diff --git a/.gitignore b/.gitignore
index b9eb4b7..4044d82 100644
--- a/.gitignore
+++ b/.gitignore
@@ -2,4 +2,9 @@
AtomECS Simulation Code
Time Series Analyzer/Time Series Data
ULE Cavity Characteristics/Data
-ULE Cavity Characteristics/Figures
\ No newline at end of file
+ULE Cavity Characteristics/Figures
+*.h5
+*.png
+*.pyc
+.ipynb_checkpoints/
+.vscode/
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Helper/ImageSelection.class b/DipolarGasSimulator/+Helper/ImageSelection.class
new file mode 100644
index 0000000..cfac41d
Binary files /dev/null and b/DipolarGasSimulator/+Helper/ImageSelection.class differ
diff --git a/DipolarGasSimulator/+Helper/ImageSelection.java b/DipolarGasSimulator/+Helper/ImageSelection.java
new file mode 100644
index 0000000..5be8fbb
--- /dev/null
+++ b/DipolarGasSimulator/+Helper/ImageSelection.java
@@ -0,0 +1,38 @@
+/*
+ * Based on code snippet from
+ * http://java.sun.com/developer/technicalArticles/releases/data/
+ *
+ * Copyright © 2008, 2010 Oracle and/or its affiliates. All rights reserved. Use is subject to license terms.
+ */
+
+import java.awt.image.BufferedImage;
+import java.awt.datatransfer.*;
+
+public class ImageSelection implements Transferable {
+
+ private static final DataFlavor flavors[] =
+ {DataFlavor.imageFlavor};
+
+ private BufferedImage image;
+
+ public ImageSelection(BufferedImage image) {
+ this.image = image;
+ }
+
+ // Transferable
+ public Object getTransferData(DataFlavor flavor) throws UnsupportedFlavorException {
+ if (flavor.equals(flavors[0]) == false) {
+ throw new UnsupportedFlavorException(flavor);
+ }
+ return image;
+ }
+
+ public DataFlavor[] getTransferDataFlavors() {
+ return flavors;
+ }
+
+ public boolean isDataFlavorSupported(DataFlavor
+ flavor) {
+ return flavor.equals(flavors[0]);
+ }
+}
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Helper/PhysicsConstants.m b/DipolarGasSimulator/+Helper/PhysicsConstants.m
new file mode 100644
index 0000000..f62dd0a
--- /dev/null
+++ b/DipolarGasSimulator/+Helper/PhysicsConstants.m
@@ -0,0 +1,46 @@
+classdef PhysicsConstants < handle
+ properties (Constant)
+ % CODATA
+ PlanckConstant=6.62607015E-34;
+ PlanckConstantReduced=6.62607015E-34/(2*pi);
+ FineStructureConstant=7.2973525698E-3;
+ ElectronMass=9.10938291E-31;
+ GravitationalConstant=6.67384E-11;
+ ProtonMass=1.672621777E-27;
+ AtomicMassUnit=1.66053878283E-27;
+ BohrRadius=0.52917721092E-10;
+ BohrMagneton=927.400968E-26;
+ BoltzmannConstant=1.380649E-23;
+ StandardGravityAcceleration=9.80665;
+ SpeedOfLight=299792458;
+ StefanBoltzmannConstant=5.670373E-8;
+ ElectronCharge=1.602176634E-19;
+ VacuumPermeability=1.25663706212E-6;
+ DielectricConstant=8.8541878128E-12;
+ ElectronGyromagneticFactor=-2.00231930436153;
+ AvogadroConstant=6.02214076E23;
+ ZeroKelvin = 273.15;
+ GravitationalAcceleration = 9.80553;
+
+ % Dy specific constants
+ Dy164Mass = 163.929174751*1.66053878283E-27;
+ Dy164IsotopicAbundance = 0.2826;
+ BlueWavelength = 421.291e-9;
+ BlueLandegFactor = 1.22;
+ BlueLifetime = 4.94e-9;
+ BlueLinewidth = 1/4.94e-9;
+ RedWavelength = 626.086e-9;
+ RedLandegFactor = 1.29;
+ RedLifetime = 1.2e-6;
+ RedLinewidth = 1/1.2e-6;
+ PushBeamWaveLength = 626.086e-9;
+ PushBeamLifetime = 1.2e-6;
+ PushBeamLinewidth = 1/1.2e-6;
+ end
+
+ methods
+ function pc = PhysicsConstants()
+ end
+ end
+
+end
diff --git a/DipolarGasSimulator/+Helper/bringFiguresWithTagInForeground.m b/DipolarGasSimulator/+Helper/bringFiguresWithTagInForeground.m
new file mode 100644
index 0000000..c58a117
--- /dev/null
+++ b/DipolarGasSimulator/+Helper/bringFiguresWithTagInForeground.m
@@ -0,0 +1,15 @@
+function output = bringFiguresWithTagInForeground()
+
+figure_handles = findobj('type','figure');
+
+for idx = 1:length(figure_handles)
+ if ~isempty(figure_handles(idx).Tag)
+ figure(figure_handles(idx));
+ end
+end
+
+if nargout > 0
+ output = figure_handles;
+end
+
+end
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Helper/calculateDistanceFromPointToLine.m b/DipolarGasSimulator/+Helper/calculateDistanceFromPointToLine.m
new file mode 100644
index 0000000..df5c8c6
--- /dev/null
+++ b/DipolarGasSimulator/+Helper/calculateDistanceFromPointToLine.m
@@ -0,0 +1,10 @@
+function ret = calculateDistanceFromPointToLine(p0 , p1, p2)
+ p01 = p0 - p1;
+ p12 = p2 - p1;
+ CrossProduct = [p01(2)*p12(3) - p01(3)*p12(2), p01(3)*p12(1) - p01(1)*p12(3), p01(1)*p12(2) - p01(2)*p12(1)];
+ ret = norm(CrossProduct) / norm(p12);
+
+ %Height of parallelogram (Distance between point and line) = Area of parallelogram / Base
+ %Area = One side of parallelogram X Base
+ %ret = norm(cross(one side, base))./ norm(base);
+end
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Helper/convertstruct2cell.m b/DipolarGasSimulator/+Helper/convertstruct2cell.m
new file mode 100644
index 0000000..90fdf2c
--- /dev/null
+++ b/DipolarGasSimulator/+Helper/convertstruct2cell.m
@@ -0,0 +1,6 @@
+function CellOut = convertstruct2cell(StructIn)
+ % CellOut = Convertstruct2cell(StructIn)
+ % converts a struct into a cell-matrix where the first column contains
+ % the fieldnames and the second the contents
+ CellOut = [fieldnames(StructIn) struct2cell(StructIn)]';
+end
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Helper/findAllZeroCrossings.m b/DipolarGasSimulator/+Helper/findAllZeroCrossings.m
new file mode 100644
index 0000000..4b8d9db
--- /dev/null
+++ b/DipolarGasSimulator/+Helper/findAllZeroCrossings.m
@@ -0,0 +1,18 @@
+function ret = findAllZeroCrossings(x,y)
+% Finds all Zero-crossing of the function y = f(x)
+ zci = @(v) find(v(:).*circshift(v(:), [-1 0]) <= 0); % Returns Approximate Zero-Crossing Indices Of Argument Vector
+ zxidx = zci(y);
+ if ~isempty(zxidx)
+ for k1 = 1:numel(zxidx)
+ idxrng = max([1 zxidx(k1)-1]):min([zxidx(k1)+1 numel(y)]);
+ xrng = x(idxrng);
+ yrng = y(idxrng);
+ [yrng2, ~, jyrng] = unique(yrng); %yrng is a new array containing the unique values of yrng. jyrng contains the indices in yrng that correspond to the original vector. yrng = yrng2(jyrng)
+ xrng2 = accumarray(jyrng, xrng, [], @mean); %This function creates a new array "xrng2" by applying the function "@mean" to all elements in "xrng" that have identical indices in "jyrng". Any elements with identical X values will have identical indices in jyrng. Thus, this function creates a new array by averaging values with identical X values in the original array.
+ ret(k1) = interp1( yrng2(:), xrng2(:), 0, 'linear', 'extrap' );
+ end
+ else
+ warning('No zero crossings found!')
+ ret = nan;
+ end
+end
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Helper/getFigureByTag.m b/DipolarGasSimulator/+Helper/getFigureByTag.m
new file mode 100644
index 0000000..8fc6bf9
--- /dev/null
+++ b/DipolarGasSimulator/+Helper/getFigureByTag.m
@@ -0,0 +1,191 @@
+function figure_handle = getFigureByTag(tag_name, varargin)
+ % figure_handle = getFigureByTag(tag_name, varargin)
+ %
+ % Example code:
+ % f_h = getFigureByTag('survivalMeasurement','Name','Survival')
+ %
+ % clf(f_h);
+ % a_h = gca(f_h);
+ % xlim(a_h,[10,100]);
+ % % custom position
+ % f_h.Position = [4052.3 719.67 560 420];
+
+ assert(nargin>=1 && ischar(tag_name),'You must specify ``tag_name'' as a string.');
+
+ f_h = findobj('type','figure','tag',tag_name);
+
+ if isempty(f_h)
+ f_h = figure('Tag',tag_name,varargin{:});
+
+ defaultNewFigProperties = {'Color','w','NumberTitle','off','Name',sprintf('Fig. %d',f_h.Number)};
+
+ varargin = [defaultNewFigProperties,varargin];
+ else
+ f_h = f_h(1);
+ end
+
+ if ~isempty(varargin)
+ set(f_h,varargin{:});
+ end
+
+ addCopyButton(f_h);
+
+ if nargout > 0
+ figure_handle = f_h;
+ else
+ set(groot,'CurrentFigure',f_h);
+ end
+
+end
+
+function addCopyButton(f_h)
+
+ if(strcmp(f_h.ToolBar,'none'))
+ return
+ end
+
+ tb = findall(f_h,'Type','uitoolbar');
+
+ pt = findall(tb, 'tag', 'Custom.CopyPlot' );
+ if isempty(pt)
+ pt = uipushtool(tb);
+ else
+ pt = pt(1);
+ end
+
+ cdata = zeros(16,16,3);
+
+ % Evernote Logo
+% cdata(:,:,1) =[255 NaN NaN NaN NaN 99 11 27 175 NaN NaN NaN NaN NaN NaN 255
+% NaN NaN NaN 251 93 14 0 0 0 66 70 106 210 NaN NaN NaN
+% NaN NaN NaN 42 0 43 0 0 0 0 0 0 20 185 NaN NaN
+% NaN 243 56 0 42 82 0 0 0 0 0 0 0 45 NaN NaN
+% NaN 156 44 64 113 65 0 0 0 0 0 0 0 32 NaN NaN
+% 136 9 26 28 11 0 0 0 0 0 0 0 0 10 188 NaN
+% 132 0 0 0 0 0 0 0 0 0 136 175 16 0 133 NaN
+% NaN 28 0 0 0 0 0 0 0 0 152 238 50 0 124 NaN
+% NaN 58 0 0 0 0 0 0 0 0 0 9 0 0 71 NaN
+% NaN 175 0 0 0 0 0 61 15 0 0 0 0 0 100 NaN
+% NaN NaN 143 12 0 0 0 210 195 87 17 0 0 0 126 NaN
+% NaN NaN NaN 183 118 50 150 NaN NaN 110 219 78 0 0 160 NaN
+% NaN NaN NaN NaN NaN NaN NaN 191 0 35 NaN 150 0 23 NaN NaN
+% NaN NaN NaN NaN NaN NaN NaN 124 0 172 NaN 81 0 93 NaN NaN
+% 255 NaN NaN NaN NaN NaN NaN 183 0 0 0 0 51 228 NaN 245
+% 253 254 NaN NaN NaN NaN NaN NaN 156 63 45 100 NaN NaN 255 255]/255.;
+%
+%
+% cdata(:,:,2) = [255 255 255 255 255 216 166 171 225 229 218 229 247 255 255 255
+% 255 255 255 255 201 166 159 157 167 188 189 200 243 255 255 255
+% 237 238 255 181 159 183 164 170 163 158 160 157 169 233 248 250
+% 224 235 188 140 182 195 161 168 168 168 168 169 147 186 244 240
+% 255 226 175 185 207 189 161 168 168 168 168 168 159 179 249 249
+% 227 172 172 179 172 163 169 168 168 170 163 155 160 173 231 237
+% 215 161 163 165 166 168 168 168 168 162 215 228 172 163 209 219
+% 248 178 159 168 168 168 168 168 168 159 220 249 185 158 208 222
+% 249 192 151 169 168 168 169 160 163 172 163 159 166 167 194 204
+% 246 229 155 157 168 169 159 188 174 154 162 167 166 166 202 214
+% 212 231 218 168 157 153 165 255 242 190 171 159 167 166 207 220
+% 218 203 251 243 206 181 230 210 208 207 242 196 154 168 223 232
+% 255 224 232 250 237 214 244 194 152 178 255 223 145 175 250 252
+% 255 255 244 239 222 213 240 214 149 228 254 199 136 203 244 232
+% 255 255 255 246 231 246 246 232 165 159 167 147 184 253 254 242
+% 253 254 255 255 254 255 255 255 231 183 178 199 249 255 255 255]/255.;
+%
+%
+% cdata(:,:,3) = [255 255 255 255 255 117 38 50 187 211 170 190 234 255 255 255
+% 255 254 255 255 120 51 27 20 39 97 98 122 220 255 255 255
+% 238 252 246 73 22 71 37 49 35 20 24 18 49 196 231 231
+% 232 242 86 0 78 108 29 45 45 45 45 46 0 82 214 201
+% 255 175 63 85 139 98 27 45 45 45 45 45 23 72 233 231
+% 167 51 57 72 55 32 47 45 45 50 34 14 27 57 201 218
+% 154 30 33 38 39 45 45 45 45 31 157 188 53 34 153 180
+% 234 67 24 45 45 45 45 44 45 24 169 241 83 20 146 182
+% 241 99 4 48 45 45 47 28 35 53 32 26 39 44 104 127
+% 238 192 14 20 45 47 27 97 56 10 29 44 41 40 127 158
+% 214 253 169 37 20 16 34 218 207 105 55 23 42 40 147 182
+% 218 214 241 201 138 71 177 225 181 130 224 107 12 45 175 197
+% 255 233 202 218 212 132 230 196 27 61 255 172 0 64 240 242
+% 255 255 219 197 176 160 237 143 0 195 245 110 0 123 230 230
+% 255 255 255 227 197 241 244 202 36 24 39 0 81 228 242 245
+% 253 254 255 255 254 255 255 255 191 78 71 121 221 255 255 255]/255.;
+
+ %OneNote logo
+
+ cdata(:,:,1) =[255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
+ 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
+ 255 255 255 255 245 213 213 213 213 213 213 213 184 184 215 255
+ 255 255 255 255 241 213 213 213 213 213 213 213 184 184 208 255
+ 255 233 204 204 194 176 176 185 213 213 213 213 184 184 208 255
+ 255 154 101 101 101 101 101 103 213 213 213 206 162 162 193 255
+ 255 152 101 183 116 152 115 101 213 213 213 206 162 162 193 255
+ 255 152 101 207 189 178 122 101 213 213 213 206 162 162 193 255
+ 255 152 101 199 152 224 122 101 213 213 213 195 128 128 170 255
+ 255 152 101 166 101 183 115 101 213 213 213 195 128 128 170 255
+ 255 154 101 101 101 101 101 103 213 213 213 195 128 128 170 255
+ 255 233 204 204 194 176 176 185 213 213 213 183 95 95 148 255
+ 255 255 255 255 241 213 213 213 213 213 213 183 94 94 148 255
+ 255 255 255 255 245 213 213 213 213 213 213 183 94 94 163 255
+ 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
+ 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255]/255.;
+
+
+ cdata(:,:,2) =[255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
+ 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
+ 255 255 255 255 219 112 110 110 110 110 110 134 84 84 158 255
+ 255 255 255 255 207 110 110 110 110 110 110 134 84 84 141 255
+ 255 222 178 178 146 81 81 88 110 110 110 134 84 84 141 255
+ 255 102 23 23 23 23 23 24 110 110 110 125 58 58 123 255
+ 255 100 23 147 46 100 44 23 110 110 110 125 58 58 123 255
+ 255 100 23 183 156 139 55 23 110 110 110 125 58 58 123 255
+ 255 100 23 170 99 208 55 23 110 110 110 119 38 38 109 255
+ 255 100 23 121 23 146 44 23 110 110 110 119 38 38 109 255
+ 255 102 23 23 23 23 23 24 110 110 110 119 38 38 109 255
+ 255 222 178 178 146 81 81 88 110 110 110 118 37 37 109 255
+ 255 255 255 255 207 110 110 110 110 110 110 118 37 37 110 255
+ 255 255 255 255 219 112 110 110 110 110 110 118 37 37 131 255
+ 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
+ 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255]/255.;
+
+
+ cdata(:,:,3) =[255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
+ 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
+ 255 255 255 255 255 255 255 255 255 255 255 246 229 229 240 255
+ 255 255 255 255 255 255 255 255 255 255 255 246 229 229 238 255
+ 255 242 224 224 224 224 224 232 255 255 255 246 229 229 238 255
+ 255 194 163 163 163 163 163 164 255 255 255 244 223 223 234 255
+ 255 194 163 212 172 194 171 163 255 255 255 244 223 223 234 255
+ 255 194 163 226 216 209 176 163 255 255 255 244 223 223 234 255
+ 255 194 163 221 193 236 176 163 255 255 255 240 209 209 224 255
+ 255 194 163 202 163 212 171 163 255 255 255 240 209 209 224 255
+ 255 194 163 163 163 163 163 164 255 255 255 240 209 209 224 255
+ 255 242 224 224 224 224 224 232 255 255 255 223 161 161 192 255
+ 255 255 255 255 255 255 255 255 255 255 255 223 160 160 192 255
+ 255 255 255 255 255 255 255 255 255 255 255 223 160 160 201 255
+ 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
+ 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255]/255.;
+
+
+ pt.Tag = 'Custom.CopyPlot';
+ pt.CData = cdata;
+ pt.Separator = true;
+ pt.ClickedCallback = @copyToClipboard;
+
+end
+
+function copyToClipboard(~,~)
+ fig_h = get(get(gcbo,'Parent'),'Parent');
+ if strcmp(fig_h.WindowStyle,'docked')
+ if ismac || ispc
+ matlab.graphics.internal.copyFigureHelper(fig_h);
+ else
+ %warning('Copy function to the clipboard only works if the figure is undocked.');
+ Helper.screencapture(fig_h,[],'clipboard');
+ end
+ else
+ pos = fig_h.Position;
+ Helper.screencapture(fig_h,[],'clipboard','position',[7,7,pos(3)-2,pos(4)]);
+ end
+end
+
+
+
diff --git a/DipolarGasSimulator/+Helper/ode5.m b/DipolarGasSimulator/+Helper/ode5.m
new file mode 100644
index 0000000..3eb003f
--- /dev/null
+++ b/DipolarGasSimulator/+Helper/ode5.m
@@ -0,0 +1,92 @@
+function Y = ode5(odefun,tspan,y0,varargin)
+%ODE5 Solve differential equations with a non-adaptive method of order 5.
+% Y = ODE5(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... TN] integrates
+% the system of differential equations y' = f(t,y) by stepping from T0 to
+% T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector.
+% The vector Y0 is the initial conditions at T0. Each row in the solution
+% array Y corresponds to a time specified in TSPAN.
+%
+% Y = ODE5(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional parameters
+% P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...).
+%
+% This is a non-adaptive solver. The step sequence is determined by TSPAN
+% but the derivative function ODEFUN is evaluated multiple times per step.
+% The solver implements the Dormand-Prince method of order 5 in a general
+% framework of explicit Runge-Kutta methods.
+%
+% Example
+% tspan = 0:0.1:20;
+% y = ode5(@vdp1,tspan,[2 0]);
+% plot(tspan,y(:,1));
+% solves the system y' = vdp1(t,y) with a constant step size of 0.1,
+% and plots the first component of the solution.
+
+if ~isnumeric(tspan)
+ error('TSPAN should be a vector of integration steps.');
+end
+
+if ~isnumeric(y0)
+ error('Y0 should be a vector of initial conditions.');
+end
+
+h = diff(tspan);
+if any(sign(h(1))*h <= 0)
+ error('Entries of TSPAN are not in order.')
+end
+
+try
+ f0 = feval(odefun,tspan(1),y0,varargin{:});
+catch
+ msg = ['Unable to evaluate the ODEFUN at t0,y0. ',lasterr];
+ error(msg);
+end
+
+y0 = y0(:); % Make a column vector.
+if ~isequal(size(y0),size(f0))
+ error('Inconsistent sizes of Y0 and f(t0,y0).');
+end
+
+neq = length(y0);
+N = length(tspan);
+Y = zeros(neq,N);
+
+% Method coefficients -- Butcher's tableau
+%
+% C | A
+% --+---
+% | B
+
+C = [1/5; 3/10; 4/5; 8/9; 1];
+
+A = [ 1/5, 0, 0, 0, 0
+ 3/40, 9/40, 0, 0, 0
+ 44/45 -56/15, 32/9, 0, 0
+ 19372/6561, -25360/2187, 64448/6561, -212/729, 0
+ 9017/3168, -355/33, 46732/5247, 49/176, -5103/18656];
+
+B = [35/384, 0, 500/1113, 125/192, -2187/6784, 11/84];
+
+% More convenient storage
+A = A.';
+B = B(:);
+
+nstages = length(B);
+F = zeros(neq,nstages);
+
+Y(:,1) = y0;
+for i = 2:N
+ ti = tspan(i-1);
+ hi = h(i-1);
+ yi = Y(:,i-1);
+
+ % General explicit Runge-Kutta framework
+ F(:,1) = feval(odefun,ti,yi,varargin{:});
+ for stage = 2:nstages
+ tstage = ti + C(stage-1)*hi;
+ ystage = yi + F(:,1:stage-1)*(hi*A(1:stage-1,stage-1));
+ F(:,stage) = feval(odefun,tstage,ystage,varargin{:});
+ end
+ Y(:,i) = yi + F*(hi*B);
+
+end
+Y = Y.';
diff --git a/DipolarGasSimulator/+Helper/onenoteccdata.m b/DipolarGasSimulator/+Helper/onenoteccdata.m
new file mode 100644
index 0000000..5f3c177
--- /dev/null
+++ b/DipolarGasSimulator/+Helper/onenoteccdata.m
@@ -0,0 +1,55 @@
+cmap = zeros(16,16,3);
+
+cmap(:,:,1) = [0.0000 0.0118 0.4510 0.0039 0.2078 0.1569 0.4078 0.4431 0.4510 0.1922 0.4235 0.4196 0.2235 0.4235 0.4039 0.4392
+ 0.4471 0.1647 0.4157 0.0000 0.0235 0.4353 0.0314 0.4314 0.0196 0.2392 0.0667 0.0392 0.4431 0.3804 0.2941 0.4275
+ 0.3686 0.3608 0.2000 0.2824 0.3059 0.0549 0.1804 0.1882 0.4392 0.4314 0.3255 0.0078 0.0902 0.1961 0.4353 0.1412
+ 0.2314 0.3647 0.0353 0.3804 0.1647 0.2431 0.1686 0.2745 0.2980 0.4235 0.3922 0.4157 0.2784 0.3333 0.2510 0.0588
+ 0.1020 0.0745 0.2549 0.0471 0.1216 0.4000 0.3961 0.2627 0.1098 0.1725 0.3098 0.4314 0.3529 0.3412 0.0784 0.0824
+ 0.4471 0.1490 0.1804 0.3529 0.2196 0.3137 0.3255 0.0941 0.0078 0.3294 0.3765 0.2706 0.0510 0.0157 0.4275 0.1176
+ 0.1294 0.1333 0.1725 0.3451 0.2118 0.3843 0.1255 0.1569 0.2118 0.1608 0.0353 0.2039 0.1608 0.4510 1.0000 0.8000
+ 0.9882 0.6510 0.9961 0.4549 0.4549 0.6824 0.7882 0.5686 0.5373 0.5490 0.7765 0.7137 0.8510 0.7176 0.5020 0.4902
+ 0.8941 0.9020 0.4745 0.8980 0.9098 0.4824 0.6471 0.6353 0.9922 0.9647 0.6353 0.4588 0.9647 0.9020 0.4980 0.8118
+ 0.5059 0.4941 0.9686 0.4863 0.5451 0.9725 0.8980 0.5451 0.5333 0.6824 0.4588 0.8196 0.8314 0.8980 0.8941 0.9961
+ 0.5255 0.8392 0.9804 0.5216 0.8588 0.8078 0.5176 0.7647 0.5608 0.9725 0.9059 0.4627 0.9882 0.8275 0.7725 0.8745
+ 0.8235 0.8431 0.7373 1.0000 0.5137 0.4706 0.4784 0.7412 0.8863 0.9373 0.5529 0.5804 0.4510 0.9255 0.8235 0.8667
+ 0.7569 0.8824 0.5294 0.5176 0.5373 0.9569 0.5294 0.4824 0.5098 0.5137 0.5569 0.8471 0.5098 0.9490 0.8706 0.9412
+ 0.4902 0.6000 0.6980 0.7882 0.5490 0.7216 0.6431 0.4824 0.5569 0.4667 0.6627 0.9922 0.7804 0.8039 0.6275 0.7333
+ 0.5725 0.5647 0.8549 0.7529 0.6235 0.8784 0.5922 0.7294 0.6118 0.7922 0.7843 0.6667 0.9294 0.6902 0.6784 0.9176
+ 0.6706 0.7490 0.7961 0.5882 0.8627 0.4627 0.6196 0.7059 0.6078 0.9765 0.6549 0.6863 0.5373 0.7098 0.7176 0.7765];
+
+cmap(:,:,2) = [0.0000 0.0078 0.2157 0.0000 0.0980 0.0745 0.1922 0.2157 0.2157 0.0902 0.2000 0.1961 0.1059 0.2039 0.1882 0.2078
+ 0.2078 0.0784 0.2000 0.0000 0.0118 0.2118 0.0157 0.2039 0.0078 0.1137 0.0314 0.0196 0.2118 0.1804 0.1373 0.2078
+ 0.1765 0.1725 0.0941 0.1333 0.1451 0.0275 0.0863 0.0902 0.2078 0.2078 0.1529 0.0039 0.0431 0.0941 0.2039 0.0667
+ 0.1098 0.1725 0.0157 0.1804 0.0784 0.1137 0.0824 0.1333 0.1412 0.2000 0.1882 0.2000 0.1333 0.1569 0.1176 0.0275
+ 0.0471 0.0353 0.1216 0.0196 0.0588 0.1922 0.1882 0.1255 0.0510 0.0824 0.1451 0.2039 0.1686 0.1647 0.0392 0.0392
+ 0.2157 0.0706 0.0863 0.1686 0.1020 0.1490 0.1529 0.0431 0.0039 0.1569 0.1804 0.1255 0.0235 0.0078 0.2000 0.0549
+ 0.0627 0.0627 0.0824 0.1647 0.1020 0.1843 0.0588 0.0745 0.1020 0.0784 0.0157 0.0980 0.0784 0.2157 1.0000 0.7137
+ 0.9843 0.4980 0.9961 0.2235 0.2196 0.5412 0.6980 0.3843 0.3373 0.3569 0.6824 0.5922 0.7843 0.6000 0.2902 0.2706
+ 0.8510 0.8588 0.2471 0.8549 0.8667 0.2627 0.4980 0.4784 0.9843 0.9490 0.4745 0.2235 0.9451 0.8627 0.2824 0.7333
+ 0.2941 0.2784 0.9529 0.2667 0.3490 0.9569 0.8510 0.3490 0.3333 0.5451 0.2275 0.7412 0.7608 0.8549 0.8471 0.9922
+ 0.3255 0.7686 0.9725 0.3176 0.8000 0.7255 0.3098 0.6627 0.3725 0.9647 0.8627 0.2314 0.9804 0.7529 0.6745 0.8235
+ 0.7451 0.7765 0.6235 0.9961 0.3020 0.2431 0.2510 0.6314 0.8392 0.9098 0.3608 0.4000 0.2196 0.8902 0.7490 0.8078
+ 0.6549 0.8353 0.3294 0.3137 0.3412 0.9373 0.3255 0.2588 0.2980 0.3059 0.3686 0.7843 0.3020 0.9255 0.8157 0.9176
+ 0.2745 0.4275 0.5686 0.6980 0.3569 0.6039 0.4863 0.2627 0.3647 0.2392 0.5137 0.9922 0.6863 0.7216 0.4706 0.6196
+ 0.3882 0.3765 0.7882 0.6471 0.4588 0.8275 0.4157 0.6118 0.4431 0.7059 0.6902 0.5255 0.8980 0.5569 0.5412 0.8824
+ 0.5333 0.6392 0.7098 0.4078 0.8039 0.2314 0.4549 0.5804 0.4392 0.9647 0.5059 0.5529 0.3373 0.5882 0.5961 0.6784];
+
+cmap(:,:,3) = [0.0000 0.0157 0.4980 0.0039 0.2314 0.1725 0.4627 0.5020 0.5020 0.2196 0.4745 0.4706 0.2510 0.4784 0.4510 0.4980
+ 0.4941 0.1882 0.4667 0.0000 0.0275 0.4941 0.0353 0.4902 0.0196 0.2667 0.0745 0.0471 0.4902 0.4314 0.3294 0.4784
+ 0.4196 0.4000 0.2235 0.3216 0.3412 0.0627 0.2039 0.2118 0.4863 0.4863 0.3608 0.0078 0.1020 0.2196 0.4824 0.1569
+ 0.2588 0.4118 0.0392 0.4235 0.1843 0.2745 0.1882 0.3059 0.3373 0.4784 0.4392 0.4627 0.3137 0.3765 0.2824 0.0667
+ 0.1137 0.0824 0.2863 0.0510 0.1373 0.4510 0.4471 0.2941 0.1216 0.1961 0.3490 0.4824 0.3961 0.3804 0.0902 0.0941
+ 0.4980 0.1647 0.2000 0.4000 0.2431 0.3529 0.3647 0.1059 0.0118 0.3686 0.4196 0.3020 0.0549 0.0196 0.4824 0.1294
+ 0.1451 0.1529 0.1922 0.3882 0.2392 0.4353 0.1412 0.1765 0.2353 0.1804 0.0353 0.2275 0.1843 0.5059 1.0000 0.8196
+ 0.9882 0.6863 0.9961 0.5098 0.5098 0.7137 0.8118 0.6118 0.5843 0.5922 0.8000 0.7412 0.8627 0.7451 0.5529 0.5412
+ 0.9059 0.9137 0.5255 0.9098 0.9176 0.5333 0.6824 0.6706 0.9922 0.9686 0.6706 0.5098 0.9647 0.9137 0.5490 0.8314
+ 0.5569 0.5451 0.9725 0.5373 0.5922 0.9725 0.9059 0.5882 0.5804 0.7137 0.5137 0.8353 0.8510 0.9059 0.9020 0.9961
+ 0.5725 0.8549 0.9843 0.5725 0.8745 0.8275 0.5647 0.7882 0.6039 0.9765 0.9137 0.5176 0.9882 0.8431 0.7961 0.8863
+ 0.8392 0.8588 0.7647 1.0000 0.5608 0.5216 0.5294 0.7686 0.8980 0.9412 0.6000 0.6235 0.5059 0.9333 0.8431 0.8784
+ 0.7804 0.8941 0.5765 0.5686 0.5843 0.9608 0.5765 0.5333 0.5569 0.5647 0.6039 0.8627 0.5608 0.9569 0.8863 0.9490
+ 0.5412 0.6392 0.7294 0.8078 0.5961 0.7490 0.6784 0.5373 0.6000 0.5216 0.6941 0.9922 0.8039 0.8235 0.6667 0.7608
+ 0.6157 0.6078 0.8667 0.7765 0.6588 0.8902 0.6314 0.7569 0.6510 0.8157 0.8039 0.7020 0.9373 0.7216 0.7098 0.9255
+ 0.7059 0.7725 0.8196 0.6314 0.8784 0.5137 0.6549 0.7373 0.6471 0.9804 0.6902 0.7176 0.5804 0.7412 0.7451 0.8000];
+
+%%
+[cdata, cmap] = imread('onenote.png');
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Helper/parforNotifications.m b/DipolarGasSimulator/+Helper/parforNotifications.m
new file mode 100644
index 0000000..4ad3af4
--- /dev/null
+++ b/DipolarGasSimulator/+Helper/parforNotifications.m
@@ -0,0 +1,148 @@
+% Copyright (c) 2019 Andrea Alberti
+%
+% All rights reserved.
+classdef parforNotifications < handle
+ properties
+ N; % number of iterations
+ text = 'Please wait ...'; % text to show
+ width = 50;
+ showWarning = true;
+ end
+ properties (GetAccess = public, SetAccess = private)
+ n;
+ end
+ properties (Access = private)
+ inProgress = false;
+ percent;
+ DataQueue;
+ usePercent;
+ Nstr;
+ NstrL;
+ lastComment;
+ end
+ methods
+ function this = parforNotifications()
+ this.DataQueue = parallel.pool.DataQueue;
+ afterEach(this.DataQueue, @this.updateStatus);
+ end
+ % Start progress bar
+ function PB_start(this,N,varargin)
+ assert(isscalar(N) && isnumeric(N) && N == floor(N) && N>0, 'Error: ''N'' must be a scalar positive integer.');
+
+ this.N = N;
+
+ p = inputParser;
+ addParameter(p,'message','Please wait: ');
+ addParameter(p,'usePercentage',true);
+
+ parse(p,varargin{:});
+
+ this.text = p.Results.message;
+ assert(ischar(this.text), 'Error: ''Message'' must be a string.');
+
+ this.usePercent = p.Results.usePercentage;
+ assert(isscalar(this.usePercent) && islogical(this.usePercent), 'Error: ''usePercentage'' must be a logical scalar.');
+
+ this.percent = 0;
+ this.n = 0;
+ this.lastComment = '';
+ if this.usePercent
+ fprintf('%s [%s]: %3d%%\n',this.text, char(32*ones(1,this.width)),0);
+ else
+ this.Nstr = sprintf('%d',this.N);
+ this.NstrL = numel(this.Nstr);
+ fprintf('%s [%s]: %s/%s\n',this.text, char(32*ones(1,this.width)),[char(32*ones(1,this.NstrL-1)),'0'],this.Nstr);
+ end
+
+ this.inProgress = true;
+ end
+ % Iterate progress bar
+ function PB_iterate(this,str)
+ if nargin == 1
+ send(this.DataQueue,'');
+ else
+ send(this.DataQueue,str);
+ end
+ end
+ function warning(this,warn_id,msg)
+ if this.showWarning
+ msg = struct('Action','Warning','Id',warn_id,'Message',msg);
+ send(this.DataQueue,msg);
+ end
+ end
+ function PB_reprint(this)
+ p = round(100*this.n/this.N);
+
+ this.percent = p;
+
+ cursor_pos=1+round((this.width-1)*p/100);
+
+ if p < 100
+ sep_char = '|';
+ else
+ sep_char = '.';
+ end
+
+ if this.usePercent
+ fprintf('%s [%s%s%s]: %3d%%\n', this.text, char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),p);
+ else
+ nstr=sprintf('%d',this.n);
+ fprintf('%s [%s%s%s]: %s/%s\n', this.text, char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),[char(32*ones(1,this.NstrL-numel(nstr))),nstr],this.Nstr);
+ end
+ end
+ function updateStatus(this,data)
+
+ if ischar(data)
+
+ this.n = this.n + 1;
+
+ p = round(100*this.n/this.N);
+
+ if p >= this.percent+1 || this.n == this.N
+ this.percent = p;
+
+ cursor_pos=1+round((this.width-1)*p/100);
+
+ if p < 100
+ sep_char = '|';
+ else
+ sep_char = '.';
+ end
+
+ if ~isempty(data)
+ comment = [' (',data,')'];
+ else
+ comment = '';
+ end
+
+ if this.usePercent
+ fprintf('%s%s%s%s]: %3d%%%s\n',char(8*ones(1,58+numel(this.lastComment))), char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),p,comment);
+ else
+ nstr=sprintf('%d',this.n);
+ fprintf('%s%s%s%s]: %s/%s%s\n',char(8*ones(1,55+2*numel(this.Nstr)+numel(this.lastComment))), char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),[char(32*ones(1,this.NstrL-numel(nstr))),nstr],this.Nstr,comment)
+ end
+
+ this.lastComment = comment;
+
+
+ if p == 100
+ this.inProgress = false;
+ end
+ end
+
+ else
+ switch data.Action
+ case 'Warning'
+ warning(data.Id,[data.Message,newline]);
+ if this.inProgress
+ this.PB_reprint();
+ end
+ end
+
+ end
+
+ end
+ end
+end
+
+
diff --git a/DipolarGasSimulator/+Helper/screencapture.m b/DipolarGasSimulator/+Helper/screencapture.m
new file mode 100644
index 0000000..206312e
--- /dev/null
+++ b/DipolarGasSimulator/+Helper/screencapture.m
@@ -0,0 +1,820 @@
+function imageData = screencapture(varargin)
+% screencapture - get a screen-capture of a figure frame, component handle, or screen area rectangle
+%
+% ScreenCapture gets a screen-capture of any Matlab GUI handle (including desktop,
+% figure, axes, image or uicontrol), or a specified area rectangle located relative to
+% the specified handle. Screen area capture is possible by specifying the root (desktop)
+% handle (=0). The output can be either to an image file or to a Matlab matrix (useful
+% for displaying via imshow() or for further processing) or to the system clipboard.
+% This utility also enables adding a toolbar button for easy interactive screen-capture.
+%
+% Syntax:
+% imageData = screencapture(handle, position, target, 'PropName',PropValue, ...)
+%
+% Input Parameters:
+% handle - optional handle to be used for screen-capture origin.
+% If empty/unsupplied then current figure (gcf) will be used.
+% position - optional position array in pixels: [x,y,width,height].
+% If empty/unsupplied then the handle's position vector will be used.
+% If both handle and position are empty/unsupplied then the position
+% will be retrieved via interactive mouse-selection.
+% If handle is an image, then position is in data (not pixel) units, so the
+% captured region remains the same after figure/axes resize (like imcrop)
+% target - optional filename for storing the screen-capture, or the
+% 'clipboard'/'printer' strings.
+% If empty/unsupplied then no output to file will be done.
+% The file format will be determined from the extension (JPG/PNG/...).
+% Supported formats are those supported by the imwrite function.
+% 'PropName',PropValue -
+% optional list of property pairs (e.g., 'target','myImage.png','pos',[10,20,30,40],'handle',gca)
+% PropNames may be abbreviated and are case-insensitive.
+% PropNames may also be given in whichever order.
+% Supported PropNames are:
+% - 'handle' (default: gcf handle)
+% - 'position' (default: gcf position array)
+% - 'target' (default: '')
+% - 'toolbar' (figure handle; default: gcf)
+% this adds a screen-capture button to the figure's toolbar
+% If this parameter is specified, then no screen-capture
+% will take place and the returned imageData will be [].
+%
+% Output parameters:
+% imageData - image data in a format acceptable by the imshow function
+% If neither target nor imageData were specified, the user will be
+% asked to interactively specify the output file.
+%
+% Examples:
+% imageData = screencapture; % interactively select screen-capture rectangle
+% imageData = screencapture(hListbox); % capture image of a uicontrol
+% imageData = screencapture(0, [20,30,40,50]); % capture a small desktop region
+% imageData = screencapture(gcf,[20,30,40,50]); % capture a small figure region
+% imageData = screencapture(gca,[10,20,30,40]); % capture a small axes region
+% imshow(imageData); % display the captured image in a matlab figure
+% imwrite(imageData,'myImage.png'); % save the captured image to file
+% img = imread('cameraman.tif');
+% hImg = imshow(img);
+% screencapture(hImg,[60,35,140,80]); % capture a region of an image
+% screencapture(gcf,[],'myFigure.jpg'); % capture the entire figure into file
+% screencapture(gcf,[],'clipboard'); % capture the entire figure into clipboard
+% screencapture(gcf,[],'printer'); % print the entire figure
+% screencapture('handle',gcf,'target','myFigure.jpg'); % same as previous, save to file
+% screencapture('handle',gcf,'target','clipboard'); % same as previous, copy to clipboard
+% screencapture('handle',gcf,'target','printer'); % same as previous, send to printer
+% screencapture('toolbar',gcf); % adds a screen-capture button to gcf's toolbar
+% screencapture('toolbar',[],'target','sc.bmp'); % same with default output filename
+%
+% Technical description:
+% http://UndocumentedMatlab.com/blog/screencapture-utility/
+%
+% Bugs and suggestions:
+% Please send to Yair Altman (altmany at gmail dot com)
+%
+% See also:
+% imshow, imwrite, print
+%
+% Release history:
+% 1.17 2016-05-16: Fix annoying warning about JavaFrame property becoming obsolete someday (yes, we know...)
+% 1.16 2016-04-19: Fix for deployed application suggested by Dwight Bartholomew
+% 1.10 2014-11-25: Added the 'print' target
+% 1.9 2014-11-25: Fix for saving GIF files
+% 1.8 2014-11-16: Fixes for R2014b
+% 1.7 2014-04-28: Fixed bug when capturing interactive selection
+% 1.6 2014-04-22: Only enable image formats when saving to an unspecified file via uiputfile
+% 1.5 2013-04-18: Fixed bug in capture of non-square image; fixes for Win64
+% 1.4 2013-01-27: Fixed capture of Desktop (root); enabled rbbox anywhere on desktop (not necesarily in a Matlab figure); enabled output to clipboard (based on Jiro Doke's imclipboard utility); edge-case fixes; added Java compatibility check
+% 1.3 2012-07-23: Capture current object (uicontrol/axes/figure) if w=h=0 (e.g., by clicking a single point); extra input args sanity checks; fix for docked windows and image axes; include axes labels & ticks by default when capturing axes; use data-units position vector when capturing images; many edge-case fixes
+% 1.2 2011-01-16: another performance boost (thanks to Jan Simon); some compatibility fixes for Matlab 6.5 (untested)
+% 1.1 2009-06-03: Handle missing output format; performance boost (thanks to Urs); fix minor root-handle bug; added toolbar button option
+% 1.0 2009-06-02: First version posted on MathWorks File Exchange
+
+% License to use and modify this code is granted freely to all interested, as long as the original author is
+% referenced and attributed as such. The original author maintains the right to be solely associated with this work.
+
+% Programmed and Copyright by Yair M. Altman: altmany(at)gmail.com
+% $Revision: 1.17 $ $Date: 2016/05/16 17:59:36 $
+
+ % Ensure that java awt is enabled...
+ if ~usejava('awt')
+ error('YMA:screencapture:NeedAwt','ScreenCapture requires Java to run.');
+ end
+
+ % Ensure that our Java version supports the Robot class (requires JVM 1.3+)
+ try
+ robot = java.awt.Robot; %#ok
+ catch
+ uiwait(msgbox({['Your Matlab installation is so old that its Java engine (' version('-java') ...
+ ') does not have a java.awt.Robot class. '], ' ', ...
+ 'Without this class, taking a screen-capture is impossible.', ' ', ...
+ 'So, either install JVM 1.3 or higher, or use a newer Matlab release.'}, ...
+ 'ScreenCapture', 'warn'));
+ if nargout, imageData = []; end
+ return;
+ end
+
+ % Process optional arguments
+ paramsStruct = processArgs(varargin{:});
+
+ % If toolbar button requested, add it and exit
+ if ~isempty(paramsStruct.toolbar)
+
+ % Add the toolbar button
+ addToolbarButton(paramsStruct);
+
+ % Return the figure to its pre-undocked state (when relevant)
+ redockFigureIfRelevant(paramsStruct);
+
+ % Exit immediately (do NOT take a screen-capture)
+ if nargout, imageData = []; end
+ return;
+ end
+
+ % Convert position from handle-relative to desktop Java-based pixels
+ [paramsStruct, msgStr] = convertPos(paramsStruct);
+
+ % Capture the requested screen rectangle using java.awt.Robot
+ imgData = getScreenCaptureImageData(paramsStruct.position);
+
+ % Return the figure to its pre-undocked state (when relevant)
+ redockFigureIfRelevant(paramsStruct);
+
+ % Save image data in file or clipboard, if specified
+ if ~isempty(paramsStruct.target)
+ if strcmpi(paramsStruct.target,'clipboard')
+ if ~isempty(imgData)
+ imclipboard(imgData);
+ else
+ msgbox('No image area selected - not copying image to clipboard','ScreenCapture','warn');
+ end
+ elseif strncmpi(paramsStruct.target,'print',5) % 'print' or 'printer'
+ if ~isempty(imgData)
+ hNewFig = figure('visible','off');
+ imshow(imgData);
+ print(hNewFig);
+ delete(hNewFig);
+ else
+ msgbox('No image area selected - not printing screenshot','ScreenCapture','warn');
+ end
+ else % real filename
+ if ~isempty(imgData)
+ imwrite(imgData,paramsStruct.target);
+ else
+ msgbox(['No image area selected - not saving image file ' paramsStruct.target],'ScreenCapture','warn');
+ end
+ end
+ end
+
+ % Return image raster data to user, if requested
+ if nargout
+ imageData = imgData;
+
+ % If neither output formats was specified (neither target nor output data)
+ elseif isempty(paramsStruct.target) & ~isempty(imgData) %#ok ML6
+ % Ask the user to specify a file
+ %error('YMA:screencapture:noOutput','No output specified for ScreenCapture: specify the output filename and/or output data');
+ %format = '*.*';
+ formats = imformats;
+ for idx = 1 : numel(formats)
+ ext = sprintf('*.%s;',formats(idx).ext{:});
+ format(idx,1:2) = {ext(1:end-1), formats(idx).description}; %#ok
+ end
+ [filename,pathname] = uiputfile(format,'Save screen capture as');
+ if ~isequal(filename,0) & ~isequal(pathname,0) %#ok Matlab6 compatibility
+ try
+ filename = fullfile(pathname,filename);
+ imwrite(imgData,filename);
+ catch % possibly a GIF file that requires indexed colors
+ [imgData,map] = rgb2ind(imgData,256);
+ imwrite(imgData,map,filename);
+ end
+ else
+ % TODO - copy to clipboard
+ end
+ end
+
+ % Display msgStr, if relevant
+ if ~isempty(msgStr)
+ uiwait(msgbox(msgStr,'ScreenCapture'));
+ drawnow; pause(0.05); % time for the msgbox to disappear
+ end
+
+ return; % debug breakpoint
+
+%% Process optional arguments
+function paramsStruct = processArgs(varargin)
+
+ % Get the properties in either direct or P-V format
+ [regParams, pvPairs] = parseparams(varargin);
+
+ % Now process the optional P-V params
+ try
+ % Initialize
+ paramName = [];
+ paramsStruct = [];
+ paramsStruct.handle = [];
+ paramsStruct.position = [];
+ paramsStruct.target = '';
+ paramsStruct.toolbar = [];
+ paramsStruct.wasDocked = 0; % no false available in ML6
+ paramsStruct.wasInteractive = 0; % no false available in ML6
+
+ % Parse the regular (non-named) params in recption order
+ if ~isempty(regParams) & (isempty(regParams{1}) | ishandle(regParams{1}(1))) %#ok ML6
+ paramsStruct.handle = regParams{1};
+ regParams(1) = [];
+ end
+ if ~isempty(regParams) & isnumeric(regParams{1}) & (length(regParams{1}) == 4) %#ok ML6
+ paramsStruct.position = regParams{1};
+ regParams(1) = [];
+ end
+ if ~isempty(regParams) & ischar(regParams{1}) %#ok ML6
+ paramsStruct.target = regParams{1};
+ end
+
+ % Parse the optional param PV pairs
+ supportedArgs = {'handle','position','target','toolbar'};
+ while ~isempty(pvPairs)
+
+ % Disregard empty propNames (may be due to users mis-interpretting the syntax help)
+ while ~isempty(pvPairs) & isempty(pvPairs{1}) %#ok ML6
+ pvPairs(1) = [];
+ end
+ if isempty(pvPairs)
+ break;
+ end
+
+ % Ensure basic format is valid
+ paramName = '';
+ if ~ischar(pvPairs{1})
+ error('YMA:screencapture:invalidProperty','Invalid property passed to ScreenCapture');
+ elseif length(pvPairs) == 1
+ if isempty(paramsStruct.target)
+ paramsStruct.target = pvPairs{1};
+ break;
+ else
+ error('YMA:screencapture:noPropertyValue',['No value specified for property ''' pvPairs{1} '''']);
+ end
+ end
+
+ % Process parameter values
+ paramName = pvPairs{1};
+ if strcmpi(paramName,'filename') % backward compatibility
+ paramName = 'target';
+ end
+ paramValue = pvPairs{2};
+ pvPairs(1:2) = [];
+ idx = find(strncmpi(paramName,supportedArgs,length(paramName)));
+ if ~isempty(idx)
+ %paramsStruct.(lower(supportedArgs{idx(1)})) = paramValue; % incompatible with ML6
+ paramsStruct = setfield(paramsStruct, lower(supportedArgs{idx(1)}), paramValue); %#ok ML6
+
+ % If 'toolbar' param specified, then it cannot be left empty - use gcf
+ if strncmpi(paramName,'toolbar',length(paramName)) & isempty(paramsStruct.toolbar) %#ok ML6
+ paramsStruct.toolbar = getCurrentFig;
+ end
+
+ elseif isempty(paramsStruct.target)
+ paramsStruct.target = paramName;
+ pvPairs = {paramValue, pvPairs{:}}; %#ok (more readable this way, although a bit less efficient...)
+
+ else
+ supportedArgsStr = sprintf('''%s'',',supportedArgs{:});
+ error('YMA:screencapture:invalidProperty','%s \n%s', ...
+ 'Invalid property passed to ScreenCapture', ...
+ ['Supported property names are: ' supportedArgsStr(1:end-1)]);
+ end
+ end % loop pvPairs
+
+ catch
+ if ~isempty(paramName), paramName = [' ''' paramName '''']; end
+ error('YMA:screencapture:invalidProperty','Error setting ScreenCapture property %s:\n%s',paramName,lasterr); %#ok
+ end
+%end % processArgs
+
+%% Convert position from handle-relative to desktop Java-based pixels
+function [paramsStruct, msgStr] = convertPos(paramsStruct)
+ msgStr = '';
+ try
+ % Get the screen-size for later use
+ screenSize = get(0,'ScreenSize');
+
+ % Get the containing figure's handle
+ hParent = paramsStruct.handle;
+ if isempty(paramsStruct.handle)
+ paramsStruct.hFigure = getCurrentFig;
+ hParent = paramsStruct.hFigure;
+ else
+ paramsStruct.hFigure = ancestor(paramsStruct.handle,'figure');
+ end
+
+ % To get the acurate pixel position, the figure window must be undocked
+ try
+ if strcmpi(get(paramsStruct.hFigure,'WindowStyle'),'docked')
+ set(paramsStruct.hFigure,'WindowStyle','normal');
+ drawnow; pause(0.25);
+ paramsStruct.wasDocked = 1; % no true available in ML6
+ end
+ catch
+ % never mind - ignore...
+ end
+
+ % The figure (if specified) must be in focus
+ if ~isempty(paramsStruct.hFigure) & ishandle(paramsStruct.hFigure) %#ok ML6
+ isFigureValid = 1; % no true available in ML6
+ figure(paramsStruct.hFigure);
+ else
+ isFigureValid = 0; % no false available in ML6
+ end
+
+ % Flush all graphic events to ensure correct rendering
+ drawnow; pause(0.01);
+
+ % No handle specified
+ wasPositionGiven = 1; % no true available in ML6
+ if isempty(paramsStruct.handle)
+
+ % Set default handle, if not supplied
+ paramsStruct.handle = paramsStruct.hFigure;
+
+ % If position was not specified, get it interactively using RBBOX
+ if isempty(paramsStruct.position)
+ [paramsStruct.position, jFrameUsed, msgStr] = getInteractivePosition(paramsStruct.hFigure); %#ok jFrameUsed is unused
+ paramsStruct.wasInteractive = 1; % no true available in ML6
+ wasPositionGiven = 0; % no false available in ML6
+ end
+
+ elseif ~ishandle(paramsStruct.handle)
+ % Handle was supplied - ensure it is a valid handle
+ error('YMA:screencapture:invalidHandle','Invalid handle passed to ScreenCapture');
+
+ elseif isempty(paramsStruct.position)
+ % Handle was supplied but position was not, so use the handle's position
+ paramsStruct.position = getPixelPos(paramsStruct.handle);
+ paramsStruct.position(1:2) = 0;
+ wasPositionGiven = 0; % no false available in ML6
+
+ elseif ~isnumeric(paramsStruct.position) | (length(paramsStruct.position) ~= 4) %#ok ML6
+ % Both handle & position were supplied - ensure a valid pixel position vector
+ error('YMA:screencapture:invalidPosition','Invalid position vector passed to ScreenCapture: \nMust be a [x,y,w,h] numeric pixel array');
+ end
+
+ % Capture current object (uicontrol/axes/figure) if w=h=0 (single-click in interactive mode)
+ if paramsStruct.position(3)<=0 | paramsStruct.position(4)<=0 %#ok ML6
+ %TODO - find a way to single-click another Matlab figure (the following does not work)
+ %paramsStruct.position = getPixelPos(ancestor(hittest,'figure'));
+ paramsStruct.position = getPixelPos(paramsStruct.handle);
+ paramsStruct.position(1:2) = 0;
+ paramsStruct.wasInteractive = 0; % no false available in ML6
+ wasPositionGiven = 0; % no false available in ML6
+ end
+
+ % First get the parent handle's desktop-based Matlab pixel position
+ parentPos = [0,0,0,0];
+ dX = 0;
+ dY = 0;
+ dW = 0;
+ dH = 0;
+ if ~isFigure(hParent)
+ % Get the reguested component's pixel position
+ parentPos = getPixelPos(hParent, 1); % no true available in ML6
+
+ % Axes position inaccuracy estimation
+ deltaX = 3;
+ deltaY = -1;
+
+ % Fix for images
+ if isImage(hParent) % | (isAxes(hParent) & strcmpi(get(hParent,'YDir'),'reverse')) %#ok ML6
+
+ % Compensate for resized image axes
+ hAxes = get(hParent,'Parent');
+ if all(get(hAxes,'DataAspectRatio')==1) % sanity check: this is the normal behavior
+ % Note 18/4/2013: the following fails for non-square images
+ %actualImgSize = min(parentPos(3:4));
+ %dX = (parentPos(3) - actualImgSize) / 2;
+ %dY = (parentPos(4) - actualImgSize) / 2;
+ %parentPos(3:4) = actualImgSize;
+
+ % The following should work for all types of images
+ actualImgSize = size(get(hParent,'CData'));
+ dX = (parentPos(3) - min(parentPos(3),actualImgSize(2))) / 2;
+ dY = (parentPos(4) - min(parentPos(4),actualImgSize(1))) / 2;
+ parentPos(3:4) = actualImgSize([2,1]);
+ %parentPos(3) = max(parentPos(3),actualImgSize(2));
+ %parentPos(4) = max(parentPos(4),actualImgSize(1));
+ end
+
+ % Fix user-specified img positions (but not auto-inferred ones)
+ if wasPositionGiven
+
+ % In images, use data units rather than pixel units
+ % Reverse the YDir
+ ymax = max(get(hParent,'YData'));
+ paramsStruct.position(2) = ymax - paramsStruct.position(2) - paramsStruct.position(4);
+
+ % Note: it would be best to use hgconvertunits, but:
+ % ^^^^ (1) it fails on Matlab 6, and (2) it doesn't accept Data units
+ %paramsStruct.position = hgconvertunits(hFig, paramsStruct.position, 'Data', 'pixel', hParent); % fails!
