||
|
||||
arguments
|
||||
imageAtom (:,:) {mustBeNumeric}
|
||||
imageBackground (:,:) {mustBeNumeric}
|
||||
imageDark (:,:) {mustBeNumeric}
|
||||
mode char {mustBeMember(mode, {'LowIntensity', 'HighIntensity'})} = 'LowIntensity'
|
||||
exposureTime double = NaN
|
||||
end
|
||||
|
||||
% Compute numerator and denominator
|
||||
numerator = imageBackground - imageDark;
|
||||
denominator = imageAtom - imageDark;
|
||||
|
||||
% Avoid division by zero
|
||||
numerator(numerator == 0) = 1;
|
||||
denominator(denominator == 0) = 1;
|
||||
|
||||
% Calculate OD based on mode
|
||||
switch mode
|
||||
case 'LowIntensity'
|
||||
imageOD = -log(abs(denominator ./ numerator));
|
||||
|
||||
case 'HighIntensity'
|
||||
if isnan(exposureTime)
|
||||
error('Exposure time must be provided for HighIntensity mode.');
|
||||
end
|
||||
imageOD = abs(denominator ./ numerator);
|
||||
imageOD = -log(imageOD) + (numerator - denominator) ./ (7000 * (exposureTime / 5e-6));
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
function drawODOverlays(x1, y1, x2, y2)
|
||||
|
||||
% Parameters
|
||||
tick_spacing = 10; % µm between ticks
|
||||
tick_length = 2; % µm tick mark length
|
||||
line_color = [0.5 0.5 0.5];
|
||||
tick_color = [0.5 0.5 0.5];
|
||||
font_size = 10;
|
||||
|
||||
% Vector from start to end
|
||||
dx = x2 - x1;
|
||||
dy = y2 - y1;
|
||||
L = sqrt(dx^2 + dy^2);
|
||||
|
||||
% Unit direction vector along diagonal
|
||||
ux = dx / L;
|
||||
uy = dy / L;
|
||||
|
||||
% Perpendicular unit vector for ticks
|
||||
perp_ux = -uy;
|
||||
perp_uy = ux;
|
||||
|
||||
% Midpoint (center)
|
||||
xc = (x1 + x2) / 2;
|
||||
yc = (y1 + y2) / 2;
|
||||
|
||||
% Number of positive and negative ticks
|
||||
n_ticks = floor(L / (2 * tick_spacing));
|
||||
|
||||
% Draw main diagonal line
|
||||
plot([x1 x2], [y1 y2], '--', 'Color', line_color, 'LineWidth', 1.2);
|
||||
|
||||
for i = -n_ticks:n_ticks
|
||||
d = i * tick_spacing;
|
||||
xt = xc + d * ux;
|
||||
yt = yc + d * uy;
|
||||
|
||||
% Tick line endpoints
|
||||
xt1 = xt - 0.5 * tick_length * perp_ux;
|
||||
yt1 = yt - 0.5 * tick_length * perp_uy;
|
||||
xt2 = xt + 0.5 * tick_length * perp_ux;
|
||||
yt2 = yt + 0.5 * tick_length * perp_uy;
|
||||
|
||||
% Draw tick
|
||||
plot([xt1 xt2], [yt1 yt2], '--', 'Color', tick_color, 'LineWidth', 1);
|
||||
|
||||
% Label: centered at tick, offset slightly along diagonal
|
||||
if d ~= 0
|
||||
text(xt, yt, sprintf('%+d', d), ...
|
||||
'Color', tick_color, ...
|
||||
'FontSize', font_size, ...
|
||||
'HorizontalAlignment', 'center', ...
|
||||
'VerticalAlignment', 'bottom', ...
