Latest script - includes major modification to gradient descent function and minor aesthetic changes.

This commit is contained in:
Karthik 2025-04-03 17:17:34 +02:00
parent 767cec6d86
commit e0991a9a29
6 changed files with 324 additions and 141 deletions

View File

@ -11,18 +11,10 @@ function visualizeGSWavefunction(folder_path, run_index)
Params = Data.Params;
Transf = Data.Transf;
Observ = Data.Observ;
if isgpuarray(Data.psi)
psi = gather(Data.psi);
else
psi = Data.psi;
end
if isgpuarray(Data.Observ.residual)
Observ.residual = gather(Data.Observ.residual);
else
Observ.residual = Data.Observ.residual;
end
if isgpuarray(Data.psi), psi = gather(Data.psi); end
if isgpuarray(Data.Observ.residual), Observ.residual = gather(Data.Observ.residual); end
% Axes scaling and coordinates in micrometers
x = Transf.x * Params.l0 * 1e6;
y = Transf.y * Params.l0 * 1e6;

View File

@ -6,7 +6,7 @@
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 8E4;
OptionsStruct.NumberOfAtoms = 40000;
OptionsStruct.DipolarPolarAngle = deg2rad(0);
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 95;
@ -14,19 +14,20 @@ OptionsStruct.ScatteringLength = 95;
OptionsStruct.TrapFrequencies = [30, 60, 90];
OptionsStruct.TrapPotentialType = 'Harmonic';
OptionsStruct.NumberOfGridPoints = [256, 128, 128];
OptionsStruct.NumberOfGridPoints = [128, 64, 64];
OptionsStruct.Dimensions = [30, 20, 20];
OptionsStruct.UseApproximationForLHY = true;
OptionsStruct.IncludeDDICutOff = true;
OptionsStruct.CutoffType = 'Cylindrical';
OptionsStruct.SimulationMode = 'EnergyMinimization'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution' | 'EnergyMinimization'
OptionsStruct.MaxIterationsForGD = 2E4;
% OptionsStruct.TimeStepSize = 1E-4; % in s
% OptionsStruct.MinimumTimeStepSize = 2E-10; % in s
% OptionsStruct.TimeCutOff = 2E6; % in s
% OptionsStruct.EnergyTolerance = 5E-10;
% OptionsStruct.ResidualTolerance = 1E-08;
OptionsStruct.NoiseScaleFactor = 0.01;
OptionsStruct.GradientDescentMethod = 'HeavyBall'; % 'HeavyBall' | 'NonLinearCGD'
OptionsStruct.MaxIterationsForGD = 2E5;
OptionsStruct.TimeStepSize = 1E-4; % in s
OptionsStruct.MinimumTimeStepSize = 2E-10; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-08;
OptionsStruct.NoiseScaleFactor = 0.010;
OptionsStruct.PlotLive = true;
OptionsStruct.JobNumber = 0;
@ -66,7 +67,7 @@ SaveDirectory = './Results/Data_3D/ApproximateLHY/AspectRatio2_8';
% SaveDirectory = './Results/Data_3D/ApproximateLHY/AspectRatio3_7';
% SaveDirectory = './Results/Data_3D/ApproximateLHY/AspectRatio3_8';
% SaveDirectory = './Results/Data_3D/ApproximateLHY/AspectRatio3_9';
JobNumber = 2;
JobNumber = 3;
Plotter.visualizeGSWavefunction(SaveDirectory, JobNumber)
%%
% SaveDirectory = './Results/Data_3D/ApproximateLHY/BeyondSSD_SSD';
@ -75,6 +76,10 @@ SaveDirectory = './Results/Data_3D/ApproximateLHY/BeyondSSD_Honeycomb';
JobNumber = 0;
Plotter.visualizeGSWavefunction(SaveDirectory, JobNumber)
%%
SaveDirectory = './Results/Data_3D/GradientDescent';
JobNumber = 0;
Plotter.visualizeGSWavefunction(SaveDirectory, JobNumber)
%%
% To reproduce results from the Blair Blakie paper:
% (n*add^2, as/add)