+ xLims = get(hParent,'XData');
+ yLims = get(hParent,'YData');
+ xPixelsPerData = parentPos(3) / (diff(xLims) + 1);
+ yPixelsPerData = parentPos(4) / (diff(yLims) + 1);
+ paramsStruct.position(1) = round((paramsStruct.position(1)-xLims(1)) * xPixelsPerData);
+ paramsStruct.position(2) = round((paramsStruct.position(2)-yLims(1)) * yPixelsPerData + 2*dY);
+ paramsStruct.position(3) = round( paramsStruct.position(3) * xPixelsPerData);
+ paramsStruct.position(4) = round( paramsStruct.position(4) * yPixelsPerData);
+
+ % Axes position inaccuracy estimation
+ if strcmpi(computer('arch'),'win64')
+ deltaX = 7;
+ deltaY = -7;
+ else
+ deltaX = 3;
+ deltaY = -3;
+ end
+
+ else % axes/image position was auto-infered (entire image)
+ % Axes position inaccuracy estimation
+ if strcmpi(computer('arch'),'win64')
+ deltaX = 6;
+ deltaY = -6;
+ else
+ deltaX = 2;
+ deltaY = -2;
+ end
+ dW = -2*dX;
+ dH = -2*dY;
+ end
+ end
+
+ %hFig = ancestor(hParent,'figure');
+ hParent = paramsStruct.hFigure;
+
+ elseif paramsStruct.wasInteractive % interactive figure rectangle
+
+ % Compensate for 1px rbbox inaccuracies
+ deltaX = 2;
+ deltaY = -2;
+
+ else % non-interactive figure
+
+ % Compensate 4px figure boundaries = difference betweeen OuterPosition and Position
+ deltaX = -1;
+ deltaY = 1;
+ end
+ %disp(paramsStruct.position) % for debugging
+
+ % Now get the pixel position relative to the monitor
+ figurePos = getPixelPos(hParent);
+ desktopPos = figurePos + parentPos;
+
+ % Now convert to Java-based pixels based on screen size
+ % Note: multiple monitors are automatically handled correctly, since all
+ % ^^^^ Java positions are relative to the main monitor's top-left corner
+ javaX = desktopPos(1) + paramsStruct.position(1) + deltaX + dX;
+ javaY = screenSize(4) - desktopPos(2) - paramsStruct.position(2) - paramsStruct.position(4) + deltaY + dY;
+ width = paramsStruct.position(3) + dW;
+ height = paramsStruct.position(4) + dH;
+ paramsStruct.position = round([javaX, javaY, width, height]);
+ %paramsStruct.position
+
+ % Ensure the figure is at the front so it can be screen-captured
+ if isFigureValid
+ figure(hParent);
+ drawnow;
+ pause(0.02);
+ end
+ catch
+ % Maybe root/desktop handle (root does not have a 'Position' prop so getPixelPos croaks
+ if isequal(double(hParent),0) % =root/desktop handle; handles case of hParent=[]
+ javaX = paramsStruct.position(1) - 1;
+ javaY = screenSize(4) - paramsStruct.position(2) - paramsStruct.position(4) - 1;
+ paramsStruct.position = [javaX, javaY, paramsStruct.position(3:4)];
+ end
+ end
+%end % convertPos
+
+%% Interactively get the requested capture rectangle
+function [positionRect, jFrameUsed, msgStr] = getInteractivePosition(hFig)
+ msgStr = '';
+ try
+ % First try the invisible-figure approach, in order to
+ % enable rbbox outside any existing figure boundaries
+ f = figure('units','pixel','pos',[-100,-100,10,10],'HitTest','off');
+ drawnow; pause(0.01);
+ oldWarn = warning('off','MATLAB:HandleGraphics:ObsoletedProperty:JavaFrame');
+ jf = get(handle(f),'JavaFrame');
+ warning(oldWarn);
+ try
+ jWindow = jf.fFigureClient.getWindow;
+ catch
+ try
+ jWindow = jf.fHG1Client.getWindow;
+ catch
+ jWindow = jf.getFigurePanelContainer.getParent.getTopLevelAncestor;
+ end
+ end
+ com.sun.awt.AWTUtilities.setWindowOpacity(jWindow,0.05); %=nearly transparent (not fully so that mouse clicks are captured)
+ jWindow.setMaximized(1); % no true available in ML6
+ jFrameUsed = 1; % no true available in ML6
+ msg = {'Mouse-click and drag a bounding rectangle for screen-capture ' ...
+ ... %'or single-click any Matlab figure to capture the entire figure.' ...
+ };
+ catch
+ % Something failed, so revert to a simple rbbox on a visible figure
+ try delete(f); drawnow; catch, end %Cleanup...
+ jFrameUsed = 0; % no false available in ML6
+ msg = {'Mouse-click within any Matlab figure and then', ...
+ 'drag a bounding rectangle for screen-capture,', ...
+ 'or single-click to capture the entire figure'};
+ end
+ uiwait(msgbox(msg,'ScreenCapture'));
+
+ k = waitforbuttonpress; %#ok k is unused
+ %hFig = getCurrentFig;
+ %p1 = get(hFig,'CurrentPoint');
+ positionRect = rbbox;
+ %p2 = get(hFig,'CurrentPoint');
+
+ if jFrameUsed
+ jFrameOrigin = getPixelPos(f);
+ delete(f); drawnow;
+ try
+ figOrigin = getPixelPos(hFig);
+ catch % empty/invalid hFig handle
+ figOrigin = [0,0,0,0];
+ end
+ else
+ if isempty(hFig)
+ jFrameOrigin = getPixelPos(gcf);
+ else
+ jFrameOrigin = [0,0,0,0];
+ end
+ figOrigin = [0,0,0,0];
+ end
+ positionRect(1:2) = positionRect(1:2) + jFrameOrigin(1:2) - figOrigin(1:2);
+
+ if prod(positionRect(3:4)) > 0
+ msgStr = sprintf('%dx%d area captured',positionRect(3),positionRect(4));
+ end
+%end % getInteractivePosition
+
+%% Get current figure (even if its handle is hidden)
+function hFig = getCurrentFig
+ oldState = get(0,'showHiddenHandles');
+ set(0,'showHiddenHandles','on');
+ hFig = get(0,'CurrentFigure');
+ set(0,'showHiddenHandles',oldState);
+%end % getCurrentFig
+
+%% Get ancestor figure - used for old Matlab versions that don't have a built-in ancestor()
+function hObj = ancestor(hObj,type)
+ if ~isempty(hObj) & ishandle(hObj) %#ok for Matlab 6 compatibility
+ try
+ hObj = get(hObj,'Ancestor');
+ catch
+ % never mind...
+ end
+ try
+ %if ~isa(handle(hObj),type) % this is best but always returns 0 in Matlab 6!
+ %if ~isprop(hObj,'type') | ~strcmpi(get(hObj,'type'),type) % no isprop() in ML6!
+ try
+ objType = get(hObj,'type');
+ catch
+ objType = '';
+ end
+ if ~strcmpi(objType,type)
+ try
+ parent = get(handle(hObj),'parent');
+ catch
+ parent = hObj.getParent; % some objs have no 'Parent' prop, just this method...
+ end
+ if ~isempty(parent) % empty parent means root ancestor, so exit
+ hObj = ancestor(parent,type);
+ end
+ end
+ catch
+ % never mind...
+ end
+ end
+%end % ancestor
+
+%% Get position of an HG object in specified units
+function pos = getPos(hObj,field,units)
+ % Matlab 6 did not have hgconvertunits so use the old way...
+ oldUnits = get(hObj,'units');
+ if strcmpi(oldUnits,units) % don't modify units unless we must!
+ pos = get(hObj,field);
+ else
+ set(hObj,'units',units);
+ pos = get(hObj,field);
+ set(hObj,'units',oldUnits);
+ end
+%end % getPos
+
+%% Get pixel position of an HG object - for Matlab 6 compatibility
+function pos = getPixelPos(hObj,varargin)
+ persistent originalObj
+ try
+ stk = dbstack;
+ if ~strcmp(stk(2).name,'getPixelPos')
+ originalObj = hObj;
+ end
+
+ if isFigure(hObj) %| isAxes(hObj)
+ %try
+ pos = getPos(hObj,'OuterPosition','pixels');
+ else %catch
+ % getpixelposition is unvectorized unfortunately!
+ pos = getpixelposition(hObj,varargin{:});
+
+ % add the axes labels/ticks if relevant (plus a tiny margin to fix 2px label/title inconsistencies)
+ if isAxes(hObj) & ~isImage(originalObj) %#ok ML6
+ tightInsets = getPos(hObj,'TightInset','pixel');
+ pos = pos + tightInsets.*[-1,-1,1,1] + [-1,1,1+tightInsets(1:2)];
+ end
+ end
+ catch
+ try
+ % Matlab 6 did not have getpixelposition nor hgconvertunits so use the old way...
+ pos = getPos(hObj,'Position','pixels');
+ catch
+ % Maybe the handle does not have a 'Position' prop (e.g., text/line/plot) - use its parent
+ pos = getPixelPos(get(hObj,'parent'),varargin{:});
+ end
+ end
+
+ % Handle the case of missing/invalid/empty HG handle
+ if isempty(pos)
+ pos = [0,0,0,0];
+ end
+%end % getPixelPos
+
+%% Adds a ScreenCapture toolbar button
+function addToolbarButton(paramsStruct)
+ % Ensure we have a valid toolbar handle
+ hFig = ancestor(paramsStruct.toolbar,'figure');
+ if isempty(hFig)
+ error('YMA:screencapture:badToolbar','the ''Toolbar'' parameter must contain a valid GUI handle');
+ end
+ set(hFig,'ToolBar','figure');
+ hToolbar = findall(hFig,'type','uitoolbar');
+ if isempty(hToolbar)
+ error('YMA:screencapture:noToolbar','the ''Toolbar'' parameter must contain a figure handle possessing a valid toolbar');
+ end
+ hToolbar = hToolbar(1); % just in case there are several toolbars... - use only the first
+
+ % Prepare the camera icon
+ icon = ['3333333333333333'; ...
+ '3333333333333333'; ...
+ '3333300000333333'; ...
+ '3333065556033333'; ...
+ '3000000000000033'; ...
+ '3022222222222033'; ...
+ '3022220002222033'; ...
+ '3022203110222033'; ...
+ '3022201110222033'; ...
+ '3022204440222033'; ...
+ '3022220002222033'; ...
+ '3022222222222033'; ...
+ '3000000000000033'; ...
+ '3333333333333333'; ...
+ '3333333333333333'; ...
+ '3333333333333333'];
+ cm = [ 0 0 0; ... % black
+ 0 0.60 1; ... % light blue
+ 0.53 0.53 0.53; ... % light gray
+ NaN NaN NaN; ... % transparent
+ 0 0.73 0; ... % light green
+ 0.27 0.27 0.27; ... % gray
+ 0.13 0.13 0.13]; % dark gray
+ cdata = ind2rgb(uint8(icon-'0'),cm);
+
+ % If the button does not already exit
+ hButton = findall(hToolbar,'Tag','ScreenCaptureButton');
+ tooltip = 'Screen capture';
+ if ~isempty(paramsStruct.target)
+ tooltip = [tooltip ' to ' paramsStruct.target];
+ end
+ if isempty(hButton)
+ % Add the button with the icon to the figure's toolbar
+ hButton = uipushtool(hToolbar, 'CData',cdata, 'Tag','ScreenCaptureButton', 'TooltipString',tooltip, 'ClickedCallback',['screencapture(''' paramsStruct.target ''')']); %#ok unused
+ else
+ % Otherwise, simply update the existing button
+ set(hButton, 'CData',cdata, 'Tag','ScreenCaptureButton', 'TooltipString',tooltip, 'ClickedCallback',['screencapture(''' paramsStruct.target ''')']);
+ end
+%end % addToolbarButton
+
+%% Java-get the actual screen-capture image data
+function imgData = getScreenCaptureImageData(positionRect)
+ if isempty(positionRect) | all(positionRect==0) | positionRect(3)<=0 | positionRect(4)<=0 %#ok ML6
+ imgData = [];
+ else
+ % Use java.awt.Robot to take a screen-capture of the specified screen area
+ rect = java.awt.Rectangle(positionRect(1), positionRect(2), positionRect(3), positionRect(4));
+ robot = java.awt.Robot;
+ jImage = robot.createScreenCapture(rect);
+
+ % Convert the resulting Java image to a Matlab image
+ % Adapted for a much-improved performance from:
+ % http://www.mathworks.com/support/solutions/data/1-2WPAYR.html
+ h = jImage.getHeight;
+ w = jImage.getWidth;
+ %imgData = zeros([h,w,3],'uint8');
+ %pixelsData = uint8(jImage.getData.getPixels(0,0,w,h,[]));
+ %for i = 1 : h
+ % base = (i-1)*w*3+1;
+ % imgData(i,1:w,:) = deal(reshape(pixelsData(base:(base+3*w-1)),3,w)');
+ %end
+
+ % Performance further improved based on feedback from Urs Schwartz:
+ %pixelsData = reshape(typecast(jImage.getData.getDataStorage,'uint32'),w,h).';
+ %imgData(:,:,3) = bitshift(bitand(pixelsData,256^1-1),-8*0);
+ %imgData(:,:,2) = bitshift(bitand(pixelsData,256^2-1),-8*1);
+ %imgData(:,:,1) = bitshift(bitand(pixelsData,256^3-1),-8*2);
+
+ % Performance even further improved based on feedback from Jan Simon:
+ pixelsData = reshape(typecast(jImage.getData.getDataStorage, 'uint8'), 4, w, h);
+ imgData = cat(3, ...
+ transpose(reshape(pixelsData(3, :, :), w, h)), ...
+ transpose(reshape(pixelsData(2, :, :), w, h)), ...
+ transpose(reshape(pixelsData(1, :, :), w, h)));
+ end
+%end % getInteractivePosition
+
+%% Return the figure to its pre-undocked state (when relevant)
+function redockFigureIfRelevant(paramsStruct)
+ if paramsStruct.wasDocked
+ try
+ set(paramsStruct.hFigure,'WindowStyle','docked');
+ %drawnow;
+ catch
+ % never mind - ignore...
+ end
+ end
+%end % redockFigureIfRelevant
+
+%% Copy screen-capture to the system clipboard
+% Adapted from http://www.mathworks.com/matlabcentral/fileexchange/28708-imclipboard/content/imclipboard.m
+function imclipboard(imgData)
+ % Import necessary Java classes
+ import java.awt.Toolkit.*
+ import java.awt.image.BufferedImage
+ import java.awt.datatransfer.DataFlavor
+
+ % Add the necessary Java class (ImageSelection) to the Java classpath
+ if ~exist('ImageSelection', 'class')
+ % Obtain the directory of the executable (or of the M-file if not deployed)
+ %javaaddpath(fileparts(which(mfilename)), '-end');
+ if isdeployed % Stand-alone mode.
+ [status, result] = system('path'); %#ok
+ MatLabFilePath = char(regexpi(result, 'Path=(.*?);', 'tokens', 'once'));
+ else % MATLAB mode.
+ MatLabFilePath = fileparts(mfilename('fullpath'));
+ end
+ javaaddpath(MatLabFilePath, '-end');
+ end
+
+ % Get System Clipboard object (java.awt.Toolkit)
+ cb = getDefaultToolkit.getSystemClipboard; % can't use () in ML6!
+
+ % Get image size
+ ht = size(imgData, 1);
+ wd = size(imgData, 2);
+
+ % Convert to Blue-Green-Red format
+ imgData = imgData(:, :, [3 2 1]);
+
+ % Convert to 3xWxH format
+ imgData = permute(imgData, [3, 2, 1]);
+
+ % Append Alpha data (not used)
+ imgData = cat(1, imgData, 255*ones(1, wd, ht, 'uint8'));
+
+ % Create image buffer
+ imBuffer = BufferedImage(wd, ht, BufferedImage.TYPE_INT_RGB);
+ imBuffer.setRGB(0, 0, wd, ht, typecast(imgData(:), 'int32'), 0, wd);
+
+ % Create ImageSelection object
+ % % custom java class
+ imSelection = ImageSelection(imBuffer);
+
+ % Set clipboard content to the image
+ cb.setContents(imSelection, []);
+%end %imclipboard
+
+%% Is the provided handle a figure?
+function flag = isFigure(hObj)
+ flag = isa(handle(hObj),'figure') | isa(hObj,'matlab.ui.Figure');
+%end %isFigure
+
+%% Is the provided handle an axes?
+function flag = isAxes(hObj)
+ flag = isa(handle(hObj),'axes') | isa(hObj,'matlab.graphics.axis.Axes');
+%end %isFigure
+
+%% Is the provided handle an image?
+function flag = isImage(hObj)
+ flag = isa(handle(hObj),'image') | isa(hObj,'matlab.graphics.primitive.Image');
+%end %isFigure
+
+%%%%%%%%%%%%%%%%%%%%%%%%%% TODO %%%%%%%%%%%%%%%%%%%%%%%%%
+% find a way in interactive-mode to single-click another Matlab figure for screen-capture
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Plotter/LivePlot.m b/DipolarGasSimulator/+Plotter/LivePlot.m
new file mode 100644
index 0000000..1e3abb3
--- /dev/null
+++ b/DipolarGasSimulator/+Plotter/LivePlot.m
@@ -0,0 +1,47 @@
+function LPlot = LivePlot(psi,Params,Transf,Observ)
+ set(0,'defaulttextInterpreter','latex')
+ set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex');
+
+ format long
+ x = Transf.x*Params.l0*1e6;
+ y = Transf.y*Params.l0*1e6;
+ z = Transf.z*Params.l0*1e6;
+ %percentcomplete = linspace(0,1,Params.cut_off/200);
+
+ dx = x(2)-x(1); dy = y(2)-y(1); dz = z(2)-z(1);
+
+ %Plotting
+
+ subplot(2,3,1)
+ n = abs(psi).^2;
+ nxz = squeeze(trapz(n*dy,2));
+ nyz = squeeze(trapz(n*dx,1));
+ nxy = squeeze(trapz(n*dz,3));
+
+ plotxz = pcolor(x,z,nxz');
+ set(plotxz, 'EdgeColor', 'none');
+ xlabel('$x$ [$\mu$m]'); ylabel('$z$ [$\mu$m]');
+
+ subplot(2,3,2)
+ plotyz = pcolor(y,z,nyz');
+ set(plotyz, 'EdgeColor', 'none');
+ xlabel('$y$ [$\mu$m]'); ylabel('$z$ [$\mu$m]');
+
+ subplot(2,3,3)
+ plotxy = pcolor(x,y,nxy');
+ set(plotxy, 'EdgeColor', 'none');
+ xlabel('$x$ [$\mu$m]'); ylabel('$y$ [$\mu$m]');
+
+ subplot(2,3,4)
+ plot(-log10(Observ.residual),'-b')
+ ylabel('$-\mathrm{log}_{10}(r)$'); xlabel('steps');
+
+ subplot(2,3,5)
+ plot(Observ.EVec,'-b')
+ ylabel('$E$'); xlabel('steps');
+
+ subplot(2,3,6)
+ plot(Observ.mucVec,'-b')
+ ylabel('$\mu$'); xlabel('steps');
+% xlim([0,1]); ylim([0,8]);
+% xlim([0,1]); ylim([0,8]);
diff --git a/DipolarGasSimulator/+Plotter/MakeMovie.m b/DipolarGasSimulator/+Plotter/MakeMovie.m
new file mode 100644
index 0000000..8842cbd
--- /dev/null
+++ b/DipolarGasSimulator/+Plotter/MakeMovie.m
@@ -0,0 +1,77 @@
+set(0,'defaulttextInterpreter','latex')
+set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex');
+
+RunIdx = 1;
+
+FileDir = dir(sprintf('./Data/Run_%03i/TimeEvolution/*.mat',RunIdx));
+NumFiles = numel(FileDir);
+QuenchSettings = load(sprintf('./Data/Run_%03i/QuenchSettings',RunIdx),'Quench','Params','Transf','VDk','V');
+Transf = QuenchSettings.Transf; Params = QuenchSettings.Params;
+x = Transf.x; y = Transf.y; z = Transf.z;
+dx = x(2)-x(1); dy = y(2)-y(1); dz = z(2)-z(1);
+
+mkdir(sprintf('./Data/Run_%03i/Figures',RunIdx))
+outputVideo = VideoWriter(fullfile('./Data/Movie.avi'));
+outputVideo.FrameRate = 10;
+open(outputVideo)
+
+figure(1);
+x0 = 800;
+y0 = 200;
+width = 800;
+height = 600;
+set(gcf,'position',[x0,y0,width,height])
+
+EVecTemp = [];
+
+for ii = 2:(NumFiles-1)
+ load(sprintf('./Data/Run_%03i/TimeEvolution/psi_%i.mat',RunIdx,ii),'psi','muchem','T','Observ','t_idx');
+
+ %Plotting
+ subplot(2,3,1)
+ n = abs(psi).^2;
+ nxz = squeeze(trapz(n*dy,2));
+ nyz = squeeze(trapz(n*dx,1));
+ nxy = squeeze(trapz(n*dz,3));
+
+ plotxz = pcolor(x,z,nxz'); shading interp
+ set(plotxz, 'EdgeColor', 'none');
+ xlabel('$x$ [$\mu$m]'); ylabel('$z$ [$\mu$m]');
+
+ subplot(2,3,2)
+ plotyz = pcolor(y,z,nyz'); shading interp
+ set(plotyz, 'EdgeColor', 'none');
+ xlabel('$y$ [$\mu$m]'); ylabel('$z$ [$\mu$m]');
+
+ subplot(2,3,3)
+ plotxy = pcolor(x,y,nxy'); shading interp
+ set(plotxy, 'EdgeColor', 'none');
+ xlabel('$x$ [$\mu$m]'); ylabel('$y$ [$\mu$m]');
+
+ subplot(2,3,4)
+ plot(Observ.tVecPlot*1000/Params.w0,Observ.NormVec,'-b')
+ ylabel('Normalization'); xlabel('$t$ [$m$s]');
+
+ subplot(2,3,5)
+ plot(Observ.tVecPlot*1000/Params.w0,1-2*Observ.PCVec/pi,'-b')
+ ylabel('Coherence'); xlabel('$t$ [$m$s]');
+ ylim([0,1])
+
+ subplot(2,3,6)
+ plot(Observ.tVecPlot*1000/Params.w0,Observ.EVec,'-b')
+ ylabel('E'); xlabel('$t$ [$m$s]');
+
+ tVal = Observ.tVecPlot(end)*1000/Params.w0;
+ sgtitle(sprintf('$\\mu =%.3f \\hbar\\omega_0$, $T=%.1f$nK, $t=%.1f$ms',muchem,T,tVal))
+
+ drawnow
+ saveas(gcf,sprintf('./Data/Run_%03i/Figures/Image_%i.jpg',RunIdx,ii))
+ img = imread(sprintf('./Data/Run_%03i/Figures/Image_%i.jpg',RunIdx,ii));
+ writeVideo(outputVideo,img)
+% hold off;
+ clf
+end
+
+close(outputVideo)
+close(figure(1))
+delete(sprintf('./Data/Run_%03i/Figures/*.jpg',RunIdx)) % deleting images after movie is made
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Scripts/Analyze.m b/DipolarGasSimulator/+Scripts/Analyze.m
new file mode 100644
index 0000000..df85ab4
--- /dev/null
+++ b/DipolarGasSimulator/+Scripts/Analyze.m
@@ -0,0 +1,50 @@
+ set(0,'defaulttextInterpreter','latex')
+ set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex');
+ format long
+
+ runIdx = 6;
+
+ load(sprintf('./Data/Run_%03i/psi_gs.mat',runIdx),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V');
+
+ x = Transf.x*Params.l0*1e6;
+ y = Transf.y*Params.l0*1e6;
+ z = Transf.z*Params.l0*1e6;
+ %percentcomplete = linspace(0,1,Params.cut_off/200);
+
+ dx = x(2)-x(1); dy = y(2)-y(1); dz = z(2)-z(1);
+ %Plotting
+ subplot(2,3,1)
+ n = abs(psi).^2;
+ nxz = squeeze(trapz(n*dy,2));
+ nyz = squeeze(trapz(n*dx,1));
+ nxy = squeeze(trapz(n*dz,3));
+
+ plotxz = pcolor(x,z,nxz');
+ set(plotxz, 'EdgeColor', 'none');
+ xlabel('$x$ [$\mu$m]'); ylabel('$z$ [$\mu$m]');
+
+ subplot(2,3,2)
+ plotyz = pcolor(y,z,nyz');
+ set(plotyz, 'EdgeColor', 'none');
+ xlabel('$y$ [$\mu$m]'); ylabel('$z$ [$\mu$m]');
+
+ subplot(2,3,3)
+ plotxy = pcolor(x,y,nxy');
+ set(plotxy, 'EdgeColor', 'none');
+ xlabel('$x$ [$\mu$m]'); ylabel('$y$ [$\mu$m]');
+
+ subplot(2,3,4)
+ plot(-log10(Observ.residual),'-b')
+ ylabel('$-\mathrm{log}_{10}(r)$'); xlabel('steps');
+
+ subplot(2,3,5)
+ plot(Observ.EVec,'-b')
+ ylabel('$E$'); xlabel('steps');
+
+ subplot(2,3,6)
+ plot(Observ.mucVec,'-b')
+ ylabel('$\mu$'); xlabel('steps');
+% xlim([0,1]); ylim([0,8]);
+% xlim([0,1]); ylim([0,8]);
+
+ Ecomp = energy_components(psi,Params,Transf,VDk,V);
diff --git a/DipolarGasSimulator/+Simulator/@Calculator/ChemicalPotential.m b/DipolarGasSimulator/+Simulator/@Calculator/ChemicalPotential.m
new file mode 100644
index 0000000..697ab38
--- /dev/null
+++ b/DipolarGasSimulator/+Simulator/@Calculator/ChemicalPotential.m
@@ -0,0 +1,28 @@
+function muchem = ChemicalPotential(psi,Params,Transf,VDk,V)
+
+%Parameters
+normfac = Params.Lx*Params.Ly*Params.Lz/numel(psi);
+KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
+
+% DDIs
+frho=fftn(abs(psi).^2);
+Phi=real(ifftn(frho.*VDk));
+
+Eddi = (Params.gdd*Phi.*abs(psi).^2);
+
+%Kinetic energy
+Ekin = KEop.*abs(fftn(psi)*normfac).^2;
+Ekin = trapz(Ekin(:))*Transf.dkx*Transf.dky*Transf.dkz/(2*pi)^3;
+
+%Potential energy
+Epot = V.*abs(psi).^2;
+
+%Contact interactions
+Eint = Params.gs*abs(psi).^4;
+
+%Quantum fluctuations
+Eqf = Params.gammaQF*abs(psi).^5;
+
+%Total energy
+muchem = Ekin + trapz(Epot(:) + Eint(:) + Eddi(:) + Eqf(:))*Transf.dx*Transf.dy*Transf.dz; %
+muchem = muchem / Params.N;
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Simulator/@Calculator/EnergyComponents.m b/DipolarGasSimulator/+Simulator/@Calculator/EnergyComponents.m
new file mode 100644
index 0000000..49159ed
--- /dev/null
+++ b/DipolarGasSimulator/+Simulator/@Calculator/EnergyComponents.m
@@ -0,0 +1,35 @@
+function E = EnergyComponents(psi,Params,Transf,VDk,V)
+
+%Parameters
+
+KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
+normfac = Params.Lx*Params.Ly*Params.Lz/numel(psi);
+
+% DDIs
+frho = fftn(abs(psi).^2);
+Phi = real(ifftn(frho.*VDk));
+
+Eddi = 0.5*Params.gdd*Phi.*abs(psi).^2;
+E.Eddi = trapz(Eddi(:))*Transf.dx*Transf.dy*Transf.dz;
+
+% EddiTot = trapz(Eddi(:))*Transf.dx*Transf.dy*Transf.dz;
+
+%Kinetic energy
+% psik = ifftshift(fftn(fftshift(psi)))*normfac;
+
+Ekin = KEop.*abs(fftn(psi)*normfac).^2;
+E.Ekin = trapz(Ekin(:))*Transf.dkx*Transf.dky*Transf.dkz/(2*pi)^3;
+
+% Potential energy
+Epot = V.*abs(psi).^2;
+E.Epot = trapz(Epot(:))*Transf.dx*Transf.dy*Transf.dz;
+
+%Contact interactions
+Eint = 0.5*Params.gs*abs(psi).^4;
+E.Eint = trapz(Eint(:))*Transf.dx*Transf.dy*Transf.dz;
+
+%Quantum fluctuations
+Eqf = 0.4*Params.gammaQF*abs(psi).^5;
+E.Eqf = trapz(Eqf(:))*Transf.dx*Transf.dy*Transf.dz;
+
+% plot(Transf.x,abs(psi(:,end/2,end/2+1)).^2)
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Simulator/@Calculator/NormalizedResiduals.m b/DipolarGasSimulator/+Simulator/@Calculator/NormalizedResiduals.m
new file mode 100644
index 0000000..66e5316
--- /dev/null
+++ b/DipolarGasSimulator/+Simulator/@Calculator/NormalizedResiduals.m
@@ -0,0 +1,24 @@
+function res = NormalizedResiduals(psi,Params,Transf,VDk,V,muchem)
+
+KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
+
+% DDIs
+frho=fftn(abs(psi).^2);
+Phi=real(ifftn(frho.*VDk));
+
+Eddi = Params.gdd*Phi.*psi;
+
+%Kinetic energy
+Ekin = ifftn(KEop.*fftn(psi));
+
+%Potential energy
+Epot = V.*psi;
+
+%Contact interactions
+Eint = Params.gs*abs(psi).^2.*psi;
+
+%Quantum fluctuations
+Eqf = Params.gammaQF*abs(psi).^3.*psi;
+
+%Total energy
+res = trapz(abs(Ekin(:) + Epot(:) + Eint(:) + Eddi(:) + Eqf(:) - muchem*psi(:))*Transf.dx*Transf.dy*Transf.dz)/trapz(abs(muchem*psi(:))*Transf.dx*Transf.dy*Transf.dz);
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Simulator/@Calculator/OrderParameter.m b/DipolarGasSimulator/+Simulator/@Calculator/OrderParameter.m
new file mode 100644
index 0000000..08b0fa4
--- /dev/null
+++ b/DipolarGasSimulator/+Simulator/@Calculator/OrderParameter.m
@@ -0,0 +1,58 @@
+function [m_Order] = OrderParameter(psi,Transf,Params,VDk,V,T,muchem)
+
+ NumRealiz = 100;
+
+ Mx = numel(Transf.x);
+ My = numel(Transf.y);
+ Mz = numel(Transf.z);
+
+ r = normrnd(0,1,size(psi));
+ theta = rand(size(psi));
+ noise = r.*exp(2*pi*1i*theta);
+
+ KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
+ Gamma = 1-1i*Params.gamma_S;
+ dt = Params.dt;
+
+ avgpsi = 0;
+ avgpsi2 = 0;
+
+ for jj = 1:NumRealiz
+ %generate initial state
+ xi = sqrt(2*Params.gamma_S*Params.kbol*T*10^(-9)*dt/(Params.hbar*Params.w0*Transf.dx*Transf.dy*Transf.dz));
+ swapx = randi(length(Transf.x),1,length(Transf.x));
+ swapy = randi(length(Transf.y),1,length(Transf.y));
+ swapz = randi(length(Transf.z),1,length(Transf.z));
+ psi_j = psi + xi * noise(swapx,swapy,swapz);
+
+ % --- % propagate forward in time 1 time step:
+ %kin
+ psi_j = fftn(psi_j);
+ psi_j = psi_j.*exp(-0.5*1i*Gamma*dt*KEop);
+ psi_j = ifftn(psi_j);
+
+ %DDI
+ frho = fftn(abs(psi_j).^2);
+ Phi = real(ifftn(frho.*VDk));
+
+ %Real-space
+ psi_j = psi_j.*exp(-1i*Gamma*dt*(V + Params.gs*abs(psi_j).^2 + Params.gammaQF*abs(psi_j).^3 + Params.gdd*Phi - muchem));
+
+ %kin
+ psi_j = fftn(psi_j);
+ psi_j = psi_j.*exp(-0.5*1i*Gamma*dt*KEop);
+ psi_j = ifftn(psi_j);
+
+ %Projection
+ kcut = sqrt(2*Params.e_cut);
+ K = (Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2) 4 && abs(dt) > Params.mindt
+ dt = dt / 2;
+ fprintf('Time step changed to '); disp(dt);
+ AdaptIdx = 0;
+ elseif AdaptIdx > 4 && abs(dt) < Params.mindt
+ break
+ else
+ AdaptIdx = AdaptIdx + 1;
+ end
+ else
+ AdaptIdx = 0;
+ end
+ end
+ if any(isnan(psi(:)))
+ disp('NaNs encountered!')
+ break
+ end
+ t_idx=t_idx+1;
+end
+
+%Change in Energy
+E = Simulator.TotalEnergy(psi,Params,Transf,VDk,V);
+E = E/Norm;
+Observ.EVec = [Observ.EVec E];
+
+% Phase coherence
+[PhaseC] = Simulator.PhaseCoherence(psi,Transf,Params);
+Observ.PCVec = [Observ.PCVec PhaseC];
+
+Observ.res_idx = Observ.res_idx + 1;
+save(sprintf('./Data/Run_%03i/psi_gs.mat',njob),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V');
+end
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Simulator/@Solver/Initialize.m b/DipolarGasSimulator/+Simulator/@Solver/Initialize.m
new file mode 100644
index 0000000..6d425e7
--- /dev/null
+++ b/DipolarGasSimulator/+Simulator/@Solver/Initialize.m
@@ -0,0 +1,64 @@
+function [psi,V,VDk] = Initialize(Params,Transf)
+
+format long
+X = Transf.X; Y = Transf.Y; Z = Transf.Z;
+Zcutoff = Params.Lz/2;
+
+% == Potential == %
+V = 0.5*(Params.gx.*X.^2+Params.gy.*Y.^2+Params.gz*Z.^2);
+
+% == Calculating the DDIs == %
+% For a cylindrical cutoff, we first construct a kr grid based on the 3D parameters using Bessel quadrature
+loadDDI = 1;
+
+if loadDDI == 1
+ VDk = load(sprintf('./Data/VDk_M.mat'));
+ VDk = VDk.VDk;
+else
+ Params.Lr = 0.5*min(Params.Lx,Params.Ly);
+ Params.Nr = max(Params.Nx,Params.Ny);
+ [TransfRad] = Simulator.SetupSpaceRadial(Params); %morder really doesn't matter
+ VDk = Simulator.VDcutoff(TransfRad.kr,TransfRad.kz,TransfRad.Rmax,Zcutoff);
+
+ disp('Calculated radial grid and cutoff')
+
+ % VDk = interp2(DDI.kz,DDI.kr,DDI.VDk,Transf.kz,Transf.kr,'spline');
+ fullkr = [-flip(TransfRad.kr)',TransfRad.kr'];
+ [KR,KZ] = ndgrid(fullkr,TransfRad.kz);
+
+ [KX3D,KY3D,KZ3D] = ndgrid(ifftshift(Transf.kx),ifftshift(Transf.ky),ifftshift(Transf.kz));
+ KR3D = sqrt(KX3D.^2 + KY3D.^2);
+ fullVDK = [flip(VDk',2),VDk']';
+ VDk = interpn(KR,KZ,fullVDK,KR3D,KZ3D,'spline',-1/3); %Interpolating the radial VDk onto a new grid
+ VDk = fftshift(VDk);
+ save(sprintf('./Data/VDk_M.mat'),'VDk');
+end
+disp('Finished DDI')
+
+% == Setting up the initial wavefunction == %
+
+ellx = sqrt(Params.hbar/(Params.m*Params.wx))/Params.l0;
+elly = sqrt(Params.hbar/(Params.m*Params.wy))/Params.l0;
+ellz = sqrt(Params.hbar/(Params.m*Params.wz))/Params.l0;
+
+Rx = 4*sqrt(2)*ellx;
+Ry = 4*sqrt(2)*elly;
+Rz = sqrt(2)*ellz;
+X0 = 0.0*Transf.Xmax;
+Y0 = 0.0*Transf.Ymax;
+Z0 = 0*Transf.Zmax;
+
+psiz = exp(-(Z-Z0).^2/Rz^2)/sqrt(ellz*sqrt(pi));
+psi2d = load(sprintf('./Data/Seed/psi_2d_SS.mat'),'psiseed_2d'); psi2d = psi2d.psiseed_2d;
+psi = psiz.*repmat(psi2d,[1 1 length(Transf.z)]);
+
+% Add some noise
+r = normrnd(0,1,size(X));
+theta = rand(size(X));
+noise = r.*exp(2*pi*1i*theta);
+psi = psi + 0.00*noise;
+
+Norm = trapz(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz;
+psi = sqrt(Params.N)*psi/sqrt(Norm);
+
+end
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Simulator/@Solver/Run.m b/DipolarGasSimulator/+Simulator/@Solver/Run.m
new file mode 100644
index 0000000..65308c1
--- /dev/null
+++ b/DipolarGasSimulator/+Simulator/@Solver/Run.m
@@ -0,0 +1,28 @@
+%-% Run Simulation %-%
+clearvars
+
+% --- Obtain simulation parameters ---
+[Params] = SetupParameters();
+
+% --- Set up spatial grids and transforms ---
+[Transf] = SetupSpace(Params);
+
+% --- Initialize ---
+
+[psi,V,VDk] = Initialize(Params,Transf);
+
+Observ.EVec = []; Observ.NormVec = []; Observ.PCVec = []; Observ.tVecPlot = []; Observ.mucVec = [];
+t_idx = 1; %Start at t = 0;
+Observ.res_idx = 1;
+
+% --- Job Settings ---
+
+njob = 6;
+
+mkdir(sprintf('./Data'))
+mkdir(sprintf('./Data/Run_%03i',njob))
+
+% --- Run Simulation ---
+
+% Imaginary Time Evolution
+[psi] = SplitStepFourierImaginaryTime(psi,Params,Transf,VDk,V,njob,t_idx,Observ);
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Simulator/@Solver/SetupParameters.m b/DipolarGasSimulator/+Simulator/@Solver/SetupParameters.m
new file mode 100644
index 0000000..4b40c4d
--- /dev/null
+++ b/DipolarGasSimulator/+Simulator/@Solver/SetupParameters.m
@@ -0,0 +1,101 @@
+function [Params] = SetupParameters()
+
+%%--%% Parameters %%--%%
+
+%========= Simulation =========%
+pert = 0; % 0 = no perturbation during real-time, 1=perturbation
+%method=1; % 0 = normal dipolar potential, 1=spherical cut-off, 2=cylindrical cut-off
+
+% Tolerances
+Params.Etol = 5e-10;
+Params.rtol = 1e-5;
+Params.cut_off = 2e6; % sometimes the imaginary time gets a little stuck
+ % even though the solution is good, this just stops it going on forever
+
+%========= Constants =========%
+hbar = 1.0545718e-34; % Planck constant [J.s]
+kbol = 1.38064852e-23; % Boltzmann Constant [J/K]
+mu0 = 1.25663706212e-6; % Vacuum Permeability [N/A^2] --
+muB = 9.274009994e-24; % Bohr Magneton [J/T]
+a0 = 5.2917721067e-11; % Bohr radius [m]
+m0 = 1.660539066e-27; % Atomic mass [kg]
+w0 = 2*pi*100; % Angular frequency unit [s^-1]
+mu0factor = 0.3049584233607396; % =(m0/me)*pi*alpha^2 -- me=mass of electron, alpha=fine struct. const.
+ % mu0=mu0factor *hbar^2*a0/(m0*muB^2)
+%=============================%
+
+% Number of points in each direction
+Params.Nx = 128;
+Params.Ny = 128;
+Params.Nz = 96;
+
+% Dimensions (in units of l0)
+Params.Lx = 40;
+Params.Ly = 40;
+Params.Lz = 20;
+
+% Masses
+Params.m = 162*m0;
+l0 = sqrt(hbar/(Params.m*w0)); % Defining a harmonic oscillator length
+
+% Atom numbers
+% Params.ppum = 2500; % particles per micron
+% Params.N = Params.Lz*Params.ppum*l0*1e6;
+Params.N = 10^6;
+
+% Dipole angle
+Params.theta = pi/2; % pi/2 dipoles along x, theta=0 dipoles along z
+
+% Dipole lengths (units of muB)
+Params.mu = 9.93*muB;
+
+% Scattering lengths
+Params.as = 86*a0;
+
+% Trapping frequencies
+Params.wx = 2*pi*125;
+Params.wy = 2*pi*125;
+Params.wz = 2*pi*250;
+
+% Time step
+Params.dt = 0.0005;
+Params.mindt = 1e-6; %Minimum size for a time step using adaptive dt
+
+% Stochastic GPE
+Params.gamma_S = 7.5*10^(-3); % gamma for the stochastic GPE
+Params.muchem = 12.64*Params.wz/w0; % fixing the chemical potential for the stochastic GPE
+
+% ================ Parameters defined by those above ================ %
+
+% == Calculating quantum fluctuations == %
+eps_dd = Params.add/Params.as;
+if eps_dd == 0
+ Q5 = 1;
+elseif eps_dd == 1
+ Q5 = 3*sqrt(3)/2;
+else
+ yeps = (1-eps_dd)/(3*eps_dd);
+ Q5 = (3*eps_dd)^(5/2)*( (8+26*yeps+33*yeps^2)*sqrt(1+yeps) + 15*yeps^3*log((1+sqrt(1+yeps))/sqrt(yeps)) )/48;
+ Q5 = real(Q5);
+end
+
+Params.gammaQF = 128/3*sqrt(pi*(Params.as/l0)^5)*Q5;
+
+% Contact interaction strength (units of l0/m)
+Params.gs = 4*pi*Params.as/l0;
+
+% Dipole lengths
+Params.add = mu0*Params.mu^2*Params.m/(12*pi*hbar^2);
+
+% DDI strength
+Params.gdd = 12*pi*Params.add/l0; %sometimes the 12 is a 4? --> depends on how Vdk (DDI) is defined
+
+% Trap gamma
+Params.gx=(Params.wx/w0)^2;
+Params.gy=(Params.wy/w0)^2;
+Params.gz=(Params.wz/w0)^2;
+
+% Loading the rest into Params
+Params.hbar = hbar; Params.kbol = kbol; Params.mu0 = mu0; Params.muB = muB; Params.a0 = a0;
+Params.w0 = w0; Params.l0 = l0;
+end
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Simulator/@Solver/SetupSpace.m b/DipolarGasSimulator/+Simulator/@Solver/SetupSpace.m
new file mode 100644
index 0000000..d970966
--- /dev/null
+++ b/DipolarGasSimulator/+Simulator/@Solver/SetupSpace.m
@@ -0,0 +1,33 @@
+function [Transf] = SetupSpace(Params)
+Transf.Xmax = 0.5*Params.Lx;
+Transf.Ymax = 0.5*Params.Ly;
+Transf.Zmax = 0.5*Params.Lz;
+
+Nz = Params.Nz; Nx = Params.Nx; Ny = Params.Ny;
+
+% Fourier grids
+x = linspace(-0.5*Params.Lx,0.5*Params.Lx-Params.Lx/Params.Nx,Params.Nx);
+Kmax = pi*Params.Nx/Params.Lx;
+kx = linspace(-Kmax,Kmax,Nx+1);
+kx = kx(1:end-1); dkx = kx(2)-kx(1);
+kx = fftshift(kx);
+
+y = linspace(-0.5*Params.Ly,0.5*Params.Ly-Params.Ly/Params.Ny,Params.Ny);
+Kmax = pi*Params.Ny/Params.Ly;
+ky = linspace(-Kmax,Kmax,Ny+1);
+ky = ky(1:end-1); dky = ky(2)-ky(1);
+ky = fftshift(ky);
+
+z = linspace(-0.5*Params.Lz,0.5*Params.Lz-Params.Lz/Params.Nz,Params.Nz);
+Kmax = pi*Params.Nz/Params.Lz;
+kz = linspace(-Kmax,Kmax,Nz+1);
+kz = kz(1:end-1); dkz = kz(2)-kz(1);
+kz = fftshift(kz);
+
+[Transf.X,Transf.Y,Transf.Z]=ndgrid(x,y,z);
+[Transf.KX,Transf.KY,Transf.KZ]=ndgrid(kx,ky,kz);
+Transf.x = x; Transf.y = y; Transf.z = z;
+Transf.kx = kx; Transf.ky = ky; Transf.kz = kz;
+Transf.dx = x(2)-x(1); Transf.dy = y(2)-y(1); Transf.dz = z(2)-z(1);
+Transf.dkx = dkx; Transf.dky = dky; Transf.dkz = dkz;
+end
\ No newline at end of file
diff --git a/DipolarGasSimulator/+Simulator/@Solver/SetupSpaceRadial.m b/DipolarGasSimulator/+Simulator/@Solver/SetupSpaceRadial.m
new file mode 100644
index 0000000..1f8d74f
--- /dev/null
+++ b/DipolarGasSimulator/+Simulator/@Solver/SetupSpaceRadial.m
@@ -0,0 +1,311 @@
+function [Transf] = SetupSpaceRadial(Params,morder)
+Zmax = 0.5*Params.Lz;
+Rmax = Params.Lr;
+Nz = Params.Nz;
+Nr = Params.Nr;
+
+if(nargin==1)
+ morder=0; %only do Bessel J0
+end
+
+% Fourier grids
+z=linspace(-Zmax,Zmax,Nz+1);
+z=z(1:end-1);
+dz=z(2)-z(1);
+Kmax=Nz*2*pi/(4*Zmax);
+kz=linspace(-Kmax,Kmax,Nz+1);
+kz=kz(1:end-1);
+
+% Hankel grids and transform
+H = hankelmatrix(morder,Rmax,Nr);
+r=H.r(:);
+kr=H.kr(:);
+T = diag(H.J/H.kmax)*H.T*diag(Rmax./H.J)*dz*(2*pi);
+Tinv = diag(H.J./Rmax)*H.T'*diag(H.kmax./H.J)/dz/(2*pi);
+wr=H.wr;
+wk=H.wk;
+% H.T'*diag(H.J/H.vmax)*H.T*diag(Rmax./H.J)
+
+[Transf.R,Transf.Z]=ndgrid(r,z);
+[Transf.KR,Transf.KZ]=ndgrid(kr,kz);
+Transf.T=T;
+Transf.Tinv=Tinv;
+Transf.r=r;
+Transf.kr=kr;
+Transf.z=z;
+Transf.kz=kz;
+Transf.wr=wr;
+Transf.wk=wk;
+Transf.Rmax=Rmax;
+Transf.Zmax=Zmax;
+Transf.dz=z(2)-z(1);
+Transf.dkz=kz(2)-kz(1);
+%b1=Transf;
+
+function s_HT = hankelmatrix(order, rmax, Nr, eps_roots)
+%HANKEL_MATRIX: Generates data to use for Hankel Transforms
+%
+% s_HT = hankel_matrix(order, rmax, Nr, eps_roots)
+%
+% s_HT = Structure containing data to use for the pQDHT
+% order = Transform order
+% rmax = Radial extent of transform
+% Nr = Number of sample points
+% eps_roots = Error in estimation of roots of Bessel function (optional)
+%
+% s_HT:
+% order, rmax, Nr = As above
+% J_roots = Roots of the pth order Bessel fn.
+% J_roots_N1 = (N+1)th root
+% r = Radial co-ordinate vector
+% v = frequency co-ordinate vector
+% kr = Radial wave number co-ordinate vector
+% vmax = Limiting frequency
+% = roots_N1 / (2*pi*rmax)
+% S = rmax * 2*pi*vmax (S product)
+% T = Transform matrix
+% J = Scaling vector
+% = J_(order+1){roots}
+%
+% The algorithm used is that from:
+% "Computation of quasi-discrete Hankel transforms of the integer
+% order for propagating optical wave fields"
+% Manuel Guizar-Sicairos and Julio C. Guitierrez-Vega
+% J. Opt. Soc. Am. A 21(1) 53-58 (2004)
+%
+% The algorithm also calls the function:
+% zn = bessel_zeros(1, p, Nr+1, 1e-6),
+% where p and N are defined above, to calculate the roots of the bessel
+% function. This algorithm is taken from:
+% "An Algorithm with ALGOL 60 Program for the Computation of the
+% zeros of the Ordinary Bessel Functions and those of their
+% Derivatives".
+% N. M. Temme
+% Journal of Computational Physics, 32, 270-279 (1979)
+%
+% Example: Propagation of radial field
+%
+% % Note the use of matrix and element products / divisions
+% H = hankel_matrix(0, 1e-3, 512);
+% DR0 = 50e-6;
+% Ur0 = exp(-(H.r/DR0).^2);
+% Ukr0 = H.T * (Ur0./H.J);
+% k0 = 2*pi/800e-9;
+% kz = realsqrt((k0^2 - H.kr.^2).*(k0>H.kr));
+% z = (-5e-3:1e-5:5e-3);
+% Ukrz = (Ukr0*ones(1,length(z))).*exp(i*kz*z);
+% Urz = (H.T * Ukrz) .* (H.J * ones(1,length(z)));
+%
+% See also bessel_zeros, besselj
+
+if (~exist('eps_roots', 'var')||isemtpy(eps_roots))
+ s_HT.eps_roots = 1e-6;
+else
+ s_HT.eps_roots = eps_roots;
+end
+
+s_HT.order = order;
+s_HT.rmax = rmax;
+s_HT.Nr = Nr;
+
+% Calculate N+1 roots:
+J_roots = bessel_zeros(1, s_HT.order, s_HT.Nr+1, s_HT.eps_roots);
+s_HT.J_roots = J_roots(1:end-1);
+s_HT.J_roots_N1 = J_roots(end);
+
+% Calculate co-ordinate vectors
+s_HT.r = s_HT.J_roots * s_HT.rmax / s_HT.J_roots_N1;
+s_HT.v = s_HT.J_roots / (2*pi * s_HT.rmax);
+s_HT.kr = 2*pi * s_HT.v;
+s_HT.kmax = s_HT.J_roots_N1 / (s_HT.rmax);
+s_HT.vmax = s_HT.J_roots_N1 / (2*pi * s_HT.rmax);
+s_HT.S = s_HT.J_roots_N1;
+
+% Calculate hankel matrix and vectors
+% I use (p=order) and (p1=order+1)
+Jp = besselj(s_HT.order, (s_HT.J_roots) * (s_HT.J_roots.') / s_HT.S);
+Jp1 = abs(besselj(s_HT.order+1, s_HT.J_roots));
+s_HT.T = 2*Jp./(Jp1 * (Jp1.') * s_HT.S);
+s_HT.J = Jp1;
+s_HT.wr=2./((s_HT.kmax)^2*abs(Jp1).^2);
+s_HT.wk=2./((s_HT.rmax)^2*abs(Jp1).^2);
+
+return
+
+
+
+
+function z = bessel_zeros(d, a, n, e)
+%BESSEL_ZEROS: Finds the first n zeros of a bessel function
+%
+% z = bessel_zeros(d, a, n, e)
+%
+% z = zeros of the bessel function
+% d = Bessel function type:
+% 1: Ja
+% 2: Ya
+% 3: Ja'
+% 4: Ya'
+% a = Bessel order (a>=0)
+% n = Number of zeros to find
+% e = Relative error in root
+%
+% This function uses the routine described in:
+% "An Algorithm with ALGOL 60 Program for the Computation of the
+% zeros of the Ordinary Bessel Functions and those of their
+% Derivatives".
+% N. M. Temme
+% Journal of Computational Physics, 32, 270-279 (1979)
+
+z = zeros(n, 1);
+aa = a^2;
+mu = 4*aa;
+mu2 = mu^2;
+mu3 = mu^3;
+mu4 = mu^4;
+
+if (d<3)
+ p = 7*mu - 31;
+ p0 = mu - 1;
+ if ((1+p)==p)
+ p1 = 0;
+ q1 = 0;
+ else
+ p1 = 4*(253*mu2 - 3722*mu+17869)*p0/(15*p);
+ q1 = 1.6*(83*mu2 - 982*mu + 3779)/p;
+ end
+else
+ p = 7*mu2 + 82*mu - 9;
+ p0 = mu + 3;
+ if ((p+1)==1)
+ p1 = 0;
+ q1 = 0;
+ else
+ p1 = (4048*mu4 + 131264*mu3 - 221984*mu2 - 417600*mu + 1012176)/(60*p);
+ q1 = 1.6*(83*mu3 + 2075*mu2 - 3039*mu + 3537)/p;
+ end
+end
+
+if (d==1)|(d==4)
+ t = .25;
+else
+ t = .75;
+end
+tt = 4*t;
+
+if (d<3)
+ pp1 = 5/48;
+ qq1 = -5/36;
+else
+ pp1 = -7/48;
+ qq1 = 35/288;
+end
+
+y = .375*pi;
+if (a>=3)
+ bb = a^(-2/3);
+else
+ bb = 1;
+end
+a1 = 3*a - 8;
+% psi = (.5*a + .25)*pi;
+
+for s=1:n
+ if ((a==0)&(s==1)&(d==3))
+ x = 0;
+ j = 0;
+ else
+ if (s>=a1)
+ b = (s + .5*a - t)*pi;
+ c = .015625/(b^2);
+ x = b - .125*(p0 - p1*c)/(b*(1 - q1*c));
+ else
+ if (s==1)
+ switch (d)
+ case (1)
+ x = -2.33811;
+ case (2)
+ x = -1.17371;
+ case (3)
+ x = -1.01879;
+ otherwise
+ x = -2.29444;
+ end
+ else
+ x = y*(4*s - tt);
+ v = x^(-2);
+ x = -x^(2/3) * (1 + v*(pp1 + qq1*v));
+ end
+ u = x*bb;
+ v = fi(2/3 * (-u)^1.5);
+ w = 1/cos(v);
+ xx = 1 - w^2;
+ c = sqrt(u/xx);
+ if (d<3)
+ x = w*(a + c*(-5/u - c*(6 - 10/xx))/(48*a*u));
+ else
+ x = w*(a + c*(7/u + c*(18 - 14/xx))/(48*a*u));
+ end
+ end
+ j = 0;
+
+while ((j==0)|((j<5)&(abs(w/x)>e)))
+ xx = x^2;
+ x4 = x^4;
+ a2 = aa - xx;
+ r0 = bessr(d, a, x);
+ j = j+1;
+ if (d<3)
+ u = r0;
+ w = 6*x*(2*a + 1);
+ p = (1 - 4*a2)/w;
+ q = (4*(xx-mu) - 2 - 12*a)/w;
+ else
+ u = -xx*r0/a2;
+ v = 2*x*a2/(3*(aa+xx));
+ w = 64*a2^3;
+ q = 2*v*(1 + mu2 + 32*mu*xx + 48*x4)/w;
+ p = v*(1 + (40*mu*xx + 48*x4 - mu2)/w);
+ end
+ w = u*(1 + p*r0)/(1 + q*r0);
+ x = x+w;
+ end
+ z(s) = x;
+ end
+end
+
+
+function FI = fi(y)
+ c1 = 1.570796;
+ if (~y)
+ FI = 0;
+ elseif (y>1e5)
+ FI = c1;
+ else
+ if (y<1)
+ p = (3*y)^(1/3);
+ pp = p^2;
+ p = p*(1 + pp*(pp*(27 - 2*pp) - 210)/1575);
+ else
+ p = 1/(y + c1);
+ pp = p^2;
+ p = c1 - p*(1 + pp*(2310 + pp*(3003 + pp*(4818 + pp*(8591 + pp*16328))))/3465);
+ end
+ pp = (y+p)^2;
+ r = (p - atan(p+y))/pp;
+ FI = p - (1+pp)*r*(1 + r/(p+y));
+ end
+return
+
+function Jr = bessr(d, a, x)
+ switch (d)
+ case (1)
+ Jr = besselj(a, x)./besselj(a+1, x);
+ case (2)
+ Jr = bessely(a, x)./bessely(a+1, x);
+ case (3)
+ Jr = a./x - besselj(a+1, x)./besselj(a, x);
+ otherwise
+ Jr = a./x - bessely(a+1, x)./bessely(a, x);
+ end
+return
\ No newline at end of file
diff --git a/IRF/Analysis.m b/IRF/Analysis.m
new file mode 100644
index 0000000..7aa3072
--- /dev/null
+++ b/IRF/Analysis.m
@@ -0,0 +1,469 @@
+%% Parameters
+
+groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", "/images/Vertical_Axis_Camera/in_situ_absorption"];
+
+folderPath = "C:/Users/Karthik/Documents/GitRepositories/Calculations/IRF/0044/";
+
+cam = 5;
+
+angle = 90 + 51.5;
+center = [1700, 2300];
+span = [255, 255];
+fraction = [0.1, 0.1];
+
+NA = 0.6;
+pixel_size = 4.6e-6;
+lambda = 421e-9;
+
+d = lambda/2/pi/NA;
+k_cutoff = NA/lambda/1e6;
+
+%% Compute OD image, rotate and extract ROI for analysis
+% Get a list of all files in the folder with the desired file name pattern.