|
||||
'Rotation', atan2d(dy, dx));
|
||||
end
|
||||
|
||||
end
|
||||
end
|
||||
|
||||
function drawPSOverlays(kx, ky, r_min, r_max)
|
||||
% drawFFTOverlays - Draw overlays on existing FFT plot:
|
||||
% - Radial lines every 30°
|
||||
% - Annular highlight with white (upper half) and gray (lower half) circles between r_min and r_max
|
||||
% - Horizontal white bands at ky=0 in annulus region
|
||||
% - Scale ticks and labels every 1 μm⁻¹ along each radial line
|
||||
%
|
||||
% Inputs:
|
||||
% kx, ky - reciprocal space vectors (μm⁻¹)
|
||||
% r_min - inner annulus radius offset index (integer)
|
||||
% r_max - outer annulus radius offset index (integer)
|
||||
%
|
||||
% Example:
|
||||
% hold on;
|
||||
% drawFFTOverlays(kx, ky, 10, 30);
|
||||
|
||||
hold on
|
||||
|
||||
% === Overlay Radial Lines + Scales ===
|
||||
[kx_grid, ky_grid] = meshgrid(kx, ky);
|
||||
[~, kr_grid] = cart2pol(kx_grid, ky_grid); % kr_grid in μm⁻¹
|
||||
|
||||
max_kx = max(kx);
|
||||
max_ky = max(ky);
|
||||
|
||||
for angle = 0 : pi/6 : pi
|
||||
x_line = [0, max_kx] * cos(angle);
|
||||
y_line = [0, max_ky] * sin(angle);
|
||||
|
||||
% Plot radial lines
|
||||
plot(x_line, y_line, '--', 'Color', [0.5 0.5 0.5], 'LineWidth', 1.2);
|
||||
plot(x_line, -y_line, '--', 'Color', [0.5 0.5 0.5], 'LineWidth', 1.2);
|
||||
|
||||
% Draw scale ticks along positive radial line
|
||||
drawTicksAlongLine(0, 0, x_line(2), y_line(2));
|
||||
|
||||
% Draw scale ticks along negative radial line (reflect y)
|
||||
drawTicksAlongLine(0, 0, x_line(2), -y_line(2));
|
||||
end
|
||||
|
||||
% === Overlay Annular Highlight: White (r_min to r_max), Gray elsewhere ===
|
||||
theta_full = linspace(0, 2*pi, 500);
|
||||
|
||||
center_x = ceil(size(kr_grid, 2) / 2);
|
||||
center_y = ceil(size(kr_grid, 1) / 2);
|
||||
|
||||
k_min = kr_grid(center_y, center_x + r_min);
|
||||
k_max = kr_grid(center_y, center_x + r_max);
|
||||
|
||||
% Upper half: white dashed circles
|
||||
x1_upper = k_min * cos(theta_full(theta_full <= pi));
|
||||
y1_upper = k_min * sin(theta_full(theta_full <= pi));
|
||||
x2_upper = k_max * cos(theta_full(theta_full <= pi));
|
||||
y2_upper = k_max * sin(theta_full(theta_full <= pi));
|
||||
plot(x1_upper, y1_upper, 'k--', 'LineWidth', 1.2);
|
||||
plot(x2_upper, y2_upper, 'k--', 'LineWidth', 1.2);
|
||||
|
||||
% Lower half: gray dashed circles
|
||||
x1_lower = k_min * cos(theta_full(theta_full > pi));
|
||||
y1_lower = k_min * sin(theta_full(theta_full > pi));
|
||||
x2_lower = k_max * cos(theta_full(theta_full > pi));
|
||||
y2_lower = k_max * sin(theta_full(theta_full > pi));
|
||||
plot(x1_lower, y1_lower, '--', 'Color', [0.5 0.5 0.5], 'LineWidth', 1.0);
|
||||
plot(x2_lower, y2_lower, '--', 'Color', [0.5 0.5 0.5], 'LineWidth', 1.0);
|
||||
|
||||
% === Highlight horizontal band across k_y = 0 ===
|
||||
x_vals = kx;
|
||||
xW1 = x_vals((x_vals >= -k_max) & (x_vals < -k_min));
|
||||
xW2 = x_vals((x_vals > k_min) & (x_vals <= k_max));
|
||||
|
||||
plot(xW1, zeros(size(xW1)), 'k--', 'LineWidth', 1.2);
|
||||