View File

@ -1,13 +1,13 @@
%% - N = 8E4
%% Scaled parameters
ScalingFactor = (0.8/5)^2;
ScalingFactor = (4/5)^2;
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = sqrt(ScalingFactor) * 5E5;
OptionsStruct.DipolarPolarAngle = deg2rad(0);
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 85;
OptionsStruct.ScatteringLength = 75;
AspectRatio = 2.8;
HorizontalTrapFrequency = 125/ScalingFactor;
@ -16,7 +16,7 @@ OptionsStruct.TrapFrequencies = [HorizontalTrapFrequency, HorizontalTrap
OptionsStruct.TrapPotentialType = 'Harmonic';
OptionsStruct.NumberOfGridPoints = [128, 128, 64];
OptionsStruct.Dimensions = [4, 4, 4];
OptionsStruct.Dimensions = [18, 18, 18];
OptionsStruct.UseApproximationForLHY = true;
OptionsStruct.IncludeDDICutOff = true;
OptionsStruct.CutoffType = 'Cylindrical';
@ -29,7 +29,7 @@ OptionsStruct.ResidualTolerance = 1E-08;
OptionsStruct.NoiseScaleFactor = 0.01;
OptionsStruct.PlotLive = false;
OptionsStruct.JobNumber = 0;
OptionsStruct.JobNumber = 2;
OptionsStruct.RunOnGPU = true;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = sprintf('./Results/Data_3D/ApproximateLHY/AspectRatio%s', strrep(num2str(AspectRatio), '.', '_'));
@ -41,4 +41,48 @@ pot = Simulator.Potentials(options{:});
sim.Potential = pot.trap();
%-% Run Simulation %-%
[Params, Transf, psi, V, VDk] = sim.run();
[Params, Transf, psi, V, VDk] = sim.run();
%{
%% - Gradient Descent Test
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 8E4;
OptionsStruct.DipolarPolarAngle = deg2rad(0);
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 95;
OptionsStruct.TrapFrequencies = [30, 60, 90];
OptionsStruct.TrapPotentialType = 'Harmonic';
OptionsStruct.NumberOfGridPoints = [256, 128, 128];
OptionsStruct.Dimensions = [30, 20, 20];
OptionsStruct.UseApproximationForLHY = true;
OptionsStruct.IncludeDDICutOff = true;
OptionsStruct.CutoffType = 'Cylindrical';
OptionsStruct.SimulationMode = 'EnergyMinimization'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution' | 'EnergyMinimization'
OptionsStruct.MaxIterationsForGD = 2E4;
% OptionsStruct.TimeStepSize = 1E-4; % in s
% OptionsStruct.MinimumTimeStepSize = 2E-10; % in s
% OptionsStruct.TimeCutOff = 2E6; % in s
% OptionsStruct.EnergyTolerance = 5E-10;
% OptionsStruct.ResidualTolerance = 1E-08;
OptionsStruct.NoiseScaleFactor = 0.01;
OptionsStruct.PlotLive = true;
OptionsStruct.JobNumber = 0;
OptionsStruct.RunOnGPU = false;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Results/Data_3D/GradientDescent';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
sim = Simulator.DipolarGas(options{:});
pot = Simulator.Potentials(options{:});
sim.Potential = pot.trap(); % + pot.repulsive_chopstick();
%-% Run Simulation %-%
[Params, Transf, psi, V, VDk] = sim.run();
%}