+filePattern = fullfile(folderPath, '*.h5');
+files = dir(filePattern);
+refimages = zeros(span(1) + 1, span(2) + 1, length(files));
+absimages = zeros(span(1) + 1, span(2) + 1, length(files));
+
+
+for k = 1 : length(files)
+ baseFileName = files(k).name;
+ fullFileName = fullfile(files(k).folder, baseFileName);
+
+ fprintf(1, 'Now reading %s\n', fullFileName);
+
+ atm_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle));
+ bkg_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
+ dark_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
+
+ refimages(:,:,k) = subtract_offset(crop_image(bkg_img, center, span), fraction);
+ absimages(:,:,k) = subtract_offset(crop_image(calculate_OD(atm_img, bkg_img, dark_img), center, span), fraction);
+
+end
+%% Fringe removal
+
+optrefimages = fringeremoval(absimages, refimages);
+absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :);
+
+nimgs = size(absimages_fringe_removed,3);
+od_imgs = cell(1, nimgs);
+for i = 1:nimgs
+ od_imgs{i} = absimages_fringe_removed(:, :, i);
+end
+
+%% Compute the Density Noise Spectrum
+
+mean_subtracted_od_imgs = cell(1, length(od_imgs));
+mean_od_img = mean(cat(3, od_imgs{:}), 3, 'double');
+
+density_fft = cell(1, length(od_imgs));
+density_noise_spectrum = cell(1, length(od_imgs));
+
+[Nx, Ny] = size(mean_od_img);
+dx = pixel_size;
+dy = pixel_size;
+
+xvals = (1:Nx)*dx*1e6;
+yvals = (1:Ny)*dy*1e6;
+
+Nyq_k = 1/dx; % Nyquist
+dk = 1/(Nx*dx); % Wavenumber increment
+kx = -Nyq_k/2:dk:Nyq_k/2-dk; % wavenumber
+kx = kx * dx; % wavenumber (in units of 1/dx)
+
+Nyq_k = 1/dy; % Nyquist
+dk = 1/(Ny*dy); % Wavenumber increment
+ky = -Nyq_k/2:dk:Nyq_k/2-dk; % wavenumber
+ky = ky * dy; % wavenumber (in units of 1/dy)
+
+% Create Circular Mask
+n = 2^8; % size of mask
+mask = zeros(n);
+I = 1:n;
+x = I-n/2; % mask x-coordinates
+y = n/2-I; % mask y-coordinates
+[X,Y] = meshgrid(x,y); % create 2-D mask grid
+R = 32; % aperture radius
+A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R
+mask(A) = 1; % set mask elements inside aperture to 1
+
+
+% Calculate Power Spectrum and plot
+figure('Position', [100, 100, 1200, 800]);
+clf
+
+for k = 1 : length(od_imgs)
+ mean_subtracted_od_imgs{k} = od_imgs{k} - mean_od_img;
+ masked_img = mean_subtracted_od_imgs{k} .* mask;
+ density_fft{k} = (1/numel(masked_img)) * abs(fftshift(fft2(masked_img)));
+ density_noise_spectrum{k} = density_fft{k}.^2;
+
+ % Subplot 1
+ % subplot(2, 3, 1);
+ subplot('Position', [0.05, 0.55, 0.28, 0.4])
+ imagesc(xvals, yvals, od_imgs{k})
+ xlabel('µm', 'FontSize', 16)
+ ylabel('µm', 'FontSize', 16)
+ axis equal tight;
+ colorbar
+ colormap (flip(jet));
+ % set(gca,'CLim',[0 100]);
+ set(gca,'YDir','normal')
+ title('Single-shot image', 'FontSize', 16);
+
+ % Subplot 2
+ % subplot(2, 3, 2);
+ subplot('Position', [0.36, 0.55, 0.28, 0.4])
+ imagesc(xvals, yvals, mean_od_img)
+ xlabel('µm', 'FontSize', 16)
+ ylabel('µm', 'FontSize', 16)
+ axis equal tight;
+ colorbar
+ colormap (flip(jet));
+ % set(gca,'CLim',[0 100]);
+ set(gca,'YDir','normal')
+ title('Averaged density image', 'FontSize', 16);
+
+ % Subplot 3
+ % subplot(2, 3, 3);
+ subplot('Position', [0.67, 0.55, 0.28, 0.4]);
+ imagesc(xvals, yvals, mean_subtracted_od_imgs{k})
+ xlabel('µm', 'FontSize', 16)
+ ylabel('µm', 'FontSize', 16)
+ axis equal tight;
+ colorbar
+ colormap (flip(jet));
+ % set(gca,'CLim',[0 100]);
+ set(gca,'YDir','normal')
+ title('Image noise = Single-shot - Average', 'FontSize', 16);
+
+ % Subplot 4
+ % subplot(2, 3, 4);
+ subplot('Position', [0.05, 0.05, 0.28, 0.4]);
+ imagesc(xvals, yvals, mean_subtracted_od_imgs{k} .* mask)
+ xlabel('µm', 'FontSize', 16)
+ ylabel('µm', 'FontSize', 16)
+ axis equal tight;
+ colorbar
+ colormap (flip(jet));
+ % set(gca,'CLim',[0 100]);
+ set(gca,'YDir','normal')
+ title('Masked Noise', 'FontSize', 16);
+
+ % Subplot 5
+ % subplot(2, 3, 5);
+ subplot('Position', [0.36, 0.05, 0.28, 0.4]);
+ imagesc(kx, ky, abs(log2(density_fft{k})))
+ xlabel('1/dx', 'FontSize', 16)
+ ylabel('1/dy', 'FontSize', 16)
+ axis equal tight;
+ colorbar
+ colormap (flip(jet));
+ % set(gca,'CLim',[0 100]);
+ set(gca,'YDir','normal')
+ title('DFT', 'FontSize', 16);
+
+ % Subplot 6
+ % subplot(2, 3, 6);
+ subplot('Position', [0.67, 0.05, 0.28, 0.4]);
+ imagesc(kx, ky, abs(log2(density_noise_spectrum{k})))
+ xlabel('1/dx', 'FontSize', 16)
+ ylabel('1/dy', 'FontSize', 16)
+ axis equal tight;
+ colorbar
+ colormap (flip(jet));
+ % set(gca,'CLim',[0 100]);
+ set(gca,'YDir','normal')
+ title('Density Noise Spectrum = |DFT|^2', 'FontSize', 16);
+
+ drawnow;
+end
+
+%% Compute the average 2D spectrum and do radial averaging to get the 1D spectrum
+
+% Compute the average power spectrum.
+averagePowerSpectrum = mean(cat(3, density_noise_spectrum{:}), 3, 'double');
+
+% Plot the average power spectrum.
+figure('Position', [100, 100, 1200, 500]);
+clf
+
+subplot('Position', [0.05, 0.1, 0.4, 0.8]) % Adjusted position
+imagesc(abs(10*log10(averagePowerSpectrum)))
+axis equal tight;
+colorbar
+colormap(flip(jet));
+% set(gca,'CLim',[0 1e-7]);
+title('Average Density Noise Spectrum', 'FontSize', 16);
+grid on;
+centers = ginput;
+radius = 6;
+% Plot where clicked.
+hVC = viscircles(centers, radius, 'Color', 'r', 'LineWidth', 2);
+xc = centers(:,1);
+% xc = [78.2600, 108.3400, 128.8200, 150.5800, 181.3000];
+yc = centers(:,2);
+% yc = [131.3800, 155.7000, 128.8200, 101.3000, 126.2600];
+[yDim, xDim] = size(averagePowerSpectrum);
+[xx,yy] = meshgrid(1:yDim,1:xDim);
+mask = false(xDim,yDim);
+for ii = 1:length(centers)
+ mask = mask | hypot(xx - xc(ii), yy - yc(ii)) <= radius;
+end
+mask = not(mask);
+
+x1 = 1;
+y1 = 1;
+x2 = 256;
+y2 = 256;
+
+% Ask user if the circle is acceptable.
+message = sprintf('Is this acceptable?');
+button = questdlg(message, message, 'Accept', 'Reject and Quit', 'Accept');
+if contains(button, 'Accept','IgnoreCase',true)
+ image = mask.*averagePowerSpectrum;
+ image(image==0) = NaN;
+ imagesc(kx, ky, mask.*abs(10*log10(averagePowerSpectrum)))
+ hold on
+ line([kx(x1),kx(x2)], [ky(y1),ky(y2)], 'Color','white', 'LineStyle','--', 'LineWidth', 4);
+ % imagesc(kx, ky, 10*log10(averagePowerSpectrum))
+ % imagesc(kx, ky, log2(averagePowerSpectrum))
+ % imagesc(kx, ky, averagePowerSpectrum)
+ xlabel('1/dx', 'FontSize', 16)
+ ylabel('1/dy', 'FontSize', 16)
+ axis equal tight;
+ colorbar
+ colormap(flip(jet));
+ % set(gca,'CLim',[0 1e-7]);
+ title('Average Density Noise Spectrum', 'FontSize', 16);
+ grid on;
+elseif contains(button, 'Quit','IgnoreCase',true)
+ delete(hVC); % Delete the circle from the overlay.
+ image = averagePowerSpectrum;
+ imagesc(kx, ky, abs(10*log10(averagePowerSpectrum)))
+ % imagesc(kx, ky, 10*log10(averagePowerSpectrum))
+ % imagesc(kx, ky, log2(averagePowerSpectrum))
+ % imagesc(kx, ky, averagePowerSpectrum)
+ xlabel('1/dx', 'FontSize', 16)
+ ylabel('1/dy', 'FontSize', 16)
+ axis equal tight;
+ colorbar
+ colormap(flip(jet));
+ % set(gca,'CLim',[0 1e-7]);
+ title('Average Density Noise Spectrum', 'FontSize', 16);
+ grid on;
+end
+
+subplot('Position', [0.55, 0.1, 0.4, 0.8]) % Adjusted position
+% [r, Zr] = radial_profile(averagePowerSpectrum, 1);
+% Zr = (Zr - min(Zr))./(max(Zr) - min(Zr));
+% plot(r, Zr, 'o-', 'MarkerSize', 4, 'MarkerFaceColor', 'none');
+% set(gca, 'XScale', 'log'); % Setting x-axis to log scale
+
+[xi, yi, profile] = improfile(image, [x1,x2], [y1,y2]);
+profile = (profile - min(profile))./(max(profile) - min(profile));
+ks = sqrt(kx.^2 + ky.^2);
+
+profile = profile(length(profile)/2:end);
+ks = ks(length(ks)/2:end);
+
+n = 0.15;
+[val,slice_idx]=min(abs(ks-n));
+ks = ks(1:slice_idx);
+profile = profile(1:slice_idx);
+plot(ks, profile, 'b*-');
+% plot(profile, 'b*-');
+grid on;
+% xlim([min(ks) max(ks)])
+title('Radial average of Density Noise Spectrum', 'FontSize', 16);
+grid on;
+
+
+%% Helper Functions
+
+function ret = get_offset_from_corner(img, x_fraction, y_fraction)
+ % image must be a 2D numerical array
+ [dim1, dim2] = size(img);
+
+ s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction));
+ s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2);
+ s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction));
+ s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2);
+
+ ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
+end
+
+function ret = subtract_offset(img, fraction)
+ % Remove the background from the image.
+ % :param dataArray: The image
+ % :type dataArray: xarray DataArray
+ % :param x_fraction: The fraction of the pixels used in x axis
+ % :type x_fraction: float
+ % :param y_fraction: The fraction of the pixels used in y axis
+ % :type y_fraction: float
+ % :return: The image after removing background
+ % :rtype: xarray DataArray
+
+ x_fraction = fraction(1);
+ y_fraction = fraction(2);
+ offset = get_offset_from_corner(img, x_fraction, y_fraction);
+ ret = img - offset;
+end
+
+function ret = crop_image(img, center, span)
+ % Crop the image according to the region of interest (ROI).
+ % :param dataSet: The images
+ % :type dataSet: xarray DataArray or DataSet
+ % :param center: The center of region of interest (ROI)
+ % :type center: tuple
+ % :param span: The span of region of interest (ROI)
+ % :type span: tuple
+ % :return: The cropped images
+ % :rtype: xarray DataArray or DataSet
+
+ x_start = floor(center(1) - span(1) / 2);
+ x_end = floor(center(1) + span(1) / 2);
+ y_start = floor(center(2) - span(2) / 2);
+ y_end = floor(center(2) + span(2) / 2);
+
+ ret = img(y_start:y_end, x_start:x_end);
+end
+
+function ret = calculate_OD(imageAtom, imageBackground, imageDark)
+ % Calculate the OD image for absorption imaging.
+ % :param imageAtom: The image with atoms
+ % :type imageAtom: numpy array
+ % :param imageBackground: The image without atoms
+ % :type imageBackground: numpy array
+ % :param imageDark: The image without light
+ % :type imageDark: numpy array
+ % :return: The OD images
+ % :rtype: numpy array
+
+ numerator = imageBackground - imageDark;
+ denominator = imageAtom - imageDark;
+
+ numerator(numerator == 0) = 1;
+ denominator(denominator == 0) = 1;
+
+ ret = -log(double(abs(denominator ./ numerator)));
+
+ if numel(ret) == 1
+ ret = ret(1);
+ end
+end
+
+function [R, Zr] = radial_profile(data,radial_step)
+ x = (1:size(data,2))-size(data,2)/2;
+ y = (1:size(data,1))-size(data,1)/2;
+ % coordinate grid:
+ [X,Y] = meshgrid(x,y);
+ % creating circular layers
+ Z_integer = round(abs(X+1i*Y)/radial_step)+1;
+ % very fast MatLab calculations:
+ R = accumarray(Z_integer(:),abs(X(:)+1i*Y(:)),[],@mean);
+ Zr = accumarray(Z_integer(:),data(:),[],@mean);
+end
+
+function [M] = ImagingResponseFunction(B)
+ x = -100:100;
+ y = x;
+ [X,Y] = meshgrid(x,y);
+ R = sqrt(X.^2+Y.^2);
+ PHI = atan2(X,Y)+pi;
+ %fit parameters
+ tau = B(1);
+ alpha = B(2);
+ S0 = B(3);
+ phi = B(4);
+ beta = B(5);
+ delta = B(6);
+ A = B(7);
+ C = B(8);
+ a = B(9);
+ U = heaviside(1-R/a).*exp(-R.^2/a^2/tau^2);
+ THETA = S0*(R/a).^4 + alpha*(R/a).^2.*cos(2*PHI-2*phi) + beta*(R/a).^2;
+ p = U.*exp(1i.*THETA);
+ M = A*abs((ifft2(real(exp(1i*delta).*fftshift(fft2(p)))))).^2 + C;
+end
+
+function [RadialResponseFunc] = RadialImagingResponseFunction(C, k, kmax)
+ A = heaviside(1-k/kmax).*exp(-C(1)*k.^4);
+ W = C(2) + C(3)*k.^2 + C(4)*k.^4;
+ RadialResponseFunc = 0;
+ for n = -30:30
+ RadialResponseFunc = RadialResponseFunc + besselj(n,C(5)*k.^2).^2 + besselj(n,C(5)*k.^2).*besselj(-n,C(5)*k.^2).*cos(2*W);
+ end
+ RadialResponseFunc = C(6)*1/2*A.*RadialResponseFunc;
+end
+
+function [optrefimages] = fringeremoval(absimages, refimages, bgmask)
+ % FRINGEREMOVAL - Fringe removal and noise reduction from absorption images.
+ % Creates an optimal reference image for each absorption image in a set as
+ % a linear combination of reference images, with coefficients chosen to
+ % minimize the least-squares residuals between each absorption image and
+ % the optimal reference image. The coefficients are obtained by solving a
+ % linear set of equations using matrix inverse by LU decomposition.
+ %
+ % Application of the algorithm is described in C. F. Ockeloen et al, Improved
+ % detection of small atom numbers through image processing, arXiv:1007.2136 (2010).
+ %
+ % Syntax:
+ % [optrefimages] = fringeremoval(absimages,refimages,bgmask);
+ %
+ % Required inputs:
+ % absimages - Absorption image data,
+ % typically 16 bit grayscale images
+ % refimages - Raw reference image data
+ % absimages and refimages are both cell arrays containing
+ % 2D array data. The number of refimages can differ from the
+ % number of absimages.
+ %
+ % Optional inputs:
+ % bgmask - Array specifying background region used,
+ % 1=background, 0=data. Defaults to all ones.
+ % Outputs:
+ % optrefimages - Cell array of optimal reference images,
+ % equal in size to absimages.
+ %
+
+ % Dependencies: none
+ %
+ % Authors: Shannon Whitlock, Caspar Ockeloen
+ % Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and
+ % S. Whitlock, Improved detection of small atom numbers through
+ % image processing, arXiv:1007.2136
+ % Email:
+ % May 2009; Last revision: 11 August 2010
+
+ % Process inputs
+
+ % Set variables, and flatten absorption and reference images
+ nimgs = size(absimages,3);
+ nimgsR = size(refimages,3);
+ xdim = size(absimages(:,:,1),2);
+ ydim = size(absimages(:,:,1),1);
+
+ R = single(reshape(refimages,xdim*ydim,nimgsR));
+ A = single(reshape(absimages,xdim*ydim,nimgs));
+ optrefimages=zeros(size(absimages)); % preallocate
+
+ if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end
+ k = find(bgmask(:)==1); % Index k specifying background region
+
+ % Ensure there are no duplicate reference images
+ % R=unique(R','rows')'; % comment this line if you run out of memory
+
+ % Decompose B = R*R' using singular value or LU decomposition
+ [L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition
+
+ for j=1:nimgs
+ b=R(k,:)'*A(k,j);
+ % Obtain coefficients c which minimise least-square residuals
+ lower.LT = true; upper.UT = true;
+ c = linsolve(U,linsolve(L,b(p,:),lower),upper);
+
+ % Compute optimised reference image
+ optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
+ end
+end
\ No newline at end of file
diff --git a/IRF/doNoiseCorrelation.m b/IRF/doNoiseCorrelation.m
new file mode 100644
index 0000000..e26e3dc
--- /dev/null
+++ b/IRF/doNoiseCorrelation.m
@@ -0,0 +1,86 @@
+function [result,avgpic]=doNoiseCorrelation(imgs,mask)
+%imgs:cell arrays of the Nim images to treat together. each element of
+%imgs should have the same size:(sy,sy)
+
+Nim=numel(imgs);
+
+%% initialize sizes
+enlarge=1;%use so that it works well whatever the images sizes are (even/odd)
+ROIsizey = size(imgs{1},1)-1;
+if enlarge; maxsizey = ROIsizey*2; else maxsizey = ROIsizey+1; end%*2;
+sy = ROIsizey+1;
+ROIsizex = size(imgs{1},2)-1;
+if enlarge; maxsizex = ROIsizex*2; else maxsizex = ROIsizex+1; end%*2
+sx = ROIsizex+1;
+
+xcors=(-ROIsizex/2:ROIsizex/2);%center=0
+ycors=(-ROIsizey/2:ROIsizey/2);%center=0
+avgpic = zeros(maxsizey,maxsizex);
+avgpicFFT = zeros(maxsizey,maxsizex);
+
+counter = 0;% not really need if all images of the table are used as then always equal to indim but can come useful is selection is done
+m0=0.01;%for plot
+
+
+
+for indim=1:Nim
+
+ disp(['>>>>>>>>>>>>>>>>>>>>>> Image ' num2str(indim) '/' num2str(numel(Nim)) ' <<<<<<<<<<<<<<<<<<<<<'])
+ counter=counter+1;
+
+ %% resized data for the NoiseCorrelations.
+ if nargin==1;ROI1=imgs{indim};else ROI1=imgs{indim}.*mask;end
+ text1='raw images';
+
+
+ pixToCalc = zeros(maxsizey,maxsizex);
+ pixToCalc(1:sy,1:sx) = ROI1;
+ pixToCalc = pixToCalc/sum(sum(pixToCalc));
+
+ %Calculate correlation function
+ picAuxFFT = ifftshift(ifft2((abs(fft2(pixToCalc)).^2)));
+
+ %for means
+ avgpic = avgpic+pixToCalc;
+ avgpicFFT = avgpicFFT+picAuxFFT;
+
+ %temporary means:
+ avgpictemp = avgpic/counter;
+ figure(1); clf;
+ subplot(2,2,1);imagesc(avgpictemp); colorbar;hold all
+
+ avgpicFFTtemp = avgpicFFT/counter;
+ subplot(2,2,2);imagesc(abs(avgpicFFTtemp)); colorbar;hold all
+
+ avgpictemp = ifftshift(ifft2((abs(fft2(avgpictemp)).^2)));
+ subplot(2,2,3);imagesc(abs(avgpictemp)); colorbar;hold all
+
+
+ %temporary results:
+ result = (avgpicFFTtemp./avgpictemp-1);
+
+
+
+ if enlarge result=result(ROIsizey/2+1:ROIsizey*3/2+1,ROIsizex/2+1:ROIsizex*3/2+1); end%/result(ROIsizey+1,ROIsizex+1);
+ subplot(2,2,4);imagesc(real(result),[-1 1]); colorbar;hold all
+ plot(ROIsizey/2+1,ROIsizex/2+1,'w+')
+
+ normr=result(ROIsizey/2+1,ROIsizex/2+1);
+ disp(['Normalization:' num2str(normr)])
+
+ %temporary plot
+ disp(['plot ' num2str(indim) '...'])
+ %plot correlation function
+ figure(100);clf
+ subplot(1,2,1); imagesc(ROI1);title(['Im' num2str(indim)])
+ subplot(1,2,2); imagesc(xcors,ycors,real(result),[-m0/2,m0]);hold all; plot(0,0,'w+');colorbar;
+ nametitle = [text1 '- Nb averages: ',num2str(counter) ', norm: ' num2str(normr)];
+ title(nametitle);
+
+ drawnow;
+
+end
+avgpic=avgpic(1:sy,1:sx);
+end
+
+
diff --git a/IRF/fringeremoval.m b/IRF/fringeremoval.m
new file mode 100644
index 0000000..06b64b5
--- /dev/null
+++ b/IRF/fringeremoval.m
@@ -0,0 +1,69 @@
+function [optrefimages] = fringeremoval(absimages, refimages, bgmask)
+% FRINGEREMOVAL - Fringe removal and noise reduction from absorption images.
+% Creates an optimal reference image for each absorption image in a set as
+% a linear combination of reference images, with coefficients chosen to
+% minimize the least-squares residuals between each absorption image and
+% the optimal reference image. The coefficients are obtained by solving a
+% linear set of equations using matrix inverse by LU decomposition.
+%
+% Application of the algorithm is described in C. F. Ockeloen et al, Improved
+% detection of small atom numbers through image processing, arXiv:1007.2136 (2010).
+%
+% Syntax:
+% [optrefimages] = fringeremoval(absimages,refimages,bgmask);
+%
+% Required inputs:
+% absimages - Absorption image data,
+% typically 16 bit grayscale images
+% refimages - Raw reference image data
+% absimages and refimages are both cell arrays containing
+% 2D array data. The number of refimages can differ from the
+% number of absimages.
+%
+% Optional inputs:
+% bgmask - Array specifying background region used,
+% 1=background, 0=data. Defaults to all ones.
+% Outputs:
+% optrefimages - Cell array of optimal reference images,
+% equal in size to absimages.
+%
+
+% Dependencies: none
+%
+% Authors: Shannon Whitlock, Caspar Ockeloen
+% Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and
+% S. Whitlock, Improved detection of small atom numbers through
+% image processing, arXiv:1007.2136
+% Email:
+% May 2009; Last revision: 11 August 2010
+
+% Process inputs
+
+% Set variables, and flatten absorption and reference images
+nimgs = size(absimages,3);
+nimgsR = size(refimages,3);
+xdim = size(absimages(:,:,1),2);
+ydim = size(absimages(:,:,1),1);
+
+R = single(reshape(refimages,xdim*ydim,nimgsR));
+A = single(reshape(absimages,xdim*ydim,nimgs));
+optrefimages=zeros(size(absimages)); % preallocate
+
+if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end
+k = find(bgmask(:)==1); % Index k specifying background region
+
+% Ensure there are no duplicate reference images
+%R=unique(R','rows')'; % comment this line if you run out of memory
+
+% Decompose B = R*R' using singular value or LU decomposition
+[L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition
+
+for j=1:nimgs
+ b=R(k,:)'*A(k,j);
+ % Obtain coefficients c which minimise least-square residuals
+ lower.LT = true; upper.UT = true;
+ c = linsolve(U,linsolve(L,b(p,:),lower),upper);
+
+ % Compute optimised reference image
+ optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
+end
\ No newline at end of file
diff --git a/IRF/remove_blob_manually.m b/IRF/remove_blob_manually.m
new file mode 100644
index 0000000..e449df6
--- /dev/null
+++ b/IRF/remove_blob_manually.m
@@ -0,0 +1,179 @@
+% Demo to threshold an image to find regions (blobs).
+% Then let user point to a blob that you want to eliminate.
+
+clc; % Clear the command window.
+close all; % Close all figures (except those of imtool.)
+imtool close all; % Close all imtool figures if you have the Image Processing Toolbox.
+clearvars; % Erase all existing variables.
+workspace; % Make sure the workspace panel is showing.
+format long g;
+format compact;
+fontSize = 20;
+
+% Check that user has the Image Processing Toolbox installed.
+hasIPT = license('test', 'image_toolbox');
+if ~hasIPT
+ % User does not have the toolbox installed.
+ message = sprintf('Sorry, but you do not seem to have the Image Processing Toolbox.\nDo you want to try to continue anyway?');
+ reply = questdlg(message, 'Toolbox missing', 'Yes', 'No', 'Yes');
+ if strcmpi(reply, 'No')
+ % User said No, so exit.
+ return;
+ end
+end
+baseFileName = 'coins.png'; % Default
+
+% % Read in a standard MATLAB gray scale demo image.
+% folder = fullfile(matlabroot, '\toolbox\images\imdemos');
+% button = menu('Use which demo image?', 'CameraMan', 'Moon', 'Eight', 'Coins', 'Pout');
+% if button == 1
+% baseFileName = 'cameraman.tif';
+% elseif button == 2
+% baseFileName = 'moon.tif';
+% elseif button == 3
+% baseFileName = 'coins.png';
+% else
+% baseFileName = 'pout.tif';
+% end
+
+% Read in a standard MATLAB gray scale demo image.
+folder = fullfile(matlabroot, '\toolbox\images\imdemos');
+% Get the full filename, with path prepended.
+fullFileName = fullfile(folder, baseFileName);
+% Check if file exists.
+if ~exist(fullFileName, 'file')
+ % File doesn't exist -- didn't find it there. Check the search path for it.
+ fullFileName = baseFileName; % No path this time.
+ if ~exist(fullFileName, 'file')
+ % Still didn't find it. Alert user.
+ errorMessage = sprintf('Error: %s does not exist in the search path folders.', fullFileName);
+ uiwait(warndlg(errorMessage));
+ return;
+ end
+end
+grayImage = imread(fullFileName);
+% Get the dimensions of the image.
+% numberOfColorBands should be = 1.
+[rows, columns, numberOfColorBands] = size(grayImage);
+if numberOfColorBands > 1
+ % It's not really gray scale like we expected - it's color.
+ % Convert it to gray scale by taking only the green channel.
+ grayImage = grayImage(:, :, 2); % Take green channel.
+end
+% Display the original gray scale image.
+subplot(2, 3, 1);
+imshow(grayImage, []);
+title('Original Grayscale Image', 'FontSize', fontSize);
+% Enlarge figure to full screen.
+set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
+% Give a name to the title bar.
+set(gcf, 'Name', 'Demo by ImageAnalyst', 'NumberTitle', 'Off')
+
+% Let's compute and display the histogram.
+[pixelCount, grayLevels] = imhist(grayImage);
+subplot(2, 3, 2);
+bar(grayLevels, pixelCount);
+grid on;
+title('Histogram of original image', 'FontSize', fontSize);
+xlim([0 grayLevels(end)]); % Scale x axis manually.
+
+% Threshold the image.
+binaryImage = grayImage > 100;
+% Clean up a bit
+binaryImage = bwareaopen(binaryImage, 500);
+binaryImage = imfill(binaryImage, 'holes');
+% Display the binary image.
+subplot(2, 3, 3);
+imshow(binaryImage, []);
+title('Binary Image', 'FontSize', fontSize);
+
+doAnother = true;
+while doAnother
+ % Find pixels
+ [labeledImage, numberOfBlobs] = bwlabel(binaryImage);
+ measurements = regionprops(labeledImage, 'PixelIdxList', 'Centroid')
+ allCentroids = [measurements.Centroid];
+ centroidX = allCentroids(1:2:end);
+ centroidY = allCentroids(2:2:end);
+ % Plot the centroids over the blobs
+ hold on;
+ plot(centroidX, centroidY, 'bo', 'MarkerSize', 10);
+ axis on;
+ % Put text labels on them.
+ for k = 1 : numberOfBlobs
+ text(centroidX(k), centroidY(k)+10, num2str(k), 'Color', 'b', 'FontWeight', 'bold');
+ end
+ promptMessage = sprintf('On the binary image in the upper right,\nClick the region to remove,\nor Cancel to abort processing?');
+ titleBarCaption = 'Continue?';
+ subplot(2, 3, 3);
+ button = questdlg(promptMessage, titleBarCaption, 'Continue', 'Cancel', 'Continue');
+ if strcmpi(button, 'Cancel')
+ break;
+ end
+ [x,y] = ginput(1)
+ % Plot where they clicked.
+ plot(x, y, 'r+', 'MarkerSize', 20, 'LineWidth', 3);
+
+ % Find which centroid this (x,y) is closest to
+ % First find out the distance from where user clicked to every other centroid.
+ xDistances = (centroidX - x);
+ yDistances = (centroidY - y);
+ distances = sqrt(xDistances .^ 2 + yDistances .^ 2);
+ % Find the closest one.
+ [minDistance, indexOfClosest] = min(distances)
+ % Plot an X over the closest blob.
+ plot(centroidX(indexOfClosest), centroidY(indexOfClosest), 'rx', 'MarkerSize', 40, 'LineWidth', 3);
+ % Draw a line between them.
+ line([x, centroidX(indexOfClosest)], [y, centroidY(indexOfClosest)], 'Color', 'r', 'LineWidth', 2);
+
+ % Now remove this index.
+ keeperIndexes = 1 : numberOfBlobs; % All of them
+ keeperIndexes(indexOfClosest) = []; % Remove this particular blob from the list of blobs.
+ % Remove it from the labeled image.
+ newLabeledImage = ismember(labeledImage, keeperIndexes);
+ % Get new indexes in consequtive order since one if now missing.
+ newBinaryImage = newLabeledImage > 0; % All except selected blob.
+ % Display the binary image.
+ subplot(2, 3, 4);
+ imshow(newBinaryImage, []);
+ title('New Binary Image', 'FontSize', fontSize);
+ % Now make measurements all over again with the indicated blob removed (optional).
+ [labeledImage, numberOfBlobs] = bwlabel(binaryImage);
+ measurements = regionprops(labeledImage, 'Area');
+
+ % Mask the image to make selected blob 0
+ % Get the selected blob alone
+ selectedBlob = binaryImage & ~newBinaryImage;
+ maskedImage1 = grayImage; % Initialize.
+ maskedImage1(selectedBlob) = 0;
+ % Display the masked image.
+ subplot(2, 3, 5);
+ imshow(maskedImage1, []);
+ title('Masked Image', 'FontSize', fontSize);
+
+ % Fill the image with surrounding background.
+ % First enlarge blob
+ selectedBlob = imdilate(selectedBlob, ones(7));
+ % Now do the fill from the boundary.
+ maskedImage2 = roifill(grayImage, selectedBlob);
+ % Display the masked image.
+ subplot(2, 3, 6);
+ imshow(maskedImage2, []);
+ title('Filled Image', 'FontSize', fontSize);
+
+ % If we've deleted the last blob, exit.
+ if numberOfBlobs <= 1
+ % Bail out if there are no more blobs.
+ break;
+ end
+
+ cumulativeRemoval = true;
+ if cumulativeRemoval
+ % If you want the removal to be cumulative, set grayImage to be maskedImage2 or maskedImage1.
+ % Otherwise comment out the line below to start from the original gray image every time.
+ grayImage = maskedImage2;
+ binaryImage = newBinaryImage;
+ end
+end
+
+
diff --git a/Siemens star Analyzer/Analyzer.py b/Siemens star Analyzer/Analyzer.py
new file mode 100644
index 0000000..9d12edd
--- /dev/null
+++ b/Siemens star Analyzer/Analyzer.py
@@ -0,0 +1,67 @@
+import numpy as np
+import pyfits
+import matplotlib.pyplot as plt
+import skimage
+from skimage.feature import blob_dog, blob_doh, blob_log, canny
+from skimage.color import rgb2gray
+from skimage.feature import corner_harris, corner_subpix, corner_peaks
+from skimage.segmentation import slic
+from skimage.filters import sobel
+from scipy.signal import convolve2d
+
+from scipy.ndimage import gaussian_filter
+from skimage import measure
+from scipy.optimize import curve_fit
+import matplotlib.ticker as mtick
+from scipy.signal import savgol_filter
+
+import scipy
+from scipy import signal
+from scipy.signal import argrelextrema
+
+
+import cv2
+
+## this function will get the values along each circle. We start by defining a range of angles, computing the
+#coordinates and then finding the values at the nearest pixel position.
+def get_line(star,theta,radius,x_c,y_c):
+ #theta = np.linspace(0,2*np.pi,N_theta)
+ x = x_c + radius*np.cos(theta)
+ y = y_c + radius*np.sin(theta)
+ x = np.round(x)
+ y = np.round(y)