plot(xW2, zeros(size(xW2)), 'k--', 'LineWidth', 1.2);
|
||||
|
||||
hold off
|
||||
|
||||
|
||||
% --- Nested helper function to draw ticks along a radial line ---
|
||||
function drawTicksAlongLine(x_start, y_start, x_end, y_end)
|
||||
% Tick parameters
|
||||
tick_spacing = 1; % spacing between ticks in μm⁻¹
|
||||
tick_length = 0.05 * sqrt((x_end - x_start)^2 + (y_end - y_start)^2); % relative tick length
|
||||
line_color = [0.5 0.5 0.5];
|
||||
tick_color = [0.5 0.5 0.5];
|
||||
font_size = 8;
|
||||
|
||||
% Vector along the line
|
||||
dx = x_end - x_start;
|
||||
dy = y_end - y_start;
|
||||
L = sqrt(dx^2 + dy^2);
|
||||
ux = dx / L;
|
||||
uy = dy / L;
|
||||
|
||||
% Perpendicular vector for ticks
|
||||
perp_ux = -uy;
|
||||
perp_uy = ux;
|
||||
|
||||
% Number of ticks (from 0 up to max length)
|
||||
n_ticks = floor(L / tick_spacing);
|
||||
|
||||
for i = 1:n_ticks
|
||||
% Position of tick along the line
|
||||
xt = x_start + i * tick_spacing * ux;
|
||||
yt = y_start + i * tick_spacing * uy;
|
||||
|
||||
% Tick endpoints
|
||||
xt1 = xt - 0.5 * tick_length * perp_ux;
|
||||
yt1 = yt - 0.5 * tick_length * perp_uy;
|
||||
xt2 = xt + 0.5 * tick_length * perp_ux;
|
||||
yt2 = yt + 0.5 * tick_length * perp_uy;
|
||||
|
||||
% Draw tick
|
||||
plot([xt1 xt2], [yt1 yt2], '-', 'Color', tick_color, 'LineWidth', 1);
|
||||
|
||||
% Label with distance (integer)
|
||||
text(xt, yt, sprintf('%d', i), ...
|
||||
'Color', tick_color, ...
|
||||
'FontSize', font_size, ...
|
||||
'HorizontalAlignment', 'center', ...
|
||||
'VerticalAlignment', 'bottom', ...
|
||||
'Rotation', atan2d(dy, dx));
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
|
||||
% removefringesInImage - Fringe removal and noise reduction from absorption images.
|
||||
% Creates an optimal reference image for each absorption image in a set as
|
||||
% a linear combination of reference images, with coefficients chosen to
|
||||
% minimize the least-squares residuals between each absorption image and
|
||||
% the optimal reference image. The coefficients are obtained by solving a
|
||||
% linear set of equations using matrix inverse by LU decomposition.
|
||||
%
|
||||
% Application of the algorithm is described in C. F. Ockeloen et al, Improved
|
||||
% detection of small atom numbers through image processing, arXiv:1007.2136 (2010).
|
||||
%
|
||||
% Syntax:
|
||||
% [optrefimages] = removefringesInImage(absimages,refimages,bgmask);
|
||||
%
|
||||
% Required inputs:
|
||||
% absimages - Absorption image data,
|
||||
% typically 16 bit grayscale images
|
||||
% refimages - Raw reference image data
|
||||
% absimages and refimages are both cell arrays containing
|
||||
% 2D array data. The number of refimages can differ from the
|
||||
% number of absimages.
|
||||
%
|
||||
% Optional inputs:
|
||||
% bgmask - Array specifying background region used,
|
||||
% 1=background, 0=data. Defaults to all ones.
|
||||
% Outputs:
|
||||
% optrefimages - Cell array of optimal reference images,
|
||||
% equal in size to absimages.
