Corrected dipolar potential with angular dependence.
This commit is contained in:
parent
212c9e1b56
commit
e28988b0ef
@ -28,48 +28,49 @@ Dy164Mass = 163.929174751*1.660539066E-27;
|
||||
Dy164IsotopicAbundance = 0.2826;
|
||||
DyMagneticMoment = 9.93*9.274009994E-24;
|
||||
|
||||
%% Dispersion relation of the quasiparticle excitations
|
||||
AtomNumber = 1E5;
|
||||
wz = 2*pi*72.4;
|
||||
%% Bogoliubov excitation spectrum for quasi-2D dipolar gas with QF correction
|
||||
AtomNumber = 1E5; % Total atom number in the system
|
||||
wz = 2*pi*72.4; % Trap frequency in the tight confinement direction
|
||||
lz = sqrt(PlanckConstantReduced/(Dy164Mass*wz)); % Defining a harmonic oscillator length
|
||||
as = 102.4*BohrRadius; % Scattering length
|
||||
Trapsize = 7.6;
|
||||
alpha = 0;
|
||||
phi = 0;
|
||||
MeanWidth = 2.8215042184E3*lz;
|
||||
k = linspace(0, 1e7, 1000);
|
||||
as = 102.515*BohrRadius; % Scattering length
|
||||
Trapsize = 7.5815; % Trap is assumed to be a box of finite extent , given here in units of the harmonic oscillator length
|
||||
alpha = 0; % Polar angle of dipole moment
|
||||
phi = 0; % Azimuthal angle of momentum vector
|
||||
MeanWidth = 5.7304888515*lz; % Mean width of Gaussian ansatz
|
||||
k = linspace(0, 3e6, 1000); % Vector of magnitudes of k vector
|
||||
|
||||
|
||||
AtomNumberDensity = AtomNumber / (Trapsize * lz)^2;
|
||||
AtomNumberDensity = AtomNumber / (Trapsize * lz)^2; % Areal density of atoms
|
||||
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
||||
eps_dd = add/as;
|
||||
eps_dd = add/as; % Relative interaction strength
|
||||
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
||||
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
||||
|
||||
[fk,Fka,Ukk] = computePotentialInMomentumSpace(k, lz, alpha, phi, gs, eps_dd);
|
||||
[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi); % DDI potential in k-space
|
||||
|
||||
% == Quantum Fluctuations term == %
|
||||
gQF = ((256 * PlanckConstantReduced^2) / (15*Dy164Mass*MeanWidth^3)) * as^(5/2) * (1 + ((3/2) * eps_dd^2));
|
||||
|
||||
gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2));
|
||||
gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2);
|
||||
gQF = gamma5 * gammaQF;
|
||||
|
||||
% == Dispersion relation == %
|
||||
DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2));
|
||||
EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK);
|
||||
|
||||
figure(1)
|
||||
set(gcf,'Position',[100 100 950 750])
|
||||
% xvals = (k .* lz/sqrt(2));
|
||||
set(gcf,'Position',[50 50 950 750])
|
||||
xvals = (k .* add);
|
||||
yvals = EpsilonK ./ (PlanckConstantReduced * wz);
|
||||
yvals = EpsilonK ./ PlanckConstant;
|
||||
plot(xvals, yvals,LineWidth=2.0)
|
||||
% xlim([3.45, 3.65])
|
||||
% ylim([0, 0.001])
|
||||
title(horzcat(['$a_s = ',num2str(1/eps_dd),'a_{dd}, '], ['na_{dd}^2 = ',num2str(AtomNumberDensity * add^2),'$']),'fontsize',16,'interpreter','latex')
|
||||
xlabel('$ka_{dd}$','fontsize',16,'interpreter','latex')
|
||||
ylabel('$\epsilon(k)/\hbar \omega_z$','fontsize',16,'interpreter','latex')
|
||||
title(horzcat(['$a_s = ',num2str(round(1/eps_dd,3)),'a_{dd}, '], ['na_{dd}^2 = ',num2str(round(AtomNumberDensity * add^2,4)),'$']),'fontsize',16,'interpreter','latex')
|
||||
xlabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex')
|
||||
ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex')
|
||||
grid on
|
||||
|
||||
%%
|
||||
function [fk,Fka,Ukk] = computePotentialInMomentumSpace(k, lz, alpha, phi, gs, eps_dd)
|
||||
fk = (3 * sqrt(pi)) * (k .* lz/sqrt(2)) .* exp((k .* lz/sqrt(2)).^2) .* erfc((k .* lz/sqrt(2))) ;
|
||||
Fka = (fk .* sin(deg2rad(phi))^2 - 1) + (cos(deg2rad(alpha))^2 .* (3 - (fk .* (sin(deg2rad(phi))^2 + 1))));
|
||||
Ukk = (gs/ (sqrt(2 * pi) * lz)) .* (1 + (eps_dd .* Fka));
|
||||
|
||||
function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi)
|
||||
Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2)));
|
||||
gamma4 = 1/(sqrt(2*pi) * MeanWidth);
|
||||
Fka = (3 * cos(deg2rad(alpha))^2 - 1) + ((3 * Go) .* ((sin(deg2rad(alpha))^2 .* sin(deg2rad(phi))^2) - cos(deg2rad(alpha))^2));
|
||||
Ukk = (gs + (gdd * Fka)) * gamma4;
|
||||
end
|
Loading…
Reference in New Issue
Block a user