View File

@ -17,6 +17,7 @@ classdef DipolarGas < handle & matlab.mixin.Copyable
EnergyTolerance;
ResidualTolerance;
NoiseScaleFactor;
GradientDescentMethod;
MaxIterationsForGD;
Calculator;
@ -69,7 +70,9 @@ classdef DipolarGas < handle & matlab.mixin.Copyable
addParameter(p, 'ResidualTolerance', 1e-10,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'NoiseScaleFactor', 4,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
@(x) assert(isnumeric(x) && isscalar(x) && (x >= 0)));
addParameter(p, 'GradientDescentMethod', 'HeavyBall',...
@(x) assert(any(strcmpi(x,{'HeavyBall','NonLinearCGD'}))));
addParameter(p, 'MaxIterationsForGD', 100,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
@ -92,22 +95,23 @@ classdef DipolarGas < handle & matlab.mixin.Copyable
p.parse(varargin{:});
this.NumberOfAtoms = p.Results.NumberOfAtoms;
this.DipolarPolarAngle = p.Results.DipolarPolarAngle;
this.DipolarAzimuthAngle = p.Results.DipolarAzimuthAngle;
this.ScatteringLength = p.Results.ScatteringLength;
this.TrapFrequencies = p.Results.TrapFrequencies;
this.NumberOfGridPoints = p.Results.NumberOfGridPoints;
this.Dimensions = p.Results.Dimensions;
this.Potential = NaN;
this.SimulationMode = p.Results.SimulationMode;
this.TimeStepSize = p.Results.TimeStepSize;
this.MinimumTimeStepSize = p.Results.MinimumTimeStepSize;
this.TimeCutOff = p.Results.TimeCutOff;
this.EnergyTolerance = p.Results.EnergyTolerance;
this.ResidualTolerance = p.Results.ResidualTolerance;
this.NoiseScaleFactor = p.Results.NoiseScaleFactor;
this.MaxIterationsForGD = p.Results.MaxIterationsForGD;
this.NumberOfAtoms = p.Results.NumberOfAtoms;
this.DipolarPolarAngle = p.Results.DipolarPolarAngle;
this.DipolarAzimuthAngle = p.Results.DipolarAzimuthAngle;
this.ScatteringLength = p.Results.ScatteringLength;
this.TrapFrequencies = p.Results.TrapFrequencies;
this.NumberOfGridPoints = p.Results.NumberOfGridPoints;
this.Dimensions = p.Results.Dimensions;
this.Potential = NaN;
this.SimulationMode = p.Results.SimulationMode;
this.TimeStepSize = p.Results.TimeStepSize;
this.MinimumTimeStepSize = p.Results.MinimumTimeStepSize;
this.TimeCutOff = p.Results.TimeCutOff;
this.EnergyTolerance = p.Results.EnergyTolerance;
this.ResidualTolerance = p.Results.ResidualTolerance;
this.NoiseScaleFactor = p.Results.NoiseScaleFactor;
this.GradientDescentMethod = p.Results.GradientDescentMethod;
this.MaxIterationsForGD = p.Results.MaxIterationsForGD;
this.IncludeDDICutOff = p.Results.IncludeDDICutOff;
this.UseApproximationForLHY = p.Results.UseApproximationForLHY;