+ x = x.astype(int)
+ y = y.astype(int)
+ I = star[y,x]
+
+ return I,x,y
+
+## a function to compute the frequecy for a certain radius
+def get_radius(freq):
+ N_p = 36
+ r = N_p/(2*np.pi*freq)
+ return r
+
+## a function to compute the radius for a certain frequency
+def get_freq(radius):
+ N_p = 36
+ freq = N_p/(2*np.pi*radius)
+ return freq
+
+def sinusoidal(theta,a,b,c):
+ N_p = 36
+ y = a + b*np.sin(N_p*theta) + c*np.cos(N_p*theta)
+ return y
+
+def fit_sinusoid(I,theta,p0):
+ popt, pcov = curve_fit(sinusoidal,theta,I,p0)
+ a = popt[0]
+ b = popt[1]
+ c = popt[2]
+ modulation = np.sqrt(b**2 + c**2)/a
+ return modulation, popt
+
+def Gaussian(x,a,x0,sigma):
+ y = a*(1/(np.sqrt(2*np.pi)*sigma))*np.exp(-(x-x0)**2/(2*sigma**2))
+ #y = np.exp(-2*(np.pi**2)*((x-x0)**2)*sigma**2)
+ return y
diff --git a/Siemens star Analyzer/Siemens star analysis.ipynb b/Siemens star Analyzer/Siemens star analysis.ipynb
new file mode 100644
index 0000000..491da8f
--- /dev/null
+++ b/Siemens star Analyzer/Siemens star analysis.ipynb
@@ -0,0 +1,293 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "dd7a79da",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import cv2\n",
+ "\n",
+ "import numpy as np\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import matplotlib.ticker as mtick\n",
+ "\n",
+ "import scipy\n",
+ "from scipy.signal import savgol_filter\n",
+ "from scipy.optimize import curve_fit\n",
+ "\n",
+ "from Analyzer import *"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "0da7ff81",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9AAAAPHCAYAAADAfaHLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d4xk2XUfjn8qV+ece3p68uyEzRR3uUEUuVxJDBIoQSJBBdMW4BxkyTAgGwZk/yFbBmzLkGBBcpAFC4JkSSZNWsGkRFIkd7ncwA2zuzO7k6dnuns6x6rqir8/5nfefN6pc1+o7qW8++0DFKrqvRvPPfeke+69iUaj0cA+7MM+7MM+7MM+7MM+7MM+7MM+7MM+BELyr7oB+7AP+7AP+7AP+7AP+7AP+7AP+7AP7wbYN6D3YR/2YR/2YR/2YR/2YR/2YR/2YR8iwL4BvQ/7sA/7sA/7sA/7sA/7sA/7sA/7EAH2Deh92Id92Id92Id92Id92Id92Id92IcIsG9A78M+7MM+7MM+7MM+7MM+7MM+7MM+RIB9A3of9mEf9mEf9mEf9mEf9mEf9mEf9iEC7BvQ+7AP+7AP+7AP+7AP+7AP+7AP+7APESD9V92AVqBer2N2dhZdXV1IJBJ/1c3Zh33Yh33Yh33Yh33Yh33Yh33Yh3cpNBoNbG5uYnx8HMlk8Brzu9KAnp2dxYEDB/6qm7EP+7AP+7AP+7AP+7AP+7AP+7AP7xGYmZnB5ORkYJp3pQHd1dXl/eYV6Eaj0fScn0WFRCLh5Wu1HC7j/wUIWql3tbOVPFHbwd9WWa5xbaU+PZZWPeJpSiaTSKVSyOVy+IEf+AGcPn0ahw4daspTr9cBAKlUyleuPJc6k8kkEokEUqkUarWal65Wq3nvAKBcLgMAstksqtUqEomE916+pV75cJulXoZGo4FGo+GVJ7io1+uo1WqoVqt47rnn8Prrr+PNN9/Ezs6Ol4f7YJVrjU/QXAmaD1GjSDid9Efwk8lkMDQ0hLNnz+JjH/sYurq6vLGRNAB8OG80Gkgmk16f6/W6OZ6NRgPpdNrDe61WQzqdRqPR8H4zHQl+mE4Y/wKVSsWr+8aNG/jLv/xLfP3rX8f29rZXb1za57GwfsfFuaRlWkyn0+jt7cWHPvQhPP300+ju7vbh2mqP1SYZE91XnifA3bkp+E4mk75nMiapVMr7X61WUS6Xce7cOfzGb/wGisUiarVa0zyJil8X/eq5oNPpd9KfZDKJXC6H7//+78djjz2GiYkJD8eCi1QqhVQq5auLy9Z94TkhPEfwwfl1Gxn/guNqtYpSqYT/9J/+E65evYrt7W1fGhfuND50ujBatHi1nuvZbBYTExM4duwYPvWpTyGbzfp4GwAf3gA/TXEfEokE0ul003upi3Es/6Ue5huCx1qthmKxiD/6oz/CxYsXsby8jFqt1oS7KHpFFDzp9xb+pe3MKycmJvDEE0/g/vvv93iZ7n8ikUAmk/H1k3kd90V4ndAPcGcMMpkMSqWSl0f4JfNdaZfUUa/XUalUUKvVcPnyZXz961/HxYsXUalUnHxxt/qaxqHrv04r9Ulf+/v7cfToUXz4wx9Ge3u7R1tbW1toNBro7u728tdqNSwvL6OrqwttbW3eGAkdZbNZFItFbG9vo1gsIpvNIplMolKpoFKpeHOhp6fH1861tTWUy2XU63UMDAx473Z2drw253I5b6zK5TI2NjZQr9dRKBTwxS9+EZubm14ZmjZceHfRXtQxiaILWmDVKzSVz+cxNTWF8fFxDA4Ooq2tDblcDr29vdjY2PDGrVAoeGVVq1Ufz9ze3vZ4tiVDgDtzv1QqYW1tDcvLy7hx4wZ2dnaa9EFus6vPUWSzC9ffbdit7h5mv1llhNlnLvlj0aguh+Uv25kueFca0NZkCUsbJNSDyrfyR2HOVhlR8+4V7MUEc5XRioPANRYuXO1FncBdBRxwK2j8LYJlbm4OAwMDOH78uKc4SBphjKzMW4xV3icSCU+xYMVBypPJWqvVsLOz4yk6DGKEW/ktYGObDRYRAvV6HWfPnkWhUMDMzAyq1WqT8eKCIEEZJ0+UfEFpecy2trawvr6OjY0NDA0NIZPJNDkgAD89aONMFG9mpJYBLenECJc82oCu1Wo+A4CNj2q16v0/dOgQ3n77bXR3d6NUKgGw6SkIWDiEzand4By4Y/yXy2VUq1V0dHQ04VjyCe3Jf55/bOCxoqGVNsuAFlzXajXvI0Z8o9FApVJBOp1GW1sbstmsp8zI+Gh8tYIH1xwMwj3TgpQBAO3t7b5+ssFotZlp0zXmOvxMeAc/17gWXIrTLZVK+ZxOcSBsvkeR2/JbG9GZTAZtbW1oa2vzGXUahCaq1ar3TPNP7Whg3i44s9qrnZmCN3nGdVp0EKbM6bSufAxWyKHGXSqVQn9/P7q7u9He3t6U3pp7Uo6mUfmt55bkTSQSyGazHp1J/WGGgxiepVIJS0tLPkdkUP8tXqPL1n0MKsMqS78TvKTTafT19eHo0aOeA7der3tGrvSd2zAxMWHWKTgVg0/j2+I94uAZGBjwnkkbpB3cXqHtfD6P9vZ2z8Aul8s+PqEdP3F+h+FRp4ny3DUeekxSqRQ6Ojpw4MABnDhxAv39/V4+Ma4Fenp6zPoBNDnImS+zI6hUKmF2dhazs7Oo1+vY3NxEqVRCqVTynBFR+ujChctR8N0AF2+yIKoeGOY4iEITUWWI/I9LZ2HwrjSgNcTxcuhnQUJrtxClXittFG9qHIHQSjvjOgnCvESWgHDVHaV9cYCVTquNlse5Wq3i9ddfx/b2No4cOYKxsTFks9mm/kj5bIDJO736KM9EOLEgZMN1cXERbW1tniDk8rnNLIzlnQjyarVqrrqyMd1oNDAyMoLjx49jbW0N3/jGN0JX6CzjI0jhs2A34+lSOhuNBsrlMm7cuIH/+3//L/7G3/gbPvywksxlsPHLUQLyX4+14I6fcxu4f1yXViL0ilcqlcLw8DCOHTuG5eVlb5wsGg2DIANlN7jnflWrVSwsLODSpUuYnp726Inxp3HHzgT5D9ylb+mjKH1M91w/41vwq5X3VCqFdDqNXC6Hzs5OFAoFz/kRpKBYeApSnsMUwiB+V6/XUSwWsbGxgWq1inQ67eGFjQzthNCrooJTfq5pTAxhecd0xePCuJaVQssB6ep/EM2F4UvPbU37TFOZTAb5fL7pPc8bwaVVl+bR0k/tyOF+6wgVbo+8F+ekrBLqfgfJdBfeGILkrLzXtKdxmkqlcOjQIfT29jaV6eJpAnp+Sxo99zTNCm7ZWQb4V/WZPzcad/YhbmxseBE5YThyGXAaWsF9mKIuESX9/f04ceKEbz4KznTkmNCT1SZNfy7ex7JdnF8CjHPNYyUt88719XXMzc15q/+u1VMXXizaboXeXfpuFONbfksU4bFjxzAxMYGenp4m3Et6rQswT0gkEp4uJWMatMgwODiIwcFBPProo1hdXcWtW7fwyiuv4MqVK9jZ2Wly5Fl9sGQF80ItV4PK0BCmd4fZFTwOrva7oFXdw+KfFm5aKXe38K42oFl4BYHlueEyXAowP9PPdV6rTp0v7iBHSR8mKOISSZRJvZfGb1hZu3EMhNXrUmrl/87ODm7evInf/d3fxSc/+UmMj4+ju7u7yRATIchGsQg3HaYqAkvXy6vDoqSxMsj5pDwGXq22Qjv5t1ZsDh48iLa2Nrz88svY2tryVlFcAvGdGpOowPOV8QYAGxsbuHbtGjY3N5HL5ZDP532GtI4k4LJYqHLkgO5zJpPx1curVNxGjUMe90wm461AiwF95MgRpNNpvPbaa9je3vZCFlvBT9A8jTN/rXxiIMzMzODFF1/EBz/4QQ+vbIRo3uqab5ye228ZQWxcA3fnjd4iIfju6OjA4cOHsbq66q2qaoND6tbtddF6XPwFlbG2tobbt297xquEFDLvZpxymDe3W35b0TCseOn6tXEsdUm5bHhH6ZfrfRw5y2ApTMCdOdje3u7jtTzPZYXNyqvb4OKX/K3xxzTIfavX61hfX28K32yFZwYp0i4I0l2EPjKZDKamptDV1eUZFXru6TItg5npRIe7Szt1xIjOz23m5/V6HefPn8fVq1d9UVdW31x4C8JRFBy6DDn9LfPk2LFjmJ6ebto+wCDh8mzIMugtRALaMaSjUlwGN6dlQ5oN52q1iu3tbVy+fBnnzp3zthZFhSiGVBQd2DLWrHdh+oisPA8PD+Ps2bPo7u528jAujx0Kun5ra4jmtWyg7+zsIJvNYmxsDF1dXXj00UexubmJxcVFPP/88ygUCk48u/hVVF2af+9G/4/znttnyZvdGqtB+XXdYW3dS3hXG9ACcYyvMKUyCFzCJWxC79YQjpLexaBanUhR22D11xIyfxUQRUHT76U/Ivy3t7dx7do1vPXWWwDghatyPhZILq+xXvnUwPny+bwXfizACiIra/xeK6gaB/qZtLmzsxPJZBLj4+O4desWNjY2ApUMxpFVrqa5vRbGOj23p1wuY3NzE3Nzc8jlcsjlck19tsrQBolWGjkvr1bpNLqOICHCik0ikUB3dzfGx8fR29uLSqXSFAJqCSZdb5gh0irocZEQtYWFhaaQdlc+65nuk4ufWAajTmMZ4G1tbRgbG/M5ToIMGhcO4wroMONHnssKNIAmxU3aqcM+tdHsMnisNlo8MQgn1hyIaqBoozmqAhimeCUSCS+6QOPCUpSj1m3VGybPpX42lguFgm8fZVQI02PC5GlYH8XQy2Qy6O7u9uFP04WlH7l0JqsMTuOa30F0WqvVsLCwgKWlJdOADuu/NWbW+FryJqq8kvZL1Nf4+DiGhoac6YOMOOu9dkYGGVZR+L6ej/Ite7EXFxe96CctE6PK5ahjFFReVFllzQeh8e7ubhw4cAB9fX0+XSqMLvg9bw3i8rWeZ5UrxrSE4GezWWxubqKjowObm5u4efMm1tbWsLm5GVs2R+HBQXlbKXM3+kMYvwqzn1qtK6rOH0U+uOA9Y0BH8eRYDCQoz14QaVRlI+ydq8zdKsZWnWHPo+DRFfYXVs93E3TYJ4MYNnLIxte+9jUUi0VMTk6io6PDNBZZyHHID9B8uBj3n1czUqkU+vr6vN86JIt/y8FjAixQrFVArcRIH4E7h5e9733vQ7VabfKO7nZORB3rOIqLlU+UgVKphFdffRXZbBZ9fX2+UGzBjTZEgLveZU7LZfNv7SixlPgg4wW4s4omq7nJ5J0DYTo7OzE9PY1isYhSqdRUl5TbqhIdNU0YiLNie3sb1WrVt1LJ/bdWuOTD84/fW/yF31uhyLy9Qcag0Wigvb0dhw4d8vb/SVkWbUfBT1RlNYg/Mm1tb29jfX296XkikfApcFrY633J1py22sa413vPATStUmUymaYVtag05lLu94L+xIDmKB+uT5xS2oALaoNur2sPqEuvEN6yvr5uri4FyW0XjvaC37KhJ6Gt+Xwe2WzWt+LpwhPTFc8hfqfHgUGHCjN+XUZdpVLBwsIC1tbWmlZp9RiE6RdBinLYXA8rg3F64MABDA8PN7VH5DjzQl2e8E/Gja4r6CA8xi1vE9P9YaetlFOr1XDx4kUsLCz4nLbc772GuIZSEM/W45FOpzE0NIT77rvPM54ljYUbzRsFN+VyGVtbWxgcHPTyar2NnZ6sWwjPls/Ozg7S6TQGBwfxIz/yI3jmmWdw/vx5XLp0yTeWVps0RJE/USFI/oUZtq42at0pShta0REteW61L2p5rcB7woAOMoIE4k7YVvPuZkB0Pa7fUQzYqO0KIjIXwwqq06VgBLVnN8pCELgmVRDuNM7F+721tYVXX30V29vb+MxnPoN8Pu87iIM/mpkCfm+yMFgB7WxgfPHhVZVKxcsn4b0Ws5KwOQA+RVIYPjN9VoweeeQRLCwsYGNjwwsrZZyEGQUuaFWBthRwVlY1CH6r1Spefvllb0+xrEJbRhmPj3aocIi1rl8r19IeUai04Sj0YBnnHG6ay+Xw1FNPYX193VQew/AV9lyPaVwDh5WMWq2GSqWCtbU19Pf3e3OCQSvVul5LeRAljhV/l/EhiqmMCeNbQrinpqY8Y4vLcPFXq54g/mnRaRDwXJQVaJ6zwN15q0M++Vv2ULLSZjnOAPj28fH8TybvnOqr+bbszwaaV8bC+GdUXhDG97ke3QZxNsl847HX+2x1e+r1uhcmr7dfcJusvaNchtAlb+OoVqtYXFxsutEgCA/8Xyvzrj4EQZCh0dbWhsHBQY9WmC5cii/jVRvcAuJEk/Qs+1yGHe8B5rZXKhUsLS2hWCw2OSKYvoLmW1S8x5Fbkl5/2tracPLkSY8e9XYLmWfcf8Gj8Hd9PoTGG5en2+bSt6QuLkPey7NyuYxCoYBLly5521wsut1LfS1I9uh0THuuunksUqkUBgcH0dfX13T4msXHWP/RbREHvIDwSgZ9poZ2CstckP+pVApbW1s4c+YMRkdHkUqlcP36dZRKpaZtN9bvuPQaBmE6cJy8Lr4TpRxrXgc5TVz1xW1DK04HhuCYkvcghCEsTHAFMZa9gKhek7B0UcphJTasvjAFk5lYnPbsloDjQlShy4qTCPXNzU3cuHEDV69e9cIuuc968org5P8aR66wLvZUczksDF0KvnVyrpRheV7ld3t7O44dO4Z77rnHF/IaNEbW+7A83Gb+6HxxlUb+FItFzM/P4+rVq03KnM4jdfG+Z1b4dPm6r/qwMVGuZRxYkdLAh7wAd8Z9eHgYPT09aGtrizXHdLuC8KTTRhHM+lucOrdv30axWGzClVWHVY9esXbli9pOXXZ7ezsymUzTac17wXuCjMkgkLolwkXTpaYbzWesA36CDv3RvILpnecf03I6nXbuyQwq33oX9j5uOtnLC9x1onA6zed0GKYrj8a5Bs0z5JkYo+VyGaurq7H3kXJ5UZ/z+7C80r/29naMjIx4B8RputBOA833XHOR6+H6tKNR6pB6NO9LJBKoVCq4efOmZ1TsVscKa2vc/PwsmbxzmvPhw4fR1tbWtJLMdfE2F55vbFBHaYeLPsOea1lbr9extbWFq1evmntyo+iZXEcYzqTMoHxhZeoyuM/CE6anpzE+Pu7ReFD53M4wnAZF9kRpN+sHmUwGvb29uPfee3HkyBEMDQ05987Hpdd3AqLOwVbayOMaVo81Rnttg8WB99wKdJDiuNuy96pMVxl7RQh6woUpVEHlWO1zKaEuZqXLcdX/Tk2MIDxosPorq21yGuj58+e9033DGLR8i1Ic1g7XuHBIuEXvvLqsQ+V0+a5QMDnIKpFI4KWXXvKUwlYZ9248ohaNac8kP9cKQqVSwdzcHM6fP48TJ054B39pZYLL59UDWVGy0ksePb7cJlldscIPua/aaEwkEujt7UVfXx+6urq8/ehhuI0yx600TJdxQNpdqVRw48YNDA4Ooqenx3vOeNNKtXYCucbEUhz0OFvA/IZDVq0D5Cxa+m6CvvpIVpx1BAn3zYo80QqeS/m1aJ77LP9TqVRTiC+3wSorqkyx2hgkDyynn5yyLnTgOgBI99O12mTxAIsHWe/kuThD1tbWvJWq3SieGlf8LGh8tZLJc6y9vR2jo6M+fhjUzqiyyqpPfget5Os8sjXp6tWrTatyki4KTjmd5uPcXtd/3SfX/0Qi4TOgXVsreD5zna5tLEE44n5puePqG6+Ay/NqtYr19XVcvHjRO/QuyjhZbWReys+i9CsKuHDPv9PpNNrb23HkyBEMDw/7InK0nHWVK6D5r5WXeYXUYclcxr1AvX7nirKzZ8+i0Wggl8uhUChge3vbxL/m0y6I4/RwQdQ5tts8rvwuvqLTa3DpNy7euhey/l1tQO+1shMXqXs1CHsNcSdRUFpWMLVAkvdaYEsa63dU2Eu87rYsUdCECX/ta1/zGPbk5GTTdUkCrOCJgasZsT4plvdLiUKt99W4lDjg7hVDciWOBr46iH9LHX19fZiensZDDz2El19+Gevr684V3DCchUGQIhtUnkWHnFdC08Sz/sEPfhA9PT3IZrM+ZUqvDOu96LpcbWhweySNhERyWLbVNxGs0g4JnZP7T0+fPo1qtYrZ2dlQPtOKkq6dEVHz6fzlchkvvPACpqenMTEx0bTiZOERaFYIRFERGmdlkecMn+or6fUqqlY0U6kUhoaGvENbXDhzOSFaNYJcyjjzg0qlgp2dHVQqFW+fNhutfMK/5GWj0TIupQzBq3yE1jRtcmguK/u1Ws1bhXbhx9VPy/Cx8gTJqiDlR/ZA815DCf2XPuqr63TZ8mFeaTkkBC/a8ahB6hUDWkcE7IUhofsQVc7L3tCenh4cPHjQR09M4yKjmC/yO1bug7YeMbBjg8vj8tmo297e9ni3piMth6LIC+udZexZeozuh3zL73Q6jWw267v3WfctkWiOeLCcuXoeCc7kWxyA1WrVd6c759XlcL+0gby9vY3FxUVcvXrVZ0AHQdh8DQLNA/fK2APu4Ka3txcPPPAA+vv7vbvHtc7E4HpnGcbWO40vl0x1yc9qtYpisYgjR45gZGQEhw4dwp//+Z97N6G0yifC5uJe8R+XbSDvora1lXxxyo77Lg78fy6E2wVxPJu7FYR7SSQu0IxU1xuHYHWaVCqFtrY29PT0eOGRQeHB71Zg5Ut+1+t1FAoFnDt3Ds8++6x3kJf2PPPeRGa4unwgWAng/aAiMIOuyWDBK4q0vorGChsWBVpOsPzABz6AwcFB5PP5UMVCtzloXlhKE+fdLfBYVSoVbGxs4NVXX8X6+nqT4Qz4rw1h5YLT8X/Bp9UnlzMpCA88RnJCrlwzc+jQIfMu6qCyouIoDmglQf6Ls2Zpacl37ZalzGkcaYVVK+Z6JZHT6HSWccqQSCQwOjqK3t5e3z7NuH3n8vi3Hp+otM2Gn+yZ1fnZeNP7JOW5pOXfGk+aD3B75aAwy6mUTqebQt+D5ji325I3rYCmFWmnhHDruoQuJR/fZy14YF7gAj3O+jBClgnyu1qtolQqmVE+UXDAacP4qMu5wDjjZ+J0kEMwtawImhMsCwWsaCiOgmIDkHmpBn5XKBSwubnpGXRWqLervUF4C9OH4kKj0fAO/BwaGvLaw3KUaYu39HD9rpB5aw8/94HlkMa3HnfNg4XnXLp0CdeuXfMMcr1C7cJ7K7ji363IH1cbhOY6OjrQ39+PAwcOeAsX/J4dgQLs1GAc6j7ygoZri5H+rdvqKl/+t7W1YXR0FB/60Idw7NgxtLe3h+KadZWgNug8YRB1fLTxG9ZO/u3SC+LQl4tX7qWTIAze1SvQGsKQz4gNUgh2ayCH1a2ft1JXK22zlLogJsv/5XcikUBHRwcGBwcxNDSEpaUlrK2ted5i3c+o/QszJlvFU9BkimLASn5tNMzPzwMA5ubmMDk5iba2Ni8fKwSusCHN4IP2L1r5XcBjqtNaYVzMwCRvPp/H9PQ0JicnUSgUfMp9UBstBSUMxzqdLiuKENFKo/SvVqthZ2cHb731Fg4fPuwpOlIu4z4M7y4BZeE7jhDg0HyGvr4+DAwMIJ1OR/JG63HU7WoF9LhoXAt9b29vY3t7G8ViEdlstim/S9HX46aFqIsu5COrL0E8Q94NDg6a94HuVvDuBs+soIrR5VIUg5QV/U7wUy6XPeVRK9Wc16V4A37HYBz88NgHyb2wMqxnYqC4omwEeGVdG778O2r9YXmE55TL5cg8JQ4+uZ4gOc3peGwzmQyy2azvZOIgHIe1T48v04peyQ4yPBgXm5ubWF1d9Rk3YQaci75cbY+rpLtwlEql0N/fj+Hh4abnVv90fubVWndy4UfAimazth9Yskl4w+zsLBYXFyOFblttiANR+axL77Twwrygt7cXw8PD6Ovra+ILmn9ZOplOG9R+Vz5L/7HaYDlH0uk0urq6cPToUZTLZe8wQnFM/78EQfMqipzS/3erp+g2BP2XZ3tl272rV6BZCQ4bhKiDZDEcS9hY74KU56ienzAmFgei9NmqzyWQZIXs0KFD+OhHP4qf+7mfw0c+8hFMTk76DiXZywkhdX83wRpLHhsJvbl9+zY+97nPYX5+3ncat/ZqatACltNp5srKL4+LtQpteUhFiWKPtUXLomizR/TRRx/Ffffd17R3NA5EUdKC0mnQBp2mX3Z01Go1FAoFvPLKK97JuBxWr/efaQ+xKBYyDhzayvl0O6IIDwFpJ9edTN45mKajowPt7e3Ofah6NaNVHucCbdjyM06zs7OD+fl5zM7O+laN9NjoqAcuW1YILB6i08oc47p4/AQvvNo4NTWFgYEB5ynCGo9BfD2KMhU0Hvp5tVrF5uamd4gPR4Rweu63RZeiOAreb926heXlZd8zNkrE4OPQZ34HwHf4mssICKOnKLQZVY5KWgmdda0uCfAJ2Qy86u4CSy5qOmMezk47zSPi8kFXeu0kscrSz6St7e3t3j5d4TtWVIPuo165l3IlBFbKELpkPgbc3a+uoyCYl4jBPDMzg8uXL8e6fcCFy7B3YfPYMtwZN6lUCocPH8apU6d8+TiiyKIxjUcpk1c69e0e0h42kNn5Ku+sCACpS3Bfr9exsrKChYUF7+RtjSf9Owxf1vzVfNtF5xrHrnL1MxmDXC6He+65B2fPnvUiZngLi5ZjlvPNtceZD1JkuhV8xgGr73zQqETV3H///fjkJz+Jxx57DIODg05HIcvD3doMcfhvGHB7XGMXVn6UPgW1OW4/dJujwntiBdpSXKMMkJUuirczjtANa4NV3m6IV5cftSxNfJw3kbgTAnn8+HF89KMfRSaTQUdHB6rVKu6//34MDAzg8uXL+NKXvoRisWgackH1ak+21Y+o5bSS1zIKdNnyXFY1xDi7evUq3njjDVSrVUxPT3vMTt+nCNzd51mr1bxrVGRFm4EFTxAu9Uo3Cwre32OtOrNAcOHp4MGDAIBSqYTnnnsOpVLJ64fL+AgbAwvPcejdNVcsg1bwVigU8OUvfxnz8/P44R/+4SahJWA5H7g+VpJd6Ti9FnxBHljeC1+v3zmlc2hoCB/60Ifwla98BWtra4EONpcjLEgJd7XFKoPfi6ImOK5UKnj11VdRr9dx7NixJiNV6B7w45jp3NVWFoTcf6Z5TV9aecxkMhgeHkZvby+y2Sx2dna8dFbUjMZJVJ4eVXZwX+v1uueAGBkZQUdHh08uWEqSpjWtKAtuxsfHfUqzNgJEUZfxYuWclW7XHuhW+a0FUXCn+ZsY9swjLToWHqsdm1IO16GvANRl6n3RnLdUKmFra8tn/FhprX7H0Vdc5brqkPE+cuQIJicnm5wHlmzQ48H0as054QnWdiXmlzraitOVSiXcvHkT169f98arVZ1A61Z7IWuk/clkEtlsFocOHcLo6Ch6enpM5592dmmFXreRD520nOwufOi+cRoZF3lXqVSwsrKCL3/5y1heXnZeWxUXND1E4Q1R6FfLVsaHHBr25JNPYmJiwrc1QcpiHSnI4NRjJ/oTOxflnSX/Ld4ZBpZck/LkQNexsTHcuHEDX/rSlyKV2SrEsZ0YGNfWHAvTrXdbfxBYMtNlc7naEgbv6hXoIAhiKla6sHdxFFeuN0rbOE8rBm8QtMIYuX2y3/mhhx7CI488goMHD2JkZASdnZ1IJBLo7OzE+Pg4jh496tu7ofviau9eTZyo4xvUjjADRb7ZS7y9vY2LFy96p4ZyuijCAWheqdb4c61ka0VaFCXOH2aUuJQoAMjn8xgaGvLuuOTQPxcE1WvhJQoEzRdXWh5LCbm/ceMGNjY2TAZq5QvDXVA7dFprbHTd+n9bWxuOHz+Ojo6OplDUViGKEWTl0UJSG7Krq6tYXFz0OQIs2pJ3evVO98lS1IPaHNSPROLOtgT56LGLKgOC0lh4jdJOwZ/c+W3RZdC8tpRLqSObzfr2A3L6KHw3kUgEru6+U6D5sNVn4YnaCGPQe06lbFedQPPdvWxsW/OW6XRnZ8fbyhSmpOm2RKUfxkfYe817hoaG0Nvba843K4/muy4ZxOVpnFhz3+pno9HAxsYGtra2fFfiWTgLG8Oo8iUuH2VcZjIZHDhwAN3d3U3XRjJftIxeTctSJtC8XzxI59Sr0Va/eDxqtRo2NjawuLiI5eVl7/o8S1ex9IGo0IqM57a7eCBDMplEW1sb+vr6MDY25m2hk+gPqz08FjpN0IKPhWs9Fyx5F2YbuOa8PM/lcmhra/MOS/xuQxS9JmreoLI0yHjzHGiFpsLoVusBrehV74kVaCCaARVlAMIUqiDFV78Py2MpPVpwRTUMrTrjCBIhWq5bPK3Dw8P4xCc+gSNHjmB5ednH9KvVKrq6upBOp/HBD34QS0tLvpVKbm+cNln9jUrgLgbleha3Ddq7fv78eTQaDZw6dcoLkZP0/NGrncKYZTVanksfrH1Orn7KamcikWgKEdN70fi9eFiZaSUSCW8lpre3F2fPnsVXv/pVb29O0KqdhS+L/oPoerdGopTDglMUh9nZWZ8zgIWqphtLYQSaQ7eY0bMixDjid2wUucLuG407V1ucPHkS3d3dWFlZ8e2FagU/QfOhFSUJuLvKsr29jY2NDZTLZfNwJ20ICogywjhgnFjKlIDLCOB5Kr8zmQza29vR2dnp8bA4PCmIp3CaVvhLrVbzDGitiEu5mp7kPdMe91nPM+afko5XpblM7g+HiLv651KC9O+gdHHoT8aZTz3WfQTuHuTIc415nDhBGfSp8S6Fng0k+RQKBe/WgjigcR4Vx2FpeLzlJPq+vr4m5dQyBqxxcRkNkkbPYS7LMtolbLnRuOPkXF5eRrFYNMOXw8CSK+JgCQLGheQPw7WEDZ84cQI9PT0+g0rLnSh7krndlqy0DAkdycMOJXHE6TyVSsVzJPM+/TCZ7GqXfm8ZhNK+OPpbGMh87u3txeTkJHp6egDcWV0vFArI5XJmW4W/apnvGnuOlOBx0hEqeg5ofAbNL72lhttdq9WwsrKC9fV1LzpBl63pNw60KvutMiwIMpq/G3aA1YYwQz5uu95zK9BhCLOEIj/ThBmnrr2A3Rh4upyo7dMMRATu4cOH8fTTT+PXf/3XMTQ0hJWVFQB+fAnjbmtrw4kTJ3Dy5ElMTk46vfZxjWD+joPvqIIzSpkuhVQEZLFYxMWLF/Hf/tt/w9ramu8EWK5P9uzIVUUsBPk94N8bK+XwqZu8X1l/y75GfdVFvV5vOlFXQOrmvTiy5729vR2f+MQncOrUqaa97mHjG4eeowhyVz2ucmSMdnZ2MDs7i8997nPeITVSjvSHw7X0PjYpj/epBbW3Xq83efh1CKnQguBayuKTXPP5PI4cOYLR0VHf6kQUCFKoW0lnvROeKSeev/XWWyiVSj7eIH3VSqXgSW9hEJrVfdU8RyugTOd6bslBMwcPHvSt5u8Vv5U2hIGeLxICv7CwgEql4lOEAX94tu6v5K1Wq6hWq56DRfgD59MhiHplTPbu6lDnXC7nXa8V1O8wRSpIcYkyl3UezRd5Hsn+aFZwGTcuZV8MOeabvKfSolsJkU2lUtja2sLS0lKT4RKGJz22QfNP5wtLJ7SfzWbR2dmJfD7vtUXwaLVBgPldpVLxzT/BjXaw8J3cght5J9f88apto3Fn9f7ll1/G4uKiuf2J22j12WWYutJY4KJhrlPChvv7+70tF8LbJA3jR2hSRzMIaHrT81/aJfvVJT0Db2Ww9o4L3kulEi5fvow33nij6caEoH7HBYtXRckT9k5wm06n0dnZiSNHjuB973sfstksstks2tra0Nvb69NhmSaB5jNm5FtukhGQ9Dwm8lz4rd6awOld/dL/tZOF9betrS185zvfwauvvurpBS69Ogji6s4CLh4ZR0/bLWg9853uc1x4VxvQcb2UVh6e5K5yrOe6DC00LcEZRpBR6o0LUYWw/BYhMTg4iIcffhjf933f13QICx8GwsZGOp3Gfffdh9OnT6Ovr8+8NiVOn/bCeHbli0s3XK42imq1GkqlEpaWlvDyyy/j5s2bgcLYogNWZlx0BPjDEoPoSgtHy2DQQh/wh5Dx2I6Pj2NychKjo6MmQwsySKLQeasKuO6LVafgY2dnB7dv38bS0hK2traaQg319TZByi4rQtqw4/rDlBTdf43bZDKJo0ePetdzxJkLFh3pMQoybKKMFxusW1tbuHDhAnZ2dnzlxJ3HjHuNV+sAHhf9Ms9JJBLo7e313VUdBXSb90IoawVEcCd8VrfdpbRYckzXoX/rfmnlVNojedhA4nxR+xnEo4La52ovcJcGNK/SBy7ybzGgXYq9piWmf2m/Vl61Ebi9ve07qyBO/6z+WqDL4nQWnqWdnZ2dTfiJwnOjGDZB+QXkvnOLF4hxvri46G2DCtKjNB6C5kGUfmgebZXH5fT19ZlXDDIv1OVonEXhidZYWeHDWtZYsq9areLGjRtYXV313fkcRS678K7TBuEvqHzdXxcueJ4fO3YM4+PjaG9vb9JDpWyLt4XVJe3hsyPk23WwHafjZ0zfXKfuM+fjaJbz5883jVcYnjSwbcJ91HJG4yCIX8fVxXV9LlrhsoNkh5XXpf+5wJKXrfDpd7UBHRXiTGKdPgpSW0H8dwPiEkUyeef0376+Phw5cgT33nsvzp496xkbrKSy8sAM7Pjx47jnnnswOTmJXC7XpMzuhQK6l8ATO0rbtFLF3vnt7W2cO3cO169f98LYAT/zFwhi6FZIry5LK3jcpkaj4Vtlito/vc+Wva/9/f2YmJjA1NRUZOUuCKwyXO0MY+hB6fi5rJLOzc1hZWXFp+gA7nuFWXBZYyl52ePNIfpRlA4XHhKJBKanpzE+Pu6FRkuaqBBUjyt9WJu1EJRIjEuXLvmuPbPGM8g413k0rjVu2ODh9HoME4k75zWMjIz4nBxRIEyYxzGwLToWhYmvK7OU590aZVIu49+FZ5kbopRGGa+o8iZOPyza4blm8SurXGtvfhRwKcGA/4A1of/Nzc2Wx0uPtYvmopSl2ynbrFx811VGFOPOtarHIKtqlvNKHNCyBSRMcZZ648xfV/4g3c+CVOrO3c8HDx5scqiwTqDLtIzKRqPZKcN5tMEVRYeyDN5Go+EZ0Ovr65GuRXSV7apvt2UF8Vbur+iohw8fxuDgYGgEhVUGl8X0yDiz8ljjaq02x9EnNf2Io39jYwOXLl3C5uZm06GEGsLmSViaoLbFhTgywEVPrZYdxdCO+ywM3hN7oC0hGzV9XAEeVkaYchhUjy6HIarQjCtc5X8yeTcM+4knnsDHPvYxFItFLC4uIpHw323IQoLLkitPxID+tV/7NSwsLGB7e9sLRxbm1CrjjdvXVsoNA+kD/5dwvvPnzyOTyaCtrQ0PP/xw4J466YMoqFIuXw+iQSuOkocNNV5JqtfryGazvvIZb7y3hldTeB+VKKynT5/G4OAgXnjhBZ9x6BoLC5dBNP5OgfSn0WigWCziz/7sz7C5uek7pRhovk5MKzDSZu43Xw0G3N1TrueJ3hfM4fnyzSd/yvN0Oo3R0VGMjY2hv7/ft0KjweIhezFHXIocgxgQ169fx/r6OgYGBryDXTj8zUUT+rmEIFsOCDaSXMqK4JjTd3d3e44I8epzG1oBS6mNy0Pq9TpKpZK3L1H4JNMPt0+e8QFhWnmTVRELP6lUChsbGwCArq6upvGVeVCtVr17g7ndYX0MS2PhKoxWmeb5YDPmU3wdnJ5HnZ2dvvJk3jcadxxrXJ7V3lQq5YXYCw9gvDUaDWxtbWF9fd00lOLMRZdiGaaUW/M/mbxzfdXhw4fR1tZmHqymQ0iZp/EZGboN8s2nRycSCfPanXw+32TUJRIJz6kpq8+8hSAqcL+j4DpIBrFcFeAFgra2NgwPD+Pw4cPeNWpcr2UIA/4zT7S85jz6ajDun8hzvh5L0jD+9XejcSdE/o033vAMMsaDJeeCICx9FHmh00apM5lMoqOjA5OTkxgbG0N7e3sTrVi8Sr4zmYxvHITXSh7Gr4xnOp02t+QJ8HYXzTt4fFx74fU+9Gq1iuvXr+PKlStYW1vzQu0ZLP0zCPT7OHqXVU+c8vTcjNqGKPZPXJnrKs/iAVHnwrvagGYCjTJZGYIUTS4rjlG7G4PA8obELTeugGam3dbWhh/90R/F0aNHMTExgWKx6AlPfU8tA+8BE6UNuKOYfexjH8NLL72E119/HRsbG03KIBuAcRXYvTSeoxp/Vj5WOsV7ePnyZezs7ODQoUPo6+vzlAedXjNRAWHGvOqvjSa9KqQVci6L95RxOhHk8puNYsaLzLNcLofOzk5MTEz4HCNxGXjUd1HHQKfVNCW/RTFZWVnB7Owsbt68iUOHDvnCVK2DcHT5Ft/hNPxO5o0+wMQKEbeMxUTizv6skZERPPTQQ1haWvLapQ+L0fmCeArjyYVTVzk6DSsklUoFq6ur2NjY8B3mImWxUWeteFr/2QNvCU1Nr9Z3o9Hw9vPn83mUSqUm2o0rQzQeLLDkE/dD2ib76kRZ43nJdNNoNMxD7LhcKTtopT2Xy/kUfkuZlzJaNQQZwnAbRUFiecXOJ8EX80SXA0z+c3s0L2W+q3mpjEU6nfbNV1lh1Ycz7bWcijJfGWTF7sCBA96YW2m5DLnaTPKz0afzaFoNaifzKubHi4uLeOutt5qMBRdvC+t/EL+yDGTdHxeNJpNJHDp0CMPDw03nVlg4sM5i4LIAvwGlDWtul9CpXoQQWpT/fA2b9HVnZwfr6+uBB4fFoVNX2rDnQbQbxaCSrYUPPfRQk2wR4P7HaZ/gSl9rFwSWzmXxjTD5JL+r1SpmZ2cxMzODubk5X6RA0DhFkdH8P6498U7pd1EhTI/R8ovTuPoahIM4bX5Ph3Azo7aUBWDvVsFa9erEMRL2uj2NRgNtbW0YHBzE2bNncebMGc/oEwNOK3pWHYxb+Z9Op3Ho0CEcOXIEBw8e9A5p0EbGXuH/uwEuYc50Vq1Wsba2hhs3buDixYvetUmAfWCEFnbyu5V2MFh7QaUNrrRaIeI62AN/9OhRdHZ2+vajRmm37mdUutZ9iAtaUJVKJSwvL+Py5cvOA2usvNwewB+GzwKYzwjQOAoS4pYiJmX29/fj2LFjvlWPqDjZLe6ijJO0vVqtYmFhwdsLakHcFaZW2gP4cShjIYfNWKtk301gOcS44/tvg5SCoL2QLuVB6uFD3jQP145Szds1hI2H1YY44DLEtGFvfaxy9BwLcgyzEWQZ0gyuA55229eg51HKSSbv3KTR39/vO0OB54RrfPVzFz0J8MpoGLABvbm5ifn5+Vinb1ttjlOvq0xXPRINNDEx4TvJ3JJllhGtHdOWUaBp05p7YfKcD7iSMre2tjA/P9/S6n4YhNFIUD792xpPxn8+n0dXVxeGhoYCr3WyHAT6t06v+xLGS4PKdMl713Ph/cViEbOzs1hZWcH29nbksYrDN6KkjYKz3UAr9LKbuqLoj1HTaXhXr0BbhN8qtCK84hKjBWHKx24IOIo3ZmhoCGfOnMFP/dRPeco6Ox20YdVo+FdAxEMtk52Vv46ODtx///0YGRnBzMwMCoWCd5hLGHMIM7Is3IThK2hcOG8UA1bSSVpZtajVaiiXy9jY2MDnP/95/PiP/zi6u7u9MCEOB+NytHCV0CLX3j1JY5WhVzcl1NNlwEta8d5ySB6XL4fRPPXUU1haWsLGxkboCrTQkQYL35awsfKGOcBceQW35XIZN27cQL1exwc+8AHvlGFrXDVeE4mEb4VGp+d9hqw48YqZzqfHRoDTDg0NIZPJoKOjA8Vi0XellYVDwftunW+uOeFSpqvVKi5evIienh4cPXrUNPIA20MfVC/3T/9mHOp9sIlEwreimMlk0N/fj42NjcD7ZqVOlyGm22m90/lctCyfQqGAYrHoHYyj03A58mGlWPpqKYLSl0qlgpWVFXR2dvpWcRKJhLeqKuUA/n2+/NzqRxyFzUrnGnMpn9vJodQAfHJK0jOPlRBs4Wt8CKZFk/Kf+8UrjtIWeSenJFv7JKPMQUnnktlRdA3L0BKn0cDAgHd1nwZ9RY4+qM8qn2WEzmPJjyAQA9qiLZdsCJp3QXwkbL67jDi5uur48eMYHBz0vReZyaDlryuyietgPmU5aIJWVuVTKpW89oj+MDc3h5dffhmVSqXJeLfknG6bZYxy3jh6uMXHdTt0eunP0NAQhoaGvLN1AP/Kr4wT056+yUTKlHR65djiBXyDhIUb3ReLVi2eLJ9qtYpCoYC1tTWcO3fOF/1plROEV4ag9K4ywuSdBXHnon7umpthfQ5qp7U3PaouFEdvelcb0Kw8hb2L4n1yvbPeBzH0MIiaNkq6OMyQ0wlD+vSnP4377rvPu6aDVx+FeXFoNjMabRzwe7nCIZvNoqOjAz/7sz+LP/7jP8bFixd9+8TCxsU1PnGNZwtX/F//jqoo83NesS+Xy1haWsLnP/95vPHGG/j0pz+NfD7v4YevTGKFWMoR3OqTU7le3SYW9pKmXq/7BAo7SPQp6TxnXCt0qVQKExMT+IEf+AFMTU3hT//0T71Do4LwyRCEe41fwYeGIKZqjbOmp42NDczOzmJtbQ25XM53FYikZyYsDhDJz4KZ5woLVD0fuR3aMSX5tYND6kwm75xR8MQTT+A73/lO0+o5z5O4vCkM/2HKASsd1WoV58+fx8DAAB577DEfjel9fVY7tLHCobmaNyUSiSZFnQ0/pm15ns1mcfr0aayvr2N9fT2wDRpcBmIQL3Mp82zUCt5WV1extraG4eFhnyHsGh/eFiDbR8SQEScP82VZjRwcHDTpFYB3xZ7wh3w+30T7Lvqy+q/Dfl2g8wYZkPl83nN6Ma+TvczSN956BNw18uQwK72KrbfNcPt5Kwz3V1ael5eXsb29bR7QZOElSO+IiiMXH+Ux7+zsRG9vr7nSro0EKc+6wkdHJcn+cgHmh4xTwafVznq9jsuXL2N+ft4LL9bRF5xHy8G90LmCeB/zot7eXpw6dQpdXV0ezcm1XtpIYr3JOoDPkm86cqFarfpkP/M6vWgheK7X68jlcl59lUoF586dw8WLF7G8vGyGBEfBm4vGXHQdpku76tAOApnf2WwWvb29eP/734/R0dGm/BxZoelEnyfDdM7A19xp51BQVIkuR+9FDwLe8nT9+nW89tprKBQKZiSGpQ8HjUFciDM/gniXRR8uXdrSM7ifOl0cnhlGp670+ncYvCdDuC0mGBU04ernu2nLOwkuJVe/F6E6Pj6Op59+GtPT02hvb/feWQYVC18mTG38aSNOjOi2tjaMjY3h7NmzOHXqFPL5fFPoWKt4CmIkLlwEPbfSaYVRv9OTTwSaGNHXr1/H66+/7rveR5el62K884dXTrThrfNLGdxf/Zyf6ethOAyZP5lMBuPj45iensbQ0JCnzMYxPFzgMnhbBZdSLyFTFy5cwPLysq9+7osOc9QKqIvxaiOa82hF0ZprDPI8k8ng+PHjGBgYcJ6oy3ms33HBoi3dX/6u1++cKL2xsdEUxm3hULdPFCn9jJVFS7nQ/IjnoY4EGBsbQ0dHhxm6a/XPajO3IYj2g8rVz7a3t1EoFJrq1LzA1UZxeoUZbLznXyucev8u7/UUCBq/uBBEVxoEJ3w3M/MqXpkG0DS+zOe4jzr6gw1pa85rmqrX69jc3Gw6mE76ohVAFx50X8PyhEEikUB3d7dnQAsdWQeJcR42mq12WfSunRG6Hy5ZNTs7i9XV1UhnaQjEUaSDwKV/6PbLKeZHjhxBLpcL3ZZjGZHcb40HwL4BQvdVz1OdRmSzbJerVCqYmZnB0tKSb/XZ9ZGyXLpuqzoT91+DRU9aB2lra8OxY8cwMDDgReewvLTy6/J1+2RcXeCaH1Y6y/Bz4U/rCHI6+s2bN50nbgfpn+8EvFM2S5Ryo8gWy8h2wTuFI4F39Qq0y0PhAle6IAMsqF6r7Dj17gXENU6y2SyGhoZw7Ngx/NiP/RjK5bLP+ya4sIxi7gMbYaywsDLL9ba1teH+++9HV1cXrl275jF0DhkMEsD6fxTFRCvYuwGrXqs+Vt5rtRqKxSIWFhbwrW99y3NWuIxf3RftzBADwCVALaU+kUj4vKLW6grXx/XzKpju/8DAAIrFIo4cOeKFcvOhVnpOhc2PqAazRYdhoGlF8Lezs4MXXngB/f39GBsbM/fvCc5c484rpNweSzHT+RivOgSV08h7MaBfe+015HI5lMtlXzvD5oEGHitOx+NntV/XxTQnzgnZdzc0NORUblxl6jSW8cx1szLFRo2UycZOIpHA+Pg4Ojo6vLDeICFttTuKwhwXGo07exW3trYA2Pvr5Tfjm9+nUinvGiAdnqz7oeebfOvwR1HILV6ly4373HoXlF5AzgGwrthiGrGUYKYToHk1L5FIeCvZ2mHB9KR58MbGhndCfhSw+FgYTwujMctw6Ovrw+DgoC8M3wpb1/PI1Q8dOqufS1mW4aeh0Wjg5s2bWF5eNk8wtuRHGD3r/HHlkAbhuz09PZ4BzTLRpYNa/ELPYa7XotWoemajcXelVcqu1WooFAoefnW0kq4/SHYEyYKoEEQD8l7Tr+C+u7sbZ86cQXd3t3nuiktv5H5ZkQBal9ILSMIbOAKKV6d5LlgyQbeD8S7lFQoFXLx4EUtLS86V7jg0bKXnNu1WTunywurU9Qa1Td7zN4Oeb5rvu/K9k/CeXIGOa6jGIU4NezVgmqntJbCC9eCDD+LTn/40/v7f//veXkpRNrRCJoxY308qzEXKlGes8EtYEgva7u5unDx5Ej/zMz+D/v7+phDDMKNDIK6xtRdjFDY+2ogVplqpVLC5uYk333wTc3NzWF9f9/bi8UFt3EbB3c7OjncgCOOW8S0fDgm32i0Kp6wo6agC9nxK/ZxGe8dTqRRGR0fxyU9+EsPDwz7FgvERB6KMk2VABaXVvyW/7FU/f/48rl+/7p1urWlWK8phbRMDRoBXxxKJhGeQ6NUznS6ZvHNoTTab9W2H6O7uxtjYGKampsxVSZdhFIQfi7ajzjGdR2h+bm4O3/72t30rH0F4FCErK4uW4i140Y47bTTxvl1Jx33s7e1Fe3u7Zxha/Q9T+FztD8ob1Pd6vY6VlRWsra0B8G/t4HoFB0IrYkw2GnevbZJ38s04lbpYJmg64LqEXoPa7uKN1vhZ/QlKZ0Eul/NCy3O5nDdH9CqrzGUr6gOAxwO04irlCUh52qHIfVlYWEChUAicS3EN4zA8hJWRSCQwOjqKAwcOeHOmVquhUqk0HSglMoTbr1f5JZ2805EMPActI1O3tVqtYmlpCVtbW00h4mEQJgOYpoPmpYtumQfLNYLi/LYiQYS+RK67xlxwpGUqjwXjjdOJ3NLAckv479LSEp577jlsbGx4p5tHNciDcGhBFL4XVobVtlQqhampKdxzzz2evshp9ap90Hxh+cPzVnQime98DaWOPnONubRF07zmpVKv0Mjq6iq+8pWvYHl5uWkLQxhugiBM5r8TdoarTD0mceatSy63Il/fKdvqXW1A71Zh5zIsZq8HyxL0USDKALoEYJz0rnSpVAp9fX04c+YMvv/7vx+HDx/2jDiesKygsrKliZ6fu5wPrkmTyWQwODiI48ePY3R0NDCcLAq0gtd3EpgeBUcSLvzcc8/h9ddf9zEJUVx4LOSbr2sB/J5OrbjotLpNllDWocnC2Hkl2VIKpMx0Oo3u7m6cPXsW09PTTSHgLggyWMJoPqoSZL2zBFOpVMLFixfx0ksvmXuPpP+W0ikgTqZ6ve4Lo+U5ovPpfeqcjgU2h6ZKvqmpKZw5c8YL1dM44m/93AKXERMGeo7zZ3NzE9euXWu6LsriJdYznZbrtFYGLV7NH96CkM1m0d7e7t1T7aKrVgS1q91heer1Ora3tz1jQtMEz0N2mvEeXYt/C+hVeO5zkIxjvhLXMGxFJgflkf7lcjnzQCxLHxAcaqPGpaDp/+zk1fnlWb1ex9ramnMFOo4cb1VeaUVdeEdnZ6fvrm8Nri0BzPuFZvQp2/xc45gNTatupmErbDUuhCnWrTov5DaRqamppnkTZMCx04adelaou6VTsSOC28QLF5YxL6uaa2trmJmZaXLoRul7KxCVjsOea9odGxvzHEDsBOJ8Fi/T9CTjIO8sfijA+pRVjyvagsviujid6INbW1tYW1vDysqKebjbbuaDln3Wp1WIY9DGqUfPIZf9EPQsTIfcK17L8K42oKNAq0RpKWNW2Xvp2dB1uIzTOOUlk0n09fVhcnIS9957L06dOoX+/n7P4yXpNAOT+l0TWzOOqIZsKpVCR0cHjhw5gsnJSd9exKiTOy4j2It0YXW66EMYdaVSwdtvv43Lly/79nyx91iHBlqMxKW0asNC046lBFqCwPpoR4uAHDJ0/PhxTE5ONq1CR8W7pp8ggy7KfAuqV9dVrVYxMzODt99+Gzs7O4HKnIxVlLp57DXurP6xAsVp9EpkMpnE8PAwpqenvb3nuszdCDRdjouu+dvqR7FYxNLSEkqlUtPBSpZSIcBzwLVqwn3hb6s8xiOv+Le1taG9vT0WjXJ9USFI0Gs8FItFzwjTyrReSeWPlMkKvc5vjVkUPhrmDIsCuo6wOi1a4bxy6B87H1wrNy4DWsByEPNvF9/RY7O5uenbUmG1OwwsnhDFyHeVk0zeufrHReeWccv1aQM6zCCW77C0Mh5y2rDljGfc675pIykMt2E4dMkaCSEeHR3FyMiI2Q7XHOKxizLP9Hx1tUvPI11GvV7H1tYWlpeXzYPD9oqPWeMQpmtbzyy8yMr/wMAAhoaG0N/f78ShCx+WAabnvUV3Oj3LFUtH1n1z4Zd5hVx1uri4aB4aFkevDoK9MBBbtTssiMq3XHmD8OEa7yB62Q1uBd7Ve6AZghS9oLStCLq4sBeDFjWfZiL5fB4f/vCHcfbsWZw+fRqFQsFjAOxRFgbBwlPSWEKKJzmvmArRCoNKJJoPbUkkEnj88cfR29uLSqWCN954AwBMJSdoDC0Fx8J1VNwFpdM4CGqnJVjq9TqWl5dx4cIF5PN5fPzjH/ddIyPApw/X63UzzFTK4/ZYIZ+WQHPt6WPFB4C3D1AroDp/JpPx6OrSpUu4fv26bwVb1+XCWRi0Om9cfEEUPrm3OJ1OY3FxEYODg8jn8024y2QyPoOF++Lah2ldd8WreZJHwkO1wgXA57wQo2FoaAjlchnd3d1eCGqYsI36LopCGlSGzP1KpYJisYiVlRXv1GROq+mXy+CQQ8GvAO9HYwVHaI75Dyv+OgKgv78fIyMjuHnzZpPjQveH511U3Gj6jwLFYtELAwb8xp1LCWY8Sii3RESwg4XD3rldvDeW9z8zv+C8exFiqGWUlV8rrJy+ra0NqVTKC7dkByQbbfoKG6ENWV1iHsDlc36GZDLpq4tphQ8RC1PKo8xFa24E0aKlKCaTd05d57kXBsL3GQRPLA+kDuaJgE1nEk7PdFUsFnHjxg2f05L7r38HgcZNUDorH4M2krq6ujAwMICenp5AI1jmj8wZqz0umax1LqlbywKhWev2BabLCxcu4PLly17UlNV3frZXOq+rPC3vXGl4fra1teHRRx/FwMCAL+pBdA6uU5fPZVvXPQp+eSudyGDAf5K2nnMWsGOdtw/pxQyJZCsWizh37hyuXr3atG1C49KCqPqTNZfijrmuQ9N1q3qZVV6U/gTxPC4jLN1ewXt2BXq3A+sqczfl7mWbwsqSk5L/9t/+2/jgBz+I6elplMtlj3lYioUwAtlLJ++t8COBRCLh7dHkNNpYkHSSJpPJ4NixY/jEJz6B6elpdHV1NRmBrfRfC6U4oA1klwDUgk2n0YqvCLZyuYzbt2/jxRdfxKVLl7z9jrxfUZQe3pdjtY/HkcOxLUFlGdfW6hX3UYd3Mw3o8KZ8Po9jx47hox/9KNrb2337EV04CsJh0LhEgagMXtpRqVSwtraGL33pS96J3JajQZ7zHlN5L/0NusZCr5SxcRI2x/R87OzsxMMPP+ydsGvVGXUO6HFgOm9FKRU+Ui6X8frrr2NhYcHsO++jlLqYLjUuxDjkrRH8n/ka07qUy/UODw9jfHy8ab+1peRa+ArDZxQjSUOlUvGcB/V6HVevXsVXvvIVT8Hj/fE6hJP3O8t+ecYF4976LfORx4J5NvfNMmy5b1ENB90WF55YKUokEt49sLx6CaBJ/vCJyRzCn06nPdphWcX7IXnbBLeB8S3GTLVa9c6riMJvgp4FGWhRgPuTz+c9mtE8m/HBobH66i8B7WTVhibLID2m2sHXaDSwsbGBN954oynEOKpM4LRB9KjTRy03mbxzbeADDzyArq4urx9Bp4UzDtj4ckUguXDIckV4Hp/NoWlToF6vY319HXNzc1hYWIh8F3crupJFy1HHzhXRIvymr68Phw8fxuDgINrb25t4ndAz82yrbuYLoktxVAXjUdOo60537oNsJZGP5pUsQ2X+lEolPPfcc97Vba3oqq3k0bp+lPJbnZeu8sLeWeXHmd+chmW+ri9q26LAu9qAjtN5zbT4eSvgKi9q3ncSkskkDhw4gDNnzuD48ePo6+vzVjstJd0y9qxVGTa0OJ820oI+zAjlOq3Tp09jdHQUbW1tTQrwO40rBu3h2ovy+LeEra2srODNN9/E7du3PaVLMzit1AeV7QLXGEQxkLSwsNrFQr+3txcHDx7EyMiIFzLoGkOXgegCrUDvZu7pckWgFotFXLp0CRsbG56jyWqjpmGttHNarUzpNlt5XPNLxk3+i9Ois7OzyUPvqseFs1aMxDAQx8SNGze8e99dQlkr5PrbFS6n+VQQXXP/hV4HBgbMui0cBNFbEH6D8Kh5sDgvRfHNZDLeFYNWPUE8Vq8iBvVFK6D8WyuFrr5H7TNDFN5jAR/y5TI+XXLE6iPPZy0bLecU0ySHIrPjYTcQN78195PJJDo6OpqcsNJu7ic/04cmaX5kzWHGkSVjJK+A4GxxcdG3mtpqn63n+lmYzLHGN5fLYXJyEvl8PrAs/S5s/Fz8KYgX6fycXnhhuVzGzZs3sb6+3rQfPyqP3wu5GsQLg+qUxYP+/n5MTU2hra3N6Yy36IqBHV5hYxYEGoe6LOYZlmOAZdX29jYWFxdx+/ZtbG9v+yJcdmPIRR2v3Y4r4KajOG0Ik4lBNBKkv4TNv90Yyi54T4RwawPknSpfyt4Nocc1+nV9/EzK03ny+Tze//7345FHHkFvb6+nnGmByOGo7LFh5mO1Sa8kaUPbUpKtUEPx8n7kIx/x9u5ISGqUUDgNYe2wIM5YtsKouHw21r72ta8hn89jfHzcExJ61ZPzW8Y4497y5AlTt8ZLj7nVXhbQVsSC/G40Gmhra8PIyAhOnz7t7YGVMed2uX7vFlxzwQKuV8akVCrhxo0bWFhYwPDwsLeSLjjSAlLzAwv3OrSbDw7TbWOlSJenHVzAnZOIz549i7/8y7/E3NwcKpWKmTcqrqw2xTGENM3L6tzly5dx9uxZLzzR1WfmDxwZwXhnWtX8T/MY3T8O0Usmk97+OlawouIgCl+xcOzKI/NTH+J34MABTE5ONimBepy5XTzPOYydQTvEpE3JZNLjKwB8p3xz+UE8My4NRTGE9G/ZEqBDirUixW3m/7I1RuY+817NG2VFUMaHcQgA5XIZ6+vrTQcM6vFvZW7puR/FeJPfqVQK/f39Xvg2X73D24TkGYfFMr+T+tmxzvjiOcurg3oFj/tSqVSwvb2NpaUl83yEKPMrLriUcv6t8ZfL5XDw4EFvK4TghOWii/drHiZ9k2+L7l2RRMyfWPYLCB1vbW3hlVdeiXWvdpT5GdX4jsIX9HzU/KerqwtjY2M4ceJE08n6lq5jtYXnisavlU/oldPqE7912cCdrR98cCoDj3+jcSda6vbt27h48SLW1tYCT0a3cKfHwaK5sLKC0rho0tI/dRpdvpY5Ln1Yvw/Si+KCxSt3o+O44D1hQANugzIKhBFWUH1x2xgXXAak/i0e0/7+fvz8z/88+vr6vL2clgIuQoJ/s5AUEGGglViX4qNXrqVO7dnnd+3t7fjBH/xBPPzww/iDP/gDXL16FVtbW00eOgsPQWOgleLdCuao+V11soNic3MTX/rSl/DGG2/g7/29v+eFKukreFix03vytNHFY8IfHk/tNGHaZ4FgKdiST+8rknZ2dHTg4x//uHfdx5UrV5wMWMpsZU5Y5TBO9DP9ToMYe6VSCZ///Odx48YNfPazn/WVU6lUvHBIwH86r3Y8CWjDR4Q0G4yWcqWNPTau2Ijq6enB+973PmQyGTz77LOhAjkKrlt1aljzs1arYWVlBQsLC1haWsL4+LjPOBFcCI2yksrA+/j01gN97gIr/ELffI6DzK3u7m709/ejs7PTU2bi9tF6xjwnKg6ZPnZ2drC2tubt8+V52GjcvQdePvxfrxYKnVWr1abwR+bnzJu18plMJn2KbBAuuP9h6TREcTbI766uLrS1tSGRuBPyaUUiBDlgmX9Je+VQTTEm6/W6T8kVo1u3t1KpeLJKt6GV/lr9j6JrSHkyzvl8Hg8++CD6+/sBwAtb5/kg+crlsm8LEKdjA0HmtNYRAP/ZHZVKxbcFifPVajVcuXIFV65c8VZJg+aQ1ccodMhludJZclrovaenByMjI75tALpucTixfsT8WUDrTHL3PMttbSRppyLjReiT61lcXMS1a9e8feWu7QRx+XsUvTiq0eMqS+ZcR0cHnnrqKQwPD3tRJi4Za/WD8ad1Y90uPktD80Cr7UzzQg8ik134kfLL5TKef/553Lx5E/Pz8z6+4jKK4857Cyxe7JpTUcsIKquVNuo0rdpvYfTG5e/WaGZ4V4dwx1FS4pZlMfZWYS/L0iCMuKurC6dOncLHPvYxDA4OegqGZnQuo8ha9dHeVtdeHq1cWf3WONBKWnt7O4aGhvDoo49icnIS3d3dZviNq/36HT93KVJR8RvUtyhjq9OKkrK1tYXbt2/jW9/6FlZWVrz62DCWZ1qRDcO7Cwfy4TFm5dxlPDOueU+SxlVnZyeOHz+OBx54oGkfpgu/uwGLBrjvYYyZcSJ3M87Pz2N2dta7XkKAHUz6o9ui8a7HS+M5iI6suSP0cPjwYd8VYq3i0xKsUek7qM2VSgWLi4u4detW05wX3InCzmBFy8iH9yJyOuZZvL9Tb0uRfLlcDj09PU1hrlFxFNb/OO/kWbVaxebmpvef+8sKG/MHyS+HWHFbme5c9OEyjrWyEdR/iy/vJXDZct4GEHw9l37Oco5B6IVXZ2V+cRqLh7IBrdup+eZu+x7lHfOGoaEhX/gxG4LcRumbFY0Upd3sjNEH0clzgXq9jtnZWczPzwc6HKx+BfEoC6LSoebFyeTdmw70/lumNz3XLAjSOyya1X3j8rVcYWfGwsICrl692nSoZCu6SVx8WrI3CPQcEef70aNHvX3PlqNQ8gTphS79VetTVr6wfuo+a/2H38n4FAoFT/6trKx4jrowea/b0Yo8dunFFoSNbZR0e8HjXLp+GFjz5bsB72oDWiAI0RYDcxlU1jurbMtQi8qI9EQPUmyCGBl/0uk0JiYm8OCDD+Lpp5/2jOegOuW51MPCwGI+3B6rLL1yGoQbbhfX1d7ejocffhhHjx7F8PCwzwMZd1K4cB8ln5VuN8aJlCt4lk+lUsHGxga+9a1vYX5+Hjs7O746tOKr968H0Y2Fb81krNBQLWy4/y5cMP0kk0kcPHgQZ8+eRXd3t6eEuhTLKBDWTyu9Tme9188l9HxlZQWXLl3yXfUm7/VdvNJ3pps4vET3JWjMuBxR9icnJzE5OWnuxQ7qfxjvCWtjlDSiRCwvL+PGjRte3fX6nf1g2vjhtnK7WOHQH54PzEsEP4mE3/nH5WcyGQwMDPj4jAaL90dNE4Yva5zFgOb2Ct3Jt4umLAOa8SJpmQ+F9SXsGSv0u1WirDosvsP3n/PKr06v7yXWBgiXKeHq7IgS3sWGteSVOuUAQpcxaP22DKO9xJUY0H19fb4TuK1VtiBebyn6ltHA6QU0D5Cy5NaDxcXFpvLD+IrU5dLfdBlx6FHL2aGhoaa7n7lu7TjVepKeD3o+Sjor+kPzKynDctrW63cOplpYWMDMzIwZum3xi1bmqktn1r9d8selg4oBLWd6SMi8lq0umeWSbywTLV3WkjVW/6LKBs4jvGFrawu3bt3C4uJiYKSKC7et8lRX3rD5FlavNb/C0gXpFzqdRUNxcRCUNkiPbQXeEwa0C8IY814K+yAIMwJ5osY1LPL5PMbGxvAv/sW/wCc/+UkfASaTSW8VkL3szESBuwLXZTwJaE89e7R1iKml7PEKEhsBjJ98Po+Pfexj+OhHP4rR0VFPWdLtiioEtPCz3muIK3StPBZz0cJXwoZv3LiBZ555Bi+88IKvTY1Gwwyf5FU3xqeUzfW5lBRuC4BYzg+tbDANiDAcGxvDhz/8YfT395ueX43HuLCbuavzsmG8s7ODGzdu4A//8A+xsbHhC9FiJxGXwSGxPMfYwOY9kpYiJg6VUqnUFDrKCr1eXe3q6kJ3d3fTHdy6ry6lXv67lJ8gHIYJUOnTjRs38Prrr3tpZ2Zm8Bu/8RvY2tryKZNa6Rb+wXfRygnJ0n/mndIOfRASp08k7l43I3eYi8MxCH8MVjrL2IuDR+AOHRYKBczOzvpWKvjUdwkbLRaLWF5e9vqYTCZ9B8oFKfVSlw5BlPnMq2769OYwBSzoeRSw2s3lsgHNTjuNI51X34crOJDtAaxwSx/Z8cBtA+5eSbOxsYHZ2VmPplxGpEthDsJVHMVRcCPhsG1tbd42AI4ykn7oaAyZV0DzKc9MYzoth7MyT7PmkzjO1tfXQ7doufqv/wcZUmHP9TuhIzncdGpqyjd+LO/4GdMI6z3awSrt5a1aOh/TtI6ckTRCsxIe/Oabb2J2dtY7d0RHCup+hhkYUfTQuHPcGjfBXS6XQ29vL44dO+Y5fBqNhncrgdyvzrjS8orHg4F1Jf1O41fTuUu34/Zbz4WHbG5uYmZmBt/61re8+541f3CVv1vQ8y7OPNoriNq/IF3ZRbeWQ4V5XJBespfwntkDDUT3ekQFawK1Wq7Lu8IQZ3CTySQGBwdx4sQJfOpTn0I2m0WpVPLVJ/VoA0wrKBZD0gYqG7vs/QzqEzM0raTzCgI/r9VqyGazOHjwID7xiU/gc5/7HFZWVrz9UkFeKoYg5ufK40qjcceTNAo9WOlY2ahUKrh06RIA4NChQ5iYmEA2m23CmeBdC3VeIXExIUup1On0b35vreBpJ4yMnxjRDz74IF5++WWsrq56dy668BOGP6lTwOUQiQqusWs0Gt7BQJcuXUK9XsfIyIi3/1FwqZUoAE2KqlU2K0jW+FjGj6W4iZIquJ6amsLFixexs7Pjq9OaI5bxx+/jQFh/G407d75ubm56tMHOI7233CpfX6PEh7tZyrrm15yOIZPJeKfsaqdh0NyOyjfCyuPxkP6USiUsLy/7+sV9kXyi6Ot3ui7mtUxvmk8wDVvGgVZCoyrkccGSQ9xHGX/LUVCv15uMfsv40bjguvm/7JVmZyW3A7hziJjQdphhovvoGoO4oGV9e3s7+vr6mkK2pR5W4rW8Z1qUPuv+C/C8ZYcGlyXpqtUqyuUyrl+/jq2trdArv7ht1jMLh3FlgqYtcT6cOHECg4ODTRFfOkpP60hCYzKHuGyWl4xjXab0Sctb7dCQdLVaDefPn8fCwoJ5ornmMVpua7zthg65zihliDPm4MGDmJ6e9tGi0Ja0S5/PEjR3hGYtnVA7yCS/SwYLH7b4nT5UkOdMuVzGG2+8gZmZGZ8zVLdHl7mXoOehVbdl27wT/PydLE/bBEH055LBrcK7fgXaEoQCWrHSz1wEo/OEgS7Tqjcsf5y60uk0BgYGcOLECdx77704e/YsAL+XndugVxG4Tq1UaWNKJj57n60VCVcIeBR86WfpdBq9vb245557cPjwYe+6GZ1/LyFKeS46iwsa13LY0s2bN3HhwgXP4wo0h69a4T8ah64+WczDGnNdtqWYaKVN1y33kA8ODqKrq8tUiHcLu6UDy8gR406utZI7jLlO14qcpmsdgq/TWn3h+WONp+UMa29vx5EjR3x7zoPq0O3WEBWvUca00Wh49+TKyrpcIzU3N+ft/Q8qJy5vDVoF5H5LCDeHBFv9i9LHIFy68ljPqtWqd+1XUJ9F2bfoSbfHGneXMa3Th7U5CMLGqRX5KPJBG9DcPpknOuIqSPZbBhkQfGctcEfmFgqFWLJByz0LWpEzUm57e7sv8kfLDB3m76Jzy5Djd67x1c5caUelUsGtW7dQKpVMg8IFcejTpetpsPQOmVNyBgvzeovP62g+lxxwfYJWOeV/0IqyREwtLi56W2J4nIPw2yo/4/xx5IQL3/l8HiMjIxgeHjZlncshYbVZfwfZBkDzlrWgeWnJff0euGs8Ly4uYm5uznOGxpnPFm5dekOUsqyyw/5b+cLa6CozrH1BZUeV+QLWPHHxqrgy24J3vQHNEAfRfxXlxmE4LpAVp0cffRQ/8RM/gaeffhq3bt3Czs6OL9RRhJ8Od+SJLmGler+dDm3htmumr0OPcrkc8vm8d8k8X9FkGdapVMo7FEYEWDqdRi6XQ19fH374h38Y9957b1N4Xhyca/yHMYe9eOdKpxm84G9nZwe3bt3C5z//eWxvb3tpJMyyWq02XX3A4+U6xEbGXdLp8bOuGxHQ4UwuIcLpZB8hcOe+1mPHjuHQoUPm/eNR51XUNK2AdlAITkqlEr7+9a/jrbfe8s0r6SczZt0X+ehQWD1vGH/MzHnVj8evVqs1hf0lEgkMDAzg8ccfR0dHh+8QpLjAeN6No4iVFqbvra0t1Ot19Pf343u+53vw53/+53jllVc8fsVt0CdFayeS0LJeIeJVHWkLn+LNBoQY0Pl83nlvcphS5QJLaXSlk+9G4070w+rqqg//HPLJfda8V/Nv/YzrcznOGJjmXe129dulWIU9C8or/dYGtKY3HakD+I06xlG1WvU5npmeNA1a7ZFw+t04o3Q/WnVUSJt6e3u9/bsCIuuFvwlY0QlalnDYsKS15qQGft5o3IlEefPNN709/vI8CE9hRuBeyA/BWyqVQj6fx4kTJ9DX1xeLF+p55opG4i1wfMe6ZZBpXYnnYr1e907sl1O3rQi1MMMz6F0rOm+Q0aN1i0wmg6GhIUxPT2NycrJJT2K9wrqfXEfF8GKP8EfNBy2cWP3UehFH+WkZw3ypVqthfX0dzz77LBYWFjxnURy87QW4xkC/5/973ZYodLDbMl2yGQh2JO8VvKtDuLXHMSytQCtIZEbfqjfIlU+3LchjNjk5iRMnTuBHf/RHkc/nfRNUCITD//i+YHknhMWKOwtSfSeeKBpaSRHjTpiL7Llig47bHgR8jZb0JZ1OY3R0FKdOncLGxgZefPFFL6zOCq2JA1Hzxik/aHwtWtFhpeVyGdvb2/jWt76Fe+65B0eOHGkSoLx/vNFoNO3LlTZIOlY8LeNZXwPE7ee03A426izGK7+r1Sre9773IZ/P49q1a979lIz73RhqDLuhAy6Dhd3m5iauX7+OV199Fe9///t99Vg4ktVVBlkl1PTKIV/aKSHjIv/ZCBBaYmGez+dx8OBBDA8Po1QqmfutXaD740prKXhhz6Wt4pC4cOECTp06hZ6eHpw6dQovvfQScrmcL5+AVvKtueUKu9Y0KYqN5nXAHYdfZ2cn8vm8t5JoGTMaj1GV/bjyqVqtYmNjwxeiLzxW83Y2XrRDRxsmzA94Pocpd8xDdHvjGjwuIz0KcDt4OwMrUtppw/msEH49j+SZ4FN4mNUOwWmlUsHOzk7sfgf1MyyPS75If/r7+3HgwAHfAY48hjwPZG6JfLfoQTs+2YDR/IiNGabLYrGIra0trK6uNh3OGBU/WmZEwZW0hdNbZSSTSXR3d+PgwYPI5/PmAabW/GfeJP3lWwWYd+t5y3JBL3Cw80pojdteq9UwOzuL559/3qcDRtExXXiN+txKo9vtkpOCs3Q6je7ubjz55JMYHh4OdPwyzqx26ecuPq0NKk7P/JMd5Fr34WvzeEuS/L9x4wauX7+O+fl537hY9B5mB1hgydtW+GrcMQ+aQ63WEdZHV11x9H7WB+LymSjwnliB1kpbVOBJY000rUDJO1e6Vuq2nluQSCTQ0dGBI0eO4MEHH/RCjFihCiqXBb9+zqHZlrIk5QqTsJijNiS0IA6aTNpTyGWKEX3mzBmMjIygra3NDFMNmiQWfqxx3CuwynPVp4VppVLBhQsXcPXqVU+R1n2RfEEMSAsFV1orVJjrkd/WKrSrTE7T3d2N8fFx3HPPPcjlcs764kDU8QpL5xKu8rtcLmNubg5vvvlmk5NKrw7ocl0rENx3/Zvzcjtc/Ijnay6Xw9TUlG+7gzU34vIdq29aoXEB47NcLuPKlSsoFApIJBLI5XI4deoUxsfHzbwatxpXlkEX1GYdTSGQSqXQ1dWF9vZ2L21QX4LSuPIF4Uq/lxBANgB59VDnYxBlTp8Sz/xFG5ZBNGwZp2F9jQOt0KFWzi3lmfvLPDCM9oN4tjY+AXir13yAlqtMl8xx0UcYjXG/GFKplOcU0nNG6tCOVKY9ec/hszoKSdNEGC+QKxu18RyWz8KnhQMNUfVBzU96enowPT3dtBUmqOygsePnbGRZvMQlE63njUYDhUIBa2tr3t5na3U1Cg6iwG7KsHAjzorh4WH09/d7p25rnUO+rfHUspC/dT7dFtY5rYi+ILDK5CirpaUlzM7OolQqNfFhCzcuGoqj4+xGl4pbH6ffbVlhsrGVdjFYdp3rd6t1vCcM6CDBJ6ANyCDG6yp/t4QaNKmDQEKLhoeHcf/99+PRRx/1DmVqNJpPC+X6tOGj8ZBIJLxwIu1Z5nKYUeiVMylLQr0sxuFiVhxGp0PHBMbHx/HQQw/h+PHj6Ovr853MbaV3QSuTJMhIbEVhtCYxM3M5FOTtt9/G/Py8tzJgKS+aluU/r7ZYYdvcB9ecsBQurUjpfuhygTth3CMjI/jABz7gXWtlCTprXoQp2K2MZxDj1AKtUqng5s2b+M53vuPtS7dwIXl5NUGHkfEYuZQm+a0PzdIGkB6XROKOo+mee+7BxMSEeXiQCyyeEfQ/jtIL3KXtnZ0dXLhwwTvZvF6v49FHH8XRo0edvJj5i0vB1GOmnXeMUzk9WBtT/f396OnpaYr2iAJBim8U0EqhONF43mujQ0DfCS0GNG/NYfqz7pGWVUqtkFr0zW222r5XEDTvZU4B/kgY6SMbEvxcK+E8Ptr40PXzaj3T187ODsrlciAfidI36z3zfJfc0CB8IJ/Pe45my+iwjBIuU4xnvXVA6xBavls0JOmWl5d9p5XH4SFxIGq5Wp6m02n09/fjxIkTTfoF59Fl6Tlm8S3g7qnt1rVrWo+x5CnX22g0sLKyguXlZaytrTkdOLsxPKKms/hfmDMgnU5jZGQER44caTrA0UXnmpYZrAgJrStZCzrWlVLaUc78hseJHejCswuFAhYWFjA7O2s6NTT9fTfBxZOs5y79TPOMKOXr8qw87zRYPNCqv5X2vKtDuN8JYONEGyZRQAvn3UI6ncaRI0fwxBNP4GMf+xgajYZ3XQG3Wb6tUGxWmpjQ+UoYnvBaUAJ3vdMcXirGt1YsBJgxsoKj2yHvZF+MxXDy+Tw+9alP4bXXXsP58+fx9a9/3VyZ2WtwMYSgOoPeBzETwV+xWMRLL72Eq1ev4u/8nb+DsbExdHV1eTjilSRWiuS3NnQl9NcKI9Z18yFxrLRzGCnTh3VwnfzP5/Oo1+sYHBxEd3c3bt++jZdffhlvvPGGOXZ6zoWNa9g8C8K1Vkq08iKGyPb2NpaXl3H58mUcOnQIvb29Hq2zgJ2bm8P6+jpOnz7d5CTgMnUon4wPX6cjCqweM66Tx0Ha+vjjj2Nrawvnz5/H8vKyV6eLj0WZN5oXRk2rDZSdnR1cu3YNy8vLmJiYQGdnp0ermkYBfwi3VY+lZFphusAd45nnCzsh0uk0Tp06he3tbVy4cMFXh5Qbl78wP45Dw9J/OcSuUqkgn8+jo6PDhyfJIyfDS95yuewp6eVy2dvbLfPZ2keolXnr2jYrbDoOXbQCTBv8EWeyyB3GYZDsla0/wB3aymQyHh60fJST7EU2soyS3/V6HUtLS1hbWzNPlNa4iWKMWc+1cWWVwSvGY2Nj6O3t9WiDQ2OtOgUHfOsDt136L2ldBl8mk/GNB1891Gg0cPnyZbzwwgtNJxJrPFm4iENjQXji/zwHUqkUpqencejQIYyMjDRFAAlYjlDWfYTvWwa01tf4Oefh8njMMpmMt0BRLBbx1a9+FXNzc87TzPdybsbRZy3jC7i791v02bNnz+LYsWMe3ch8Z5xrGSu0qK/ek/IBW2645IXVRp2H69NGs6Qrl8vY2trCF77wBaytrXlONa5H67R7Qee7nRdW3UH8JsgeCivfam/Ud7uFML1H6yxx8PqeNaDDjN8oRk7Q4LkEYNR26XJcTFDCM3t6enzMQRisKyRWytN7uJiRM4NgA5iFC+exJr/+78IZr2rr9LoP/C1MNJVKeacNp9NpLC0t4dKlSygWi75Dnly4ZLDSxc2rBYUrXRxg5axUKmF1dRVf+cpX8Pjjj+P48eO+/aLWFRtawWGjS0AbrVZIvvxmw03oRCvx+h5vVsa5rdlsFqdPn8bq6ipmZmawurrqHIdWGHVc0O3U7+S7Xq+jWCzimWeeQVtbmxcaycpmtVrF0tISbt265XnV2eAQYAOG++IKG2MF2cIJPxfDYmRkBEePHsXa2ppvPrv4iy4zCFe7UcgajTsr+ktLS1heXkZnZ2dTeKhVfqPR8Ck2eoVA0miDiyNptFKl+zswMIDe3t7AdoSBxX+lTVGBlTa54kuXwXSn54ooo0w3QXNIO4L4Pc97eabTaQOvFUeDZUhZuJQxZeeUJYdc48B5+HwBS5GWfY6Shle82WCR+4zD9AiuRxv9Op3Vh7D/8owNaC1TNd1ompJ+yRVxFt5ccl4bIFKO9LdQKGB7e7vp9O2oulCYjuSSX1Za/VvmzbFjxzA5Oem1W8AyyBh/1vxmXGkccnutbUBcNueT6JFCoYArV65gc3MTOzs7phPJhQPXO5c+F0UOu+SnpUuk02m0tbXhzJkzGBsbQy6Xa+JvrjHU+gQ7tDROLfoRXdKFG1c/ZOFA40agVqt5uujm5qbHs3V6PT5R9U0XhNk3LnCNe1A5LGtcMlrShdFMWJ270e+CdLmwdK3W+54I4W4VLAWahYf13FIiuKw4AxGF4YuHvFQqefch6/YHGdHaYOL+aa8699tVpi5HP+N2uRiZVlp4pcOFJ/EUDw0N4ciRIzh9+jR6e3uRy+VMBTDKOAQJkbD0YcBCyIV/nU6+ZYW5WCzitddew9WrV7GysuLDm8v40EqTDiHm+vWH31vKl6VE6XboNjCNTk5O4sCBAxgdHQ0MM3bNSQu/YenC8gSlEfyVy2WcO3cOt2/f9uYfzxvZ/yQn4euwPoGgkNgotMjzR+NYjIvBwUEcOXKkCb9Rhcs7CfV6HYuLi1hcXPQ9D5uvYbzVhRP935Ve9kBb9BulfdYct34H9U/P/2Kx6FvJ4Hpc80FoIJ1Oe6fhBynRgH24jW5TGO3sRunh8qLQgT6kLyitlMvzS+aKlnUMrtO3NU/c2NjwDp6z6nb93yvQdJxMJjE8POxdG2jpKi59RfiWld6SHVyGVR5HMgmeONzdouNW6K0VHqZpIZvNYmJiAoODgz6ZZvEBqVM7rK1Va6uflhHh4jdaVxMD+tq1aygUCr7DIoMgqvx8p0D6k8vl0N/fj+npafT395tX0WmcWvhxbSMLk5tR2uiSAVwH1yVh21euXHHe9xzEH3ic3wnYK96jdT3L6eGymfhdEH+xnrWCm72WTUHwnl2BFtDK6V6XHRfCFAT9P5lM4ubNm/hf/+t/YWdnB8ePH/c8pRyCxMYS5xdvuqU4NBp+D5t4W3X4kDwD7NUwVjZ0CDmn0wKfBZGrPL36JFcffOQjH8HW1hYuXLiAK1euNAkTHvcgwcxgjWdU2mmFFizDKZFI+PY0ra2t4Rvf+AZu376Nn/7pn/YO3NBts5RlUTgtJVmPfaPR8NGRPlXVZcTwPkRpv9SRSqV8e/XT6TTuvfde9PT04D/+x/+IYrEIoHlVPAreLPxFBUsBs8ZB8FatVjE7O4uZmRlMTEzg4MGDvpWJjY0NHD58GCdPnkRHR0cTjXP5gu9KpeLDvXyLIcQKGkcJyBjx/BL8J5NJTE1NIZlM4k/+5E+atmVwHRY+95JPalpoNO6sQL/++uvIZDJ43/ve5z3Xqzwcci00zDRmgVZM9Q0B8kxom6NW2travL14eszC6DLoPePcxYt0XdLPlZUV75AdDqPlsGv+L33NZDJoa2tDIpHwrr0T2mC60Stokk6vzlqr2FafW+V/UcoQ3CQSCV/otR4vHeVUrVabZKS8l/nHfeQ5prfKSJlSR6VSweLiItbX10P39fIYWytkQXixlEGeW2xspFIpHDhwAP39/R7/slbPOBxWIJvNeu+kTI6i0Yow8yn+zXXV63f2hr711ltYXFx0hhuHwW7zWMaW9E+MusHBQXR2djbl53kj/RTnVl9fn1e+1pnkWRBNWLyZ82i+KFfcvfrqqz4DulUDLMiw261s1XqDHAb7vve9D11dXb4tBjoKTvNG3U5Ln3U5OiR9kCGn26rHkrd/8I0OlUoFb775Jq5fv46lpSXnYY9WH4LaYaV3QZR0Wg5HBUsvz+VySKfT3p5vq0yXvAiTlbuxp/Qc0PSk37uM/rg0/543oF0IsZBppQkzeIMGPUghCANWngFge3sb3/jGN1Cv19HR0eGdtsuKvuRj5VO/Y8FpKeLyLcqHlKfDhbmNAlrYaCPZYhbam6U9/9pIFMhkMnjyySfR39/v3aGsGVjcsQkaT1d6/c7FrIJoySpb+i+KWiqVwre//W3cd9993gnsrEAxsGKj6+X/Et2gjWNttEl5TEvWCqeUJ6A9sqlUCt3d3Thw4ABOnz6Ny5cv++68jTpfuO+WIGrFILTwJN+yCv3iiy+iXC7jJ3/yJ3397+vr891NK/mCxtVlrGnFPwgPPNfYMOrq6sL4+Lh3JyWn4XLiCCwrf1Ba6SvzDDEMl5aWUCwWPUMPuHu2grXCKNtQ9ApZEL4Fz5pmXfvsUqk799HL3k3uh6t/UZ/Luyg0KvS2vLyM7e3tJuFfq9WwsrKCdDqNvr4+T6lnZwyHfls8WvAsZcsd87Ln2uK9QRCFjlzyNipNCX/JZDLeIU9As/ONn4uxLSB7m+WaIik3SPmy+iFjub297SmROq+Fk1boxkpntUtw09HR4duPzHyS50q5XG7aBmTNWy33rTRCs+yUYkfhxYsXvSsMo+IhriwOes7vtMOhu7sbDzzwAPL5vC898yWNd3G4sXNaH/yo+8D4Z5qz+IJFj7VaDdeuXTNXOqPQWpj+EcWA0bLKBZY+MjIygomJCUxMTPiiE/SVqa6ydCh1lDwa2GGhDXDXOHB/ZRwkIvT27ds+2rZwboHFa8LyxAGr3fLfSiP/Xca8yMe2tjYcOnQIp06dwubmpuc80I4xi9bC+LwL3y4dm/ME1RWVp7QK7ykDOgrTjSKoOb1L8LvStwqawXO5IngkVKS7uxttbW1ob29v2rPDTFobRcw0BHQIkFbKdd+0INB1azy48O1SArQnm5mmfj4yMoLt7W0sLCxgfX0d29vbTQc4xDUSojzjd5rRWOmjCieL9iScc3l5GW+88QYmJyeRy+V8At8aB1e7ND2wN1fTHQsbLfRd5VltYchms+jq6sKpU6ewtraGzc1NU/jEFdIWuOggbIwsQVqr1XD79m3cuHEDGxsb6Ozs9BT0XC7nGSRaoY/Cb7Sixc/1XNPvdX/EMzw9Pe3hN2yPtYWzvQbB487ODra2trCxseFda8ZpmE9ZRrCAtTIK2AappRgwftPpNDKZDLLZrM9otfqwlxCkTGxubvq261j0oUEcWBa+uL9Bew5djjeXnIuqdO8FSIg6rw5b+5mlva69i4wL1xyw6FDeSVl8CrfOHwRRdRFur1Uu07KcgSB7xK39nlqn0DjS6eM+F3klTvpqtYqdnR1v61kUA9f1PwziynrBWXt7O6amppoiu7QRK88BP++JKqe0XNXvrf4LPoG7jvS5uTlTXlpl/FWD0Fc6ncbExARGR0e96wK1bsF55D1/63QuGevCQZiOpMfFpY8IXW9tbeHatWtYW1tDsVg0dSOdNwz+qsYvSGeXMWxvb0dfX583jr29vd7c3traMvmghqj8bq/AMq73ug3vKQPaAo1EC6kW7JVhHJexSx5df71+5yTbc+fOYW5uDoODgxgbG/NCRrUHlEPX2EiSMhuNhk/hYoYVZDwBd/c3JRIJZ1iWVtKCVqEbjYbPG86KC7dZh3vL6ZmDg4O4evVq06mU0geXwcT4jTM2Ol8UhcP1m0HTJitB6+vr+Pa3v40TJ06gra0N4+PjTSsFlpIo48yhnAy8FcBVt7TLpZBaYeCNRsM7OZRpp16vI5/P43u/93tx8+ZNLCws+A7eiKJcRFVaWp27Fs+o1WrY2NjA7du3cf36dRw/ftwzoIPGVs8hnVY+fAo34I/M0GHyPFeYxtPpNNbX13Hjxg088sgjmJ+fx8LCQlP0QKt4iavwS11acS8UCrh16xb6+vo8euH5rp1mOlSP+68NRlekjG4f0zPfnbu+vu7LF8Q7uI9RcRJFoNfrdaytrTWFyAkOent7fW1jmhE6kr65jGYZCwE2TFl5j7sazRDGI+MYajLuEmpcLpexs7PjRePIR8sZxh2fl8FzyxUGy+l4RVc+pVIp8MTdqBCGW57nOq3Ml1wu59GFAG+FkMPBBGRFj/kyl2kZBLziynmtdlUqFZRKJWxubnonynP6IKVd001UYynqO2l/NptFd3c3Dh482BStwPyG80hZeisFg2Uc8pzi9zxG3F+Wm+JEv3nzJmZmZloKhbf4jpShx9LCn1VG0HPuX1tbG86ePYvR0VGPDi2dVIDnrNCb62YLab880+3XsteiAwBNvI7xI2Mk8qZYLGJxcREvv/wyyuVykw4dBWdxIY4dEUXGBOmmLKsSiYS3bXJychKHDh1Co9FAd3c3Hn30UczNzeHWrVtYWVlx1iHyXX5Habc1VmFzmp+H4WqvnBXvqUPEdjvppQxtRAalDysvSl5Jo/d1aUVGJu/t27fxW7/1W3j++edx69YtX3rxAMuKmMtbCcC3b5gZHofIAf47nJnpcfiv7gOHCOoQcABNBjMQHPKiQ314cvf09OCzn/0s7r//fmSzWa8NLPCijkMYWIpW0POgMjiPZhhcVr1+92qbL37xi/jyl7/srZTJexYQbIzxNWOsNMtYSegxr+QwwwP816Tw1Wc6BFw7QBKJhC+0mfva0dGBRx99FB/84Ad9wjGqMsn/o4JWaoLAGqOdnR3Mzc3h93//97G8vOzhSa9I6A/gvwauWq16/ZB5LWPFzimX0iNlCIgymEwmMTExgUcffRSnTp3CxMSE80AhCy9RhE7UNFohkr5Wq1UsLy/jW9/6Fra3t320Jv2WvbvyDLh7j7PgSZQ+obFMJtO0Z1MrrQL6GqtUKoXOzk7vbAkXrsJ4fNB7bQRbNMy8XkK4BQf6Tl52qkj/ZMWPV64ltJfzWocPCS/IZrPI5XIePYVFVATRVpBB44IgZVxWQhKJhHczRSLhv2td5ofQEMtx7ZRinEi9EqJZrVZRLpeb7tRmOpZDA7mPQUalq48WTej3nE/L4WQyie7ubpw4cQIdHR3IZrNNclDzYnnP80+iV9h4q1QqPjwIMM/iq86EviqVChYWFnDhwgXs7OzE2q+r6cbCY5gMsOSJ4EzaPD097XOEAvD4seBVOyu5fqYJfSCWZYhY7db9k/KkTjGen332WczPz3uOiCA+4sKlC3/6eZiR4zK+9PtkMomenh588IMfxMDAgG+VX/Bshf9q/VvwYM0Dme+uRSDOw3JVywauS88boQMA3lau5557zjOeLeM/CsTRXfbK4IsDoldMTU3hzJkzOHnypBfxWqlUsL29jaeeegr33nuvt6VUg4tWGeLqcLpsVzpNJ63WGQTviRVol/KnmZY12RlchlEQWAw+KiPTzM9islK+PKvX7xzMsbq6itdffx3FYhGpVArDw8NN+7q4DFfftHBghsVt0QoI0Oy9Z1xo4tWrn5JWvHuuFTL2DLqUEzmd+/Dhw1hcXMSFCxeaDjALA4tWogr6qIpPFND187jXajWsrq7i2rVreOGFF/DII494V1tZofi6bmsstFIW1AYWQIyfMIGrV1Il/djYGDY3N9Hf34/l5WXz1GFdVtA81+3V76w8YcD4TyQSnhE9Pz+P7u5u78AeAR0lYbVDK1ha0PMpwFr46JVEPXfFWEom7+47W1tbi6S4hoFFK3FAaK9UKuHWrVveeOswWQ18oJ2LR8p7dixENWiBO/saw06Hd5Wpxzkqnl1CvdHwr25GlVuCS+381AdGcX4X7l11xqUhSxZFoR3L+JBIASmH5Zdum6Z3LX8sZx8b0ZKGHTkWj9Wyyeqz1fcwfFplaNzJ/2QyiXw+j7GxMe/0dXFusqOJVxo1vxe+w/yO+2fVX61WfbxKy+Xt7W3cvHnTM5J4TKLIVgunug1BOp6LDycSd5wJY2NjmJiYaKpX/7ZWaOW3lqOuciwDkGUF94H7LRE7N2/exPb2dpO+ZeHtnQZXvfxcHHednZ2YmppCW1tbU5Qct9fqu0t2W/ms51pfDOJFWp/R+BWn3OXLl3H79m1sbGxEcghFfdeKrrgbCOM/wlN6enpw+PBh9Pf3e7xX8jUad6LeJicnAQAvv/wytra2mq7ODZOnUWVKVLsqDCwdv1W8vycM6N0qLPqdi6kFKS6uelwDE1cR4boknPvChQtYW1tDV1cXcrkcOjo6vL2xrHBrwWUZRdI/l3FkKRquMjUTs5iMKHaaiPXJk9rDbzHVRqPhHXAg4aHb29umdzMKji2mKvBOMTgLd4D/VFQ5vOLmzZt45plncPbsWW/FkvHEShP3QytE2nliOTikDVpJYppxGY2suFlhgQMDA5iamsL09LTHeFkhtQReK3i12hQ3n/SxUqlgfX0dN2/eRG9vr3cSK6fT0RZaUdW4YgWLlTJr7oQZNqIIy76zQ4cO4cKFC177XTiMYgC4lJOoIPRXKpWwsLDg3QtrGUsM2rMdZJxIHdqwcrVT6K2jo8N3wA2PR5jSZ7XDeh+Hfnd2drzVJos/c5k8t5mnaoPQameY88IyWqx+hSlJVvow5dKidXYYNhpuA1qXUa1WzUgXKYPbpGnbWoGUvFq2tgou3UKDxouMYXt7O0ZHR72VZaYTK0pGA6+2sewRYINa0pXL5Sa9gGXG1taWd7hnK7iJQ1MCQbTI/ReH2ejoqPfMmlty6rJLebf4vK7LxSdc7Qfu4rtYLGJ1dRXz8/O+e7T3guZcPD6uQWjNU6HJ3t5ejI2NOecWyz5dhgu3Oj+XaclWl06r28s0ruVutVr1Ds5aXl727uC2xiIIh0F8NAh0P+Pmj1I+/06n0+ju7sbo6KjvWkzd10qlgrGxMfT39+PWrVuo1+vY3t5uWsCKonfsts1RcB7nXRR4TxjQcSFMWOkJ6WLK+p0WwlEGx/LeBk0UZjbFYhE3btzA//yf/xMvvPACHnzwQTz55JPeFQFawRDPkOTXB7Bwe+X6K3kn4V+A/7ori2k1Gg1fiBe3nxU27ieHmfFdutymbDbbtF+I3x87dgyTk5M4fPgwPv/5z+Pq1aue0OF+MoRN4ChjGCZ0WimT07FQlassisUiXnjhBZw8eRJTU1O+dNVq1XctCYchckh3IuF3WLCCae3543A1biMbxzxmloIrHwnnmpycxN/8m38T/+bf/Btcv37dOymXIQpurXnqmte7MaKr1Sq2t7fxe7/3e3jiiScwPT2Njo4O04CRQ46kXq1olkolJBIJb6yClFyeI65VCDl9t1arIZ1O44EHHkBXVxe++c1vYmNjw7uOIwq9WvhxGZJWma5xEBre3t7GlStXkM1mfaHTmldI+JylqAiOdZv0Sd66L1ym4LK3txcnT55EW1sbSqWSL8w+CCfcd01fURUdLTcajYYXil0sFn1h/dwHPX/19V9aobN4H68WiONBwpjr9TrW19dRKBR8dOsyJqOAS46GpRfZ0NHR0RTKzsa08B+951euXuFypWzJx9uZmLa438I/q9Wq88A2LmM3fbfK0nNOVuW7urowNDTk4+F6dZRDs/nwUeEpnIfxyfJ+YWHBi/gSZ4bcGsC6wuLiIpaXl7G8vBx6zVdU2I0iLPNFDlt78MEHMT4+jo6ODjP0FPDrScwrpD69Mq0jP3j+87YTy6HFYyZ4LBaLePPNN/HMM8+gUCj4aJTbZ9FGGATps2HPrDJ4jsjq5SOPPIKTJ0828Q6NG+4Ph09rmuE5q7cwabmh56uLBmVcLSctj/n58+fx+uuvY2ZmxrfFyJr/cXhhFKOb07vy6/f6uSud1jdENo6OjuLYsWM4ceKEz07g8iTCRXS2H/uxH8Ozzz6Ly5cvY2ZmxssTVX/T7Y4D74T+HQXecwY0E8teeGjClO4gJTIMtAEY1QAA7jLoRuNOuN/c3BxeffVVFItFPP30094Jt1ymZl4uA1jesWICNK9kMFPUwMqMLpvDtmXCasVMK4scmsghdtxeYdwHDhzw7ht8+eWXPYbnGh+X0RIkmKIwO007cZgl5+P/wrDL5TKeeeYZAEBPT4+3Emq1mQ04Gc9G487+Nj5ETNODJbx4nKR9WvkS0J5lNhDkeTqdRnt7Ow4dOoSdnR3MzMyYYZFRcBWUpxUlg9sM+A/zKpVKmJ+fx0svvYTHHnusaW+qVha0kaUNYmsuWUayq2wpkz/ZbBY9PT04duwY3nzzTd9eMd2eOBBlPlgCm5WSSqWCt99+G729vZicnDTHz1JSJD/zDn7OoMPdBax7RzOZDLq6urzraYLmaJjxGJXGXOlEOSmXy961WmFluhyVghfpj9AdzzE2NoUviHLU0dGBtra20ND23YCLJ2vZKrxia2vL+63HUYcpWw48wH99mX7HCrjLSLH2P7r6sht8uHQO/rS3t6O9vd3by8u8WRsumgcx75B34vgTZ7ZAMpn0Diqz5rRArVbD9evXMT8/v2fGc6tgGXm5XA6nT59Gb29vU3otc63rkzR+rTL4tx4LTVOchvPNzMxgfn7eOyvC4jNhcs1lSFnj4RojHusgHiDyL5vN4siRIxgZGUFnZ6fvtHyec0Dzlie9fclqh6ZrTqvHh/MyTwzCkfRFaHp7exurq6veXc9hYxEEQTgMwm0U3dEqW89vFwh+JOz+9OnTvqtyrfTaSbmzs4Njx46ho6MDhUIBa2troVfX6ba/UzJG2uyi+1brfU8cImYZC3tRXhChRjGgrDya4cUVwCyw5FOtVrGxsYGZmRmcO3cON27cwNbWlq8ezXQsgWr1T6dlQSmTLgx0OmuSBxGw5HdNZga52/Ho0aM4fvw4BgcHWz4YSMAyYqLkaeWdrlMLWRmDarWKa9eu4fLly7h+/brPiNWh2ICNY8sTbrXPZTxbyiWPk0Xj0n5mmJlMBocOHcL4+HjgydbvJHNlcDFZ/lSrVSwtLeH111/3jBwrVFLjiectG9AMUZQh/d+a33JNy9GjR73Dl+IIKd3n3YLG361bt7C8vBy4r48deYw/AXauWbyIDSuLf8h/OeE5n883nci72/5aoIW51W85qCpq+RIBwcaui+dZPILLlGd8oJirDVFxFZYujM7S6bR3T3Wj4Q+9tniUrptp31o50rQl+bQ8bDQaXpRCUPg79ysKuPpvKZfcn87OTnR2dvoME833rbkfxAuERvTckTuQNTBfazQamJubw8rKSmwngyVrg/K73rnkhxgJ4+Pjvnvog9pjrfqGgZaTWkbyt9WGer3unW7MB+KFwV7yaynPBdx2ljn5fB4HDx5Eb28vMplMU3usSCumMy7f6pPMB61ruPQNiyb0f9e8q9VqWFhYwMrKim8PutVGV9kusOq08lm6VpRyoxjN/JEIn5GREYyPj5sOJgtkzCqVinfV1dTUFDo7O71Iwyj6dxTbZzfgGuPdwLvegA5TFKIQskvA6HdR2xM0oa0yWx1EVijL5TLW19dx7do1/M7v/A7efvttNBoNL5zbtWeM65bQPXnOq8Oi0FmKnpymaO2ZEuCyGo2GT9GzDHZhxvpZMpn0ws9YaPNKQjKZxPT0NB588EF8+MMfRldXl1dXFIM/DOcWRGESLryH1WcZYLIf+qWXXsIf/uEf+kLVAb/hwadm6/AmFk4cssfhjDpUTZ96qQUpt0GvespzSSvtevLJJ72oAQ491OFZLrAURUvAR8G3VTbjv9FooFwu4+bNm/ja176G9fV1L4xR6FwrAtZ813ix6tf5pA2W84PLk3b09PTge7/3e9Hb2+sL75R6XE6pMDqPAkFKTb1ex40bN7CwsIByudxEd0xfjYb/NGBpNztbZH7zifJchmVka9wnk0n09fWhra0tUr9ceAgzADiNy3iV+a2VNu4bOxYEP0IXQVtddF8qlYrH2yWKR4wLOXVfGwS67Vb/WpVrLj4pV+IMDAx4PN2lcPOquzayLQOM5Y0Ah7Lzp1KpeI6fMDzoeqL2X4+ZK38ymcTY2BiGh4e9dLq/0mdpr44mYL4lIeGMC543evz5d7Va9ejo6tWrvhXoILzEwZ+rbl2OlS6RuOOsFfqWAxctJwgbuIA//J35N89Dzit1a+egNvwYeJGiUqngtddeMw9hc/U3jgESlYfrsoPkYyKRQD6fR29vL+6991709fX56I95m6WPAnfnXBC+Xf3kec//+WMZ3lK21oXlVPqvfvWruHz5srltIy6PC8P7buaKLtuaA666ksmkdxPFE088gc7OTo/367HghTuhadElS6USOjs78dGPfhTHjh1rOmTVZWPpPgbJmrg2WRDstpx3vQFtMRP9jiEOsvZigKKWGXciasYijKlcLmNxcRHPP/88vv71r3tXmliMQhibMAtOx/t1wk60ZqNBfsvks8Jx9FVKfFWErMzJ1TR83YbOw1cqAfAUALmKZWhoCI8++ig+8IEP4MiRI57CbXlALXAxpLDxsPJpWgyqNywdC6JCoYDbt2/jc5/7HG7evOljcmwg6H4DzSHXkk4bPloo6as9XAovCysOH5dr0vhqnkwmg4MHD+IjH/kI2tvbfUpeUBiRC8+7UeDDQHAiV4uxgGUhzw4CVtzZGaSFhyhPUpaeU4wzrVDIeLKDQu5wHBsb8x14po0JPR/2mvdZToBSqYT19XUsLCz40gqNyPyWZ6yIsULEfMO1yix5NO9hXADA9PQ0+vv7m4wpDS7ZogVymIDWabnsUqnk3a8pz/QJp7yaJc5SvvtXeKh8+KYGff0Qj73wUd7iYUVYBBnmFm2HKYAu3Emb2tvbvdBBvq6P+Ylcx8VOWh21wP2SZ8KHpL0AfE4J6btc0aRvDXDhJIwGWuFV0mc5BXdsbMzXF3F6MP8QB5SWncyL9Njy/ntXhI2E/DP/KhaLXmQO41PyBfUrznyxPvyO6Vb2bh89etS3bYzHXI+FxVNksULPCebHOsqK0+nf3O5arYadnR3z/mwXHvSzvTIuLNBzmvGey+Vw+PBhPPHEE54TxmUsBdG8zHUrQpJ1H3ZwST6N76A6VlZWUCgUkEwmPRpmXXp+fh5f//rXsb6+jp2dnVCHRZS+6fQuurXGzxVlFaV8LkPjKZvNoqurCw899BDuv/9+b+z0goD+z/yD+1+tVlEqlfDII4/gwQcfxMTERKTbLYL6rnXSd1K/iwPvegPaBWFCTHs3ohraLiMpSlv2isFZbWelUq6Jeeutt/D222+jUCiYfdSr0dxeS7HTSjeXEdQfLSz0JNYTQws+ea/Dx5kJaMYpCmBfXx9OnTqFo0ePYnh4uOm+Rqu/3Gf926o/7L31zoKgNmhPHBtxhUIBFy5cwM2bN7GyshJJqdPPg8aDf1sKhgbXHAlSJlKpFHp7e3HixAn09PQgl8tFYqS6zt2ChStdNs+3crmMN998E/Pz876TOV3lshDU/dDz2JoPXJaVn8sVEOfE6OhoLLrcrRLmGh9WgjY2NjA3N+c5ZtiYC+MtGldRIGjupdNpjI6OorOz08mj4kDcfBpHpVIJW1tbgXJK16cdea6Prk+A57Pmq7quoP9cvyud/h2EL1b2GCxniiVjdJ9cq6r6v8UP5SR+1xaYMLy40gTJJBeuUqmUF8JtyTXm2S6+FmQYuGQE/9d7WsXwc60+W/QZB+LIXI0rufmB6YB5ji5X6yGSR4xuF2jjWX4HzV/hiZubm96BmlakF+Ofv60xtnAkacPSWXh0pZVop6GhIQwPDzfNM5cTnI1faZfMaV231XeXXhLUL2mPRCAAzbrw6uoqbt++jbm5OS9CKiof1vVFpfMg/MbhlVZZVhliBMsZNMPDw+jq6nLmdfEjC2q1mnczwIkTJ9DV1RW6NSqI1+wFvBNlvucOEWMQhsUIi6NoBxnLUZgVAyu/zFyjtInrYibMz/mwi2q16h0+AQAf/ehHMTY21nTyZjKZbFJApV2swLPyJO+0QOHQS0kvbdIKi5xwy2VaRgCvqAlTtSaxHmdpszD2+++/H+l02jsMYmdnx9cGrrNVo8xFI/zOMmyjepetcmVFbWdnB9euXcOFCxeQzWbxwAMP+ASCjI9WDOWb02lcyH85VZ3HRfDLB0VwfzhEnOmTlQk2nHp7e5HL5TA5Oent/4zraXQpiUF4jeMUEzqTPpXLZZw7dw7Hjx/HmTNnvJVTrdSwIgU0hwQyPvTBNfqQPVd79QnMPOb33HMPNjc3ce7cOZN/WPjaC9Dzkttdq9WwvLyMS5cu4Xu+53vM1cIgZxCHcweNXZTxFeNsfHwcPT09TVEDkt9VVphhGwV4bMUQWVtbaypHr7hY+S05o8vgEGTmAVyHPNMnsQaB1V9LKdN9D1Mg0+m07y7SROLudhLNz7TM1DJL6hQequeX9F/fTCBzfnl52bk6qPsVBkG4cekJwk/EgJYzDiSd8FUeR2t+WbJXfrsUWsYP41SiZtbW1ryVe6bVqLwlCs/WEKaYi8E0OjrqnQzNzlvprw7nFpkoMjSRSHjRHPIeuKvrWPyBHTWaVnWId61Ww8rKCl555RXftVVWn4LGbTcQNlf5ueBQIiHk4DCWd9rBwnqnlCMfa0XZaoNeobZ0ZE3nkk9+9/X1ee3gvdrVahU3btzAjRs3sLq6GroNQSCOHhG1LF1eq+Nr6SOyX72npwcPPvigd4CmpQNru4Df83+WH6VSCYODgxgZGcGtW7cwNzeHjY2Npv7pfuv+uvoRF3Rf9DMrbRi8Jw1ojRwX0ekJF7XsVpVMzfRczIFBpw+qm5XmnZ0d1Go1vPLKK9jc3MSZM2fwoQ99qOlKFGZ0WhFlZqMFsYC+RkWDMEzN0CqViie8KpWK17dyuewT9Mwg2SDTShIbHPqU3XQ6jVOnTmF8fNzz7soBJ61AkCItEEWo6bGMa0zzeBeLRXzzm9/E3NwcxsfHvStNuFxWBLhdIri5Xyz0uS2aubEjwvLia6OPlQj5sDc4lUrhM5/5DP7kT/4E3/jGN1AsFk1FISpoOtH40+0NAj0HBW+lUgnnz59HV1cXfuiHfsinhDPta3plRUHSymqIKKM8hvqebPbsa0NV8FooFPDaa6/hwIEDmJqaQiaTMa86igpRBLhuh1WGhHrOzc3hlVdewac//WkfD9K4EZCVH1EAtLFt9YkVW6ZvUdhYuRIFMJPJ+A7wsvAUVWEKS2fJgUajgUKhgKWlJedeX2kzP+NzKuTu40wm03SFoQ49lTHhvfx8DzXvN3fRjX7u+h2ULgyXEprNyjk7ZqUMrbjLWLOhJL/FCcg44ucCkqZQKGBhYaHl+401WHIgCMfynU6nvRUjS8kXGcs8VsrX1xdy+XreyvxhPs70yPVubm7i1VdfbTL+4uApiGe7QPM/KUe+U6k7V/MMDAygvb3d5/C3rkSSvKKPWMD0EcfIYZ6lHdubm5tYXl7GjRs3fCe9u/iP63kUfTeI/wfpL9qwlRDgD3zgA+jv7/ecXMwrtM7E/JfLteSl7ouWobxQwzjlNlhGE8tJKadUKmFhYQGvvvoqlpaWfFdW6frDaFrjNw49W2OzGz2IyxX+ns/ncebMGRw9etSLutJ6OutvWn+U93qbJ4+jnIvwsY99DM8++ywuXLiA1dXV0P65DNq4fMGCvShD4D0Vws0T1hqcIIPFNWBRlCPNbPQz14TjtFEmRVAfdFm8R3N2dhZvvvkmvvnNb3qXnOt82nhmwauVVFe7Xb81A9J94DHTh57xOHCd1pU8eo8jT1JRNh577DGMj497e6uDDKggIaQhbBxduNH5g0CPL3/Lfui5uTl85Stf8a4QYHzJIRjcF1YW5Zkr/FH+i9dWPmEeWilT71nX4yvfvb29OHjwII4dO9YUPsf4izo3g9JFnXucno1YMQRv3ryJN954I/CqKBYuLpCxyGQyntFihSlzWTpEkBUPuWe5q6vLu+5Gz/Ug2nUZwEHtD8K75h07OzvY2trC5uZm0/5eAXEs6L1YjAet1PGecV0390uPRVtbG9rb270VJksuBPG9KBDEQ/l9qVTCxsaGx591X4JWp4C7xrULr1yXpNerQ/JO48mSO1y3Cydx5KmFY+k3t1GgXq9jZ2fHd9+zSz7r/5oHAs1XGIlSKLyWcaTxEQWC0gXRl9B6Op3G4OCgd9otv5P2usoI4qkW7+dytGwXPAheZmZmfHtGXbgJ4yNB9Vrg6oPInhMnTmBkZMSMpgjiyXyoFdelT8cOwqHGpzXnq9Uqrly5gmvXrnlhw9x3i2cE6SPWMxffsWghrDzhSXJomITpuvrLuotVb5DscPFIlnUW6NBsKYd5iLSpXC5jbW0Nr7zyihdFoRdxXDw7ipy0+ETQJy5EySfzIZvN4uTJkxgfH/eMZ1c/OC+PIdOglk/s2Jfxnp6exunTp30ncwf1I0i2BdF3WD90Wl1nHNy/pwzoMKTvddmtEHmcepg5hDFfzstEXqlUsLq6imvXruHb3/42FhYWTOFv4Uifku2qR0ArNEF9s5R4AN4BMRaDZ7Dq4smq0ycSd1ZR7rvvPkxNTaGnp8fcD63bE4V23imak7JddG2N9crKCp577jncvn3b2/sO3BUYenVevjUDdTkPND1I3S5lnoGNIG6/hnw+j4mJCRw/ftw7cCyI4braGwSutkbBtf5frVaxsLCAa9eueZEfMqdcgt5StrgvfACSS3FyfTiNhCXL9TN9fX1NhkIQjuLyuCjpNe5KpRLW1ta8FV/GsbRTBDQ7eBgP1m+X8iSg6RmAd5VVPp9vGpO4eIiKP01T8rtcLnt7oF0KqeZ3es9ho9EwnWZ6/mo6tMZAtzdqn4N4qeudrl9A+Jx1Gq7Qk76rVc8ZCzj6g3mU5o2Cz6Dw2ijg6p9OY8lA6Uc2m/X27MuZEZpmXQqn7qeuQ/92tUlC2gUvxWIRt2/f9jkxvpvgkm2ZTAaHDx/G4OCg6Viwxpllp2VAS0QQp7N0Nj1urjGvVCqYmZlpOnk7DIKcHUGwW/01mUwil8uhv78f99xzj+/cEv1tyU1L74gCrfKmIIdEvV7H5uYmFhYW8NZbb6FQKJgLTWFtcsFu9MFW5DDXa/ENuep1cHDQty1Gt9XivxZORGex+LjwbDnAr6+vL9IZAq5+REm/W9qOCu9qA1orjq73+rf1PyhvK+/kYwkoV7s1g9bPwiYhMys2mHZ2drC6uorLly/jt3/7t/Htb38bOzs7ptLNIJ5XPTGY+WlhA9w9BVR+834VaSfn5dA73o+mhSAz23w+7ztVVtrVaDR8njA2RJLJJDo6OvDkk0/iE5/4BPL5vO+kcBeOXUZOnAkdpphEpSkLeAVAxvqP//iP8fzzz3tjJaGcHI4H3F2l0qdayjjIWHJ4jzaEtaLmUtbY66vHlJV+WS14/PHHMTw8jFwu5zOiXQaUxm/YGOn0cYCdBnKK/fb2NmZnZ1EsFn391HNHR1eIR5jDtXnVg3Gj8aCjLtgTLOlkvEZHR/HYY48hn8830bzLgNlrvGkcSkjs888/j4WFBZ8Cqo1BwZXFW6WfbGhrQ535GeNZypaQ+b6+PoyPjzu3JLTSb6sMl4yQNstpvBwip/kqr8oLDUkEg0vO6PbrFTkdgcLlSX6mR+0M3Q2ugnidrDAXCgWUSiUvxFx4VCqVQkdHB3K5XNP80SdPa34jjpOOjg6PT3J7OExcrgyz9lha8j3IeRPE8/VvmRvAnTFqa2vDmTNn0NfXh1wu5+3jtBylTCvcf97jLcBbqPgEcpYFwt+2trawvLyMcrmMzc1NrK2teTRrGbOt8owoeXUanhfd3d0YHh5GR0eH06Gi8Sz6CL/jsl26A+tulqPf4muVSgXz8/Pe/dlW2LBrPltpwvDkikKKUjbLmQMHDuDw4cMYGxvzba9g2c640A4GTqf1Am6jFUbP6WRu61sDdF+kDVynnLfyne98B9/4xjd8TnBtJMalYU5v0ddeQhTaSKVSmJiYwOOPP46BgQHkcrkmnUS3mXGlccH8Brg7JuxgYujs7MQP/dAPYXR0tMlw57a6ZAqnifPchY+oz13wrt4DzYMZ19sWxzB1QVC9rSpZUTxZLs+0hQ/taZufn8fXvvY1XL58GU8//TSGh4d9e4IkDxMwr3JYDgHtkWYGy5PPUjjYA8iTT09mzRwsQmejnCe4MA6pb2RkxFuR+5M/+RPMzc2hVCr5Vmp268GKMpYMljdVv9NpGEccblgqlXDp0iXvHsOPf/zjyGQyphNDG3kaz1wHv5d3ukzLY6n3KEm9GlccEZBMJjE0NISf/MmfxP/+3/8bV65cQbFYbKJtC2dx8K7z6j4EjQvjp1qtYm1tDb/7u7+LH/3RH8XRo0eRzWab8C3Ahhsraix4tJND16tDydfX15HNZr2QLBnbWq2GTCaD8fFxPP744/jKV76CSqWCUqnUxDtceHD1Pcp7F38SA1buMz927BgOHjzo29uslS1rfmucML3Kc/Z4a5rnvb4AMDY2huPHj+O1115rOhvgnQCum3m7OMSKxaLPcNYKp+CGHS/a4ajpzTIi2JkpdYnhqZUd5tFSt9Wv3eCC54ysInZ2dqJer3sGtGx1YMU5kfDv65Y2WitQ2tEl+1rZ4Se4TiaT3snoOiw+qP9M71H1AovvMP9Mp9NepI6ca8B90U407rPQAu8llzqln4wbvRLHz8SQLxaLeOutt3Dx4kXfXnKLl0bpa5w0Fg+XTzqdxsjICB555BHvekTBn2WkptPpprGVsjRvca3e6zETnEoeHgdZwV9ZWcFXvvIVLC4u+kLD30m+Y0EYjcqczGazGBoawn333YfJycmmPFq+M8+SZ0F16LYwn2FeBjQf0hYWCcn0IY7vb3zjG5iZmfE5fxj/YTQaVUZY6VwyOOxdFGD5kEqlcOLECUxOTmJoaMgZgSl41Dq0tj1kPISXMJ2LPsflSZ5cLoennnoKMzMzeO6557C9vd00ZnF45W7ApVNHhXe1AR0GUQchijEd57lFbFZdQe2wyo46sNJvTi8EWigUMDs7i83NTUxOTvruzNRGt9UvDdoY4nZaAkUL6KA+WP1wtYOVSBfjBe4ery8e+4sXLwIAZmZmIgt8F4Qxu7iKVJiBaD0XnK6vr+PWrVtIp9N46qmnfPsbXW1lZsptlTHT77gcy6CJ0mYtWPlE1Pb2dtxzzz145ZVXsLGxgVu3bgXSTJgQizLPw965yhWl/q233sL8/DxGRkYwMDDglacFlIUPxrcW3pbxY81XPU4yL0TRHR0dxfDwMIrFoheFohV9jYfdKnEuemdFcn5+3rtvs62tzUvDQtnquwu08NerIRo3PC+6u7sxMjLSFOmgcePCW1Q6CwKhg2q16h0mxEaRS67It3YSBPFkV/tZ8bJWKuOMRRgEzV02hmQPf6PR8J2C3Wg0fFdcaflrtVUbhSwnGI8MpVLJizCJK8tdOHaB650YgOIsEyNNO7otGtBGBstMbpvWHWTO8BkPALzV+u3tbSwtLWFxcfGvxPCTdusV4Uwmg56eHkxPT3vnnnD0BDtVNJ+WMqw5Y4E1PywezsaZrOIvLi5iZmbGR1sWDsPka5T2uWSPTmulYwN6amoK4+Pj6OvrM/vPZeuIDqttWs650uo+BI1LmK5UKBQwPz+Pa9euYWtry+Mp/AnCk+t5kM6m8WnBbvUTxqOMV29vLyYnJzE8PIx8Pu8sS/iJpeu57AKmZ+6vBbI4kkgksLi4iLfffjvwClBX/6LIWVf79biG6Y4ueFcb0Jq5uRhOq0pMK+3h770oSyCuUqYZtnyLx3NtbQ1f/OIX0dnZia6uLnR2dnplawPKug5DJovsWZbyOazVGg8RYNaJp5qgNVMVRiwTnAUhMzz2gvF7AL7Vmf7+fm8V/vOf/7zPsx5nQu3leLuMFouJBxkm1WoVKysrqFarWFpaQjKZRGdnpzdeHHbDxhcbYHrFJkioyTP2Osq4amDlzRImsjogbb7//vuRTCZx+/btJkXxr0JRE2A6EWNnY2MDV65cQV9fH0ZGRrz5w2GPeiVDK1QCmrc1Go2mk9XlfSqVwtDQkK9tHMrGOD99+rS371grahb9RTWkoygajDf5Xa/fubJpfX0dq6urXsi+4FQbb0I3HHXB9KYVacaBvm5G8Mlzv6enByMjI0in077VoKhCO+r7IOA5WiwW0d3d7Tuh3ZVeQOad0JtEoNTrdXOvmuBLTtVnpSOVSvn2NzK/cClXLlrQCm2QMsl8J5VKeaG4QhdySGa9XveFr3M7XUaD5qEssyTcXxvPtVoN29vb2NzcbEnRY1rlPraiLGezWS/cnHHFq8q6bg5HLhQKaG9v9+QBj4eLvyaTSW9vszjdBS9bW1tYW1vD6uqq2f4gfMUxCCywZKXI/fb2dvT19XmLBZp3WJEJIn/YeafbwLoFYB+Uqnmr0JiONrp16xbefvvtpkOr9hJaNdS0QSvOm+7ubjz55JPo6uryRccIWEYo48sC/U7PF6Zlvv0jKEJSDEFul/DVSqWCW7du4dVXX8Xm5qZ54rbksXSNVvUPnS/MQJU+WxETOj2vCgs+UqkUuru7cfbsWRw+fNiMJgLu4sqSD/Le+s/0yqHcrHPIf0lXKBTQ29uLH/7hH8Zv/dZvYWlpCcVi0dc3Vx/jytUgHuTSZaOOa+w90Ldu3cJP/uRPetcB3H///XjppZe8941GA7/4i7/oHVzzwQ9+EG+88YavjJ2dHfyDf/APMDg4iI6ODvzQD/0Qbt68GbcpTZPUgt16cv6qIArRWAzahQt+x9dx/PEf/zF+7/d+DwsLC55Q4T3DIniZmWrlgkOvRfCIEiJ7xiyFBGjeo8zCX/be6VAzwYcwQusqBN7zxu902MrExAQefvhhfOpTn0J3d7dvX5Ou04V3/W430KrwZNzL70qlgo2NDfzWb/2Wd68kC36Ncy4DgDeGVpsYzxxGqQ1maxwA+PZV6+vEmNbS6TTuvfdePPTQQxgbG/PtxYwL2gFg9SsK/jkNCxExdr75zW/iG9/4Bsrlsg+3jDP+6JVOvV+T87EQYgNZhz3LcwbZI/rkk0/i6NGjvoOHtJLRCh1G5T8ahF9cvXoVFy5c8Blm2kBgOrWMaum7KL8WDwDgnQnAPEYgl8uhq6sLbW1tTmUiCKI6HIKA8cUhw3y4ECuWHKosYcjMR5muxMmgHQ2JRMLDFdOjrHZatOLCTZA8jmow8bxgPtPR0eHdfSxhuY1Gw5MzImt4P6ZVt+CEZZdrz6s8W1tbw/LyshklEodvWA6EMHwwHxgaGsLk5KSP7jWds4HBd6an02n09PQgm8029UPKkfkg80dwL2ePSPpKpYKtrS3MzMxgZWXFC8eMopuFQZy82tiTfp4+fRrHjx/38AbcVfJ1iD4bHkJvFiSTSd/hllIX83QtZ1j/YaO7XC7j2rVrePPNN33XVum+STm6r7r/1hxlXGp9Me6qXzKZRFdXFwYHB71Tt12HR0m5+owFXSfTNn8ErFBjS2Zq49GFD+EV29vbWFxcxM2bN0NPVN9LiGrIWWl0P6wyuM/pdBqHDx/GmTNncOLEiaaD3jRfscZR0uroNk7jMq7lN+smLKO3t7fxiU98Ag899BC6u7t9+tJeOZLeCYeUQCwDenV1FY899hgymQz+9E//FG+++Sb+3b/7d+jt7fXS/Nt/+2/x7//9v8ev/dqv4YUXXsDo6Cg+8pGPYHNz00vzsz/7s/jc5z6H3/u938M3v/lNbG1t4eMf/3iTIr0XYAktficQR+kJG5C9nnwuQzmsPS7jgJWFlZUV74Tu+fl5FIvFJsVeGxy6nKjEzpOD/wPNY+NSYFwGbdB7zs8GoyiGfX19OHbsGE6ePInh4WEfI+H27iVEKdOFe6ssPSbsyJifn8elS5dw8eLFphVQl/GkGV6QgcXjGMRw9QncWqFw9V9Cjx9++GHvdOS48yqIPoNwG7UuyV+r1bC+vo7bt29jZmbGF2Yq6dj4cwnsIEUoKB0rKZYim0jcuSasr68P3d3dofNlr4WP1W/B2+3bt3Hz5s0mvmPRnv7vaqfGg6tNQq8yXuJsYMM6aO4FQVR+beWr1Wq+K76CeDrPR1m11zxXl8EOMms+aiU4SDkP67erj3F4IfOSbDaLbDbr2wPNZfK4Cw40X+PfVlsYFxJuq1egw2RzUJ/CwMWTent7MTw8HJrXNVe0XJHf1mnTUqd2cAvO5ACsoPBjPd/3mq8I8FyWcx9kOwaPv3auaBxZdM7GnbyTRQKrX9ooBPzXJ9VqNczMzGBpacl5LRrjzgVBsitKGVHGgg2ysbExHD58uGmxwUpvySeXrm1FX8lza14GycgweVCr1XDp0iXMzc35woetcQzib1Z7g/K40kSZL1FB6C6dTmNgYAATExMYHx9HPp83b+Bw8cGgT5RICZZHFshYtLe3Y3x8HMePHze3Clnl7gXviDPHXBArhPuXf/mXceDAAfzWb/2W92x6etrXiF/5lV/BP//n/xw/8iM/AgD47d/+bYyMjOB3f/d38bf+1t/C+vo6/ut//a/4H//jf+Cpp54CAPzO7/wODhw4gD//8z/H93//97fUkb0EnuTWOyvdXnmpgpSdOGD1gSeleIB2dnawsLCAP//zP0d/f793X7IO7bL2NiQSCV+IpcsL5WJ0Vt+5Dq3UWCE+WmBJHm43C0QuU353dnbi4MGDeP/73w/gzv7h7e1ts78uXOv6rTwWk4yjREWpX/4z7jc2NvDWW28hkUjg6NGjpnJtGeoWk7X6Jqt9HCao8whD51O+AX/YODNmzp9KpTAwMIAnn3wSzz77LLa3t3fFRJke4pShcSL/OdSvXr+zF3p5eRlvvvmmFwqsFShtmOkVVase3XYeOz32LOC0Z72jowN9fX0YHBzE4uKiiYe94mdB5WnFfX5+HjMzM755LbQj6fQYCN44ndQnc4APAtOKCfPvZDLp3V8rYW8rKyu+0LIoEJWmwuRMo3EnxHN9fR3lctnXNwE+oE8Oi5O+cDmWTBG8Wwcq6bRB0ThB/bPaHAQuXmfxbh3VoucUzw3hPVKWyD/NB5hupDxJK6HKcje37lsUhdklk60+u8pIJpPo7u7G4OBgk6zTDkqNT97GwMAGIfOXarXqM1a0bJaD7m7evOkZgdrgcRkJFm6s8Y8iJ625nM/nMT4+7m1t0QYa16fpW7dVG85CJ66tatwHzc8ER+VyGW+99RaWlpZMB5mr3KDnFi9n/Afh0SUD2CnR1taG6elpnDp1ynQmcF5rDnMbrfa4nHhC265ydR0umpPIvEKhgNdee83DPY9PHP07rg4S1bYIyhekD8o4pVIptLW1YWpqClNTU+jv7/fNa023mq5dOGD+wWPBZyhJOpdtpNtfrVYxOjqKrq4uXL58GZubm055FBeijI/GQ5wxjbUC/YUvfAEPP/wwfuzHfgzDw8N44IEH8J//83/23l+9ehXz8/N4+umnvWe5XA7f+73fi2effRYA8NJLL6FSqfjSjI+P48yZM14aDTs7O9jY2PB9gmAvlD8LiWGM0vofZTCC8oelDQKLKchvMWTkNN7NzU38wR/8Ab7whS/g/PnznsJmTQItDCRMG/CfEqsNZ74qiVd55Znsa+N0AnpScxiiNv6Y+YrhplditEGSyWTw8MMP44Mf/CCeeOIJ39VJlnANGtc4498KfUTJz+NTKpVw9epVvPjii3j55Zd984fpQoQUX2MixoQOrWdFTQOH1suYSngaAF+IIIf7s8GjFZt8Po/R0VEMDQ2hq6vLXA0JwpUWvEwH+p2mp6j4lm9RKP/wD/8Qi4uL3rUYUra0W/BsvePx47bp99xOeccODQ7xZlyePXsWH/nIR3zX+lg43AteGmYkSj83NzexvLzsu/6ClTd9DZEed8ELr/IILuQ5n3HACp3gqKurC+3t7ejo6MCxY8e8E80txS0qfuLKB8aJOBZ2dnaQyWS8ww8zmYy3+irtk/A84e8MmgdKf2VvNPNcrbxYe6BdBq7VzzB5pulNK4raycY0IXTBq9Fs+Eo5fFWitepotYvPLhC62dzc9Axol8FhQVQjMgg/3GcJneYrd1wrPcBdniy8WG/1kfwi93gbSaNxN+SV5+bm5qZ3bsGNGze8SAmmH5eS7poDrnkWJieZj0v0yIkTJ9DT02OGYovRJOm1zNLzgB2SPHeEtvjea6vPrKuIjNjY2MC5c+e8k7e1rtYq73XNzSD+Zc1BeSb9zWazeOCBBzA9Pe1FL7EOx3LGkpuab2jcaANM3kkb5LkVRcJ6C88THR1Xq9WwsLCAv/iLv8DS0tKu73PXuNtrCJonLkilUhgcHMSJEyfwyCOPoL+/3+lQld+CB122/Ba8JxIJnyzRepir3awzsmziQwlzuRw++clP4sCBA4G8zAUWHUWBoPkRBrFWoK9cuYJf//Vfx8/93M/hn/2zf4bnn38e//Af/kPkcjn89E//NObn5wEAIyMjvnwjIyO4fv06AGB+ft4Lm9VpJL+Gf/2v/zX+5b/8l852acMoTMmN+i6IYDXjiWM06XJcSvpuJrUFzMB1PXJAyuXLlz2CHxkZQVdXly+tMMcgYtMTUZSQIJD3IrD1RBDDwFKaOQ231WqLhW9hBLlcDtPT08hkMpidncX169exsbFhMtggo0DXsxfjGGVya3yxEr6zs4OVlRV87WtfQ3d3N7LZLNra2nwhWFpwa2WWlXNrbHR7hY4EZDVD98c6aEzq5Hqy2SweeeQR5HI5vPLKKyiXy87xZNxbdBEErnRhih3Tbblcxvr6Oi5duuTdl6lpg/NaoZFWX1wrJYJrFnjyW5xNbDz29/djenoanZ2d2NraCl2B3A2EKYSCC1FExVjUgk1/S5/1PLOErzac2MDWB7OJwTg5OYn29vZQwyiKwqtpUNOtqwzZZiMOTd4Hb32skEqmNyvSQXAjkRGSjvGm56jut0uGBfXNNU9124C7e9atsFurHl5V120JipTS80icvWxslstlc95HgSAcuPDAzxKJOw6woaEhjI+PO/foMy6YJzQaDd/cckUACS1puaCdm7KSWiwWPaNUt8HV3ziGclTlVvrU3t6Os2fPoqOjw0ffVplWnUH8UOaQnodBbdWydGlpCefPn0epVPKtgOq64kLcPFontNotulFvby+OHz+Onp4eLz3vJ3dt89A8J6gdQf0IwrEV/m7N+7m5OVy/ft1zSuozXlrFeZg+GPYsal4gfOV5cHAQhw4dwuHDh5sWO7QeLP+FJ/Dcd8kMKUvfDOEyoCW9ZaBzH8VpNzg4iEKhgNu3b0fCVZD+Z83xMHqPA7EM6Hq9jocffhi/9Eu/BAB44IEH8MYbb+DXf/3X8dM//dPORgQRWJQ0v/ALv4Cf+7mf8/5vbGzgwIEDvrzW770CV7u0p223DK8VD4hLCESZ0Mw8RTlYXFxEoVDAwYMHPWVCjryXcuO0Myj0z1Iqg4SPPuDFMu50H63/Fs5kJaO/vx/5fB6nT5/GxsaGdyiKNSk1E7LavVcTNS7ocZZD486fP497770X7e3tmJiYMFfyhHFa81i+tfLMRrRl8Eh6vQdNh2w1Gv5TULkN6XQap06dwurqKi5fvozV1VVTSdZ1WvBO4J8FjtxvfPHiRfT09GByctJUulmRtdrHihpg70/VY6X5kpTBaTo6OjA4OIiBgQGUy2VUKpXIjoYw3EZNyzQk412pVLC5uYne3l7fCf9cnp738lsEv0tocl2SnpUAyV+v3zm1enR01OdkioqfvQKhpbW1taaIIMCvNLLCr+e0VvI17fM8tPio8MbdzpkwJdnFS8Ug5gOarPycno1GXV9QOCjgl1k8b+TkXm0oWv2UdnCbXBBEr1bb2tra0Nvbi4GBgaYDqywDXT4izxMJ/x3Qmn6kLVou67kjK+Gbm5u+A7Dizo8g+Rk3fyKR8A6aO3jwIPL5vBlxoPEV5uTXCweCB+Hd7LhyOW4ExCl26dIl38pzqxCVH0dJx3hho6yzsxOjo6MYGRnxXRcHhDvTwsDiA5ZO6OJfnEen5e9yuYy5uTncunULGxsbTY6L7xZftyCKbHHNcXkmuvr4+Lh3XZUGF49x6R+u9Cw/WT665pGWT1ZfpQ/Dw8OoVCpYWVlpOkPGBXFlUyt0akGsdfKxsTGcOnXK9+yee+7BjRs3AACjo6MA0LSSvLCw4K1Kj46OolwuN113wGk05HI5dHd3+z4WBDHiuIYf54tSThyF0iXk+L9Vp2ZuQcamq24NvGdJwrs2Njbwf/7P/8EzzzyDt99+29sXJcyUvVoMouSwsgPc9VKKoGYjQ7dNmKCEDEkYGYeNWH1hwS7liJDX4T/aYJH6JCyrs7MTn/zkJ3H06FHv6icL/9aYB9FMkPIYBaLSt65L+i3Xvvzpn/4pvvzlLzeFQunxYSVB8KbDpNhzCfhP3ebx1yGljH9WSJnOdLhuMpnE5OQkjh07hlOnTvmU+qD54MJTEB5dYxY2bixYSqUSvvrVr+LcuXOBBmpY6KWk0auP3G69/5PHSRtCMpadnZ146KGHfCFeLlyE4YqfB6UNwlu9fudezosXL6JYLJpKkO670BY70XSYtuBRngm9JZNJnzLINJfJZDAxMeFd9aP5hUVXQTjQz12OAWvurqysoFQq+XDAIafSdsEHG4gCvIKt+8IhqYA/HFL+u05s5zIsnFgO1FbkVjabRS6XazosjOeUNnCE3nnlWtrEWxtc/FLKZf4pBrTV9lb6FURHumxp8/DwMHp6erxwfj2m2jnH4yhytbu7G729vejt7fXkrOCL8SOyn0/lli0EicTde1wldDuKEyAqDw5Ly+95PHt6ejA6OoqBgQFvfst4yjhKXukz6yssy4QniAxkepZTydvb25HP55v25EtZMielDRsbG02nP3N63e8gw5HxEAQan/rD/eLxFxk/NTWF7/3e7/Xu0maaYL3AAstZxbqG5umWHqfxwzJN40vzHInAW1hYwOuvv46LFy827TkPkvsaj64568JtHP4QltfFe2Xbwvj4ON7//vd7J/QD/mgr3tbk0jt0f/SNIDqdAJ/0z6DPu7FOVZfvVCqFkydP4oEHHsDQ0JDz1hV+5pIxLrzKf26HPjg4KsQyoB977DG89dZbvmdvv/02Dh48CAA4dOgQRkdH8eUvf9l7Xy6X8Zd/+Zf4wAc+AAB46KGHkMlkfGnm5ubw+uuve2lahaCVjla8fEEGUiIR707QsHr2yvvFfdUfLeD4nSid4mXf2trCiy++iD/6oz/C7//+72Nubs57r5U2gUql4hMIrsnOHm8R0NwmVoKYyfIKBB9GpQ1jVpb06p1ebdLlcVkf//jH8RM/8ROYmJjwTjDUymfU8XgnQdO3HnNWtnd2drC0tIRXXnkFv/mbv4mVlRXn1RncX1Za+boOTqsZLO8jY+HGh5ixQ0Y+bOxwe2Tf58mTJ/GJT3wCU1NT3h7VqDjaDX6DynLhfGNjA6+99ho+97nPeUYM0yczcMYx0z7jQK8c8ZzidNo5wsIjl8shn8+jq6sLTz31FA4cOIC2trYm3mYZ664+87MgvGgFiNMIvr785S97d1RrfPCH+6vL5/282piQO2yZR1jpOjs70d3djfb29tB+Bz23cONSqvQ8rtfvXPVRLpd9Z0RwyCQ7I5lHszOMw5B55UXTmD6dWPgz74G2+qXLcfXb+m/1XYPscRYDVvqnx17LDMGNVri5Ln2asOBI9grLRxwZen+syxnC9QTRSxBwu8WYue+++zA8POxzILr6zjQjNNRoNFAsFlEoFFAoFHyyT1aSRQ8Q/PK8qlar2NnZQalUwtzcnLeSaukXccEly8LwI3wwm83i3nvvxeOPP+6NpV794rvf+XwOkW1SljUGTA88xyw+qPUTcap+5StfwXe+8x3v9GeLz1o0ZeEpLlj0aJUlsiabzeKxxx7Dgw8+iMHBQZ/DRjvFLTxo2Sx0zAYZ6xIatNGjjSUX7hqNu/e5r6ys4MqVK/jjP/5j3L5923etqqUzWW3Q/XTBbvW9KPm1gZtKpdDb24tDhw7h8ccf96IuhO9bxnKQIc381OUcYN0NsK+G0+21ZLcVMVapVNDR0YGnnnrKdzOO1T5+FgenWr8Jij4Jglgh3P/4H/9jfOADH8Av/dIv4cd//Mfx/PPP4zd/8zfxm7/5mwDuIOpnf/Zn8Uu/9Es4duwYjh07hl/6pV9Ce3s7PvOZzwAAenp68DM/8zP4+Z//eQwMDKC/vx//5J/8E5w9e9Y7lfv/JWAiAppDG4I8MtagRp1ccQ1ybdAHgW679JGZSaVSwerqKgqFAgDg2LFjyGazvrAxF2iFTUAmtfYeSR5uE5flem5NCu6HhRMXc7cMFomIuO+++/Dtb38b6+vr2NnZcdahlY04jNdKp2ktSnqtpPN7GY9SqYTV1VW8/fbbuHLlCqanpzE8POz02llt0Gl5zHV6ZuYub2oYM5SxkoOekskkTp06hWq1ilKp5IX66DGICrsRerocbkOlUsHCwgLefPNN/OAP/qB3wr1FGxZNu+aZZRhbaXSbRODK75GREQwNDaGnpwfb29u+bRKuMdktrpinagVmZ2cHMzMz3om++oToRsO/z1ecB645I3Vxf3QYMNMj4yiTyaCrqwsdHR3edoFWlVYGa7ys9mtFkJ2NrnFnhwo7rbQc43qtMjUfsVbXXGDxIZdiGsZXpC3i9OB0VhmMt7grokxLloK2sbHhCykMki0ucMmGIOC0qVQKo6Oj6OjoAOCXg5qv6nZq3PAqu8aTizfz/+3tbWxubnpnKGijbDd9lnxx8iSTSXR2dmJkZMSLhrRCSrWBDPjD+nWkm6sv8lvyWu1nfJTLZaysrGB2dhZra2s+x06Qrhik20XFkZUu6H8iccdh3dvbi8nJSQwNDXn3f4fVx3yHf+u+yNhovdDF4zRNWm1hGgfuLOAtLCzgypUrWFhY8Dl6tIzQ5YT91tAKzbvGWOScqz42nvP5PCYmJnDgwAEMDg768BplvFjHDuJtFo4Siebzb3YDTC/9/f04ePCgt5VreXnZx7Oi6sdRIMpcsyCWAf2+970Pn/vc5/ALv/AL+Ff/6l/h0KFD+JVf+RX8xE/8hJfmn/7Tf4pisYi/+3f/LlZXV/H+978fX/rSl7zDqADgP/yH/4B0Oo0f//EfR7FYxIc//GH89//+351eqL9qYCVMQP/e7SC6jJ+9KiOucBfvbL1ex8zMDM6dO4darYaHH37YqUxpZskCgic8h3RYDJYnhrXv2WUksXLA5VnvWPkWhqo9qrIf4xOf+ARu3brled+5vL0yvPYCwpiltFc84cvLy3j22WdRrVYxODjYNP/YQNO40bRlpQHuRimE7V9kfHI5OtxHDJu2tjY89dRT2NjY8K6iYAMoitGyl2CVL3NoaWkJjUYDa2trXhiqTs/7B3llX8qxDCyeKzyvdHsYLzqMNZfLYXx8HBMTE5ifn3duq9gtboIUAalDjMXV1VVvpS+bzTatFFgGDytlLiNQ59f45jIAeGciDA4OYnZ2NnJf9hLYgJb2cgSCBk1bjCcpTzsdrLbrMvigNaveIOWL8W3l0+ms93ICOfMC7g/jS4AdDpouNI0ITnh1it/LCrRcc+bquwvC0kTFTzKZxNDQEHK5nC9ayjL8RI5rY4NXi0T+6ZN1pQxeqWOZWavVsLS0hM3NTd8J1LuFVhwL3P+hoSH09fWho6PDc9pq3qhpht9r45ojooQmGE+MSwbmS6lUyrs66cqVK96e8d0YHnq+RTWiOT9/62fJ5J1rwCYnJ70rhvidpiUNOjqNgfvN+gGPge6PHsOg/rG82NrawsWLF71tVK6Vy3dKj9utTu8Cwatsxzh79qx3ZaaARD3wSr+0iR0XulzGI9OExptepbbK4+cWLoKcnJVKBcePH0d/fz86Ojrw4osvetEiFi5dTpAgvGs5EJcOYhnQAPDxj38cH//4xwMb9Iu/+Iv4xV/8RWeafD6PX/3VX8Wv/uqvxq0+FuyFYctlaWQzEfD/qO1gxXav2muVEcd4ZkWbFYkXXngBN2/exNLSEp566ikvdFb2zXEdMnF57zSXzYcDSXt1WCuApjKYOWjlWStHOsTT1Wepz7UqKHugfuqnfgrPP/88/uzP/gwbGxtNzgGXweYy9rn+3YKmI6t8Hl8x7EqlEr7zne8gmUyiq6sLZ86caQpxlHzaaaKNFq6D22X91/NF7ynUebgcoblk8s5+6Pvuuw/VahXPPfecV7bLiA4CjcOwMoLGTQSPzKFKpYL19XX80R/9EZ5++mncd999Xh2afjk/CzptaDLtWaspGthZxOOVy+Xw/ve/H9lsFufOnfOFvDJOLFqKAkFzQ8riciXU9MqVK+js7MThw4d9NKANKAGOeNEKsnaWaaec1V4pY3p6Gqurqzh37pyJjyBcaN4eBVc6v7SZ6ZrTufaI1et3DmSztgsITgTfXF+xWPSFNAtvlOuN5BOmzOp+hL2zZCsbRu3t7Whra/P4saRNJBK+q5N4rmgZwHPNUgjlHW+nkJDnWq2Gubk5LzIiLuxWkWYZ2NbW5o27lltMc8xnddQYG736nAltVLExJP2o1Wp49dVXcfPmTfNQtaj8N0jJDeIb+rcYfE888QTGxsY849miUx5/qYO3Q1h1WDoV06d2cvJvebe2toavf/3rWF9fDzTmotKHS3/cjR4p/Wlra8Po6Ci+7/u+zxftwLyE5bZesNBl8n3i1kKZ5QywFlW4TEnDzkX5yHkvEratw+WtNu61Ea3pwGq/5gtBOiHzROEDg4OD+L7v+z7vujatS7t0M8DWE1w4YP4aNxJL63u6XtaXmA4ajTvXa3V3d+Pee+/F4uIi5ufnsb6+3qQDRe2HC1rRbYAWDOj/F8GFwL2aEFqoSJ2uSeditvqd5fWwlCjreRCEpY1SFjPiev3O4T4LCws4d+4c+vv7cejQIRw4cKBptYz7Ku80c9UhIxaDlPf60CprXLWyxYY/M3xWsFnJ5onLZTEzGhoawsmTJ7G1tYWvfvWrvusn2OAJw6+mgyiKlYsm+J0rr6Y9rrdWq6FQKODq1atob2/HyZMnm64zYFxoI8YFktYVBaCNRj51G/CHdllKjNBFPp/H0aNHUS6X8eqrr6JYLAJoNqKjCkdrDKPOO2tM5JkYMxcvXsQDDzyAQqHgXa+iFbkgYRA0xnwaJj/XAknaw+X29vZieHgYXV1dTYfa6D7J76i8NYrxxGVKX65du4aBgQHPgNZ8k2nQao/1XvMOF21wur6+vqbTjoPG2tW3qGDNdTairfTcV70qwMqJ1T7tMOM5J04JuWdZ8/goMtb13uqni/YTiYTv4Cpr/K0+uvps/dZRSLpvtVoNq6ur3gp0WN/j8pGwOS79E+ehzmvV4/oNNOs0Fp/n57q+Wq2GxcVFbG1tmTxmN/wsDKz2iXNhbGwMHR0dgdtkdH/ZIKjX6941emKQSHqRS7x6x2Vy37id9fqdveWFQgGbm5uhp5XH0Vs1/4mCU5euJd/pdBoTExM4dOgQuru7m6ITdNstWtL90dsvuL1B/WX6s7YFsj7Hn7W1NVy7dg3Ly8soFostb7+JI+s06LkURz/k9PKcaT2bzWJqagoHDhzwbQvTeIjSD+EnWi+w+IGLr1k2Uhi49EmrfrmBpV6vo1gseufJBPF0riMMtK4bFd4TBrTAbhmzBcw0gtJw/a627UW7XH3Uz8MEWByBLgbA+vo6isUiOjo6UKvV0Nvbi+7u7qb9LWLg6EnBAguwT2fk39oDGRQKIu/ZI8mg+6vr1UqJVtA6Oztx6NAhtLW14dy5c1haWvJWI6IIAY1XF+wVnQSVD9xllpVKBbOzsyiVSviRH/kRT2AyRDHyOB3/131nI4lXtLTn32V8c5p0Ou0dYDgwMICFhQWUSiWnMhgXTxb9tlKOzJ+bN29ifn4eKysrodcjaSFiKbZMe2z8WCGLuk2Mz46ODvT19WFoaMjb57kbxSEKToIMxWq1ihs3bmB0dDRQsPFzxpc2qKzwSkmr2yNtEB4ipxVb5z60Km+sfFZbuD0uhVvzKVcZFh3xbzEMrC0TcvLyXtJEXBlkGdC8Eq5pwTL8LEgk/AdIVqvVptXIRuPu1gIdrtwKPoLoz9VG4Xd8arw1lixjg8p0nQOgjWFrBUv42drammechPU1CriUcwY9Z1iBz2az6O/v93irlgPSTitikPsg55wErYAGrd5Z/GZrawsbGxte6LZrLnM5uwFXWUE4lX6KcTY9Pe07PFCHAAN+wymIn3EEkLy3jGg9JvqmDRfetW6xsrKC8+fPY2trK/ZVSFHStmKg6fRRx1nruHLS/MGDBzE9Pd3kVGO+ZekMDC7D16U/sSwJKsMK59b6Dc+xIPkmz48ePYrV1VWsrq56h9+62hcHmOfFhVincP+/Bi4haSExKlK1UcWnMnJ9llKq26U/cfoQ9X0UcOHIpXhyGvayStjvq6++ij/7sz/D7/3e72F7e9tjULJHuNFoeHvWMplMkweTT8HkEG1mEKK06VOHWfjIfthsNuspV+IdlnxSh5xGKgYb0Hx9krRJ+srvhGkdOnQIP/VTP4WzZ896YY2ssO9mrKJO5DCacpWrjQQZMzlU7Etf+hJu3rzZpDixMiZ5eBxkrPiqGeDuvl7BJ5+gq4HHXWhEBAP3V1+RlclkMDIygs985jPeaY1B+IkzF/V4uJi8hW9WpoQGC4UCnn32Wfzpn/6phx95r+lHGzH6NE2hczY89QnFPObcLn2tSjabxdjYGD760Y+ip6cn0lkUrdC5xZOtsarX75y7MD8/b+6v1DxY6IXLYrrh66k0fWicCp+Qsru7u70rg8L4tNW3oDRBtMT8mUMPdUQOh9uzwiLh25Lexedlz6/GpXykHr4KSvcxLj+ywFK++b+cws1Kl8W/uV38m0/9lTnAfE5wLnkEDyzXZO8qG6uaPwXJAsu4t/QITiPpJIxdTkLWeorUp09g5zkv5YvMZT7FMkHuhWdewnyjUChgdnbWk/2WQRhVp5HfcZRXjetUKoX29nb09vY26Qy8fYNljNxIUS6Xm66p6+7u9m7diLNVwVrJq9fvHNr54osv4tvf/rbvxO+o/YuDkzhpdR5xQhw4cADHjx/HoUOHPKdNLpfz6cJ6RVlkPo+nPq2e5678F+cUp+PyWU7Jt2wbtPQ0AF605LVr15ocFhadWjKfy9sL3Lrqi1qO0HE2m0Vvby9+4Ad+AEeOHEE+n2/qn9aTuV+uSCZJo1ehXe0WmaAjPfRNNUF90g4VF+8UWioUCjh79iw+/vGPe/PTpa+F4VnzoFbhXb0CHaaARE2rgfdZAc0eRZfw03WFpXOBy7tlTQhX3rBnUfJoQpf2lMtlLC8vo1qt4otf/CIefPBBHDhwwHdHoAgsEV68X0beMWNkocd4Y2eI5bEU0HnkmfaEyaEK/F+XbSkX8i6bzWJ6ehrve9/70N7ejm9+85smw9prCKOJKExACwce13K5jBdffNHz4I+MjJj0K4o618fh1qyUspc6mUw27ZmyxpWFrMXgmC5lHCX8/NChQyiXy7h9+3YkYzfKXGl1TAW3bOTWajXMzs6ip6enSeDxRxt/XJ724LOjQws4Noq4DMnLdJ7P53Hy5El0d3djfX3d3Ne4W/oO4lncftk3vrm5idu3b+PAgQNNUS7cFxfP0PSleQPgV3Yt5UkOrOvu7vbCL6P2y9VPXQeXoeex9LdUKqFQKHiH+UhZbBRy3+XEXClDl8uh3lqJEZBx0DwzqN9xjCFLnrn4mDhJrbpYYef6mTbEsNS0wXybHQW6bWJw6fuOXYq5q5/W+IaB8MSuri5MTk76ngXREPdD+iC/9RYZxiPPNW2I1+t1rK+v4/z589jZ2XEamFHwwW2PSzcsG+Swz3vvvbfpai8BywnPzzSvle+gbQGWIWLx4+3tbSwuLnqnCFu6hcaBCx9h8ySI1jiNxqHI6La2NjzyyCPo7+83jUEXvrQexWkl2kzzaJchJ7QpvyWPDp3nfohsrFQqeP7553H16lWf8cwfDRa9aBxFBUtf1X2LW460MZPJ4MCBAzh27Bh6enp8jjP+uLYUCD1rh4SrTsnLcpbf6f6JQ5fHj99Z0QcWjpnGte6+s7OD7e1tX8g64ygKWHI4Dv9heFcb0HsNiUQC7e3tGB0d9U5N3N7e9k0m/t6L+oBgwzhOPVa7WmlnUBm8mlatVvHaa6+hq6sLqVQKU1NTAOwDi3Q5bCjJf0vJC2uPFkTaaHYp0ZbSHVav5Onu7sbhw4fRaDTw1ltvYWlpCaVSKVT4We+00NTQKp3pMq3/zCCr1SpmZ2dx5coVdHd3O0/lthieKyxLj69rvLVB7mKEeszkfyaTwcDAAI4cOYLt7W0sLS0Frhy48B9X8Q9j2FpRqtfr2Nzc9E6vbW9vb1JyuV3sgNIQRGOW0LTK5/+ZTAZDQ0Po7+/HysqKt5/8uw2Cp2q1iq2tLczOzmJiYsJpwAkd6FAwpintyJB0LgHM/EO8/t3d3bh9+7a3Ainpw8YgiJZ1ek3b/E7u3Q0rx+qDfs940H3QtCjzyOXtt/ps/Q/qr5VHv5PVDhe4lDD5ba18WW10KZAcXeVqc5Qxj6rwaQMnkUh4VzRpo4bLFDrnvLpui26D+K+Wjdvb27h165YXeaaNk7gyKyo/1SA4SKfT6Ovrw8GDB31GnZZX+r9l7LLTgPPE6RdvLRCn6draGgqFwp7pehYd7VZ3zGaz6OjowMTEBNrb2wPL0vzTxb+EF0sdzJODQL+3jDJ+Jyv9KysruH79OhYXF5tO0w/i1UHOBgu/UeduEERNI86K/v5+jI2NYWpqynOQCm+z5q/us+4/y7igvrjyu9JFhSj4ZPoql8tYW1vzbjXRciysnrA6WoF9A/r/D0Kk09PT+OxnP4vXX38dFy5cwIULF7wT/CRdFC9SkBcqrqAIKt8FrQolncdqv3jya7UaZmZm8Bd/8Re4cuUK/tpf+2tob2/3ef20oJfVZvb6aOWG82tjXNqjFWbZuyahhzpMVeOEwxFZ4ZaVCsB/wi3jJJPJYGpqCr29vVhbW8Nf/MVfYH5+viUFIipTiqqIRwUWfoKjQqGAZ555BvPz8zh9+rR36i2Pk0vBsEKD9D47OQREaEeUHb5qgfuthTQblFKfjGEmk8GHPvQhdHR04O233/b28Vq4FHA5d8LwFQeYbuWE6c3NTVy4cAEnT55ER0eHhxuZE7JS71J0efWQcSUrcJpmtUOI56XMhUQigXw+j+PHj2NrawvLy8tNbXDxtFZxEwSVSgWLi4t4+eWX8cADD/j2fup5y21jXHCb2KHictgw/oVPVatV5PN5TE9P49q1a6YTR37vBVi4rtVq3h5KoSdrlVQbgDzftEHBhhY7F8QoknB3aYu+OaGVflnGftQyZUsQ90PLDr2lgfm6xpk2OjX/EicOgKbVZ2lv1KijODRi4Uh0k97eXhw6dMi3pYPbJGHq0m/mB2xYMs4lTFnzcwtPImc3NjZw48YNnwEdtX/cR8t5E4W2eIVcDpMcGhrCkSNHfCuUctWXVb7mF8wPNW3oUOSo7a3Vatjc3MRf/uVf4vbt274rMK02aPxYYOWJgjf9XutcqVQKXV1dGBoa8p2DItdDSj0cRaa3EjDtCP0JcMSD1G05uV3RMJYDj3lWvV7H2toannnmGSwsLKBYLPrwE0abGv/cl6h0GQZRy2AalXD2bDaL7/me78Ho6Ch6e3sBwFthZ2MauIMrjX8BpuNqtdq09cmiTc0TOL01zvytdcwgkLnGOiVHNqyvr+Ott97C9evXm66Bc8kXboOF36gRAS7YN6BxZ+Dy+Tx+4Ad+AGfOnMHU1BT6+vrw4IMPYm1tDV/4whcwOzuL9fV1LxyFlTeg2bv53VAyNURlwmH5rbxa0LGScvv2bWxsbODf/tt/i89+9rOYnJxEJpPxDCM+jVvK5t+CGx0GJMJQKwDA3f2jzGSYyfIkZwVKM2YGXrXhfZONRsM79U/KSKfT6O3txYc+9CEUCgW88cYbuHTpkrdKwR8NUWkhyADUfdBjFzb+WhGV/1tbW7h06RJ++Zd/GX/9r/91TE5OeoqI4E5Ozbbq13VrRwe/13dosrFuKTNs+GjjTw61E2PrN3/zNz2DQxubrja/U/OTcSyn1/6X//Jf8I/+0T/C0aNH/3/kvWeMZNl1H/6r7qquqs45TeeZnpxnh7PcoF2uSK6WCpQl0pJswQqULduCPxiGv9jwRwMGnGBANgRDsmSICiAhBjFIFLnkklxuntkJOzn0zHTOqbqrurq66/+hcd783qlz33vVM7T/Sx+gUFXv3Xjuifeee6/vflvAfyq5dtikrYIPUYA8CaEVnigmdjqYH4SXt7e38fGPfxwAcOvWLTNU1dW/3eCEQdP69vY25ufncf78efz9v//3kUqlkEgkShxm7qumHZ5hZ9nMZzKwkhbaFnkj+K+rq8OpU6fw7rvvYm1tLXQPY7n918aKTlcsFjE7O4uJiQkcP37cJ0N5zys7VoD/hFoumx0rbTRpozidTmN7e2ffqzZiw3gmyEGOop+Yv2tra72IDXln8YWWD9qQ089jsViJzJY0cgqzrGzpvcVWe58UaP2VTCY9B0fzCq92JpNJXzlaDuhJBO0gAX660aHeDx48wOjoqHeApmv8g2wJq23l4ER+S8j9c889h0OHDnlylLeNaWeYZaC2aeSb8WEdGmfpWK3vNzY2MDExgfv372Nqagrr6+slK6K6b7uVKVoWRknP+lPOdzl16hROnz5dsnCgyxQ6EtuIn7MuEXuK9UyhUPCiSUTP6Txcngv0JOqlS5cwMjKCu3fvIpvNlpx0Xo6sCnK4opYR9C6IJyz67u7uxgsvvIDm5mZUVVV5uontBq3zpQymZbYbAPhuVrDS8zOmW86jt4UIsO3O8ofr13ykw+3l2fz8PB4+fIixsTGsra15W0cER9xeLi8M365xLocP/59yoF3CIJlM4tChQ9i/fz96e3uRSCRQW1vrhbScOnUKdXV1mJiYwPj4uG+FSMCaAdFpgtrFEGbYRy2zHCFtPbcIUKfb3t72DsYYHR3FhQsXsL6+juHhYd8d0ZpZXEpIT0rodrj6bikzfscKQ+NCGxlsRFvpRSHIqsDhw4cBwDsdUB+KEWRsaSX+JI2wMNDKRRTc+vo6Hj58iA8++ABbW1vYv3+/s1063JWdYalDC3HBnYw3G8phQkwLWAYxBPbt24eampqS6w7CFKGr7ihjEkVYS3/z+TwmJydx//591NXVeVsfNJ2zEtHGI+MScN/DafEZ8wP/r6ioQEtLCxobG1FVVVVypVUUeaDr3a1zvb29s59tZWUFS0tLqK2t9d1zye22+m09Y5xpQ8Xl0AI7hkZ7e7vvULuwfpVrbFnt50mBtbU1rKyslIy7vJfJFB3Ox320ZK8eS01HYii7TuYPA013ltPioln+L3ugWcYEOWDMI7pMHYFgbflho25jY8ObjON2B+EhTB6EyRTN2+l0GtXV1b6TyLkfWlawLtXjHCb/XONULBYxNTWFmZmZEgclCk6eJIgOkUOvWlpaAnlTTwRox05Pzooxr504S9dpu6VY3Jlwn5mZwd27dz2DP4rMKBcH1rOojprIhUQigcHBQXR3d6OxsbGEprg8nnh1tcWys7QTxWmYZoPK1e0QvM/OzmJ8fBxTU1PI5XIl90JH4bUwPRYVLL0XpJussZL+yd7+7u5utLW1+fRPlLDrMJ7XZbjoRssCLT/DwGqvRWNanhQKBUxPT2NmZgbT09PeAqYVAakhqvxx6d2o8BPnQJcjvEUI19fX44UXXsC+ffvQ1NQEYAeJIqCfffZZtLS04ObNm1hcXPRmEwV0feU602FMbim0KASshc+PQ6mx4sjlcnjttdewsLCAtrY2tLa2evVaM4uWgOOZJc1Q7GQxw2knTTMjG83aSNTh5rKKo2e4dMij1BePx3H8+HFUV1djYmIC6+vr3v5RPmbfRSNRHY0oSiAMwtLIWMr+/zfeeAMbGxsYGhryzVayEcFjUlFR4Z1qyriVurUDzSt/vHoK2LTB46pnq6WcdDqNrq4uNDU1YW1tzTtJ1nJYdqs0LaXuSsN0KHiTSYpr166huroaPT09vnBbi851vbHYo7BaS6Exrq3fnIbrTaVSnrEuYXCWsnpcWWIZTFy2rAwXCgXMzMygsbHRC3eXturZZzbEmM+Dwi+1McahvNK2RCKB5uZm7+TPIDxz/1z9DkujcVEs7lyDs7y87KN7lmuAfS2ggHagdR817XEbdFstWRYFyqEZjSc5hZtDdNnJYXnD8kXjiGWHjJk+qZxBzvtYXFw0dTB/l9uvqH2PxWJobGxEdXV1iTFq0RPTMfc/iPYsg94ybh8+fIiJiYnA6JQg+0S/243eYgejuroae/bsQUtLS4ndwLTCdQutyISTnmhwTaawE6jpSSJA5P/GxgYmJydx586dkpPKgwx+i/ei2nsufLnSCJ8kk0mcPn0aHR0dvogu6RMfAsbf2r7SZUvbZRVfR0DoSBkNwqeSjm9RkeibQqGAe/fuYWpqCouLi6F3bFvwpOziKHZ8EDC9icwbGBhAX18fUqmUr3xNJ5YDqmmKdZsAj3dQv7QNI3nL6ZvwRlA9IrPkxp979+5hdnYWKysrvkghq3zdVl22K09YuiD4iXOgy1Fk8XgcfX19OHDgAJ599lkvHI4FhQjFw4cPo7+/HwcPHsQ3vvEN7xoHLeik7HIHIgrzRXGytELfTVt0mfzN7RVgYbu4uIj33nsP9+7dw+/93u+hvb0dtbW1vjyWctfGrmb+IIeiWHy0B1qYT97rvbXb24/2tmmnhfssq10sxLWzLe2uqqrC3r178Tu/8zv4n//zf+LBgwe+gw40vrRC/3GA5XQFpdUCLp/P48GDB6ioqEBtbS1efvllLzxQ0ouTw3wieCsW/fuci8WibxVL8gSFbeu2a+XLxouA7In75V/+Zbz22mt4++23ff16Ug5gWBla2VlGxeuvv45CoYAzZ86gvr7eS6MjXFxOjd57pEPirFWAIENNxquzsxMnT57E97///RKn9Enhx8KTBtl7+tZbbyGRSKCpqckz6NioEz5kOuDIBt5yoGlte3vbOwBQG4HC9/F4HNXV1aitrUUqlcL6+nqoXI3ad6lL40M/W15exsLCgre3n51GvvKNx4l5hMvUq2X8ToxUTqcNXqvv+pl2wHQ/NR4sPcN8I2Gf2ojSMoXpmic7JC/jRcrQZwewI14sFrG6uoqpqSnfKqIlzzU+wvoaBURO9vf3o7293dSB6XTaS89t16t91oQSO0iCCz3erDdnZ2exuLhohrJHtTXKwYGLHiorK9HU1IQzZ86goaHBd40l6yPL4SgWi94kN6/oS/rV1VXPudYTu1KGyEqhHT53JZ/P4/z587h//74XThw13F2neVLOncYhAO/wtaGhIezZswepVKqkzq2tLd/J5qxf9MQT0wvjm09M5n3grtP9Xe3myEAAWFpawsOHD/HWW295k+WWnvpx4LCc5y45b+VjfXPixAkcOHDAW9RjPnYdaGiB5ncB6wYabSdoOacjEDTNCn3w4oiWQy4nWsqULTPnz5/H0tIS8vl8yfkB+rf1PwqUYydb8KG+B1pAC9mwtDKQHR0dOHPmDF588UVv0IUwhVFlH2wikUBNTQ36+vrw0ksv4ezZs0in074ZsXLaEaWNAuUar0/CYbaIUzOXfi8OVTabxcLCAr71rW/h6tWrWF1dLcnP/RMDUBuBuh69R4KZXOrXBqFO4zKS9UcbVNoI4TJEuNfU1OCFF17A0aNHUV9f7yuHy9P/LdiNwxIGUY0bweXGxgampqbw3nvvYXJyEmtrawDscCOrDr1nUuNX/7bwY4WechrhTb3/fWhoCAMDA75Z9d3y5OOMhTbc2OnPZrOYnp7GxYsXkcvlSuiXhbul3KztDvLbmjjSKy2cjnHd1taGU6dOldxzbtVl/Zc6Hwekn4VCAQ8fPsT8/Lwnn629qLo+TWvWdgw9YcrppTyZ5InH42hubkZtbe2u5HyQ7HSl5+98Pu87Gd1yjC2+ESeAacA1ppLWFQFh9dfiK4t2y8GTBTwuLodD98uSS5be4PKYDoRG1tfXsby87By/cpzBcmQQjyUfHqR1m0t+cl+Yz/lMEga9nUY7Qnw/tMsGiAph/OCyQ6R98Xgc9fX1OHr0qO+OdqY3xo+Wc+l02uc8M65ku4C+45Zxyvt/me5kQu7evXuht0FwuS66iEIzUeWKlg/JZBJtbW04duyYF90BPLLHBA9ah2v7Sus1oRtLnugzGtjetvrJZUp9Mknx4MEDvP/+++aeZ4tuypVD5fC6xkeYjnTZhHLadl9fH4aGhlBbW1sykWXJZKssAS3TNjY2sLy87GuPJSu1jcZlcj+t+rVTbbXf8jG2trbw8OFD3Lx5E8vLy75703Xfw3Aa9Z2VLip86FegXciyGEhAhOS+fftw9OhRHDx40DsUA7BnWkRoNzY24vjx46iqqsLDhw8xOTnpDbKl2KIKNhfjRenvk0jLYBG2LsvCrxC5nM753nvvIZlMor6+HoODg55A5baJ0JDnfMqj1Q+rbfo/r1RajGoZwNpgsNLJf2sGTfpx/PhxZLNZzMzMYG1tzQvfkpm3oL5YwG2KSk+67bo8K52mWVFuy8vLuHPnDu7evetNErBBrldHdXv5XRCvunjANS4uZSEGS3t7O3p7ezEwMODdC82h3JaBpgVzEK5dQtxKw/0QED6Zn5/H5cuXcezYMW+yTgwxzivfet8j/7fyhBmqTJcSFtfY2Ih9+/ahurrad9erNS7l4C2KfOM2i/E0OzuL1dVVbG5uegadVvhsNLPM1sa05TyFrayKLtAOdDn8aIGLHyx8bG5uevv5ebxdKzgaHzos1UrPcpP5kct7UhCFx7heNgA5f5Q6gsAlW5hONjY2Sq4g0mNfDi1YfbDK4363trb6olS4rKiGvsY5R6lo2aHxsr29c5Cc3s8b1W5xtcGFj6A+xWI7h6o1NjZ6Z9bodBqXeuWLV1u1Aycn/mt5q9uwublZgj+5amdqasq7N97qaxRw8chu5I7ug5wX0tbWhv7+fi+SQ+xcKZ9vJdG2lctRYvnLspxljOSTyEENXIceg0KhgLm5OTx48KAkRN5yLl34eBzZXQ5EsemFz+VE+f7+ft+VdQyWExnE7/qdhEfX1NR47xl3ls1pfXM90h5t53IengixthBtbz+6Im9iYsK3hUz3Wev8MLD02ZOAD7UDbQk2/u9CbDKZREdHB/75P//nSCQSnvPMSgsoXQUQg6y6uhpHjhxBb28v/viP/xhTU1NYWVlBLBZzhkU8qX4+ybRRgHEQhG8WuGL4rq6u4rXXXsMHH3yAf/yP/zG6urpQXV3tc6JFmFuMyWlE8PIBXXr1UvJyaDbvk6usrPSUnsvpkOcSXsTGNX9L+foakaqqKnz0ox/F3r178R//43/E0tKSd7BFOUZXFKH7pBWALk9oeXV1FZ///Ofx6U9/Gq2trairq/PeccgngBJlqFfJWEDLtwhdecez1uwkMC1yCBngn2UVR+vMmTPo7OzEBx98gEwm4+Xj/kY15J80iFM0MTGB7373u/jUpz6FZDJZcvUKUDrJxCuJYQasdqS048nh4vKprq5GR0cHOjs7sbm5WXKYGJftMnT1c0uORJFVcoXT4uIi5ufnsWfPHi8v91+HAwpfWqvKepsOK3gAvkkMxtvQ0BCmp6dx8+ZNs49BDkDQ+ASBvGcHmvUT7wvUEx2aPqTNEgbOspflngZZkdIRJVY/5VmUsQ0y+rgsjgSznGgZR30irJz0K2k57F9PoGi5xP3K5XLeAW4uhzUIXAa9pQ/4t9BdPB5Ha2srGhoaSlaPmc4tfPJVgeIYWdfO6DBbKV/S5vN53L9/3xcp8zgyM4hXXOnkfzweR0dHB7q6upBOp328y/TBq8TWBIGu19r+ot8zr/BtCcJXU1NTeOedd57Iaf1R+ChMrjCvMM9XVVXhzJkzGBwc9E525nwsS5k3uE/6VgSrr9ZiBuOQdZKUYckgflYoFPClL30J09PTyGazzshECzdRx6NcO7pcx4z1inwnEgkMDw/j4MGD6O/v98ZKt4n1ki7Tomtum2xx09EVeiLeJZt5nGOxmLe/nemHz7eR9rDO4Tax/s7lcnj77bcxNzfnOc+uRQHdr93w2ZOwoT/0IdwW42hGZWJIJBI4e/Ys/u2//bfY3NxELpcD8ChUj411CUnW+1disZ0N/o2NjfjlX/5l7wAyVvJaSFhtLqd/j4MXht0aNlb5VhvZcZU9jPPz8/jLv/xLXLx4ETMzMwD8IXkSFqbvW2QCZ2OHcWwZDsxYYkBJe3hsrLBAyecySLh/rFDZGJVZxF/7tV/D8PAwUqmUMwymHLBo/ccB0j8ex9XVVbz99tv4yle+4hkYPMFghYpqZakVnXburHTcbxlPNqQlDdODhJ7V1NSgra0Nzz77LNra2sxreKR8+R+kOFy40u0MGxvGUaFQQDabxRtvvIH79+97fdHhl/Jbtjlwu8LaB+ysqggvaGOJ+ymTQOl0Gs8//zz27Nlj0i7nscAqm79deGIcsmE6MTHhOa6CD71fU5xe3gsn9Cv7qBj3bChL3xm/3MbKykr09PSgtbXVNK4tnEcBFx40nrgfvJrDektHg/Bkpp7k4okFxoeWg4zfMIg6xtY7yyhimuOTwLUhJ7jhdogRJ3JDdIekt+gMQInTI2VLVNVuQPNpEL9qqKioQHV1NdLpNJLJpE/myns9NvyMx48nk3V6SWvp9WJxZ8/w5cuXsba2Zk6m/Tj1kbSR6f3QoUM4fPhwiZ3FtKf1c1BaeSbf2njn9/KOZbREFC0uLuL27du+0NMoOsFql8t+ZND8ys+tfokD1d/fj76+PrS2tpbUy/zA9hHrfdH1mtaYJ9l+5natr6/7znLgtkn53Bfm2+npafzgBz/wnKygkGbLL4gC5TrPrnyaz130JwcZ9/f348yZM+jq6vLsHAHNs3qLVi6XQz6fL7GP2dblKAPLT5F26ckTnpzSOoZ1sW4f48S1X15Ww+/fv493330Xs7Ozvkm6KHh24TbM1tb8sRv4UK9AWxDEJJWVlb7QzomJCQCP7gXlMrQisYisoqICvb292NjYQLG4s0dodnYW6+vrvrZwftegPc4gRgFdf9T0QaDxostmB+H+/fu4ceMGisUiqqur0djY6DlBeo9LUD3aeHI5Qbptul9hwtVlBFpjqVep4/E40uk0hoeHMTY2hs3NTdy+fbtEkVj1lQtPQghwP1yKM5/PY2pqCqlUCmtra96JxNqZY0GqJyEY51p4a3wEGdSaBrQDLnWLE33s2DGMjo5iaWkpMBLAeu4CnTYMuHyN283NTdy8eRPd3d3Yu3evLyTRZUQF0bhOp8NftYPAYyi/k8kkhoeHceXKFSQSicBDS7g/Wk7q/kcFxtPW1hbm5+cxOjoa2SHjNuk+W2PM7Wc65TIaGhp8dxGHtZ/L320aTre9vXMugWyjkDG1cB4kT4N0j5a18u1y/ILGeLc8wvnZAGTD3XLiXGVKepexrdNz2yUCw9patBsIol/LmE0kEmhsbHTuW+a8GlyTwNYzVxniBOVyOUxOTnq2ThSnMCpEkWFMB6lUCh0dHWhrazMXK1x8ZfXR0k9B8iyIhuS6nZWVFdN5Ltch0P/Dygnj9Vjs0Vktg4ODaGho8B0MyvXI5EMYr2jn2TWWlvNktU+PJdNwoVDAysoKRkZGsL6+XnJoWBA9uuwLq327AcsudeFO03N1dTVaW1sxMDCA5uZmT//zoYm8RdQCHYXCesCSKy6657ZH1R0W/sNsb/ne2trCzMwMJicnMTMzY15Dxu2MakOUa9Ptdvx/4hxoAY0QCVs5fvw4enp6MD8/D8B/py8rWyYiHWIigyBhYvv27UN3dzfq6+vxxhtvYGJiAhsbGyUrcfLNxizw45+9DYPHdb5c+cXIKRZ3Zh3ffPNNjI6Oek5NKpUqcbqC9uox41thJiyUNANyXmbQoBVs+a3DlHk2H/CfBMttb25uxnPPPYf29naMjY359hNZdUneIHpw4TqqMe7KZ7WFDdVCoYDFxUXE43GMj4+XhONb+fXMpQ7TljyVlZXmYSLMiy6hz0qZlbnMuNbU1OCjH/0orl+/jrm5Oe/EZd3e3fBAkDEWBUSBbGxs4OLFixgcHMSpU6e8w4KsMhmnHLaswwuBR7O+2ijh8KpCoeDtK5Y0km///v3o7Oz09kJHNZrDaDEIT5aTJkr2xo0bJadQ60k4GXfhNXmntwFwW9lZ4vaxDtja2kJdXV1kBzoMwvCo5aq0YXV11XfqMPdf446dTF61ZmNMdJjUwZE1vCIkIX/W+ASBNsbKpQlps6zIyNjq/jGeWMZIf/idOEJStn7PciSbzfqMOgvCHKMohqj1vrKyEul02nfNHY8XsCMHxLkXg1v6wzciMA9o0AfpMS5k8nR9fR0zMzOeXROmox7XGbH+C04aGxvR0tKC5uZm36oYj6ukZfuLZSePjdCA3hojdXJa2QJmrbpdunTJW30uJ8x9t06CxlWYwyarz83NzTh37pzv8DU+iZ15RpehFzt0ndoG43dSfm1tbShumC+lrlwuh8XFRTx48MCpj1y8FmUcJF2QDerK57JXGVeWI1tZWYm2tjYMDQ3h1KlTvpVl2XIo0Zk8XhrkmtEg34L9EY1fBst+dgHji8vTETDyjPlsc3MT2WwWly5dwsrKine+QtDkaFR+ssYkSH7v1gf6UDvQro7rWZiKigr09PTgt3/7t9HZ2YlUKuXtk7TCeNlYAPwhX9oYldXrRCKBZ555BseOHcPExAS+973v4e7du75rDLjd1u8fJwQRSbmOhDaG+L82QkQ5b2/vHBBw//59/O///b/xqU99CsPDwxgeHvbyWkTvEmpcl3z4XkdRbjqywApT1OGMLGCKxaK314cVEU+IaCElZVZVVaGjowMNDQ3o7e3Ff//v/x3j4+M+I8c1DlEhyEh7HNBOpji4MzMz+E//6T/hV37lV3D06FHvoAsXsIMn7dXOn75TXYcuaQPJmhiRcRaDX8awsnLnrtDPfOYzOHToEP7n//yf3ko0G85PEmfSrqB0mq4zmQxef/11LC0t4V/8i3/h0bKe9BFnQismbRwzP7ExrB0BkXVSF9NmdXU1Tp8+jUKhgK9+9atePtfqhMuY4XaE4UnzknxnMhnMzs5ifHwcvb29qKmpKZGrzNvMh9o50JM+ghMxuFnuc/7t7W0kk0lUVVVhY2OjpE6N/3KdDMvJFNzJKuD09DTa2tq8cF42trjt2rDWY66BaZENaQmFtkIrw2C38kz3X1+joyMqeJsVG39arzM/aT3B8onD5cfHx7G0tFQir8NoPwxPrI/5m2lWnMWnn37aO/QKeHTuhKQXeaDbIBNCAjKOLCtjsZgX+imTTryyt7W1hfv37+PmzZu+yUcLD7sFi+4FmL7lKrtf+qVf8raWaGM/bHJL6FxHjTHe9RU8UsfW1haqqqpK5Fg2m8WtW7dw69YtTE1NeTK0HDvPZU+46CjMYeNn0od0Oo3nnnsOhw8f9hYvgEe8wLqT2802huCPJ3KsyUxN09pW4z4w7/GHD5ZdXl7GN77xDTx8+NA3iePSKUE0FQXKwS/jScscVzkStn38+HEcPnwY9fX13uF1epsGUBpWz9+u1WemZd0WXZ5+Z9XDOoKB9aklT/ldsbgzCTU+Po7p6Wncv38fmUwm1HFmiKJbpb0/bvhQO9ACYQxTU1OD5uZmdHR0oKamxiMsntUV4cvExAJDQDtaLLTT6bS31/Ds2bOoqqrCxMQEJicnIwvTqAJ0N7hxlRfWtqht0OVop11W2xYWFnD58mVsbGygomLncB6etGChyIJBM73+72Jwy9EHSp0zNhy5/fqjyw0y1MTQ7e7uxoEDBwAAY2NjpiGiyysHHpdOdFt0uYLbzc1NzM3N4cKFC9ja2sLHPvYxL+RIt1mHmFq8pZ/rNC4F5AoD47Ilf0VFBRobG9HT04Njx47h/Pnz3h3ulqHtgsfBcZCjKMbZ/Pw87t+/j4WFBTQ2NvoOdwFKoy54RleH0nMe3TerH2IQiXIX56m7uxvDw8Pe4WaWkafL1e9d4xj2jtPIXqmRkRG0traitrbWOSkp/WHe1oad1XaW5Zr35V0ikUAqlUImk/H1uRy5aekqF+0xLcsey83NTc8Y0YfBWOVZhpBeaWRdp9vF4+6SeWFQDu9omRF04E1UvFv6yJWH+yWHQAatKGqeKMeA02PD5Um4cnNzsznpAQRHbFlt1O3STqeWyRUVFZibm8Po6GiJY+hyWh7XcLXGKRbbOXemurraWwQJstW08+AqEyilJ+3wWXm4vrW1NXzwwQfetTs6bxR8uNI+riMoeePxOPr7+73r0ETGy3uLBuSdpdct2cXpuGyO7tQ2movv5L/g99KlS5iamkImk/HxooVnFw6DIIrNvVu61jaj8HVjYyMGBwdRX1/vuy5M+s2TljzxpdvkkoFhfMqgI3Hk27LX+Jv1QpAOkzHb3NzE9PQ0xsbGMD8/j0wmY97fHYTrMJvBJaODYLdj+6F3oMOMtYqKCrS1taG7u9u8KF6H9chHBpwNVCZiFrJC4KKMmpub8dRTT3mrkIuLi54StoS1bpOLGIOEadC7IIfkcZR+UN1WOSz4rl+/7t1rKhMbchchh5owc+px5meCf56d5z5zWjYOtFEoZek9J5JOnzBo9ZkVEgu/w4cPY2trC3NzcyXXpkWB3TjWUUHKDqItaW8ul8OlS5ewubmJM2fOePvZrYkmyS+84TIYORIkCHi89XN2CvRESlVVFVpbW3H27Fncvn3bm8V+khBVqGteKxYfhedOTU1hfHzcOwiNnWPg0Qyv0JQOn7ImnHQ/ObSTD1oC/CfXVlZWoqOjA+vr66iurvYcN+5HkOx19V/nDTNeRB5sbGzg1q1bOHToENra2ny8rVdPtXxguatph9uiVzCZXkWep9PpUKMhKoQZHty/fD6PhYUFz5HhqBhuq/SXwWUgS1o2blkH8mc3fbPqKye/yFyWDzzW/F/La61rXQYayx9tnC8tLZVcYRVmoIWNp/XMeldZWYlkMom6ujrfKdk83iwPLCec/+sIAo03rR/l99zcHMbHx0uurxLYrXOn++3iBeG9dDqNxsZGNDY2+radyLhxv1nnyHMrrDSoXfrDeYXuRG5/8MEH3rVVrkkG3Uduq7xzQRSacuFOJh8OHDiAtrY271BTK50ul3Gr0wXJBMs2FmD8WBOALLNzuRzm5+fx3nvvYWlpyedsRZEr5eonixfCyo8q51ie1dfXo7W1FT09PQD88pnxKtElfBgu07pFZ1p36feWDeYaA3nH+pG3QMpEu2ULcBslsmVtbQ2jo6MYHR2NtI89qix10X65uicqXQl86B1olzKLxXZm3Xp6evAbv/EbOHHiBDKZjGc86v0rbDjIf0amZaSwIyafQqGAWGznJOYzZ8541098//vf9078dg1SFAaMCi6GCBIiPy6w6l5fX8edO3cwNTWFbDaLc+fOYXh42Dfjpo1EDlVzzbzrsC6uX9Lrjw7dYmWr+8HCg/vEAoadEd6Hde7cObS0tKCyshKvv/66t7dO48nqFz9/XKPdKj+IPrTy29rawvLyMm7cuIE/+ZM/wW/8xm+gtbXVC2+zhDeH1OqVfj27quuzwu0EDy7D1xq/pqYmPP/887hw4QIAYHJy0jdRo+FJ4DkqyOr+4uIi/vzP/xy//uu/juPHj/twB/hXTXSfhdbEiGMa12HL2kiW5+yUx2I7hxjV1dXhxIkTuHDhgu80YsabNqaiOtJhwPyey+Xw/vvv49y5c+jq6kJVVVXJBICAyHnLWJDoI+F5bYgLnXL9ArW1tejp6cHk5KRzX2wYj4Ypfl2OfMtp5Pl83htTPRbMK9wXa/wFFzrixmqXyDItO6P0g2VjFJxIHmmPHFgI7IRzih7QB3txuLnlOAs+dOi7tgXY4J+amsLy8vITn2zTfdWyraKiAnV1dWhsbER1dbVPT0kbg8DiB72dxtUWxtnq6ioWFhawtLRU8u5J2BGaVyz7SnT/8PAwzpw54zv0lc8n4UkGrQO0nNLykSci+Go4thVFDvF3NpvF6uqqt5IWlU5cDoOFk6D88ttlm0rou2zHkTMc9MQs84V2itgm43bLtXpSh/ClXvzgaKBicededaZzCx/C31euXMG1a9ewtLTk7S134c8lu6LgU9NyEG1Hle9WmfF4HA0NDXj++ee9m3s06HERWtT3jrMdpPUgy0+No4qKR+eE8CFlUjb/jiK7JT/TFB86Ku188OABRkdH8fDhQx+vuHiA31m6JsiXsXD/47DnPvQOtAVi+DU2NuKzn/0s2tvbvdVOMTz58BzOBwTPWulVNsnHBCuCpqqqCp2dnTh9+jSqqqpw7do13x4OXdeP07FlAnIpQN0WTXBBhB4GzMxi5G9ubiKTyXirmfPz8/joRz/qM9Qsx4vbF/bOarf+7zL+2WDQ4eIsvCx8WoKusrISXV1deO655zA9PY3x8XFvRcnCl4XfJyEEuGyrPEsB8XMeu9u3b+PatWvYt28f9uzZU2Jc635oPuFnrv5ZYaXFYrFk7x/XoXmSjebnn38eiUTCh/tyDcMgwR5WhkV/YtRsbm5idHTUO6iN95gz3rTzJ+Vw/WxIstOola8l7+LxuHdORENDAz7ykY9gZGQEq6urPl7gPC7cRMWrRetaZqysrGB5eRmZTAa1tbU+B5GVtm6ffEvfdfg3Gz3amZQ0FRUV3nkGFy5c8OFQt/tJgG6DHOQnbWFnSk98aFnlwoeuI0im8dUqu3Eog+jAMvLYedIrNMLT7Pxa0RFWX9mY1/Sv27SysuLt/XWlfRzjzMKFtLG1tRXNzc0l71lu8l3E2sjlZ0z78l8bx1p2FwoFPHjwwHeqNMPj0rmrPE2PFRUVSCaT6Ojo8O7HZVxofcOTi3pLhtUGTgc8isKx9BKP9ebmJu7du4ebN29GvrbK0q2PQ1OWjOV+