|
||||
%
|
||||
|
||||
% Dependencies: none
|
||||
%
|
||||
% Authors: Shannon Whitlock, Caspar Ockeloen
|
||||
% Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and
|
||||
% S. Whitlock, Improved detection of small atom numbers through
|
||||
% image processing, arXiv:1007.2136
|
||||
% Email:
|
||||
% May 2009; Last revision: 11 August 2010
|
||||
|
||||
% Process inputs
|
||||
|
||||
% Set variables, and flatten absorption and reference images
|
||||
nimgs = size(absimages,3);
|
||||
nimgsR = size(refimages,3);
|
||||
xdim = size(absimages(:,:,1),2);
|
||||
ydim = size(absimages(:,:,1),1);
|
||||
|
||||
R = single(reshape(refimages,xdim*ydim,nimgsR));
|
||||
A = single(reshape(absimages,xdim*ydim,nimgs));
|
||||
optrefimages=zeros(size(absimages)); % preallocate
|
||||
|
||||
if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end
|
||||
k = find(bgmask(:)==1); % Index k specifying background region
|
||||
|
||||
% Ensure there are no duplicate reference images
|
||||
% R=unique(R','rows')'; % comment this line if you run out of memory
|
||||
|
||||
% Decompose B = R*R' using singular value or LU decomposition
|
||||
[L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition
|
||||
|
||||
for j=1:nimgs
|
||||
b=R(k,:)'*A(k,j);
|
||||
% Obtain coefficients c which minimise least-square residuals
|
||||
lower.LT = true; upper.UT = true;
|
||||
c = linsolve(U,linsolve(L,b(p,:),lower),upper);
|
||||
|
||||
% Compute optimised reference image
|
||||
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
|
||||
end
|
||||
end
|
141
Estimations/OpticalAccordionLattice.m
Normal file
141
Estimations/OpticalAccordionLattice.m
Normal file
@ -0,0 +1,141 @@
|
||||
%% Physical Constants
|
||||
|
||||
PlanckConstant = 6.62606957e-34;
|
||||
PlanckConstantReduced = PlanckConstant / (2 * pi);
|
||||
FineStructureConstant = 7.2973525698e-3;
|
||||
ElectronMass = 9.10938291e-31;
|
||||
GravitationalConstant = 6.67384e-11;
|
||||
ProtonMass = 1.672621777e-27;
|
||||
AtomicMassUnit = 1.66053878283e-27;
|
||||
BohrRadius = 0.52917721092e-10;
|
||||
BohrMagneton = 927.400968e-26;
|
||||
BoltzmannConstant = 1.3806488e-23;
|
||||
StandardGravityAcceleration = 9.80665;
|
||||
SpeedOfLight = 299792458;
|
||||
StefanBoltzmannConstant = 5.670373e-8;
|
||||
ElectronCharge = 1.602176565e-19;
|
||||
VacuumPermeability = 4 * pi * 1e-7;
|
||||
DielectricConstant = 1 / (SpeedOfLight^2 * VacuumPermeability);
|
||||
ElectronGyromagneticFactor = -2.00231930436153;
|
||||
AvogadroConstant = 6.02214129e23;
|
||||
|
||||
%% Parameters
|
||||
syms x y z theta lambda P wo wx1 wz1 wx2 wz2 I gamma real
|
||||
|
||||
% Define constants
|
||||
lambda_val = 0.532; % µm
|
||||
P_val = 1;
|
||||
wo_val = 100;
|
||||
|
||||
% Set beam waists equal for simplicity
|
||||
wx1 = wo; wz1 = wo;
|
||||
wx2 = wo; wz2 = wo;
|
||||
%% Rotation matrix and k-vectors
|
||||
% Rotation matrix
|
||||
R = @(theta) [1 0 0; 0 cos(theta) -sin(theta); 0 sin(theta) cos(theta)];
|
||||
|
||||
% Define rotated coordinates and k-vectors
|
||||
k1 = @(theta) R(theta) * [0; 1; 0];
|
||||
k2 = @(theta) R(-theta) * [0; 1; 0];
|
||||
|
||||
RotatedCoords1 = @(theta) R(theta) * [x; y; z];
|
||||
RotatedCoords2 = @(theta) R(-theta) * [x; y; z];
|
||||
|
||||
%% Define E fields
|
||||
|
||||
k1vec = k1(theta);
|
||||
coords = [x; y; z];
|
||||
rot1 = RotatedCoords1(theta);
|
||||
rot2 = RotatedCoords2(theta);
|
||||
|
||||
% Polarization vector
|
||||
e_pol = cos(gamma)*[0; 0; 1] + sin(gamma)*[1; 0; 0];
|
||||
|
||||
E1 = sqrt((2 * P) / (pi * wx1 * wz1)) * ...
|
||||
e_pol .* exp(1i * (k1(theta).' * coords)) * ...
|
||||
exp(-(rot1(1)^2 / wx1^2) - (rot1(3)^2 / wz1^2));
|
||||
|
||||
E2 = sqrt((2 * P) / (pi * wx2 * wz2)) * ...
|
||||
e_pol .* exp(1i * (k2(theta).' * coords)) * ...