View File

@ -1,90 +1,190 @@
function [psi] = runGradientDescent(this,psi,Params,Transf,VDk,V,Observ)
format long;
% Convergence Criteria:
epsilon = 1E-6;
alpha = 1E-3;
beta = 0.9;
Observ.residual = 1;
Observ.res = 1;
psi_old = psi; % Previous psi value (for heavy-ball method)
if this.PlotLive
Plotter.plotLive(psi,Params,Transf,Observ)
drawnow
end
% Minimization Loop
for idx = 1:this.MaxIterationsForGD
switch this.GradientDescentMethod
case 'HeavyBall'
% Convergence Criteria:
epsilon = 1E-6;
alpha = 1E-3;
beta = 0.9;
% Compute gradient
J = compute_gradient(psi, Params, Transf, VDk, V);
% Calculate chemical potential and norm
muchem = sum(real(conj(psi(:)) .* J(:))) / sum(abs(psi(:)).^2);
% Calculate residual and check convergence
residual = sum(abs(J(:) - muchem * psi(:)).^2) * Transf.dx * Transf.dy * Transf.dz;
if residual < epsilon
fprintf('Convergence reached at iteration %d\n', idx);
break;
else
% Update psi using heavy-ball method
psi_new = (1 + beta) * psi - alpha * J - beta * psi_old;
psi_old = psi;
Observ.residual = 1;
Observ.res = 1;
psi_old = psi; % Previous psi value (for heavy-ball method)
% Normalize psi
Norm = sum(abs(psi_new(:)).^2) * Transf.dx * Transf.dy * Transf.dz;
psi = sqrt(Params.N) * psi_new / sqrt(Norm);
% Write output at specified intervals
if mod(idx,100) == 0
% Collect change in energy
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
E = E/Norm;
Observ.EVec = [Observ.EVec E];
% Collect chemical potentials
Observ.mucVec = [Observ.mucVec muchem];
% Collect residuals
Observ.residual = [Observ.residual residual];
Observ.res_idx = Observ.res_idx + 1;
if this.PlotLive
Plotter.plotLive(psi,Params,Transf,Observ)
drawnow
end
save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','muchem','Observ','Transf','Params','VDk','V');
if this.PlotLive
Plotter.plotLive(psi,Params,Transf,Observ)
drawnow
end
end
% Minimization Loop
for idx = 1:this.MaxIterationsForGD
% Compute gradient
J = compute_gradient(psi, Params, Transf, VDk, V);
% Calculate chemical potential and norm
% Can also be calculated as --> muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
muchem = sum(real(conj(psi(:)) .* J(:))) / sum(abs(psi(:)).^2);
% Calculate residual and check convergence
residual = sum(abs(J(:) - (muchem * psi(:))).^2) * Transf.dx * Transf.dy * Transf.dz;
if residual < epsilon
fprintf('Convergence reached at iteration %d\n', idx);
break;
else
% Update psi using heavy-ball method
psi_new = (1 + beta) * psi - alpha * J - beta * psi_old;
psi_old = psi;
% Normalize psi
Norm = sum(abs(psi_new(:)).^2) * Transf.dx * Transf.dy * Transf.dz;
psi = sqrt(Params.N) * psi_new / sqrt(Norm);
% Write output at specified intervals
if mod(idx,100) == 0
% Collect change in energy
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
E = E/Norm;
Observ.EVec = [Observ.EVec E];
% Collect chemical potentials
Observ.mucVec = [Observ.mucVec muchem];
% Collect residuals
Observ.residual = [Observ.residual residual];
Observ.res_idx = Observ.res_idx + 1;
if this.PlotLive
Plotter.plotLive(psi,Params,Transf,Observ)
drawnow
end
save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','muchem','Observ','Transf','Params','VDk','V');
end
end
end
% Check if max iterations were hit without convergence
last_iteration_number = idx;
if last_iteration_number == this.MaxIterationsForGD
fprintf('Max iterations reached without convergence. Final chemical potential: %.6f, Residual: %.6f\n', muchem, residual);
else
fprintf('Converged in %d iterations. Final chemical potential: %.6f\n', last_iteration_number, muchem);
end
% Change in Energy
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
E = E/Norm;
Observ.EVec = [Observ.EVec E];
disp('Saving data...');
save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','muchem','Observ','Transf','Params','VDk','V');
disp('Save complete!');
case 'NonLinearCGD'
% Define the function handle
f = @(X) this.Calculator.calculateTotalEnergy(X, Params, Transf, VDk, V)/Params.N;
% Convergence Criteria:
Epsilon = 1E-5;
% Iteration Counter:
i = 1;
Observ.residual = 1;
Observ.res = 1;
% Initialize the PrematureExitFlag to false
PrematureExitFlag = false;
if this.PlotLive
Plotter.plotLive(psi,Params,Transf,Observ)
drawnow
end
% Minimization Loop
while true
% Compute gradient
J = compute_gradient(psi, Params, Transf, VDk, V);
% Check stopping criterion (Gradient norm)
if norm(J(:)) < Epsilon
disp('Tolerance reached: Gradient norm is below the specified epsilon.');
PrematureExitFlag = true; % Set flag to indicate premature exit
break;
elseif i >= this.MaxIterationsForCGD
disp('Maximum number of iterations for CGD reached.');
PrematureExitFlag = true; % Set flag to indicate premature exit
break;
end
% Initialize search direction if first iteration
if i == 1
S = -J;
else
% Update search direction
S = update_search_direction(S, J, J_old);
end
% Step Size Optimization (Line Search)
alpha = optimize_step_size(f, psi, S, Params, Transf, VDk, V);
% Update solution
psi = psi + alpha * S;
% Normalize psi
Norm = sum(abs(psi(:)).^2) * Transf.dx * Transf.dy * Transf.dz;
psi = sqrt(Params.N) * psi / sqrt(Norm);
% Store old gradient
J_old = J;
i = i + 1;
muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
if mod(i,500) == 0
% Change in Energy
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
E = E/Norm;
Observ.EVec = [Observ.EVec E];
% Chemical potential
Observ.mucVec = [Observ.mucVec muchem];
% Normalized residuals
res = this.Calculator.calculateNormalizedResiduals(psi,Params,Transf,VDk,V,muchem);
Observ.residual = [Observ.residual res];
Observ.res_idx = Observ.res_idx + 1;
if this.PlotLive
Plotter.plotLive(psi,Params,Transf,Observ)
drawnow
end
save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','muchem','Observ','Transf','Params','VDk','V');
end
end
% Check if loop ended prematurely
if PrematureExitFlag
disp('Optimizer ended prematurely without convergence to a minimum.');
else
fprintf('Minimum found! Number of Iterations for Convergence: %d\n\n', i);
end
% Change in Energy
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
E = E/Norm;
Observ.EVec = [Observ.EVec E];
disp('Saving data...');
save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','muchem','Observ','Transf','Params','VDk','V');
disp('Save complete!');
end
% Check if max iterations were hit without convergence
last_iteration_number = idx;
if last_iteration_number == this.MaxIterationsForGD
fprintf('Max iterations reached without convergence. Final chemical potential: %.6f, Residual: %.6f\n', muchem, residual);
else
fprintf('Converged in %d iterations. Final chemical potential: %.6f\n', last_iteration_number, muchem);
end
% Change in Energy
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
E = E/Norm;
Observ.EVec = [Observ.EVec E];
disp('Saving data...');
save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','muchem','Observ','Transf','Params','VDk','V');
disp('Save complete!');
end
%% Helper functions
%% Modules
% Numerical Gradient Calculation using the finite differences method
function J = compute_gradient(psi, Params, Transf, VDk, V)
@ -112,4 +212,42 @@ function J = compute_gradient(psi, Params, Transf, VDk, V)
J = H(psi);
end
% Backtracking Line Search (Step Size Optimization)
function alpha = optimize_step_size(f, X, S, Params, Transf, VDk, V)
alpha = 1; % Initial step size
rho = 0.5; % Step size reduction factor
c = 1E-4; % Armijo condition constant
max_iter = 100; % Max iterations for backtracking
tol = 1E-4; % Tolerance for stopping
grad = compute_gradient(X, Params, Transf, VDk, V); % Compute gradient once
f_X = f(X); % Evaluate f(X) once
for k = 1:max_iter
% Evaluate Armijo condition with precomputed f(X) and grad
if f(X + alpha * S) <= f_X + c * alpha * (S(:)' * grad(:))
break;
else
alpha = rho * alpha; % Reduce the step size
end
% Early stopping if step size becomes too small
if alpha < tol
break;
end
end
end
% Update Search Direction
function S_new = update_search_direction(S, J_new, J_old)
% (Fletcher-Reeves method)
% beta = (norm(J_new(:))^2) / (norm(J_old(:))^2);
% S_new = -J_new + beta * S;
% (Polak-Ribiere method)
beta = max(0, (J_new(:)' * (J_new(:) - J_old(:))) / (norm(J_old(:))^2));
S_new = -J_new + beta * S;
end

View File

@ -1,32 +1,32 @@
function [psi] = setupWavefunction(~,Params,Transf)
X = Transf.X;
Y = Transf.Y;
Z = Transf.Z;
ellx = sqrt(Params.hbar/(Params.m*Params.wx))/Params.l0;
elly = sqrt(Params.hbar/(Params.m*Params.wy))/Params.l0;
ellz = sqrt(Params.hbar/(Params.m*Params.wz))/Params.l0;
X = Transf.X;
Y = Transf.Y;
Z = Transf.Z;
Rx = 8*ellx;
Ry = 8*elly;
Rz = 8*ellz;
X0 = 0.0*Transf.Xmax;
Y0 = 0.0*Transf.Ymax;
Z0 = 0*Transf.Zmax;
ellx = sqrt(Params.hbar/(Params.m*Params.wx))/Params.l0;
elly = sqrt(Params.hbar/(Params.m*Params.wy))/Params.l0;
ellz = sqrt(Params.hbar/(Params.m*Params.wz))/Params.l0;
Rx = 4.0*ellx;
Ry = 4.0*elly;
Rz = 4.0*ellz;
X0 = 0.0*Transf.Xmax;
Y0 = 0.0*Transf.Ymax;
Z0 = 0.0*Transf.Zmax;
psi = exp(-(X-X0).^2/Rx^2-(Y-Y0).^2/Ry^2-(Z-Z0).^2/Rz^2);
cur_norm = sum(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz;
psi = psi/sqrt(cur_norm);
% --- Adding some noise ---
r = normrnd(0,1,size(X));
theta = rand(size(X));
noise = r.*exp(2*pi*1i*theta);
psi = psi + Params.nsf*noise;
r = normrnd(0,1,size(X));
theta = rand(size(X));
noise = r.*exp(2*pi*1i*theta);
psi = psi + Params.nsf*noise;
% Renormalize wavefunction
Norm = sum(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz;
psi = sqrt(Params.N)*psi/sqrt(Norm);
Norm = sum(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz;
psi = sqrt(Params.N)*psi/sqrt(Norm);
end