|
||||
exp(-(rot2(1)^2 / wx2^2) - (rot2(3)^2 / wz2^2));
|
||||
|
||||
Efield = simplify(E1 + E2);
|
||||
|
||||
%% Intensity expression
|
||||
Intensity = simplify(1/2 * real(conj(Efield) .* Efield)); % 3-component
|
||||
|
||||
%% ================ Plot lattice =================== %%
|
||||
|
||||
% Define parameters
|
||||
theta_val = 10 * pi / 180; % 10 degrees in radians
|
||||
gamma_val = pi/2.0; % tilt of linear polarization
|
||||
|
||||
% Extract z-component of intensity at x = 0
|
||||
Iplane_z = simplify(subs(Intensity(3), x, 0));
|
||||
|
||||
% Convert to function
|
||||
Iplane_func = matlabFunction(Iplane_z, 'Vars', {y, z, theta, wo, lambda, P, gamma});
|
||||
|
||||
% Grid for y and z
|
||||
[ygrid, zgrid] = meshgrid(linspace(-1000, 1000, 500), linspace(-100, 100, 300));
|
||||
|
||||
% Evaluate intensity
|
||||
Ivals = Iplane_func(ygrid, zgrid, theta_val, wo_val, lambda_val, P_val, gamma_val);
|
||||
|
||||
% Normalization
|
||||
Ivals = Ivals / max(Ivals(:));
|
||||
|
||||
% Plotting
|
||||
figure(1)
|
||||
clf
|
||||
set(gcf,'Position',[50 50 950 750])
|
||||
contourf(ygrid, zgrid, Ivals, 200, 'LineColor', 'none');
|
||||
colormap('turbo');
|
||||
colorbar;
|
||||
% Preserve physical aspect ratio
|
||||
pbaspect([1 1 1]); % Set plot box aspect ratio to 1:1:1
|
||||
axis tight;
|
||||
xlabel('y [µm]', 'FontSize', 12);
|
||||
ylabel('z [µm]', 'FontSize', 12);
|
||||
title(['I_{plane}(y, z) at x = 0, \theta = ' num2str(rad2deg(theta_val)) '^\circ'], 'FontSize', 14);
|
||||
set(gca, 'FontSize', 12, 'Box', 'on');
|
||||
|
||||
%% ================ Plot Potentials of lattice =================== %%
|
||||
|
||||
% Find indices closest to zero in y and z grids:
|
||||
[~, idx_y0] = min(abs(ygrid(1,:))); % y=0 along columns
|
||||
[~, idx_z0] = min(abs(zgrid(:,1))); % z=0 along rows
|
||||
|
||||
% Cut along y at z=0:
|
||||
% z=0 corresponds to row idx_z0, extract entire column idx_z0 in y direction
|
||||
Iprop_cut = Ivals(idx_z0, :); % 1D array vs y
|
||||
|
||||
% Cut along z at y=0:
|
||||
% y=0 corresponds to column idx_y0, extract entire row idx_y0 in z direction
|
||||
Ivert_cut = Ivals(:, idx_y0); % 1D array vs z
|
||||
|
||||
% Extract corresponding y and z vectors
|
||||
yvec = ygrid(1, :);
|
||||
zvec = zgrid(:, 1);
|
||||
|
||||
% Plot -Iprop/2 along y
|
||||
figure(2);
|
||||
clf
|
||||
set(gcf,'Position',[50 50 950 750])
|
||||
plot(yvec, -Iprop_cut/2, 'LineWidth', 2);
|
||||
title('Profile at x=0, z=0');
|
||||
xlabel('y [\mum]');
|
||||
ylabel('Depth');
|
||||
grid on;
|
||||
set(gca, 'FontSize', 12, 'Box', 'on');
|
||||
|
||||
% Plot -Ivert/2 along z
|
||||
figure(3);
|
||||
clf
|
||||
set(gcf,'Position',[50 50 950 750])
|
||||
plot(zvec, -Ivert_cut/2, 'LineWidth', 2);
|
||||
title('Profile at x=0, y=0');
|
||||
xlabel('z [\mum]');
|
||||
ylabel('Depth');
|
||||
grid on;
|
||||
set(gca, 'FontSize', 12, 'Box', 'on');
|
Loading…
Reference in New Issue
Block a user