VlZWorW1FX19fT4Hl/MKCH0wrTDetCPM9oDwqVWuxiFP/Ln6ubW1hbt37+LevXuYmprC5uZmyaKWVYcFj0Onu5XvWgZL9FJdXR2effZZdHV1lfgfmnZisZi3IKevCNV1MR1Y0XkyjtpGEL2h6UKHdLtoFPBHv/F/ybu1tYWpqSnvpG2ZhHfZfZZe0mmCnrme/zic6A+1A+0y1GOxGGpqatDR0YFDhw6hoqICGxsb5qmcbDgJWEJOnnMevWqmDVNgZ8VCTsiTEEhZReBTmfXgupy/IFxETWcphaAyw9pQrhMtv0XhTExMeAZwf38/2tvbvQMVXG1lZR+0ghnWviCnh5mcP67TTDVoQyAej6O+vh7pdBqHDh3C9vY2stlsyd2a5TK5RTthZZRbh1aksiI4OzuL69eveyHSfNiNq84ghaQjQVyGbpghohUKt394eBgzMzO4dOmSd8if1R7L8Qiipd0IaMaJTOwtLy9jdHTU50C7yg2iey7b5URZjhDjX0Inh4eHvdOf+bTq3Sokq01BaUVe5HI5LC0tYXl5GdXV1Z5zxbI9SKlqenA5zBbEYjHU1tais7PTCysOqm83oNug5WUmk/H6wNuGWB66dBrTdZARpqMy9Arf4/apnPSxWKzE0GRDXm8dkfcu2hI+c4Xzalkvd9Za7duNIR21zxUVFWhqakJra6tJE1aZFi+z4RzVGZD0W1tbGBsb8/ad7gYed3JBcFFfX4+mpiY0NTV57bZsNivENYgWLF7R4+vSO/l8HpOTk96KmqWngvqmfweNs6ttLr3HTltLSwuGhoZKFhmCbF4Ld5assXDtarukC3OMCoUC1tfXMTIygpmZGS80vhz8WrAbG/lJlMW2X2dnJ/bu3etFlXB9emIiFov5Dv6z2iTyL0zOuOg8yPbnKNCoNrW2Y/P5PLLZLCYnJ7GwsOC8R94F5fpBUcoLsvnLre9D7UC7oKKiAn19fThz5gxWVlaQSqW8g46sweMZfFbO8k47foBfuAvRFwoF827cioqd+6JbW1tx4sQJ/MVf/AVmZ2eRzWY9IeQS0paQCxJ8QRAm3BgsxWPhQJcfxVgA/CHy2WwWDx488A4V+OxnP4uenh6fAJEyGadch3Yk+GRd7jc7aK4QYu4j981Vt8aZ9I/zVlRUeGFOyWQSn/70p1FXV4dCoYBbt255+csx5i0Fz05BUN6o4KI/cfbW19fx6quvIpfLYc+ePejt7TUVghhkYoTLyi/jlHGlx1bKkHJZcciHr8KSGVv5zaGqDQ0NGBgYwKlTpzA3N+eVrfsZZAAEKR7rWdTxkImJN998E7lcDmfOnCnBO9MHOzUcwq1Xp7mPghsOTZS6GVgednV1oa2tDePj457cCjPiwiAKnXNbJPJhbGwMHR0d6OvrKwk11PcEC63wTL6s2sl7Dt9k+pJ3XF5DQwOGhoaQSCR8oYiMx904DUF0I9+FQgGrq6s+3pF6pT7rui4ZR5aD2qCyDCyWRRKmydFBT6KPrjRcb01NjScfZKJVxoMnWoVGAH8YopQrY8m8IdEZugy5/zmbzfq2LVj9Lof2g/Am7ZEJoZ6eHm/lUPLx7QVMHzyRYOknvVrvkmHCK9vbO2cOXLp0CXNzcyWyIcgusPoV9F6n47ERXBw8eBDt7e2+iQ8ZYz3pIfk1rbpsLbYLOLxZdArrMaaVlZUVbz9nFOdut3abzmv9t8J+JVx4cHAQJ0+e9E1EBYXo8sQg1yM8JDh1TaYG6UcN2g4AgLW1NYyNjeG9995DNpstidCz2sW/9ThE0b+WDrPG01WvlUZoSK6jO3jwIM6cOYPq6mqv7+KX6EndsHJ5K4KGoL66aJRp3wrvZzphWtdbg1j/FgoF72DUO3fueNdUWXjW9MPferyj8o6lly18PA48/oWW/z8CIdazZ8/i5MmTGBgY8CkevdIkedgAZeUkxpYrDMgynliJswJIJBKoqanxrtN6+umn0d/fX3JdjYYgobybwY/qoGlwCXCtvHQ9lrHBzrMwbD6fx+rqKq5fv44vf/nL+O53v1uyn43zscHMTC2MK+MnY5BIJJBMJr1TsYFHAo7zMYOzEmdHTYDrtXCkZ++4vclkEufOncNnP/tZdHd3++6XDaKFsLHRzuDjAjuT2hnmgyEuXryIP/mTP/HtVeL+s+GnQ8WsfjDu5b/mN+3scHrhQRbom5ubWF9fx/r6OmpqanDkyJGS1S3djieJQ/1M41ZwVSgUMDs7612Jwjjnsnj/lHaieCJP8C/0zZMJ8l8MI4ufZSXj1KlTOH78eMlKZJjCDsONS3bo/NLe27dv48aNG95/NjwkL8sN6z/jSEKTtdGk5UCxuLMtR05I15NujwthBrhErEj0kpWH+U5POGlDUfMMg7yTOqzw8KA+RNVZ1thLPdIG3gPNcsQqj8PMGUQP82S5hRsuN5/PO3GtjUCr/y6+d/Wdy6usrERDQwMaGhrMrRq6Hp4cEzzJf747OwgnUrbclpHJZLCwsID19fWSw7F0n6KOu34fJmtF9pw5cwbd3d0+PSCOr5TjmhDgtC4bhfOzXmf9E4/HPYcnm83itddew9jYWEmEgguiyMJywcoj41pVVYWf+qmfwsGDB533uFv/2Sbl8F6hAZlcisfjqK6uRjqdDrRjGb8sg/X5C9vb297ZKt/5zneQy+V8Npm2s8L4iyGIzlj3hpVj6W1XfaJbUqkUPvaxj+HIkSOe88zlsW4WXmSZLLaplMuyWYDz8HhJ1CuPI3+LrNHl6FBxwR/bEGJn6zoLhQLy+Txu3LiB69eve/d260MIuR3SFheuNW5dOLdksS4zqOxy4SdmBVoIIZVKoa+vzzttUAMPlJ7h4OcuR4mFqsv4A/z3VbJgjsfjSKfTOHz4MNLpNCorKzE6OuodyMArBbsdYG2EuASNa5ZNl7Nb4Dos5uDfIphXV1cxMjKCWCyG5uZmHDx40LtA3mIQARb2bDCzwNHOleTT7dIHC/GM326dKw7BESXV2NiIWCyGM2fO4MKFC5iZmfEOFtPjFma0hhm2Pw4QXBcKBSwtLWFkZARXr17F8PCwt1ogaXhFWMZHz3LqcvmdJQhdjq9lZIlQ39jYQD6fRyKRQFtbG1pbWzE7OxvpVPQn7VhzX6R84YVcLofl5WWMjY2hu7vbM9y4Ddqp0RMnQXQbxcCXfDJWfX19mJqaQiKRcO43tv5z/S46DZo00n1eXFzEwsKCL43upzUZYxnLQOlEmNSjo1okbVVVFVKpFOLxuCe3rf48Sfkp/3nCQ7dNy1rtdGm+sPJofLMMLDeEOwpdcD0untanBrNM1uMUBFqWC2jakLZubm4G3umrcf2k5G8sFvNOe08mk746rckBNqjZ1pD/rn5zeskjdJXL5bCwsGCuGkm+MLshCk60U2TxbTweR1NTE9LpdImTpvNpJ02Pabmg6xK6WF1dxfj4uHeHbdSyo+gxXX9Y2RbO0uk02tvb0dXVhYaGBu+5y35iuch7lK2JFyuPLpNtS0vusm0q31tbWxgZGcGDBw8wNzcXeOp7VNuoXAgbjyDQvFRZWYm6ujrs2bMHXV1dqK+v9zmoOo/1n0FHEVk8rWlffvN7bZezbRp18YVljoCMoWztm5yc9G4xiMIj5di4j+sjPSl5/RPjQAPwDg7r6+tDY2Oj91w7UPwccIeE6MHSaV1Eyk6YMBILlIqKCpw+fRo9PT1oaGhAJpPx7pvkcsOYSxNBVGG7G8JxEa5lmOt0lmHHwI5LPp/H9PQ01tfXMT8/j46ODjQ3N3uTDVY+7pc2FIFHF9Mz00tafQQ/l6HDvzX+woQNKw3t5Igx2tTUhJ/7uZ/zxt91rH8Uoe5Sjk8CghwcCfdbWlrCq6++ikQigebmZu8aJum/Xi20DiSKxR6tKmij0MKLFbbIZXP7crmc50DH43E0Nzdj37592NraQj6f94WGWv19Ug5RWPni8C8vL+PixYtoamryzlEQ4JlkVz0i82RriXY02Snk+l0OVH9/P2ZmZpBOp737TkXOBeHHJbeiGioy7uIwra6uYmVlxZOlwKOQXUuxa77nNkkZUj6vTlqr0mLQ19bWYnl5edfGFrfN+h2EA75OjHUF07z859VojR9txMZiO+d0aNkpuOBVLMallKXHNAq/uPrPupKjczTwGSJBMkob7/zNvMGyiq+e1H3lNpZjBOv6dbliL1RXV3tbz1hXSSi21q/auJT3gjema06jDWopUxxEPrzJarPVr6BxD8KNdq54JbWmpgbJZNKMFuCIPy7LmgSz7DWNM5fOlTLX1tYwOzuLmZkZb+KVy9a4cMk6K30UcPEf8Eg+1dfX4+DBg2htbfVdu8dRdy7nWJ/ur/Eh3zqKw+qX1Xb+yMrq1tYWstkszp8/750R5Ip4cOGA/z9JuWyVbdEGP5PImY6ODpw9exbNzc0+uWv91jwm74SORTbzYoRMern4U8tUV7v1Fg9tL1jl6bIkcmVhYQHXrl3D9PS0L4KH+xgFtO618lq2oQssnn9cm+4nxoGurq7GwMAAPvGJTyCRSGBra6vkICoOwWHjSwSjEBMTjRgPbKjLYAlBWjPh7BRas/9yQndLSwtOnz6NN954A6+99hqWlpZ8++5cRGQNvkuAa3hc4aLrLMcQ1u2WcWB8ZbNZzyH79//+3+MTn/gEfuZnfga1tbVeOAoDT1JYjgIbH5rReBxZWGmFqpU053MJKWs/IgsroYO2tjb81m/9Fu7cuYMvfOELuH//vnlP8ZN2il1gGcZWGm24bW9v49KlS8jlcrh9+zb+4T/8hz7HlldR2fnSJyhbod6aN1mJa96TdBJOJJMT29vbSKVSqK+v9/aj/6t/9a/wV3/1V/je976HBw8eeGVqGnlSOLV4wIJCoYDJyUn82Z/9GQYHB7Fv3z7U1tb66FtvceD+875J/U7aIbzH4d58Kjmf2ip7Ufv7+/GJT3wCf/M3f4PV1dVAQ0zqs5xWxkU5IJMh6+vrWFlZ8XCiDRGNG66TJzcFtJPMcp2d6YqKCtTU1ODYsWPI5/PIZDJOJyQKhBl8XG6x+CjaQ04hFwdLpxdcCX/xKgM7nVZfmddY18mqu3a+XBAkOziNxgMb+/F4HC0tLZ7s4DQyOaTpT2ia+yl1aF0aiz3aA88rPGtra7h//36JAxnET1FB04plGxw7dgyNjY0l+3j12GnHWPq3vb2NRCLhmzSRtMzjIke4P1tbW7h//z5++MMfenJT466cfnLZUfOLDOvu7sZTTz3lRRNaToyeABGwbDWX3ta8wviRdBLFdOXKFbz66qtYW1szIxS4nS68aHy46IrzWLTGTm0strMvec+ePRgeHsaLL77o26KkD6zlvBzmK/ShQ3t5ewDTEbdJyxjJKzjm9CJXC4UCRkdH8fWvfx2Tk5Ne1EO5jpdLDkbJb9ml8txKo/HHfU0kEqivr8fHP/5x7NmzBzU1NSU3hjCfcr2Mc6FHkQEi6yWfyxbV8lu+2d/h/4D/8D3g0fhpfrNsUgkVn56expUrVzA7O+tbDNLl7EY3BumRJ+nPlAs/EXugY7EYenp6sGfPHu+/BiYkNhwsA0u+2THQ9Vkr2jqeXws6rk8URDKZRGNjIw4fPoyPfexj6Ojo8Gbc9UpBOfgoJ23U8i2BAZTOUmqhrtPqfIw3UejClIuLi7h06RK+853v+A7Q0QYvl2mtaBYKBV9IHr/jPBofPJ5W+FgU3Fk44PD+iooK1NbWore3Fy+//DIaGhpC98br+tlQcAmocg2gMGBekXHL5XKYmJjArVu3cPv2beTzeXPFi/FunYJt0YnFd9ZYFYuPTn/MZDKeoydhkXV1daiurkYymURtbS2OHj2Kj370o96+1nL5LQpELY9lzubmJlZWVnD58mWMjIwAgG8CiccdeLT3mZ1nnphyKTNrBcWCioqdk4FPnDhRL8jOOQABAABJREFU4kzpvrpwWK4Bzr+ZXtbX1/Hw4UPfdguXTAhrCxsP2gjR52CIgdTf34+6uroSetkt3UThW/msrKx4NM15eHXJKov7JO0UfLJuFDxbxp01CRkEu8GH1puyx5L3rbN+1TIhzKHh/Jb8B3ZOWJ6fn/cZgfw+zEGKIos1iHyrqqrCnj17vJVDLpP7p9tthehyyL+WE5KG940Lb2UyGaysrJQY1lY/rX5E6bOVTmhUJk+am5tx4MCBkugzzafcHqZd3UYuX4fTutrIZT58+BCTk5POq70s+HHIBC6X+TqZTGL//v3Yv3+/t/VNtyHIPgMe6RieVJDFp3g8bp4ZEebMaN3DaZeWljA7O4v5+XlvxdLSW0FluhysqLJK6xpXOa7+CS7ljIynnnoKnZ2dqKmp8U2ChekKpjXNd5b/IuVYtinXy/ldNjfLUO2cu3AjZ+DMzMzg5s2bmJ+f9w5+0+MThkOdLir9B419UD1ShiVDosJPhANdUVHhhfrKgQ5WSAkTDhOcNiA1IVrIthxoHnSe/bQcHS4nkUigr68PTz/9NAYGBryQZc0kLoEXZMTqZ7q9USCK0aD7HwaWccy/RYDk83mMjIzg9ddfx/j4ONbX102FKHn1JIaAONHaUJZ3epw0sMOr81t9CuqvlMdlxONxtLa24qMf/Sg6OjpQU1MT2J4fJ5RTrxZ2W1tbWFxcxOjoKK5evYr19fXQfEErHFrxWoqCV9ck7ebmJnK5HNbW1jwnPpVKeYeeSDhgRUUFBgcHcfr0aW9l+seF87ByLR7I5/P44IMPMDIyEhjSBvgPBQL8B0pZSpDbomf8tUIRmVZbW4u9e/fuClcuRRcln6YXueZkc3OzxKHSfQtzbl2hrYxP5ldZGautrQ2d5CyXh4OcDOn7ysoK1tbWypI3DHplXvcf8B+AKO92e42V1Rfrv/VOHEqOAHBNZFoRYFa5lsGkZU8+n8fCwkJgdIVAOQYX12nlF3ugs7MTqVQq0PjVeTXtsnHsmiCSOrme1dVVZDIZb/U5rP0WhNF82LtYbGfve1NTE3p6ekp0r6scl12h01nRKfxbPxM83r9/HzMzM94WFst2iQrl2F9BvMNySU7d7uvr88ksllOucpkG9KQay0OexIrS7jAHbHZ2FtPT0z7Hy2UL6PEpl/eeNGj81dbWor29HUeOHEFjY6N517POx2DRlAA71dYEMfOzNd5cPpen5Q/nC7NXtrd3Dn6bmJjA/fv3fWcCRHWEdT/LeRfVN3GVVS7PavjQO9CyX0gYVZ8yKwJAZjSB0vCRXC5XophYUbNDZzlCcsq2zNIlk0nvPxuz0i5LmKdSKbS3t+Mf/aN/hJdffhknT55EMpn0rUSyIItimJXryFrK9f8G8NgVCgVkMhk8fPgQ/+2//TdcuHABq6urJSdwA37HQ0AUC4d4s1HMSkEbzVyG5OWwOFYQQYKR28ShUAI8w1tdXY1f/MVfxLlz50r2fOkJG4YoYxd1XMsdf+YPWYWemZnBF77wBe+UUt6PKc4Y45t5S6+qcJskDc+AW0be5uYmNjY2sLm5icbGRjQ2NqK+vh61tbWegy3X0zQ0NKCvrw/PP/88mpqanCurTxJ0+S7nslAo4MqVK7h58yYWFxd9uLYmdSSfDj1leuf65WoiXokRI17Scd5kMukZaS0tLb66XfRn/d8Nbnm8l5eX8frrr2N1dbVkRZ77If3Vpw1z30TG6hn+oNOee3t7fQZSFMMorG/8m3HEv7e3t7GwsICVlRXvv5RdKBS8SULtILBstK4ScUV2sA6tqqp6YrwRJb+0Se+B5j5LqLaczs0yXcqwVoBYF7DtIPjKZrO+U/B1210OhMspsfJreS7PE4kEuru7vUl04VGg9FAn3TdeIZRVJdfqLctexumtW7c8ue0y6F00Wq4Noe0ZHr+BgQH09PR4p7BbE1qAfwJcxlTv2Ze0EtkmfRFdJOPPIdlss8mVjW+//Tbu3Lnjk68Wbz8JPRv0nuW6yPH6+nq89NJL6O7u9uFM6IydOT1Olp0hOBC5In3m1WFun7ZveTxZjki5GxsbmJ+fx5tvvom33nrL27YWNlGscRCEu7BxKMdu0nytbRi5qeITn/iEt7VI0uooEJZLrskcSVeurNWTZtb5FQKWQw34T/GPxR5tieM8xeJONNTdu3dx+fJlc9+6ayLEBeXIEKYp3a4ovBVUd1T40O+BjsViaGho8IWrWI6GCEg2eETByF5pLpO/tXHkCvfV/12r4HKojxAm7+GRE7rb29vR0dGBH/3oR76rgbisIJz8356Z08JVv2PQhprgRZSbHPK0uLiI73znO3jw4AFeeeUV3+FKehbNEnYWXbicUovxXasRLqHE/bFCHzmftG9rawv79u3z9vb96Ec/8l0LZQlaV5m7hcdRXkKjm5ubyGQyePPNN5HNZnHu3DkTL/wRnuS9ty4nkXmM6UU+cnKvhGqL8c8z3FJGZWUlGhsb8clPfhKjo6PIZrNYWVnx4fJJ85PFA/qdKK2NjQ3cu3cPr776Kj796U97J/O6QOiNw5t5Io/vQZb6BNfWBBTw6I5pMdaefvpp5PN5z8lwGQBRcREmK4Q+JN3GxgYmJye9U+v5nAqdFkDJQSsuAzwWe3SfuNAQ40T4MJ1OI51OI5VKIZPJlPSdZVK5OBE8W4bB9vY2lpaWvBBSLevYKNMTKNwebeTyc73CKW3hlWDJy+2zwDWxEDTmDJWVlV4oM+sDXT7g397A9G7VqevWRmw+n8fy8rK52uuSvVH+W+9YllVVVaG2ttbbNynjZhmVLB+ZPqRcmQTTRrHgVdLqkP67d+9iamrK3FoTRaeXa39Y9FhVVYWjR49i7969JaGorskUy/jVconD1y1a0Aa58Pvy8jKuXr2KTCZjTqoE4SMszW50NvdVDg3r6urC3r17UVtb6+OXMN4ESk+iZ5tMXyMlefWEmx5HoR/euysf2Z706quveoeGlcM7XGdY34JA6xerL7pOpg9eQDt8+LB3Jan2CQD/wZ8sb/jMF23j84GBAmIjCVRUVGB9fd2T0Tx27OSL7GQ5YUXtcN/14oTQQy6XQyaTwYULFzA3N+dNtlkQhb71WAaNn2tc/m/AT4QDLXsXtWCU35ZgZWHBxqG8sxhA3gWVq/NzO1yODiuGyspKXwj3/Pw8RkdHfYcrcB3lOE9hjmuUfE/akXDVx20TJt7Y2MDDhw+xubmJ/v5+HDlyBA0NDb7ryvS4uQwmAcvQ4vSsOMoxDCy8ho2P0GJDQwN6enqQyWRw584dzM/PY21tLZKTohWg1Z+wvLsFdvyAHSf69u3bqK2txcGDB1FTUwPg0V2uXJcId2tW3+qPi8fkW3ipWPTv8bNWq0WG9PX1YWhoCMvLy74Q2ceh+d0aScwDhUIBc3NzuHbtGj75yU96joyl3Bh4VVnzA5+0yg6XgOVEy+/Kykr09PSgra0NVVVV2NjYKMuQcdFoGD6kfsFJNpvF6uoqcrkckslkCU1EkVts1FnPmaa4DeLYibHk6ks5tOMyIlgWFotFZDIZbyuL1keuiUJJw78t2ch90Y61647loD6U00dXejYKZVLJktuu31xPGEgdsgXEFQpeLrjoUsssOZdB4zpMj1l4j8X8E4s8ucDPeJw3NzcxNzfnyb/dyL7dykuhPYkq7OzsRHNzs6/NGo88scwRg4wTi0+surWTx/S2srKCO3fueBN2TwovLvsgSBezLBe+bGtrQ39/v3fwHEca6brD8KGfsWPHe+dd+jcMN7JNYHJy0gv71bePuCDIrnbVX46ecdWjn7GMTKVSaGhoQH9/P5qamswDDxmnGneusdLfrKPD7DirDzwZvFs7r1jcic5ZXl7G1NQUpqamfAcNcrrHwbnFx5zmcWTMk4SfCAeaQYfqSviCKCQXEbFgkBViK3yCjT9rpZMVrg71ZeNVmEHnAeBdkzI8PIyWlhZ88MEH+Nu//VvMzc0BKD0hLwwv/yecXqlzt4rFhWctMNbW1vDgwQN8/vOfx2/+5m9i79696Ozs9OFa8mqFym1kA1HXK+mkTaxABPSKhW6nFopsqPBzXa84fp2dnaitrcXMzAwuXLiA+/fvmwegcVmW4rDqCANus/zXAswSRNrp2N7exq1bt1BRUYF9+/bh+PHjJfcZMy/yMxkfdghYoWgDH4DPKXfRFOfTYcupVArPP/88qqur8fDhQ1/Y0m6VcDmGu6u9W1tbmJ+fx6VLl7C0tIRkMol0Og0A3ky0hNi5gHHJVxXJndgASmQij4t2xDs6OtDS0oK6ujpkMhlTaUfpe5hCs3Ai/FgoFDA+Po6mpiY0Nzf7HAb+Lf1npe7CN+Df68sz9WyoA0BDQwNaW1sxPj5ecrXQbmWzC9+cRw4Rk2gCln3SdnEyBV8sEy1HhGUn44zlmGxfYb6zDBs98aD7ye8surGcStHPcoikpWfDToNnsJws4XcOWdU44r7xsyh16vo1jmKxGBobG9HR0eEbQx1e65oE1KvVwicaV3pVUnC6ubmJtbU1b/+zDtl8XHDhg2lcVp9bW1vR3NyM6urqEvrkSQEJjWVdz+VJWr5Fw4paYr7mVbrt7W1ks1nMzMzgypUrgXfaPq5xbjlQukwtC2KxnUP2Dhw4gI985CM+/eriLylb5BrTn/y2eLxYLHq6Q5fFeQR4TJjHCoUC7t27h8uXL2N5edl50n1UZykK3l0y15I7Vt90OqEXObtmeHgYR48e9d3yw/jUtqmui3lSLyJon4TtEvkvi0g6mkryW9FoPC6uvvJzKWd2dhajo6O4ceNG6C0FFkS1i1xj8yT9GYu/yqnjQ70HWoiBV57ZUOT3vH/VOqlWh3/JOxbOTHxSn0CUGRhW9DrUTAs0Yc7m5mY89dRT+Gf/7J/h6NGjaG1t9YwmHd66Wxz+nwTNtPp5UB4xbvL5PFZXV/GFL3wBX//6170Dlnj8OT2vbAJ+I1U+WjFr41vKFIHBhy5Zq3XaGeFZScB/NzUzLYfJ1tbW4qd/+qfx7LPP4ujRoyXjbQniIPxFhbD0PIaW4GSekiut/viP/xgTExPI5XK+EO1isejbryjGsiXkWfCG4YINILk3lyc55L3krajY2Ws4ODiIw4cP4/Dhw95J02GrbkH4Kpe/LBki+/bW19fxpS99CTdv3vThXX7rCUMdniX8wIYMj4WUIfn0oVHCA4VCARUVFRgYGMCzzz4beD/w44KrrO3tnT107777Lm7evOn1SxsqOsQ1SO5oJzCfz3sn9/PeyGKx6J2UvG/fvl3zpdUOpnWNU/msra1hbW0NGxsbXn16wlfGSeQJ44Nln3ZEeMKI0wDw8YLlIJc77i7jlHEoDpXQdCKR8O0J5rR8vgUA3yS6fif16PDUyspK5PN57/wEVwh3mHzUY6aNdst5rqysREdHB/bv3+/TIyzLNB2KfpN+aLqRclkmSDqGra0tLC0t4dKlS8hms85J+t2Ms8YLA7dX2trU1ISXXnoJdXV1JXiw+ibnzYhtpQ9NE1uK97vrw6q0HJA6Njc3ceHCBbz//vu+rVS7sWP02Fj40XRi5QceTbQnk0mcO3fOC92WcnjiROQTLyJxOh5r5n/56PN8NJ6YlzTe5bnUlc/ncfXqVVy/ft27Js6KPNOykHFUDlhlMj5dPKpxbn0qKyu9hYGTJ096NMhyWOwPoTfByebmpqdfNjY2kMvlzDMH9CKCAE8MWe1nHa/tWuYR3vcfhL+trS2sra3h+vXrOH/+PO7cueM7Md2FZxePBNVVzpgElfd/Aj7UK9CMSCYwNs7lP+exnmvl45qZ0PlcaVxCMug5GzmcVo7CP336NBKJBLa3t7G4uGjuUdIQhbisNu2GKF2MUo4xyQJTfnO5zOhzc3O4c+eOt8+1ubnZCxMWsJhMT3a4+mGtUOu+uMrhvDwpEiUER/ImEgk0NjZi//79AICpqSksLCyYhzWU0zYXBNF80BjqcZLfIsDX19cxPT2Nt99+G8ePH8fw8LB37oBVLk8s6NVpBleYsYVny4C1ykylUujs7MS5c+fw8OFDU7lomgzCi25bEE+48MjGx+3bt3HkyBFks1nPYJI+c36ND65DytO44BV86+AhKUscmdbWVgwMDHh7qrVxaeWPgiMXaKW8tbWFqakpLC4uYnt72wx55d+MG/3MqsNyXrnMxsZGtLe3lz2Jack1673rHR+Ap9OyQWXpRstQ0rKRaYLHhw8hsvhKIEwOWY5KEDBduiJ/uN4wPSj40JMLkk4caGtF26KVckHzN/NcfX09WltbfW0NkssuYEPe5ZixTtre3jnZ/v79+95hTprun0Tfg/ohNFZTU4O+vj7vFHLNK9o+sEDzhu6D5hF+vry87DmbGxsbmJiYwPT0dMmdz0E8wO2w+hs2hq4xFydMxi6RSGBgYABNTU3ethweX923IJ0kz6UOC6xoMYuHdH7hq9XVVdy8eRNTU1PeRE2YHAx6H4Y3Vx5Xua7x4mex2KPrqvbu3evte+b3fOaNplNdL0cL6Tx6vFwr9S4bw6J//rhsKEkrTvbCwgLm5+fx4MEDLC8ve9u2tL6MKhd26xtwW6PaYOXUUS586B1oHeIEPJpJC5ottMIV9UpzkLAR4tLOLrfNNavjEk7a2OH6qqurce7cOQA7e4Gz2ayn5F1GkUvAWExt1fmkQAv1KOmtvAIyprlcDg8ePMD8/Dw6Oztx4MAB8+RqvfIoY6cVmoyZNmo4PFM7Xxr3LrxqnLpoA/A7kFVVVdi3bx8aGhpw+/Ztn2HHTlBQXT9usOoXOhMnOpvN4rvf/S4qKyvR29vru6JFypB2s9Eo+6WB0gOBmGcFggxOy6njcZXDOTo7O/Hiiy/ie9/7HnK5nBfiGLX/5YI2chiYXguFAu7fv4/x8XEsLCygrq7OS1dRUeFrp4R2u6IcBORgReETyxDSjkYymcTW1hZaWlrQ29uLqqqqxw5rdPGNZUSwYp+ZmcHS0pJ30rsrDxs0vJLCcpr5X3DH9WlDUTvQuzEguL2aDiwjtVgseqs2Vl28Es+OZyKR8FZUNd1rkDQSnSC/5VaIoL5wmWGGr0tO6uc8dryKKOPC4+WiI70a52qDRDbI6oplO4RBVL3KDpzguLa2Fs3Nzb4zCnTItUXfun4Zfx1FIO85YktsiLW1NYyMjPhOQ9Zt363hG+T0sq6W/aTd3d0+GnXJRV1W0GSR5UhKHl7pX1hY8CblV1ZWMDU1hdnZWd9k6pPUsUFOm+tdLBbzbu0YGBjwHRymHSqgFBfcZxewTcTt0fIuaJJbYGtrywuFv3nzJlZXV0v2PTNfW3LQwokGXV6YLAqS2S5alz36vb292L9/v4d7AZ6gs3SqpGFdrOlqe3vbk7+6PS55y7+1DLAc3CAblHWsHNg5NjaGsbGxknFztUuXZ42F1S7ui0v27pb/XGMa5A8FwYfagRbQs9LyDPCvhrGzzSfyAo/C0+RjXfUhwIPKRKjD+PTJy1pQcLlM8JJWBJM8SyaTeOaZZ3D06FG8+uqrOH/+vHcCnhVy5VI8uj8atKEYRNy6jiftzFlGpIAw99bWFv7iL/4Cr7zyCl588UU0NTX52mgZuBz6r9sqRoUIOXaiXQ62q/88W8zGO+C+14/Lkro6OjrwO7/zO/iTP/kT3LhxA3Nzc75ZS90Hzv+kYDfCh/ljamrKu67iH/yDf+CtaInjp8OV9Nhpg5BDh6UeCUliw9RqL/M5X4Mj5TY0NOBnf/Zn8eabb+Kdd94xDdHdQJCy0PiUZ6xcs9ks3nnnHeRyOfzu7/6ub3KBx4FP+o/FYs6JNs4rvyWdbDuoqKjwTkmVFWgJra2pqUFDQ4MX5sx9iYIrl9MYBcTZWVxcxPj4OAYHB33Ohg45FNCOizyTsef2cBn69OfGxka0traGHqRWbv9dRiOPraxA8wqiyBnuD/ONjkQQ4FsgpP/FYtEbT/mfTqdLtqJIH3SZQXIoTPdoHSryWPosfM/bsHQ9ot9Z32sjVXAn8kLGeHl5GSsrKx5OdmN8B4HW+fKRE7jr6+u99uk6tLxnHcb0IxEZOpxUgGk5Ho9jeXkZS0tLWFhYcF7dtVvZF0TL7DzH43Hs37/f266kZSAvhljh+Nrg5n2fwKPToHnyXP6z/Ozt7fXkyt/93d9hamrKPCV6N30PS6N536IVwVV3dzdOnTqF6upqX/iwjrAA/IdGav0i6WU7AEea6BVK1im84s16g/WxlJ/NZnH37l1861vfwurqaol9bdnIUfCm04eNkcZtUHoL9xJ5NTg4iJdeesl3BoXVBysqQGSs64wB2XKh28u2YpCutKLHLDvIusWB69ra2sL6+jrefPNNTE9PY3V11ZuEDYNyxrFcO2G3EJZ/N+X/xDnQPJMo7wT49E5WNkz4kk8OS2CHVsoX0MIYKDUAOI02IsIMCf1fmLW+vh5PPfUUuru7MT4+josXL2JmZsYZ2svtjwqWEHcZSK42PwnnjQWFtQoE7Aj+1dVVvPvuu1hcXMTZs2cxODiIuro6T1C59pJY7ReaYHoQ4EkYdopds918n57UIW2QclynynJ6uefx4x//OHp7e/HOO+94e4iCnLtynBluezmOjCuPGO3Sp42NDYyPj6NYLKKjowMnT55EZ2dniaGk28yTX5aDIMa+DuENC63VZxGwwxGPx3HkyBFkMhksLS3h2rVrJQpyt/gK4xPdf5ZThUIBk5OTSKVSGBkZ8e781M4By6AgYP4ASo1sxrfIFzZMq6urcfjwYXzwwQe+q/a43VYfdX9d77XM0Ty6ubmJ8fFxvPXWW95quEteSZstOaYnP4FHV/3IM61LEokE0uk0mpqazNN5XePo6p/OZ/VZeF0OfGpsbAzULTK+PNmkr0Zhecf6UE/QyenvFoTpht0Ay1n+tpxzl7MrssOS5dJWXcb09DTm5uYibZEqB4IcIzk4sqGhwadjdN1BzzRvyDhrY107NwBw//59jIyMOKMbyjGIywXpfzqdxuDgoHeuAPeH9a0LD/Lc4nGLL63xAB5Niq+treHhw4clB4eVSwdBuHM5zAzcXnGee3t7MTw8jIMHDzoXAlx9FBpgO0QmJdhmtdrHDrTGK48P6+5cLocf/ehHuHfvnnf9HjvcUfBZjqMc1fmO+kz4saqqCoODg9i/fz+6urp8t78A/oOIGZ8S/cPlcfv1RKXWF1YewH/YmPZr5Dd/828tV7k8mQwfGxvDyMgIJicnsb6+7nOeuZwn4dxGAde4RqWFqBMm5cBPrAPNz1koaCK1FIXMxLEicxGjRZxM0K50/N5lMDEwoScSCfT19Xl3RUs4zOrqqifsdZ+ehHPrUlr62Y9DyVr18pjm83mMjIxgYWHBu16moqICNTU1kRjPpdy0ohF6kt+u2ThNL1J+kAOvQRsMFRUVOHLkCGpqarzQMj48RveJIaqQe1KC0FKkhULBC7d977330N7ejvr6em//kKTTOHIpav5wGBl/JH3QOLFjATzCdXd3N4aHhzE/P49bt245J0msZ4/DA67xFEN4eXkZ4+PjuHnzJurr61FVVVWC77CDz3RdVt8Yp1K37L8VR7WqqgoHDhzA2NiY53S4HA+mQTbAeKyitpnxMTc3h+vXr6NQKPgcaAt0vUEyQNON9b6qqgrNzc2Ym5vDxsaGyWdRlHjU/su45PN5ZDIZj18sHaKNHFd5rrbp//rE790aTuUYuBIppHW5S15bv11puC6WJYuLi94d0EHgMurLxYvIm66uLtTV1ZkHNnHaqOXzZKTYM7zSynWMj49jbGys5FC1J2kYu+wacaAbGxvR2dnpnUJu4dVVBvO0gGXbuerX5eZyOW9FXlafXfZeEERNE8YTbHckEgn09vZiYGDAwxWns2wOrd84vS5fT0RpmcD60iU/hXfy+TwmJydx9epVTE9P+/bXR8VPFGA9Ui7vBT2TMpPJJBoaGrBv3z7s3bvXt82C/Q2Rz9wmK1KCy+Zn2ua00lp913iweFiPlb61BHhkpy0uLmJsbAx37twpGTNddxgOXW3VaYP4NUxfR+WhKO/KoZ8PtQNtCVlRPnxyoAgQvUrF5XAZ4uCKYcmho5ZT7WoPM5aEk4nRJWl4VVX+u+7a02GaVVVV6O3txa/92q/he9/7Hq5fv46bN2/6Tot0EeduCcbK/yTTllMWhy1KOPfCwgK+/e1vY2VlBUePHsVzzz1XIihYWFhjz8wq7/X+Sl235JNQQd1nLosFrN4DI6CNYqG9eDyOvXv3oqWlBZcuXUKhUEAul/O1XSt6C3e6bfp9mCMQlE6nZyetUCggk8ng3XffRVtbG4rFIk6ePFkSiqj7zSuBGu+8iizt0RNUrigBzdNSZkXFzongR44cQWtrK/72b//WdA4ZB4/DR0F5mTZl9XFhYQFf+tKX0N/f792VyiuLGociOyRU3UULjGcpU741D4hRfu7cOdy4cQPj4+PI5/OR+uvqs+t9UHuXl5e9w4/S6bQZ1so8Kf+10SWnkgvwnnKLRyoqKpBOp7F3716MjY1hfX09Uph/VHkY1OdsNoupqSns3bu3xKGVsWGZEzRRoZ8LvfCEs/RXh9Za42XRYNQ+c33Ct+l02ne2hTaspK16+5NeLdPy3mpTZWUlFhcXsbS0VDZPW46JxokL/4lEwpPrWlexMc2yzNIzmn+lHN5qpPXQ9vY2RkdHMTY25nRurHYHjbc8D8Ifr4Alk0mcOnUKbW1tvr33rI95LPkd44PpgWU521xMC1a/tra28PDhQ1y9erXk4DDddwu431EciSDniOlG7Nq6ujqcO3cO3d3dgfcyCzBv8DOtIy0HT+Qi052k1ZFvXEZlZaV3p/hXv/pVb4LRNQmt69Q4CHOeHhes8qXPsVgMnZ2d2LdvHz7ykY+YtMg4kfyCK4lok/JdZyvE43Fvm4qUo6+8ZfqVelxRshovbLNa+kLSSMTAwsKC8zDFx8GzAMuZKPohjAc1HYbxqB4vq8ww+FA70AJ6Vpz3BbKiEQNZ3ulTZ629I1oYihOjFTJQ6jTzShnvaQgKDROBJaCVsrSnqqrK26tUVVWFp59+Gv39/Thw4AC+9a1vYX19veTe4CDHqhzCeRICqxywDEFuB49DoVDA2toaLl26hLm5OWQyGfzUT/0UamtrffuAgFJjWMrUThUbYlKHFe6kGdIyWlkwMq1qmtCzmJyuWCwimUziF37hF3D+/Hlcvny5xHgvd0x3C5p2BSxDl9ufy+Xw5ptvYnFxEX19fWhqaiq5ZkX4TfJrQ4BxzMaAONfM8zKeei+w5nneDyphuvX19di3bx/u37+PxcXFwAmDcnHuUh5Bz8WJnpmZwe3bt1FdXY2+vj4TN+w4W/TI+wIZHxo/VVVVvhDtWCyGVCqFdDqNqqoqdHV1oaury7sTere0yAZzlLQyKSMOZWVlJerq6kpCQHX4NYPQj5aP2pHR8kL48MCBAzh//jwWFhZClbdlHAb1z5VG+it0Liu1fKURy0c2mLXMkm9NPxxmyWHguh9WX3cre7S+C1t9ZoNQ5+dxljMPuG0sN6R8ieRaW1vzOWphsJv+amO2p6fHC+HWjhMb3ELzYleIgb25uenZGSLPmP/1pKzgaGNjA+vr677rq6TuICOVn+lyrfHQ78Sxj8fjqK6uxunTp9Hc3FziIEs72cYTsFbUOR0vhDBN80SiniyS0O1bt275runRfXgc/RpFvmmbNpFIoKWlBR//+MfR3Nxs6kvBK+tL0YGyiAOUnhtk2ZmMQ5aBbDPLGOhInWJxJ5JjamoK8/PzJQfehk0wMPyfsGMs+hWboa6uDsPDwzh9+rTPjtd5ZKJByxnGG/Ox7pc+Y0Pq0nJcgzX+3Cfty0h69o/kkLfp6WnPdtZbsjR+dP/CdJ5rrC1fy3rPZfFzS/78uGS2hp8IB9o1MCJE2DjmWVd2jCzDQBtDlgB3ATOIFk5h6VwEZyklMQ5bWlqQSCSQTCYxPj6Oe/fuYXZ21utrOcaAqz9Wm3T7LEFbThlR6ncZb2xcLC0tAXh0LVFvb6955YwlfHTbWVDwMxcurToEtKLhPC7hyOmFjuPxOIaGhrC6uopsNourV696+/a5H672RzWEw9oTFTQOCoUCZmdnkUwmcfHiRZw7d85376fuM5dh8ZPVFgvvQYaQ5neREalUCidOnEAmk0Emk/FC+ix+svCq3wW1Mwi4XaLwbt++jfr6evT395fUo1fvg8BKxyt+TO9iIIiBIQfa9Pb24u7du6H8E2XMtFLUdMdt2traQj6fx9jYGGpra1FbW2uusOj8+p1FV1yP9b6yshJtbW3eCqnuSxiPlONQC2xv7xyeJqukwKNJI912Sa8n9qx2htUtTnoYRHG6opRhrZQElcsTqUzPrvGz5HSx+OiaMK6jHH4O65fkZbqrqKhAbW0tksmkl86Se1ZfuDxt2MpHLzJwudls1ndXbVC7y/kfZivIdyqVQmNjI5qbmz0+0k4H94e3Nmn8WPVYMozLk3QiSx48eICZmRmsrq76ZGJUXfm4hjnjhp3Y2tpatLe3o7+/H8lk0ntnRSIEtS3MNtPvtG5gmaPpWN7n83mMj497kUF6Uo/LKQesPI9r23K5mieTySSGhobQ3d3tTW4xuGz0KO0Laq9lu0XR467+yDNpCzvPsuo8NjaGyclJTE9Pl9xC4OpjGO7LGZNyx7Hc8Y6ij8uV6T8RDjRgO6Y8u6IdaMkjM9ySXjuAEn4t6bVwk7q4TCZ2KUMMOm2Y6TZbAsnVRw43rKioQFNTk3eK59e//nVkMhmsr6+bikLXGxUeVzk8LrgMWe6jGJgLCwtYX18HAJw7dw5NTU0+xSNpLUUk/zXwM14R1W0SJ1eHQ7pOSBTQJzNqOpNVoK2tLXR1dSEej6O1tRX37t3zjD9Ju1vYjWEYBVgZSOj5xMQEvvCFL2B4eBi1tbUl4ytOGuA/1MpqrzY4eKWBx9niXRfvbW9vI51O4+WXX/aUC1/jUK7A5/J3q1xkAiKXy+Hdd99FRUUFPvaxj3nGJRs8+iRa6ZM849BsDbIaz6fdy3ONv+HhYeTzebz++uuh1349LmijQtp35coVtLe3o6enp0QGM/BKrGUMWEaHy4iIx+Noa2tDKpUy8WgZZtb7cmB7eyeEe35+3qdX+NRp3nbEtKzbr9sivKP3N0r4KPOfhZcgKMeRFlq27p7W5QkwLngvpw5d3N7eLrmOi/U/O5NR++jCZ5R8MjFRXV3tnXLOtKm3TwDwrTTLc4km4Xzs7Eg6podCoYCVlRXfIXi6309S5/NYiu3V0NCAPXv2IJlMejTG/WD7jG00fid4tHArfWU6YNyxjtne3sb58+cxNjbmu2td21DSh93oSpcsCSorHo+jo6PDO/vGZX8GladtFCsKxdVG5ieeyOD3op+Epq5cuYJr1655kZDWSj7XZdUfhl9No6xXXXmDZJ+8l7D/uro6PPfcc2hsbATgv1JPT1zwlVE8yWP1K8zBBfxbsoLAGmceJ8vWEb0ukSsLCwu4cuUKZmdnfXc8B42Xtp1c6Vz/w56XWw4QjV6C0vw/6UBrhEqIrYS0JRIJLwRGBIe+6kbKkQ+H6PLVHixoZcWPBb01U8fEKsqSDVhmts3NTV/4sCXstZEndcizjo4OfOpTn8Lhw4fx5S9/GUtLS+a9lkFOtQZXmqC85RhMrry6LiuddoblueD96tWrmJ+fx82bN/Fbv/Vbvv10WgnoMtkpFbxzKLgOE+R9uUIfolQkDW8XYMNAG7g6dEryiLEld7M2Njbis5/9LL7//e97J3PrvNZ3EO6DlE/Q+yAa4XplbORuyHv37iGVSqG3t9fnyGhjhfHNfMMGsY464fJ40oPx41Iy0v6mpiY888wzSKfT+MY3vuEzuC1DxoXjKPjXaTVuJf/W1pZ30E0mk0F9fX3JPjXBh+QTvFllyh4szien8qbTad+WEDEuY7Gdk7i7urqwurqKlpYWzMzMlBhLeuwf15FknEs7L126hBMnTnhpRMbrq5d4C461N1TK1UaidioqKytRVVWF+vp674onwXs5Sl/3yQLOXyzubIGYnZ31Vt9ltUT0DPdb2hO09x0oddRYhlRUVJTsL3+SwHQofCs6G/A7x/pEZNGXvHqrJyJlf7tMbIos4LBSmYSQQ0TlGbfP1W6GMP5m3pS+6okCnmznUF0ZWy6fDW2WiWyP8G82sHO5HC5cuIClpaUSBynIeI6i03V+K09VVRWGh4fx0ksveQcAynixrSNjrB0Xlqc85txP6T/rXG6blJfL5bwDI5eWlkruu3X1y/VOjxOPueZnDdzveDyOmpoanD17FkeOHCmJrGFblcvT30wbrnZqeucx01sJtA0tdvXq6ir+6q/+CpOTkyWrz0E0YbXNSh+mZ8txnPk541xOhH/mmWfQ3Nzs+RCc3ora4n4ybvgZ4L86UEDGUUd+SZ1sd7rqBeBb8JN3Wj4Iry8tLWFmZgZvvPGGF4lincKv65LytU6Pmm83EGa/BtlK/N7VDsuvCoMPvQPNBKeJjtMwc/BvAD5C5rSaAQQsBrGMcOu/ZaS52i15WAByeVYd4py1tLSgoqICL730Ei5evIjp6WksLi6aBwJYToAmvCCCDSM6q72uNEEEH1Q+p9VCZn19HbOzsygWi/je976HkydPYs+ePc68ogzkv16Z1v1gZ5zr1jPiOgLBemcJSKZXfs6n4h4+fNi7G/ru3bvmAUi63fysHCNhtwLQwrWsHr711lvY3t5Ga2tryfUQPA4u589SOFZ7o/xm3pbfiUQC/f39yGazePPNNzE/P+9NrEQJrbKUzW6By8nn85ifn8eVK1dw7tw534ncAhbOLNAz6tqQl34A8E0qxmI7p3E3Njbi0KFD3n2RYUaifqd5Q+PJGiOmjdXVVWQyGeRyOaTTaS+PK2pBn4nA9bn4hNMybdTV1aGmpgarq6te2jC5ZeEhqizd2tpCLpfz6S3e/8wOgzYQ9WFbunxrwkVkDTvhLp3hchw0hKXjfcu6HklryWZxjOWZjLOlP3W9klcb/JYNoGVEGI27DLZEIoHa2lqng8fPLN7m5zqNa4JY+rqxsYH79+97Z2jo9kV1Tqw0QWMr9FlbW4umpibPXtGOhvznSTDuqy5byw4dCRiUfm5uDleuXDFvMgnqZ9iz3eRlXk2lUjhy5Ag6Ojq820U4vSusWC/mRNX9/DxIBltpZ2dnvRB4i6Z0nUF2ZdQ2B+EyzGljWSL4lpslBgcH0dbW5juQWJfP37q9LvrUcoUPGOPFM0sfhdGXpdcYxK7d2trCzMyMF7a9trZWcj5MFHDZs5YdH5bXko8u+VuO/RRFp4t8ENyLbRcGPzEOdBRgpceMo40Gy/iwFJgOi5LQN84H2Aa2S0lyPivcV9rqOnlP2lJTU4NkMokXXngBGxsbqKysRD6f9xjFpfSDhGVU5Wn1LaifUcoMy8/P2NGS1amVlRXk83m89tpraGpqQmtrq2/FAnCfYhzUFnnGEzMWDQClTjK/15EGVjmu8pLJJAYHBzE3N4ft7W1MTEyU3F3JbX1cBy4IrHI1rbFhA+xcdXH+/Hkkk0kcPnwYvb29prFrbYOwFFZYO8LaLG3lMYnH4+jq6kI+n0dPTw8ymUyowrGEfjlOVRjdF4s7qwALCwu4cOECTpw4URKaCsDpMGk61CFjzEf6cCHenlAs7kTp1NfX4+jRo7h69ap3xZJVT1g/g+SSNq65X7lcDqurq1hdXUV1dXXoiqv0Ucoohy+4fYlEAg0NDairq8PMzEzoOFvjaqWxJhK088MywopiAUrPZBA5JXhz8SXnl1VSVwSUq28WBDnZXLasFms8uU7sl/ZLv7jf3C69bUHn03jR9OuizXLkkqSRMHWJHpF32nDUocvahrH0rh4nTiNlbmxsYHR0FNls1qw3TB9yWtdza2yl7y0tLd7WMw4TZhoV+SLtYDrX/ec8ul38jMccgHcmx+XLl33ReuWANeZR9ZOmIaaN6upqHD16FC0tLb773AVYT/FqtGWzumjU1RcrnR5PqSOfz2N6ehrXr1/HysqKd29wVMcnSCa4+uAqg2korI8s5+LxOBoaGnDo0CHs2bPHo0uRgVoPMh4smWq1S9vq+pYfzSeuvjIwvXEouX4vNoPseR4ZGSnZlhZWV5gNFaQbwmwBV1lBdpRL9pVbj4TtJxIJb+tnGES/lPb/h8CED5SuPspsspxAKHub5MMhXPo6ACZiKUPK4RA5CQvjvRFaEeurYzQDcbtZAPK1OcK8WnFIOv1biKGxsRGvvPIKPvOZz+Cll15CXV2dF47CzBombDTOyx0n7qu01Uqjf+8WOCy6UCh4kwcjIyN47bXX8O1vf9u3N0dwK+PG+JHfHHotfdCCmkO4hV741G7un2UMCCPLTCjTB48thxNVVlaipqYG586dw8svv4xz586hvr7evLdV8oTB4+LfBUzrjKdMJoP33nsPv//7v++dgCsrEsIHOoSMeYD5XsKQtBFsKTfGtwZxGpLJpBc2PzAwgH/yT/4Jenp6vKtRXCucUfnKMlBcebjtQjtzc3P47ne/i9nZWeTz+RK5IvjT4WISNio0yuXm83lUVlZ6vBOL7TjNvA9WDA5pc319PZ599lk0Nzf7ro2x8BGGG+udyxCTcc3n87h79y4uXbpkliu4EPqIcrCNy5jQfDo0NORN/ETto9VXl3xkEJmWy+WQy+WwsbHhyTKe/AUerWgwDUjbeUVZG+QsX4SWOIwxqrHFafUzCw8M8Xi85JwPlsMav4KDXC6HhYUF03kSecm6lfWAK4TRam/QM8uRteigoqIC9fX1GBwc9PGSHkfWZ8zLkk7wwjJfh4UzL8qk8sLCgi9ixDWuUWWSTmfpHG7vs88+i3379iEW808YSxtE7iaTSSSTSVRVVfnGXpyFfD7vTQII/pjW2fayFkvm5uYwNjaG0dFR3zWgUXGg8WBBmEzQzkVlZSWam5uxb98+DA8Pe5MsbPcmEgnThtC4d8lTnkCQrQuubRy6L3wqf6FQwAcffIDLly/jxo0b3iRE2IpmFDuj3ImMqMDlVlZWIplMor29Ha+88gqGhobQ2Nho8iIDyyLAj2s+X8kF7D/oiW62EUV3sZ8g8pFXx13Ou7SjUChgZmYG58+fx7vvvouJiQnnPedR8KflCuNV0xw/L7cu7ov1n/k8qu2q7e2amhoMDg7i2WefjdyeD/UKtB4AXoLn3/yfB5Hf6301eiZe8urB4XR6lpiFGjOEOAcs1DmfXmWTlSGu35qtkve8v0JCgDo7O/HMM8+gt7cXN27cwI0bNzA5OelzHBmkviCcuwxaK08UxWMxW1jZQfUwrgXHGxsbuHXrFubm5jA6Ooqf+ZmfQUdHh+esAvBNquiVCgZ+p1dyWMnpFSAWikwrgnMdPsJCOii0LJFIoK2tDa+88gqamppw69YtXLt2zZwJjoLLsGdRxyWsfDGAlpeXce/ePfzpn/4pnn32WRw7dswphOW3dpAFLAPbojOpn/PJN0/MSZhVOp1Gb28vPvaxj+HixYt47733Svac63aWgwurndZ/oXUx+tfW1vC1r30NTz/9ND7ykY94/dIyRWhMJiRYVmjDjK9I0sA4rKqq8vLX1dXhyJEj2Nrawq1btwJPMw7rN9fFfdayQd5tbm56e+lfeukl3zUrLL+1fNcTsDzxwPvSAGBpaQnz8/Po6+vzRSANDg5ienq6ZKIsyHl8HP7hiUE+JFOn0X1lx0voIR6PeysQ2pER2SmTJdaqrjaiLKNK0kUxcCRvVVUVampqSmSoPqROO2ypVArNzc2+5xzWKOWJM8p8tLi46Nz7qvsaBhadaieqoqICjY2N2L9/f8mEp8s41bKJf7PNwfqQbRCpd2xsDO+//36JfrB0v+Zf1xhq/GjbhJ2LqqoqDAwMeHdfM/1Kn0QH85joRQSmTW6jXtSwZIdMuPzgBz/A7du3vQOUXP22cGLZHC7QMp2fabpobm7G4cOHcfr0aWc0jfCm4ITluODG5Ryxw8YnsGt7Q4+htltEb7/zzjuYnp72tpZE1YflysHd6FZLpzAt1tbW4sSJExgaGsKePXuQSqV8k1PAoygsa7KCy5UJS2ss2Ma07EAeL22T82SnjJn0UfsxXAanv3btGsbHxz3H2bparBw8WmnC8rjqccmNINiNn8D8JrZOY2MjDh48iMbGRi8yNQp8qB1oBjZ8LYEkyNLKVgsHwH3JPH8soeQSniy4XYTBQp7bqJWF/NYharqdXL4IiJqaGjQ2NnqKRa57ymazJQrXcpaiCi6Xw2OBxl/UesLw7EpbKBQwPz+PTCaDlZUV9Pf3o1AooLe31xcmViwWS4xnbXRrwztotlXTDCsg/X5jY8MzbNmo4okAC2Sc9+7d652+PjMzg5mZGa8uV95yxnc3ECY0eU/n+fPn0dbWho6ODt+Jo6yMLUXOfbEgTMCyQ8R8KLgvFv2hymtra7h+/TpWV1cDt0XsFpgfXc/F0cvn87hy5Qq6urpw7Ngxz6nVypnbxzJEbwmR91oeuQw/gVQqhaGhIczPzwfuxQ+CKDhkXLPcXlhY8A6vESNIGzIuw9f6ttLpU9hjsRja2tq8fZy7hXIMSXH+ZPXAmqQLysv9FFnGBpn0jXnCmgzU8Di0z+Mi8k9uTeD32jHUIJPGfOidOAO6Pxy9VSgUsLy8XLJ/39XGqH230rLxXl1djc7OTjMagNNaOl/XH5VvYrEY5ufn8fDhw7Kur3pcELzL3c8NDQ1Ip9M+Ga9lLzsaEjlgyWd2JIHgQ10lr5xAfO/ePUxPT5dEpVj2SRBEwZdlD2r7srKyEj09PRgYGEBPT0+gXGHbwGUXWr/1qiU74VZElpYvxWLRi/a4ffs2xsbGsLa2ViJHNH7KkXNc95OiRY3nZDKJnp4e7N27FwMDAz56FGAnM8gp1xA0zhZ+ospwScf3wVt1yyefz2NhYQGjo6PeeUjWwlkUCJKBQbIprC+7tfujvNN1Cc/U1NSgtrYWHR0d6OrqQjqdjrz/GfiQO9CsaF3OgWYWy/DWRKQNCDZQROmKMNeMbRGD5Jdypb2A//5O3QZpm5SpV8R0PbrPwKOrf6SdtbW1OHXqFPbv34/Gxka8++67GB8fj7QHQvctiiAMEzJRmSdKuiCHQ0BWborFIhYWFvDFL34Rp06dwq/+6q+iqanJG2PGIZ/aqk/kFjqwwOXUsbOl2ymTGnKFgnbSJWSNQzaBR7PJUuaxY8dQXV0NAPjmN7+JXC4XaiSxwWHhWxs1jwsuR3B8fBzvvfcetre38ff+3t/zhYoJaKdIG19Bilo7XZKHJyh0Xgn7lFXbY8eOYX19HZcuXcLNmzd3pYiiQpjDInQ5OjqKBw8eYGJiwndInpRhlbO9ve3b2yrGT0VFBfL5vFmnGFga/2IYnzlzBqurq3jrrbe8kNigfoXJkzCDheWW7IOen5/3Iku4DMGXhLeycS4fMcZFxrI8aGlpQUNDg4cHSV9fX4/6+npUVVUhm816dWljWeuFoH4H4Uv4RQxWNrClT0HOlpygy6sqIuMEeIU2Fov5wvddRrnVJ+63dpCCxjaZTCKdTpdEd7jK1jJBaJTDtUWnikyJx+PeKkw+n8fc3Bw2NjZ8KzeuvoaBlU87fnLCcnt7uxmCKLTIkSLaKdR6m+lY442d0Pn5eYyOjpboKWtFKqrsd+GH7bCKigpUV1eju7sbVVVVgWcV8NhJ29k+4wOYLJwzX+gtcNvb21hbW8PFixextLTkjTvjkPEs39wXhqjOoUVTGj+JRAIvvfQSOjo6Sg6wsvAlNCLRBJLOdR6LPJN+ScSR5OXJJi1HeOvD7Ows7t69i/fee8+7Cq3c/pcLLhq0ZEgQPVZU7Jzc39DQgFdeeQUNDQ3eDS1sXzP9Ba0+cxs077GtJr6IgO4LR8oyb7P9IWXKNkG9Ws7lyjkpr7/+Oqanpz06t5z3MNvfBVF1eVA5bLtFaVM5oOWu6JehoSF0dXWho6OjJIIlCnyoHWjgkdMhikUrFx0qLQPCDjA7m2z0CKHqMngvqtSjV2v4W6/8cBt0Wj1L7jIWtra2ShwLSc8zynzYDwvpyspKvPDCC0gmk7h+/TquXLni2zdqKWluqzxn2I1QLNdx3m2drHRZKC0vL+P999/H7OwsPve5z6GtrQ3V1dUle+Nl3Bn/WlloPImws2bHxREWYEUnV1TJqhALRTbu+aoPnugRBdzf34/q6mq8++67mJ+fLzld1KWEXLjW+VyGSzmgJzcAIJfLeSu7hw8fxsDAgDeZoA0gDdJ3/U5fXcPpBRiflrEqaQuFAhKJBA4dOoTf/M3fxH/4D/8Bi4uLJQp2N4I/SKm5eE/qzeVyuHLlCgDgd37nd3zXtXH/JY+Wj7zPnGWIljFyXZKuX943NDSgs7MTAwMDuHHjRmDkg/U8Kt7YKGG+zGQyuHjxIp5++mm0tLSgWCyWXA/Ist9lDDOIHBV+FgdUZEoikUA6nUZjY6N3gJrLcebyy5Gn2qja2trC3NwcOjo60Nra6uHD5ZDo6264HuEtvQ+PZaU40OzoaefNBdoZdeGDy06lUt6pw9Ievg6QV920LNI6VuOBcbi6uoqKigpsbm5iYmLCdw8q4/txQLdP8FhXV4e6ujpv1UvrD3aqtKy0IqIsZ1rSy/9CoYDx8XEsLi56+32tPkbRBVY/XY6FPJc7jV966SUkk0mfXaZxxOVyX7RNp2mRZZvug/B/Pp/H7Ows3njjDSwvL/vCal3g4smw50z3Qc5FZWUl0uk02tra0NTU5E0g6Ty8AMPvxGkW2taOIK86swyX2xtELsrkqUQy6bpFzv7whz/EvXv3fOcwRKEZjZ8w+tL6LggsmaqdJ9GJBw4cwFNPPYXW1lZfPr1NBPCHvDN9WpPuPBmvnWeXs2nZUxZvsq6V8XfRQz6fx/vvv4+HDx9iZmbGGV7vsgUZytHVQeUF2Y0uvRClLH7H48FjLpMmdXV1OHXqFBoaGpBKpQK3agbBh9qBFkZeX1/3xfNbg2ApFRfyrVl2ScuHiLnKkOfa8NRlSR90eA6/123Rg2vVIQpCymLm4pWJxsZG7N271xO6IyMjJac3Sz92a0BYRmQ5BBqkcILq43pchoEoUVGeb7/9Ng4ePIihoSGkUqkSo81SDsVi0bf6q/HG7ZIPX6uilVMsFvMdlKLT6EkQAT1BUlFRgVQqhZaWFnzkIx/B5cuXzdNWLdxZ+N7N2LlAj5FWjqKcp6am8Pbbb6Ourg7V1dW+Q3FEaWi+4FlzVmzlGoJcnl6VE/zW1taip6cHg4ODAIDZ2VnTGLTKDcNL0DMrjRjGCwsLuH//PtbW1nzXb1ghgEJDGv8upyQI2MBPJBJoaWnB/v37ce/ePfOwrqh9iwI8tjKRcPfuXZw4ccJ0zBhcznOUZ1q+JJNJNDc3Y3JysmTvt8up4DRB/XPJkuXlZWxsbHh91PtILdnBwPqFDUJ2Sji/jogpB4IcBwvi8bgXQWC1mdthTXS52qcnPmUVc2trCwsLC5G3HTwu/VZUVKCpqcm3rYrLZrxYkUFhutElT4rFIh48eBC631vqC7NxNB0zzWv7RPRSfX09enp6ShYBLBxY+jvov4AVpSTlbm9vY3Z2FuPj41hZWfGF++/GmSjXAdR6i3W6XAeYSqU8/LgiTKLUHUYjbGdw1E3QuOdyOdy4cQMTExNYWlryyfig9ljj+aT1QJDdx3hub29HV1cXurq6zBBoBkt/BNnuesyi+AK6rZYe1o6yNVkqtkA2m8Xdu3cxOjqK+fl5353cQXXrNu7mvQUuvWqVG9XuCWsff0ukmNzC09zc7C0yACj5jgIfage6WCx6B3+0tLR4TjQTiSZCa8aSGYsdE21EiDMVZIhZg2rVqd9Jf1hwaSZ0gaTTZYtRANh7wxOJBPbu3Yu2tjZv5WR2dta7v48VmBYA5Tq2GlzKN2p61/soz1mAiAGxvb2Nb3zjG8hkMqiurkZvb6/3XMYFeCTYGNe8GsKrJbo+Dq2SFTEODZY0YjRqo5adN42LQqHgu+JC8tXU1OCVV17B9va2d5UXHwyi28gQZDw9KbCUqdDs0tIS/uZv/gbDw8Nobm5GY2OjNxaMA8aFplMOSdPAJ44K8AST5TxLubHYo7uPT506hVwuV7KvKIrxGQRh9Gw5vjLxMDs7i+rqam8Fg0NAi0X/KfMsBzmMj3Gh8Wa1U/Adj8fR3t6OU6dO4bXXXvNWuaIYDuUCyyjBfTabxbVr1/Dyyy976Xh/qTXxovuj2yers5bCFxmSTqexZ88e3Lx5M7SPIifCeIxllcbf9vbOCezr6+s+Y8oyJFlms+Htcqpdq4JaZnNdrraGgasM2QOtgWnSpW9d9WhcxGIxpNNpj0a1A/04oMdBfsv/iooKdHV1obW1tUTWyPjKeEl0jD4YK6jvenyYr2/fvu1de6jliNWH3Txj4D7X1taitbUVHR0dPgeAnTC2Z7Rtxbxj1aH53OJ1WTC4efOmbxXe0tsWhDn1/MyVVn9XVOzcnNLe3o6PfOQjSKVSiMViJZMMMjnH9gb3y6o7yAbSdszm5qbToRSbaXV1FW+++SZmZ2e91WerfKveJ2VXuPSJZa9q+z6ZTGLfvn3o7e1FfX29GXkjednW4BV+wD7DRten5Q3zougPoHTSgm0hC+SAPSmDbY9cLof5+Xm8/fbb3gIjR5VFxX/QeGlbRPsFu5ETUSFKOcxfEpnY0dGB3t5edHV1+e6W50WGcnTXh9qB3t7e2fs3OzuLzc1N78Churq6EoEojM8hLezsMKGzYNrc3CwhEh4Yff2LAAtwUYDWO2mPtJfT6dUBHY7Ds1G84sz1VFVVeWXGYjGPaKRvVVVVaGpqwokTJ9DZ2YnLly/je9/7HhYWFkpO6NZl62cWPAknIopzHfTcMj4FuG/Ly8v47ne/iw8++AC/+Zu/6d0DKA6HpHOFlvFKhlwTJMJWO8JaQXE7ZLx5/EVws4MsDg+vkDPepM8tLS14+eWXMTw8jD/4gz/w9k1G2a+khWLUd5xG49wCrdAFb8vLy/jzP/9z3LhxA5/73Od8hhXvf+O2WHu/xAhhR4tnHKVc16n0Aox3ub/1F37hFzw5NDExYSoVV18tfHK7Xfk0XqVfMqH4+c9/Hr/6q7+KU6dO+fpi7V0WYIeZw/8knzYwBXibiOCRT7XUBpaWI+UoQ1daeb+9ve3dR7q8vIxMJuPNPLOBwvwmvO3aMyiy2gqnAx7RT2NjI44fP4433njDc2pdbdZjadFKmDOzvb2NyclJrK6u+p4B8Ml9NgpZB0jbRT7JuDMN6lPaLdrRPMj92g1I3qqqKu8cBz1hph0tabuk1TpXytX45f9ywGRUB7pcR4AdJTF+9+7di56eHgCP9AfLP8Y9/5dyJAqPn0nfZJsQ8+zW1hY2NjZw48YNzM3NOaP2pIygfgSls2hF+nz69GkcOXKkpBzeLiUTVpyG5bQrGowdE54g1BOha2truHHjhndLhaULg8Z3t3aJKxJIDPwjR47g4MGD3p544NGWISmT5ZRckWmBdSgd40fzi9iEugy2LfP5vLd3fnx83HcXPfNTmP7aLVg2qAZrgkI+cs/zvn378Nxzz6Gurs5L4+IBvTCio0EkHdOQvpKOeZf/C09oGcqLLVZ7trf9Z5fIs0KhgJWVFVy5csXbBqcPCYyC/6A0Ws5beTXvlzvmu82jf8diMS8ybGhoCP39/b5IRgHmgXLgQ30PNPCIcNfW1jAzM4Nr165hZGTEN5OsV6FZCct/Ae1IcxpRfHJ3mwWcTgtwl6LRIZbyLKx8NmD42HzOL6ubui3s3MfjcaTTabS2tuLIkSN45ZVX0NfXh7q6Ol8/WBhbhmTYOAX91oJenul3Vr1RDDXJxx95zsJnbW0N09PT+Pa3v+0drmat7vMYaMNOQDu0GlzPeIWFx0077jzWPMbyntvZ2NiIgYEBvPTSS2hvb3feEW3hLIqD7IIoZej0Mh7iEE5PT+PevXt49913vf2JejVYfmtFxopLO3+8P535Sj486aH7zHxRU1ODw4cP47nnnvNFAVj0yzhz0XwUA9XCGzvR4+PjmJqawtLSksfj+hAorQi14mYZx0a64EQbM8wnEqo5PDyMlpaWEl7ReIjavyA65U+hUMD09DQWFhaQSqV8eGQng/k6aEKJacglv9LpNLq6uny0EwXK5TEeq5WVFd8BgZbu0FEEWuZyeuEH5gPNE9YKYFR94Eqn5SiwMwnA1wty26WNDKKbpT8WLwOltCu43Nra8l3pFGasl2PMW+nFmJdJWi3LJR3Tq+htHguW44wfXff29qM7smVVyjVRGNT2qGDRWSqVQk9PDzo7O01Zx7QX1C5XFJKlj3Xb8/k8Ll26hNnZWR8OtF2g8+pnQbozDCfcF6GFmpoa7N+/H0NDQ74713VaACU0LTJPzl9gmrHOawH8q26sH60DroQ/stks7ty5g/fff9+3bZJ5xoW7KPiIUkaQPRjEhxUVO1eDDQwM4PTp0z77Vus/1k2WHaDtDG6XdrZ1+7QeteiZgfe0M63K4onILImCu3DhAh48eOAtlFi4fBwIGjMXWPaPq+ygsqL0g+05ibLdv38/Ojs7kUwmS2SntgfKgQ/1CrTA9va2t8qRzWZRXV2NWGxn5iGVSnmHClkDbxm6sVisxAhnRtJOioB2aIRZLOMvSOBHMbi1AOFwVM3IrEz1yrw8j8fjqK2tRTKZREtLC6amphCPxzE9PY2VlRWnMNROo4ZyCJIFpPwPYzaNFw2useK82vlYW1vDhQsXMDw8jMbGRnR1dfmYjOu0DDEBnuGNgiMZM5ewCaM7nZ7LTKfTaG5uxtmzZ707ACXKQMoMG8vHgajla3zKfujx8XFcuHABBw8e9MI6mVdEEQH23iR+xiutDMwz3AarPObVeDyO/v5+bGxs4Gtf+5rzgDmd3/qt07p4weXAiKGzuLiIiYkJTE5Ooq2tzYya0A40G1BsqOmTbzUOLV6KxXZWOoeHhzE7O4upqamSg8lcho+FK25nEN4YB1NTU+ju7sbQ0NBjGb3SXwZZ/eO2yEw3n2HgGnfuTxBfuNop/VxbW/OusioW/ZEyrnIsXcTjpvsm/ZVvK2+UNpcDwlfiQFvGjcVDesVcp7f4WZ4VCoWSg5DkPYOll6zxs/DAclp0bjqd9t5bxlxFxaMIM16Z1bwn7y05JpDNZjEzM+PbD6nxa+m1MHDpJnkXi+04/fX19WhtbUVjY6OzHJatQfVZ6YJoU34XCgXcunULS0tLJQ7Gk9J/YTzA7ysrK73Q7b6+Pi+03aV3rLKFZvkKNm2PRGkjOx/sAAp/LCwsYGRkxLui0LUw9H8DXPwm/Ukmk+js7ERfXx8GBwcDT3/X5Vl4tJx3bZdr/rTK0PkkPee36tfnHGWzWUxMTOD27due8xw0/mEQJuej5NsNhOEsrD4Z73g8jrq6OvT19aG5udknZ618u8HVT4QDDcA3E3bt2jU8fPgQLS0t+Nmf/Vm0t7ejtrYWgH/PsYRhWqsFzADWKiA7rVrZyYdD/zgdO0ryTv5LSA4rQGmvduJYwEn7pE08C6+vJ9Agyk3SJxIJfPazn8WNGzdw/fp1vPrqq75QHUs5hzGXpWCDjGbr+eMwJhsuWqnKOAjISvRXvvIVXLt2DZ/73OfQ0NDg22PIOAOCV684JI3D9HTbhG50uL+8470y+hTvyspKX1g2ly/jlUqlsHfvXrzyyiu4cuUKvvnNb/rG9ccNYUamfi/8s7GxgYmJCXzrW9/Cz/zMz3gHimkcsuFgjY12eKyVNMEr74uTvDyBxqGPFRUVaG9vR6FQQH19vTehx7PFUWg9Co6C8vCkWDabxfe//33Mzc3hwIED3vvt7W3vZFVun3zrVWoOaRY+CZuJl5nfiooKPP/885iamsLt27eRz+cDDW3X8yjOM6ctFoveKlMymcRTTz1VUq/lqLicIqsuPvdA0siVKNXV1aiqqvJWaMIgzFkIyre2tubxsNA0O7vAoyurWO9p45AnFnhbCOsPHb2gI7RcDpgLXLJY3iUSCW8fqODZFWVjgXaSddSWtH9ra+cO+mw2WxLuqCcXLBqMOoHA45JIJFBXV+c50NxWGUfGiSwC6AlwpkG9gqVpe3t75+Cs9957z6MZl2Ng9Yf773LQtYMnbaqs3Lnv+ujRo2hoaPAidfRp+LpO6TPTNYO8s2ivWHx0xgk7hNlsFjdu3EAmkynZsqDx4HLO+Vk5DqRehBF7q7m5GZ/+9Ke9bYhCl9qW5I/0S2i7srISra2tznFl4NBsfqbtCsGDTGR/7Wtfw+TkJNbX1314E/py0b6l/4JswnL1oB4npic5S6Gvrw8vvPAC9uzZ49vSxfnFbmDcWLhk+0FA+wZBbZUyZZufgOTVfoFuk7RLylldXcX9+/fx/e9/3ztpW+tpC1cu+R0GYXxhPXc55NbkgStNUF1sK8uC0VNPPYXa2lovoiNoXORdOfbwT4wDDfgJd3V1FRsbG/jqV7+KpqYm9PT04OWXX/acD71vwwoHErBmg7Syl7K4TO0o6VAri/kswuSwOe6rMDEbuTpU0tpXJGk1I/GBVslkEsPDw9izZw+OHDmCr33ta3jw4AGy2ayn9LSC3o3RpPtqKe+wcrUgL8dBYeOIjZPt7W0sLS3h+vXr+P3f/30899xzGBoawtDQkJePJ1AYt/JeC1RNQ4A/FFz+855SbTBxXh5Lro8PJdOQTCaxd+9eNDY2orOzE1/84hd915m4cPQkoBwBrfkDANbW1vCHf/iH+Kmf+im89NJLJSf08tgLDsT41EaFlM/Gmaxc6rGKxWK+PU06lAp4dKLu7/3e7+GLX/wibt++7SkyTvekcKnL0o7B1tbOPa8jIyN46623cOLECe8qMB5roV8t+1jJMzB9WqDvuG9sbMTQ0BAOHz6Md9991xzXqBCVbmQMp6amMD09XSKrLQOC9YCuU4d5ASgx/EXWJpNJ9Pb2IpPJYG1tzStDy+7HAdYt+Xzei77iA7d4coj7xBO8lo6yJltZr+pQw6jGL4OVztKnVVVVSKVSPueB03M/JZ/LwWPnVXQmy/rV1VUvIodx4upLOTqHaUTqr66uxqFDh1BbW2tOCvDeSNZRrCckvUyQ6HMeWMYJrczNzfkOzrL6GFXnhjk57JTIgYsf/ehH0dzcXHLasx7jqLwOlF7rwzpTT6KMj4/j1q1bWF9fN1dQy3WIy0mrZVAstrPP/9ChQzhw4AC6urp899ZzxNT29rZPB/G31m1WCDbwaLJFcG2da8E8IXVvbGzgzp07eOeddzA2NubDXbl40jzs4h95FkYHQfakTFT19vair68PZ86cQXNzs28/udVGjRc9Ga9plt9xWXoSTOtV4V1pL8sIIHhFVOg2l8thZGQEt2/fxvz8vO+aKquPuq+u/+WCpQeC0kWRm2H5mA/Ejq6qqsKBAwfQ1NTkXRHI46cnKnX9Uk5U+NA70HqwhLA3NzdRKBQwNjaGpaUlZLNZDAwMoK+vDzU1NV6YnatMFwMzY1mGACsBLTSYOVgpuvqiwTXDZz1j5Wm1UYfi6bLj8Tjq6+tRV1eHhoYG3L17F5WVld7eCh36q+sOaltQP62Ji6ByHkcQuIxa+S1XXN24cQONjY3Y2tpCOp1GZ2dnSVq9mmkJCEsgcnSCNbHCY8irDZKPac0yGCUtC5n6+npUVVUhmUzi8uXLuHv3Lqanp0sOEOH+BSkqF86jGmIW/WhFKzx98+ZNtLa2or+/HwcOHCiZeNI07eJxTe+CP16R4H7otlh9TSaTOHz4MPr7+7GwsIDJyUmfrIhKm1GMRw2MM2mj7He8fPky9u7di5qampIVBgvXLloE/A6UNmB1+J/gpLu7G/v27cP58+efWLQD99XC7fb2NtbX171VRQkF1rjlvGFOEKcT2uLyZHKhs7MT4+Pj3oFyQfjczVhLG4ReZe8uO8Va53B7ud2uVQpdj2sCIqrTHKW/+h1H7Lj0ZJiu0Q4ogBIDNRbbidhYWVkpcagsHV6OHLToTSaoe3p6fNeoWP3R+bW8Y0Pd6je3LZPJYGlpCcvLy04Z5mq3Vb4rv0V/cvJ2V1cXUqmU6SS4+NNqD/fP5ZxxulhsJ7pvdnYWd+7cCQzVf1xnwgKNW3Fg6+rqsGfPHgwODnrRFhqi4Eg7BgLa8ZC0QbJIT9ZPTU3hwYMH3vWITyI0OAqOg+gxyOZm/Mri2d69e9Hd3R1YF0+yuXBuRfi52qXz6w+nt96H2V6ZTAYLCwt4+PAhJiYmSiIqdkPH5cjnKBAmP3er/xiHFRU7p9fX1dWhqakJXV1d3v3OLnmif++2TR/qQ8RcHWWlKUfu379/H3/5l3+Jq1evYnZ21lM82jDSiAyaMWFBxAaKNpb4LlZLAAL+i+3F0eETuq39WewU8UqzKItcLodMJlNy/xsbUdoAlHr5hL90Oo2f/umfxic/+Ul0dXV5G/G1MGC87ZYxwqCcssPoIwjEON3c3EQ2m8Xbb7+N73//+/jRj37k7TMS+hKQMXTRky5fQIxgORCC//N4u8LYWPHplSJepZZncmBJT08PPvWpT+HUqVOeUaPHVCvnqGDhXpcbNg66X1tbW1hZWcHly5fx13/9175x0HhiB0MO2QD8Y8Ir9ZKWV/0Z3xwR4OqnrEIfO3YMR44cKQnBYhz8OPhG921zcxMLCwt47bXXfIcqinHBp2zLePC+SA3cH6GtINoQmTg0NOSFUbv6rnFQDh4sg0F4c2NjA7lcrmQcuD4XX1l1SL/kWxtUiUQCg4ODaG5u9hlzYRAFNxZsbe3cZZ/L5bwx5AgpGWvAH+0i+HCF0Ep65ilpp6U7tEFYLlgTYaKHtDPIY8ZOMD/n9ghOGC9C/7Jqu7Kygrm5uciGfVQatvAiIYZ79+719uUxDYvs1yuLmu/kdyqVKpkgkvLYNpiamvJOGbdWXncLLlww/XV0dGBoaMibvBU6lDGQk3HDdJz0zeX46tU3WUgpFovY2NjA6Ogorl+/XhJpoMuyIIrdEIQbbfTH43F0dXV5Czsah7wCqqPUOK110B/rTssZZF0nZWgbVyatz58/j6tXr3p7xjXtlIsH+Q8ERzKEOXMuW0W+E4kE9u3bh8OHD+PAgQNmGzgP272ug+z0lk2ul/0JxqM16azbEoYHjYtisYixsTFcvXoVN27cwOrqaujkdDl2c7nyIEwmRpE1rjG1ymZekAm6gYEBPPXUU+js7ERNTU3g3d5WmS4bIQg+1CvQ1syjfgc8OsVuZWUF3/zmN9HS0oK+vj586lOfQl1dnRfiqQWIlM2CmQdFK3ZmEhFOYoRoocbMqw1WNvYtxpE+sTGk2yFpWRnF43HfflBuP4c+yX+uq6amBgcOHEB3dze+/e1v4+7du3jw4IHPOdF4t56FMZgWMlHBRQPWeOr3/J/zsPGVzWZx794970L6s2fPYu/evV44oDV+ui1iDFqCzrU3ndvIxp/Uow1bea4NaOkHX4VWLBaxb98+VFTsnE75hS98wQvtExoNMxrCJghcY2kZQLrfmn63tnauYJmcnMTGxgZee+01HDt2DF1dXb4VZemrABtlUejPEta6fB2exYbLs88+i4aGBly9ehUzMzMlDrwLrNXqcgW69F3oUq61OH/+PAqFAo4fP14S4qdD1WTCToNMOPC9pDzOcmK9gKStra31DvFguaN5U+PHMkYYJ2G4lCu9rly5gnPnzpXcr67pxQp91PiRvBytoWlt7969uHLlCuLxuG+SxwVaj+h3mv/53fb2zkFiS0tL6OrqAvBI3+lVcj3BIvqMI1S00cd0ILdPaAfHmsAoFyxdJ3sXeQykXSyfBfQkmdCNtUef9TQALC8vY3Z2NtA5iMqTQYaw8EQ6nUZ3d3dJKLPW30yblkzkcFyW84wL4eeLFy/i1q1b5sFZLhkcBayxExBH5tChQ3j66acBIPCaMGuCUhwaHi9t+DK9c17WuT/60Y98W2t26wg+LkioaW1tLX7u534ObW1tvjNomAa4XktO6Geiq+SZJeu1vaa3fEkZKysruHbtGq5evYqFhQXvXI8g3c0QFbdheiCsLD0mlZWVaG5uRl9fH1566SXvKrwgupMzBgQ0joTGeYFC0rHMtNpjTVaxL8B16PHUeeWg5LfffhtjY2NYWFjw2WwuXIXpIJ2Wv8P8K+6XC1w6O6hsyw5i3MlCUHd3Nw4dOuRFFrOPpv01bkc+n/fZMkFbH13woXagXaARBTwyCldWVrzVmR/+8IcYGBhAd3c3WlpafHmtwdPKWDsqXB+3hRlQymMidRlIGtgY0qvduk42NEQg84y9bpMWwtpJiMfjqK6uRjKZxKlTp9DQ0ID6+npcvXrVd+CSXiFnQybK7JQGVhwuhnLlcZXtwj+3R+NFDpopFou4du0a4vE4stksDh8+7FN4rj4GOfL8Xhu8Oo1VrhYuugz5LUYI8MjwkpMpC4UCmpubsbS0hFwu56Vx4fBJgKs/FnC7JbT+rbfeQl1dHWpqalBXV+dzfllhhK2SamcZKD1kRdOe8JI2disrK1FbW4vu7m6cPXsWr732mhcaajmduu+7wbVFL9IekXVXr15FQ0MDTp486UvjciLlN69U6hlaF31qOSOrZO3t7b4DaCw+Y3DhKYgvOE+xWMTq6ipu3ryJU6dOlVyJpNvMBpJlBLHMZYNeRyLV19d7V2dpsMY4TD66QOqT8GOZVJWwZ24vT5xpHGpjjuUJH3rI8kWX8SRAyzHrqh49WclyVwxOrcNisVhJpBDTKACsr68H3jYRBGFjp2V0IpFAOp1GdXW16Shpvcm85zI4XbYA93l+ft4Xph5mVD+OPBJ7o6Ji5xyEpqYmNDU1BebT+imsHfyM6UA74VtbO9cvjYyMeHdf76bflv0RBFqvCF7EwRsYGEBTU5N3iJyWY0F1MB/zxJc8syZjWR/ye83PxWLRu87z6tWrWFlZ8a6P1A4e54uKFwt2Q2sWfmOxnX3lHR0dOHHiBOrr6517whl0v9gO0Hkte0F+6xXqIGdUcB8FryIH5ubmMDY2hvHxcSwtLZmTGrpfu4XdjuWTKsPlMwE749Le3u5tC6mtrQ1ccbbaomXv/3Mr0ECw8aGJR4yjlZUVrK+vY3FxEcePH0c+n0c6nfb2I7FQ4TpYmbnAYgJezdMGvhiYVn6XscfCQr9jISmzauxUMcNKOqD0JFae8ZeVS3Gkjx49itbWVrS0tGByctJjZNcqqsajha8o78NwHQRhhro2QCzaEbzJFQ4rKyvo7e1FfX2972AKbQRxGUDpSY88Fmy0akWvaceaRNG0oceZ021tbSEej3tX7/T19flCyV3CS+MuCt7D0jDegwxFmQhbX1/Hu+++i97eXrS0tKC+vr5E8UVZYRCDXB80ESRPBJfaCJe+JBIJtLa24qd+6qfw/vvvI5vNmuHfVv8Z51bdUfDJskVWYm/evInOzk6fYc64lnBkvj7Fkj9srLkMJ0nHJ+CmUin09vZieXnZWwFyOZO6zy4Iw0WxuLPv8+bNm9jY2PBuYpC82rGxxkEfDMOGsGXkb29vo6amxqdLgmSPqy9RjVNZgV5eXgbwaIVW07528rlMSc9RTfyO8+gQW6YnpitXe8NA1611rbTRmmjU/M8RERx2z98ClgPtapvuN7chrG/CCxJ2rSNZmB8F9yKnuX+6X5ae4LZubm5iaWkJmUzGdJyj2E+SLogmuQ/iLLa3t5vXyAD+A5v0KrOWT662WbzM45PP57G4uIiHDx9iaWnJOTHqsiMtOnOlsYDbJ/qhra0Nx44d886lsPjWJQtdfMb8bUUV8X8GzUtyAOXY2BiuXbvmHRxbjm0WBC57Ioqc5HT8m+3b+vp69Pb24vjx4yWRn0G077KhrAgWKU/LK9YDQbJB0rEe0eVxOjkFfXx83Itsk20erO+DaCYKbl1g2Se7kfOWXRyWnn+LrZZKpdDX14fOzk5v8dPVbksectlBPlcYfOgd6DDhp9Px3o+trS28++67uHr1KoaGhvDxj38cvb293tUCYXv82Dlm5gH8QslSAlpgSRmA/+oGbbSxIy9pxFhjwSn7lCsrK70QUr1awu3k9su+OjamJPxRJhD27NmDjo4ODAwM4Jvf/CauXLmCpaUlH17kd5gg0WOkn/P/3RhlVvlW2UFOIguq9fV13Lt3D7Ozs1haWsJnP/tZbw+TFixMH7IX0zo9muuXMa+qqvL2/spzLk9PerDy1HufRaCLAQo8UqYVFRWoq6vzTpB+++23vT2zP67ZTQ2WMepyGCTN2toavvnNb+LOnTv4d//u33knLsZisZJwYj1poVccdWSJVrYc0cHt4PZzvfX19Thy5AhOnTqFq1ev4u7du16+3SqecoB5cGtrC6urq1haWsLc3BxaW1t9RoUYuqzcWJ7EYjvnILARFXSQjF7FFfr6+Z//eczPz2N5edm3klguHYXhgulobW0NIyMjyGQyqKur861CM38KLngFQa4UZEOK+U30A+O6qqrKOxE7kUh4E1Eu2VYOb1lOqpwLIKeNs6HMNCxjyWPGPGCFL2pHWfYIctibBdroCZK7/E4bMrKaLm2UyT19D/zq6ioKhQKampq88dRjpU+ojsVi3v5Y2RoiEUYu50S3k22OMIeAeaG1tRU9PT2+CQIxpuU3y292tKXtPEZcN+sFYIc+1tfXvQOgxBYIGhdXf3RfrP6yrVJZWYl0Oo1XXnkFAwMD3iSz0Jt25rRN4gq5dfGGCyYnJ/F3f/d3Hp1o5yZsoiBociIMNC8kEgl0dXVh//79OH78uIcTkcM8noKfYnFn/7bIIm1H6nNXuCxuv3XqNqeTyemlpSW89tpruHnzJnK5XGDoc1QcaP7R+C1HZljyVHg8lUrh05/+tMdfOpyXZZ0O02a9xThZX19HIpHwxspajNKyVfeX+8oHebL+0DJHJqE3NzeRyWTwt3/7t5ibm8Pa2hry+bwpk8Lw54Ko+Hflsd6FyZcgOaL/yyeRSKC2thanT59Ge3s7UqmUGakU5CTLfx6Dck7eZvjQO9BRQDMs8Ih5JATi/v37+Na3voV9+/bh2WefLQl50wTOSp4dUF2n/GbmZCFo5dWKNyqhSR7ZnydGYNisphCctEvP0LJQZ+aWUJmPfexj6O/vx2uvvYbp6WlsbGz4cLwb2I1zFoVhgwzToPLY+ALghTTduXMH77//PnK5HPbv3+8bL13u9vbOiZYPHz7E008/7Tsgx1ptYYPCcpb1f2tFWhuE3B+mxVgshoaGBjz33HNobm7GV77yFe/ETabdJ+k0637y76C6ZAzkgMDR0VF86Utfwqc+9SnffjJWglKWrO5zXYx3rQQt5a7fW3kAIJVK4cUXX0RlZSUmJyextrZmjo8LFy48aFq1nDNtUBUKBUxOTuKHP/whfv7nf95nDOj0lvGqD2yLAtpo2LNnD5qamlBTUxNpb3BYuS6eZZqWwxSnp6e9k4A5r4V/+bDzrN9rYKNLFHpYSNlu+85OtKxALy4u+ibHLF0lH5kEFcNBZAfLGAAlOkvS634F9cOilSCnk3mOHQpXtA0A76orwH2/t5aHrH83NjawsbFRcguBZfRHAR4j7VRWVOzcGd/d3e2btBJcaf0hfXIZy9rO0O+3t7eRyWRw5coV7/aMoGgYq/9B8ka/57GTfb5dXV2orq72RbZYh1ZpmtXbaAQqKiq8fjBuLTysrKxgZmYGo6Ojvq1mLj526Updru63RZe6DFmYOXv2LPbt21fikAH+CV7dZ8tW0AsV1mqmC/SCjciSH/zgBxgbG/PoRfNOELh0eVD6cuwKxoGAOFbNzc14+umnfSG9Fq+wrLP6xPQhi0nioOs+ct94Ndly8gWYptm+0mVL9Njs7CzeffddzMzMIJvNepNgQTLBwpvrfZBdrNuu5U1YXg2usnQeec7ys7a2Fj09Pejs7ERra2vJDQYM2qEW0H6XlaYcvfyhdqAtA1i/CzKU5LtYLGJxcRHZbBbZbBZ79uzBnj17UFNTg3Q67RxkVuo84EFOgEu5Wu12tZnrEuBy2AlmAaGFDpdnhZyws+zqd01NDfbt24eGhgZMT08jl8theXnZm5hwCU+XEWq9c+FfvwuDKIzhEnoWE25sbGB+fh43b95EPB5HW1sbmpqaSmazuBwJpWMjRgwLV1tE+eqyOA0bmUBp6KmetWZ6kbqTySSGhoYQj8dx6dIl3Lt3D2tra2aYILdlN46A7l855bCxsLGxgYWFBbzzzjs4fvw4kskk6uvrAfjxysZbUF+s0Fzrt9UPSSP/KysrsW/fPkxMTKCrqwsjIyMlDpCGMGNCKy+rLZpuRR7Mzc3h8uXL+MQnPuEzYK3wSN0OdqhdhpHGnX7X0NDg8cjy8nLkcY9qYLn6vrm5icnJSbS2tnoONDstLM84nzbAdD0uWVFZuXMfdCqVwurqakmaKIaork/n59+5XA6rq6slUUZcr6WnLDnATo2E4LPD8ziz9dyHoGfcX+Ff7pMeZ71PW9IwnjXPsb7b3Nz0ndYcNDZRnAKrjQJytY5EgTDP6O1hUWwYq8/8fnt729v/G3ZHrKtvrr4EQSy2E7XS1taG+vp63xhxGraFuB6eONEyRRxoFx74+czMDCYnJ7G4uOiMqAqTL7vVb5rXxMkbGhpCe3t7Sd/02Glc6YUN3Ubmf/08CAQnm5ubWFtbw61bt7C4uBj5rvAwOV6Og1UOCF750LDDhw97BwOzbtNjETbebGOwXW3J1qD2WWl0mZbNL/J3cXERk5OTuHv3LtbX133Rcf+34HHrduFfywAZK4ksaG9vx549e9DV1eVFCOv8+rfL/9L17UbGAR9yB3o3oJ1GVqxra2u4c+cO/uiP/ggvvPACDh48iH379nmHPAhDaadFOy6aweR9UJgHp5f2WDPPLqNVVj1k37MYjlKe5aC5HP94PO6FiLCSLxYf7cfivlVXV6Ovrw+//uu/jkKhgFu3bmFiYsInhFx9tgh9N4TsyhckLMt1vhmPgo98Po/3338fs7OzyOfz+OQnP4na2lpfmI+A3P3Z2tpasmdaO3gyhrz3TStC/u/abiDliwK29g+yoqipqcHg4CB++7d/G3/wB3+ABw8elEQlSL4oeIwibLWiCTNSZUxlZXVtbQ23b9/GD37wA2QyGTz99NOewc+hwhzeqXEtIPxsTf5ovPEKCCtdNn5qampw6NAhbGxs4A//8A89umEjMMgZs/DjWtVzGcTAjlxaWFjA+++/j+npad+qUBB/uIxTjTNerdU4kLJSqRSOHj2KXC6HsbGxyMZAFOWmnQJeiSwUCrhw4QLq6+sxMDBQsrKlQx6lLpk0sKKLLEdHnlVVVaGxsRHt7e1YWFiIFDIbZTJB40H+y6Qln77N+s3SXZJf07mm73w+7/VNrmPkyTwXzzJOynVYpM38EXpiJ1N4mZ1idritlRqLjiUkUu8n1G0KAsuh0eMlTlRHRwd6enq8dkqops7H/M7hu9rQ1rTPMl3Oi3jw4IF3FoOmIQ1h8jfonYxdZWUlurq6cPbsWSSTSc+B1jzF4yq6TvOiljV8vafoJvlovn/nnXdw48YNHy1Y/dO/o/BqFFyxk9fU1IRz586hpaUFyWTS0+/SB+ZVPj9Cl83b9yS91MG4FRxZ0Rvyjn+vra1hbm4O09PT3r5n7iP3x5LJ2qkOwyPgvhYqzL5guzqZTOLcuXM4fPgwurq6SpwkAX4u+pdtK9H7jDOJomB7TqKnpP2MQ+4/bxvTdVn0JnllfDOZDM6fP+/xLssICx8u/AWlDQIXf+h6dmOvh/EL801DQwO6u7tx+vRpb2JEgxVJJ9860kLzjVV/VPiJcKCDhJj1jpUUfwOPkPyjH/0Ily5dQmNjI06dOoVDhw6hs7PTK8sypEURWMwlwIqBBSaXx+XrMEJWMCzgCoVCSR9ZEGjjQ9rCgkHSWLO7UrdcZcICUgRxOp3GL/3SL2F+fh7j4+P48pe/jJWVFc844dlMF5NHdZ44fbkMHMWpc6XVBo5cKzA6OopvfetbuHXrFj7ykY/gmWee8a5PEKio2NmvnkwmnUpCxgDwn0oq+S2DkMdBfrNAETpgZaVnlplWk8kk9uzZg8997nO4fPky/uZv/qbk/tAwhy0quAxwXZ52zhgfYiT+4Ac/8KIgnnnmGd/dqELnwifWqoae4OIrUDhslXlWnwoszpngqaqqCv39/WhoaMD169dx9epVTE1NYXNzsyznwjLqGfRMO+cTmZTP57G6uoo/+qM/wssvv4znn3++5Hoc5iemCTmUSWhMyzbN20DpfvPKykqcPHkSxWIRb731FpaWlnyTfEFOpMuhYbrRckHaIJN6w8PD2NjYKIkq4sknbqvlpHD9bIyxcb69vY3u7m6cPHkSt2/f9jlmuoxyeMbSYbLCuLq66pMB0i5JaxkGlpGp+yX79YRvKioqfPvILZxrB6+cPrPxxP2R1VOmUdFf+uAz7jPjSpcJ7NDt7Oyst7pj6eLdyjWNR9m/V1tbi3Q67XMoi8ViCU9Z46N5lNtnrY6NjY3hzp07nkPkmrDaTR9d/a6o2DnzYGBgAGfPnvXxkj4MTeSOdv5Ybstks7aL9MSD9E2cwffffx8jIyOe7grqo0uOuNJqXrKcImk/38zw9NNPo6ampmRMmVdZdmn9xfaB6Cumf8GVlKUnNrkuKWNzcxMLCws4f/48zp8/7zlrLjy4eHs34KLFoHEQnKbTaTQ1NeHTn/402tvbUVtb68OZgMv5Y37h8yzYF+DfelKOJyit7Qb60FgeL+kn11ksFr2xmJ6e9nRkLpfzXYXpspmexHhEsaWDZPuTqFtkZX19PU6ePOndHS93dAvO2eawdLWk47bqLU48Zq6IsyD4UDvQ5c4WaLAYVYwFObFyaWkJyWTSI+yBgQFvRZrLkN+u9um6XG23BLM1C8kCQISqNjx4hSzI4JHytLNmtY2FuS6jsrISra2tqK6uRnV1NU6dOoWRkRFMTU0hk8l4/dF4s+p3PbPeWQotCKIaRa726Lrliiu5IiOdTiOVSuHMmTPeIQcCmqHZENJKVbfF6qMeTy1MuO3SblYKug1SdzKZRF9fHzY3NzE3N4cf/vCHWF9fN1d1NH6iQlh/woCdCFlhHRkZQUNDA06fPu2tmGnQh/ZZ/MVttGY32Wh1rQjLJ51OIx6P46mnnsLy8jKWlpZ84bH8HbX/QfRu0YrgaXNzEyMjI5iYmMDS0pJ3gqXF/5ouWHHxrK6k5//yTDtvdXV1aG1tRXd3t2+PnSULwhxq7VDq/9zvTCaDlZUVLC8vI5VKOQ0sbq8eD544dDlq0v+Ghgbs2bOnxLnTfK/buxuQQ7DYUdfREdr50O3X/WIHldvOzo7uE4PruUuOuYxe0WPSP70CnkgkvBVOzse/dVu0vpftW1H0j4vvXOOqncHGxkak0+mSydFydBinta64Ytqfnp7G2NhY5LvoywHtyPOnu7sbnZ2dqK+v98lgtk8s/cSOIr/jNFyvJX+3t3cOfrpx4wYWFxd9V/1EcY6fBDAu4vE4enp6MDg46MOH1i3cLz2ZwvKV5YxVjkWDum/sQGxsbOD69eu4e/cupqennRN+uoygvoe93205wv9VVVXo6urC3r170dPT4/EUy72wtmiH2QKtnyx7gvWhAMuDID6PxWK+MZ2bm8P4+DgePnyI6elpc9vBbseF67Rs/yDZVo59XQ7ocisqKlBbW4v6+np0d3d7B4XpSSZeLGL61nwkz6WuMDyV288PtQMt4FLIQcgKMt7FKZLvq1ev4sGDB+js7MQv/dIvoauryxtUV32ud9pQiCLQRVjq2RNegXMBrzpbM2yW0mKBzG1mJSfATpi8S6VSaGtrwyuvvII333wT58+f9w4W4z65DK8g3GinOcyJDnLA9f+oQshiWqGXxcVFnD9/HmNjY+jr60Nra6vvnkdmcJcR72qXFgTyLacF65AswTOvnmrDFCi9mkbaVl1djeHhYTQ1NeHmzZuecrUcxrB+PCnDxFWuGNmTk5PIZDL4lV/5FaRSKW/WknEuJ8zLaeh6LDTwSgdQurIqZTCvap6prKzEiy++iAcPHuDhw4feXci6Hy6IYpRovFh5tre3sbCwgPHxcTx48ADNzc2+tjMfi8MUi5WutFvyTvIyfrSxX1lZicbGRhw5cgSjo6PY2NjwGcZR+2a1Q/MVO5Obm5tYXl7G1NQUOjo6nOXJCgGvTmgDXk+4aL4DdhxoudHBcm5cEOSQ6v+SVlbZNzc3fZMDfFgYl6vDDrl97JCITJH0+XweFRUVJauIGlzjENYnF8gEpYST8+GLNTU1iMfjJSeDM98JHrQOFtzNzMz4znooF6LYGeJIydYJy3i3jHOgdMsGG+ybm5veKd3aoNze3sbY2Bju3btnOkWPI5Ndzq+048CBA+jt7fUi1jg9X7/DkVGu/mtdL8/4OeNIrpj84IMPvPvROc+TBJftKd8SsXHs2DEcPnzYR6dCExy1yDrDssfkHd+CwLJ3c3Oz5LwUeaejZIAd+lldXcUPfvADzM/Pe1v3nhSdWPZcVCffhc/KykrU19fj8OHDOHfunDdBzbizytX1ah7UB7gJTfKKv8gaSc/vtH3GH26P7qOMRz6fx8OHD3Hz5k08fPiw5JoqF34eB6Laa7oP8izIbnXl4+d6rOTauz179mD//v0+XSV44ohKjWuOBGG8RbHxouojhp8IB9qCKITmInhtUMpJfJlMBv/jf/wPnDhxAgcOHMCZM2e8cDbOJ8JKytZOJxsYYYpDh4mwcpTyJfSAiUQYWvbYaOIC/EfoW6DbrplC5xUFyiE2Z8+exdDQEN544w1cv37dux7Jyl8uaJzrd9zm3YIeWy6TBS+/z2QyyOfz+M//+T/j05/+NE6ePInm5mZfX3m8ZPzYcBXjjoEFvBi6kh/wO8VMK+JgSz6pWwsnFtbyLp1Oo7OzE//0n/5TvPrqq3j99dexsrJS1mpGWJogpWkpDksQCy4kTPkLX/gCnnvuOZw+fdqjYUkjIfTcb6tNciqvpiFxBAUHzKMMeoKqtrYWzz//PGpqavC//tf/KqF/l/O0W1rWdCuTbRsbG3jnnXewtLSEo0eP+owPXukImiDk1UAOfWJ6BOA7mEnoqr29HS+//DLeeustL3Q2Sl80DrQcdaWVyZWRkRG8+eabOH78uC+tPhuAn8n2EwE+nMZy2ARqamq8k0JzuZxXV5Ah5Bp/7iv/l4840NlsFjU1NV6fJQKDZZheqdKh+dxGfU2XTDyxA+sC/c4lp115eFJPrpgSB1omn+QjV4bpMWRdpI1d7uvU1FRJmeWA1TdtZEoo8pEjR9DU1OTJF30St7Sfrxxi2SX8JbiRCRNdn5Q5Pz+P2dlZc3/3k9KR3GdxGI8cOYL+/n6v7dJmmcySb5ngFDrjMRJgm0rbOdr53N7exo0bN3D16lVfxJQF5fJgUF7trMoYptNpHDp0CPv27UNnZycKhYLPiRb5KPzFOj2VSpmOmNC2JQ/EuQZQMnmnt/AVCgXcuXMHf/d3f4fZ2VlfFIsFu8WNVU5U0PZqIpFAXV0dfvmXfxldXV3eBBrzEfeBJxc0n2qbn9vPPgDrermmUmjddbCb5URbdCt1TE9P49atWzh//rzvurkwncH9iIpbS1dyv8vNvxsnnNsqvFJVVYV9+/ZhaGgIzc3NJZOihULBm1TQsl5ALwYx7qxx1m0pFz7UDrTLsQlKy/9d77RxJCGiEgp0+/ZtZLNZ5PN5nD592gsfYdCMb9VlKWvdFxaU+pAMCywn2lU+E5dur4VXjT9x2ES4yGSCdqJbWlpw/PhxpFIpjI6O4u7du85Tuss1XnRfdssIQcLJem+l13syZmZm8NZbb2F5eRkvvvgiampqPMOIHRYdmqgdKwF+zyuiojwqKyt9YUza4dF90WFhQKkjIHV2d3fjxIkT2N7exne+8x2f0W21dTfjqPNbzhG/0/zPs+rXr19He3s72tra0N/fX5JGhz1q0BNgUq/m2TCHh43gyspKdHd3e2HEEjZaDq40nbuUktUO+WxtbSGTyWB6ehoPHz5Ed3c3qqurfUqG8cR5XfizeLBYLPr2hkm5FRU792S3tLR4ZySE9VM/D/pvGZYSqjs6OuozgritLkNby0PplyUf2WFIpVKora31DHkGF12HgUV7Ig/W1tbQ1NTka7PUpfuqy2KdIaBPXhfDPeweaN1erT9cY2ulk3Fh3HI6cZx5nyGXx3XJmPHYbW1t+W6NKAdcMtPqlxj/HR0dvhVoHhvOx4a59Jvr01Fpul3FYtE7XZwPPXI5QUFyNgqw0yh0n0wmS2hNh/8D/olfbb9wO5gGuUz+3tjY8PZ981V5UWXs4+ot6YM4BHV1dTh79qx3cKh2pKTOra0tT07EYjsHLvJESZgTxXWz3pFnAjzpe+vWLdy6dQvT09Oew6adNobd4NDF40F6TMst+S2Tr6dOnfJ0llWelh8WvpmegtrPDpnoLrbHy8UH06PI7Xv37mF0dBQjIyPe1aFRafZxbAdXmjCed9ke5bSLZV5VVRVaWlrQ2dmJvr4+NDQ0+Pbycx7hFT67ResYfUis7pt89IGUu4EPtQOtoRyBb+W1fgvwjNHk5CTW19extraGzs5OtLS0oKamxreyJcACLawONrY5P7chKojSZpy4jC9dD+e13mmDWhs1/InH46ipqcHQ0JB3iIrczciXwYc5Blb/oqTbLViCmdtq0RkrLTnY6oMPPsDy8jIGBwcxNDSEVCrllSeGkTbmrROvLSUgxoQccmXNSjNIXVIe/9Zp9XaB+vp67N+/H/F4HG+88QbW19d9+3hddT4OROFnrQyFFsfHx3Hnzh20t7ejp6fHZ5Rxetc4uvjT5fTweLKTqVepm5qa0N3djZaWFi8k3mXUWvXvBiwc5XI5LC4u4tatW6ivr/cOvLOMdFE2ujxNk/xO8mmaFppNpVLo6urCwsIClpaWnPzMdVlGVhhOuM+ZTAZTU1PI5/PeqgVQei6BgA5v5jr1b+YpWbWoqqpCfX09FhcXnfiK0ocwg0f6J3vKrYimMOfZ0g2WHBIHOqxdOp8rrX5n4RqAbxWI8S2rzyIHtSPGPMtlsw5bXV316aInBTze4kC3tLT4Vo3ZgLPaavWF3/H1UCzbtrd39gHz6eJc3m7ktjWGWt/L4T/iAGrgKDXWV1a/2R4KoldJWywWsby8jImJCUxMTJRMGms5Ysmu3YCWETKuNTU1aG9vx6FDh3yTJlY/ZZtCNpv1aEIOG3PpB0sesbPniqwS+X/nzh3cvXsXmUzGecVXUJ+lPOudJavLKVc/E53R2dmJ06dPo6GhoYSPmQ51/dbzKHJXy1JuX9iEm4vWWL6urq7i7t27GBsbw+TkpG/SR7cxTOft1vcJKysIT7sdW8FtPB73zgsZHBz0tpS5dK6mc5evJmmsMdcyS78rBz7UDrRWiFHSRgVtJDFRy/2/KysrGB0dxfHjx3Hy5EkcP37cc2Q0E+gZZPnWzrIVYscKjw10BlkV0AIlkUj49hsxrrRA57p5FkfXpwWt5Nva2vJmjvRqeSKRQF9fH7q6unD06FH80R/9kc+J1iHBu1FuT1KAWGXq8i3Dho0Z2V90+/Zt/Nf/+l/xr//1v8bg4KAXmiUg+NYgZenwfa6L28LGo94TzTjmOmXcKyoqkM/nPWOUFbAYQp2dnUilUjh27Bhu3bqFhYUF3/5C7UxY/WE8Po7BostlfIgz8fbbb+PBgwc4efIkGhsbUVVV5VsB4YkHAL6T7HnrgzzXIe/MR9a1WUL3jPtEIoHW1lb84i/+Ir7yla9gfHw88HoKjTsLF+XgUcY9n89jcXERX/ziF9HR0YGWlhZfdARgr25JnYI7LR+0M6kPbJPQq8rKSrzwwgsAgImJiZJTX6P2Kygd90VCJDOZDGZmZtDV1YXa2lqfImX5qJ3nYvHRyqXIYF6dkDbINYIyS753714sLCxgZWXF2V6XseIyJvlb2pPP5zE3N4fBwUEvzJwnfXU7pX8SIaANNsnDTmk8HkcymfTODrDaFNQ3PSb8TOtBDsssFAqoqqry+Jf3eNbW1vquBOQyeeWaoyBENoqMzmQy3sqf7keYoxD2TOqvqqpCOp1GXV2dJ091lAC3mx1rnmTb3NxEMpn08urrr6Sv+XweN27c8B1YyDLLBdo+COs7f1dW7lw5c+7cOdTU1JhRHsDOLQ+VlZXY2Ngoud1AG8g6JN+SL1J2Pp/HD37wA4yOjpYcdhkWucd9EYjiqGg8iExIJpM4evQonnrqKVRXV/vCqV0TApubm945A3LNlSWDdaQa0yr/5ugfwc/29s6p/Xfu3MHly5c9G4zD47nv5ThtluyyHFcLbxbfCD5l28jhw4dx8OBBtLe3++hKH6DLdivLFV61BB4tKIg84HGRb9niovW/2NaMd71dQGiBF5jYjl9cXMR3vvMdPHz40HfyeRTH3PqtxyAon/U/aj5dD4+hFfXA6ZkHUqkUmpub8dxzz6G6utp3u4OWA7y1QU/A8TiLnpbfOvqXPzLu2nYtBz7UDvSTAJfD5kqrD9NZXV3FtWvXMDMzg9u3b+Ps2bPo7u72HTJmGSdhgsOql1e0+DenYwEhxCX1aQLnQ2YAd8iURfzSJj3LzApLDjcRI2xrawupVAo1NTX4hV/4BVy9ehXvv/8+VldXS+q3ypQ2uBR6OWMZBmEOi6VYWDiygAd29kX/9V//NU6cOIHnn38e6XTaly/IcWFDhGeKOVSex4lX1uLxODY2NnzpdNs5nzbgeMJGDu/4zGc+g69//eu4fv06pqamShzzcnEb5gTptGHppM0y0fWnf/qn+Pmf/3ns27fPo18diiX4lBUdPRPMYyKGCTtd7Kgx32sDt1gsemcDXLhwAevr65ifny+hI6vvYTjgPC45wg6i3Czw4MEDtLS0YGBgwPce8Bu11iQd4076L/Vr44knWorFIvr7+71DlTY2Nkr6XQ5dBOFG+lMoFJDL5XDx4kUkk0nPgbZwpE905Xbrdkl6eSZKPp1OY+/evbh58yampqbM/YXlKmwLhM7kCjctT/g/t53HT+fRuGD+ELkufdcTqlH6pI1AXTcbPhymzZED29vbvntBrbZze5ifBWcbGxtm+KpLxoeB7of0RbYyySSAnpx2OZvaVhCjnWWu1umy3ezixYuYn58vKzTdkh+WU6XbJfq+paUFZ8+e9cJr2TER/Er/4/G4D/d6tY/H2ZrE5/GSFdzr169jfn7e2zLhostydJCFI+0QAY8cJjl1e2BgAP39/b7xZrzyJFZVVZXnaAu98Pk62gYTvtX2nbUgI7bX6uoqpqenMTU1hffee887NIz5V4//4+rloDLkHesHXaY4WkNDQzh9+jS6u7tLaM86XNfiHz3Rq88fEGA9JWPEfKrHg/9zPa5nhUIBo6OjePjwIcbGxjznWdO5yw5w8aOGKDS9W5vZKjtIJ+sJkc7OTrS1tWFgYMCbVLTaYI2Znri2fCheABLesyICdaSGa9HABT8RDnQUItAGjyuNNphcwAOxsLCATCaD9fV11NbWIpvNoqurCw0NDSWnLvJsFNcZ1m6ekeWZdUvxSLv07Au3w1KCkk63yTIYuU2cT0AUCbeTQ/8OHjyIWCyGbDaLmzdv+g5OsPrP7bCU+48LynXu9DPpTz6fx+3btxGPx9HR0YH9+/d7V1wxTfB3mOJhB04bh1KGGJ06n6uv1keMZzFY9+3bhyNHjninna6vr5uHaZSrlKNAmIMoIIIxm83i8uXLOHz4MOrq6tDV1RVoWFtlcf8FNO1rcNVRLBa903iHh4extraG5eVl5wqALi8MF5bhwP/ZMJB9dyMjI2hubvaMPX3ACc/4Sn28ssHlyztrlYW/Kyp29kE3NzejtbXVhwNJFyYbowL3JZ/P4+7duzh8+HCJjNRyRRu8UelYykwkEujs7PTCN8vtSxgNME3JiobrRgaXscVhv5pGXM6gPuXXam9Uw8x6L3JNcCZRMbICbkW8WDysjV3Bk4A4mvpmgTC5G9YvS0fJoXJBzpRe4bJ4S7eP+8QT2xsbGxgfH8fa2pop26IY1lHpVcaruroajY2N6Ojo8EUpcH0SmSG6Se+zl/JY98gzTiP9FpmRz+extraGhYUFZLNZ0ykM6tPj6CRus0wkDA4O+qJcOJ0eP8FFdXW1ZzPJKr0eK6Z1ea4nbV36bHNzE9PT0941huVc78XlcF+s51HzucaDcZlOp9Hc3Izh4WF0d3ejsbHRl0Z+W7LH9VvrIgtcjrFla+t6XP+LxR3neXZ2Fg8fPsSDBw+QyWQ8+eOSuVyGSwZEaZPVP1eeIL3HZYQB47qiYmcbS1NTE7q6utDZ2Yn29vbITquUIRAms6OMlbbtgg7Rs+AnwoEOgyBnxDICLCdaE5QehM3NTYyNjWFubg7t7e14/vnncfr0ae8ScAFtWEp9YjCwQQT4w0zYmZG8bNhKO5loOZRXjHer7+zoMiPLczaY+bk2ynVfpM88Sy6zik1NTTh06BD+8A//EGNjY54BqJVAkAJyjWW5xqpVrkvQhhlP8q2NgMXFRVy8eBFjY2P4l//yX3p757lexqmMhRhXHBKkFZI2xpiu0um05zBJOBILYq6D2yz59Tgmk0n89E//NHp6ejA2Nobx8XHfTLZlvGicRIWwiQQXSH/z+Tympqa8e6x/5Vd+xfde+iU8xGFUQbP5EuLtWomWPMwfzAfpdBqf+MQnUFdXh1u3bnmGpJ5xFbxpCOKBMAeAZ19zuRzefPNNbGxs4LnnnvNdO8MGGk8E6lUzbjOvxOrQNY0XcTCPHj2Khw8fOukmCuh6LBqT/l6+fBnPPvusb1w4lE+ecwikVsYsoy0nU8rt7+/3Dg906ZVyjFfL+JRoAgnHlHHhiRCOnNKz9y6cc4QR5+XtDbsFyxhlx0nokPWV3Pks+fljlclt1iuWALzwbesaoTAIojPdp8rKSjQ3N2NwcNBXh9CIjI/rIFJtKHJ+iS6StOI8r6+vY2pqynMmJe/jjJmlX6UtlZWV6Ojo8A53knfxeLzkwEkZJ12G1nNsCzDdW1E93F+W4buVk+XYjALiPNfU1OBjH/sYmpqaTLuOx0FoIB6Po7a21tPPvBUQeHSgn/C1bou18MDjLjiemJjA7du3vb3xlhMS5lw9LmhdoH+zs9Xe3o6hoSG8+OKLpp3L8pR1LOsgS3ZrPtJyhHHAMkHGgSeVLbxYZ1HIhPVbb72F0dFRz961aCIK7soBrR9dYxClnqiyj8sXfV9fX4/Tp0+jo6PDt4AkwFsVeUxkXEVGsm7TvpnII5fPxlsTeTJYnpdz1tRPlAOtkcnPw/KFpbeeCaPxHiUJC/vqV7+K1157DYcPH8Zzzz3nu9KBGV6YnpmUw3P0nk0WjNwOfTcnCxgO3eUVJe5XsVj0nRTLTrIVAsZGJhOyCJRYLGbulWNFIkbr7/7u73onAn/pS1/yrUZb4TAuKJexo5an++CqK4huxJkTA+e//Jf/guPHj+PYsWM4e/ZsiTMi+344FE1ohw1+FvQypiw8+FoQycs0JQYW0wkrF/nombl0Oo2DBw/i3/ybf4O/+Iu/wO3bt739vC6cPAnedD236pQ2i9M0PT2N+fl5fOYzn0FraytSqZRnRDDe2aCTskUhSoi3KNKqqirkcrmSvb5Sv87HPNnT04Nz585ha2sLn//857G6uhpZkT6ukcOTLIuLi7h58ya+/OUv45VXXkFtbW2J8tcr5NI3kQHCz0JLTDeSn+WfTOwcPHgQtbW1eP31173TkHm/6m4NYI0PltVLS0uYmJjA1NQUent7vXTSRskjzhs7mnp8tPyWVTUpq7m5GY2NjaiurkY2m3VOKJTjROt8Qo+Tk5O+K7MkjYDIHznIUKfRst6KXJG9yGEr6lEcFOu3/K+qqkIikSi541nLl3g87kXAyKFL4pDyePFBY/JZXV3FxMSE8wTi3ThR/J4Nx87OThw5csQXlcXX5FlboSznQPOlnHTN7ZyYmMCVK1c8uQSEH3i0G5B+xONxpNNpPP/88zh58mSJ8con6sqkI9sslqNhOcnawRHI5/O4du0avvWtb/kcaKu9AmGORJRx5zEWHOzfvx8f//jH0dTUZF73xvJR1yUOONfDk+ZcL0fr8Xt21pmGstks/uzP/gwzMzNYXV0tOTSM2/i4MpfBNcmo65L3slUjlUrhmWeewcGDB9Hd3e2LSBF6EVpimS184rKtuT7uv7aHJQ3XZQFvT+R87JxLpN61a9dw5coVLC4uIpfLmYtFQXqBbftyx0H7Rq4yovCALpPLtiY54vE42tvbsW/fPnR3d3sh22KHyoSsjAdvLeVx03wgefQd4HrhSffDugmA6ypHVv5EONC7ISiBxyFEnZcHTu7lTCQSqKqqQiaTQWdnJxobG30Mz0pS9ymMmIVYtbPDbWQBphWRTstp2JFwtUHjgR067h+3i+sXQm5ubvYOWXn++edx5coVzM3NYW1tzVd+FMNmt6AVSJCBFKVuxi0b8cDOIXSTk5OoqqpCoVBAU1MTenp6vDtcrTospubx1+2zZqT5nXyL0yaOtWtfkC4rFtsJM+vo6MDZs2cRj8e9EDpLCTypSY2wNll429rawtraGmZnZ3H16lU89dRTiMViaG1tLVGoevVCnCKODOCIDD2xYLXD1fdEIoHm5mYcOXIEHR0d2NrauV4qyJjhssNwqvFujamsXi4tLeHixYt49tlnzWv52LnUPO5aAeRn7Fxz29PpNFpbW7Fnzx7vEB1XfzVYdB+EFxnXfD6P6elpTExMoK+vz8SPbicbOtpAtXAsxpfsta6pqcHi4mKJ7I3ST6u/Vt/ZeXAZS7w6rvvMY7q1teW7p5cnPuQU6TCwjFZLFljP+IA67ZDpdms9qOmS3wnvFos7q7cyJuXI9Kj9lm9xrurr63162RqjML1j2R78bGtrC/Pz87h7927gdThajlhpXDJM2xvxeBzNzc1oa2sz7RuLbrXNodvA/CX0pyfoJP3o6CjGx8exsLBQMgni6k9Q/1xgpZH2VVZWoqurC729veju7vbtzXfZFkLfGk/aRgviF8YRt5F5dmVlBdPT05idnfVdk7QbKJfvLX1lySfGY0NDAzo6OjA8PIzOzk7U1dX56I3zaeeZ69F2p0vWcXn6ueZLjmaRuvWKNbdBolyuXr2KkZERzM3NRQ6dL2eMotgELjp02fWussLkoOSrrKxETU0NGhoaMDAwgI6ODtTX1/sOgtTgslt5IU3wzZMjQbLUxbe6/N3YqD8RDvRuYbeOkC6DGU8z7YMHDzA7O4uFhQU89dRTGB4e9p3+qtshRgobo67B1YqM2yPAzC3EpxWRAAsHcRykDCY0Jlx+px1oPh1Rh9awcVEsFtHQ0IDq6mr83M/9nBeGKPt0rOtUXGP1pCCqUWEpM06n6UNwkMvlcP/+fSwtLaGhocG7jkVCFIHS0D0dFlQoFDznjttlGY5SRrFY9C6jl1UYmcVLp9PeuGtDhZU6G7WJRAJPP/00KisrMT09jUwmU3J1imVIuyDI+A8Dy2GUZ4VCAaurq7hz5w6uX7/uhcxJmKjQJx/mwTwQj8e9PonRWCgUShwW7URqh5IhFouhrq4Ow8PDGBgY8K4xsQx6C2dhBncYrqS9MpHywQcfYH5+HvX19aitrfXaH4vFSsL9eIJBGxhchzXJw7+F7vbu3YulpSWsrKyY9BLFubBAyzih/7GxMdy/fx8f/ehHfcrZZVjo8lkmc5/Z8JXVufr6ejQ2NmJiYsJpULraHpX2t7e3vRVHLXvkt96+o+U3f29v75xkX19f73uWSCQiO9BBEJQ/Fot5ByhpfcPt5H7psZN3LkOqWNyZcGCni/FiQTkGLevlZDKJ6upq3721kkaPEdsQOp2A1gs8GbK1tYXZ2VmMjIx4siyojVxnVHtIOzyJRAK9vb1obGz0Dsd04Z1tD8uh1WMEPLIrODLl/yPvv4MjS447cfwDoA264Rre+8FgMN7s7M7urJl1XO6SXJKSSIkUJVHi3ekkhS4Yko46xcVF8CJ0+obMHU/SGV2cGKJISqTcUfTruN7M7qwZB8wAMwAG3gMN241uNPr3ByJr8mVnvX6NGepu9csIBLpf1yuTlZX5yaqsKs6Lq1evmpO3ubPkVUZ3I8uSDz6fDx0dHeZQJL4Kytuj6RhNZvmKsq18viLHZYY/T6VSWFxcxLVr18w905rzlouu0erCSbbJtlVDa08gEEBNTQ3279+Pzs5Ox15wyTPKV+6jl9hW6wdb/Unn8Hpym0/EV0ttfKAzWGZnZ/HOO+9gZWXFYCNeLzf8qFE251Vr32771q0cN7tMUQSVlZVobW3Fnj17HJNKWn5E3O/htplwXCqVchxkyUnDmJqsUd15P8rD6LzQ/9860BqTbCCV/nODw9PbGE5gZmtrC2+//TauXLmC2tpafPKTn0R9fT1CoZAjdHd7exuBQADpdNqhNLTBT7/zeH7NEHPgT3Um5cNn4/l+P543peWKXe7H5gpNhsTSdwpnApwH0QAwV4jk5+ejrKwMn/rUpzAyMoKXXnoJb775pllZkbzWFPftIK8GVQJP+myrl/y/ubmJ+fl5PPXUU5idncXBgwfx8MMPZ+wL4Tzle5h5WDDJjSab3NhzI769vY3y8nKjROQECG+XPKmQlBeFhJ44cQItLS34z//5P2N6ehqrq6uO8CovgEYD/tQWr+BOygflQ3K+vr6Ov//7v8f8/Lw5CZKHWtPsKOcHAHN3cF5eHtbX1zMml7hMc+dSC2misUXvhMNh/NzP/Ry++93v4vvf/77DwNoAsBenK5uTQkRja319Hc888wxOnTqF06dPm3RytVICWC4rm5ubZtWS6w7OY+lAFxcX49FHH8Xc3BympqZuaYVEkhybNIauXbuGwsJC/ORP/qS6dUFOSslQMO4ccMNLZfBJmNbWVkxPT6O/vz/jkC+vQMnNqaMoC7mvkb/D9S93uvjEJp9c9fl85sAeahcB3GAwqNZHc35s4EUjrqeKiopQWFiYEQbLw5jJbvI+o/6QEz8cLAE7+mBlZcXcF2yjXMEnbwPVqaamxqy8cCeHbK7NWbKFj8pJKvpLpVJYXl5GNBpFNBrNCGOX5OZUyDbJdMRfusf1iSeeQHV1tXFieR9pIbX0m5y84m3VTuHmzuHW1hbW1tZw/vx5TExMOMKa3eTTi350I9nHdDXhnXfeiebmZqP/qCwuo7IOPLyd8uZ6ivggz2fg+pXzU9Ls7CwuXbqEV155BfF43DXaYjeOlhsGy6Yj6Du1w+/349ixY+jp6cGBAweMnqH2atE7NN45byTekfLLZZLbaiI5IaotNkm7SOn454mJCQwNDeGNN95ALBZzTMDbxp4XnGTrJzcb4da3ux0H/F3ejz6fD+FwGHfffTcqKyvNVYOUhi+s8Xrx/c38Oy9na2vLXOVna6tsp5vu0/BpLvz4Z+lAZ1OQXpSEmyNEpA0smYYMJK0OpFIpPPXUU+js7ERjYyP27dvnEK6trS2H4ZSfSWFwQ+wW9sBnZSXYkzPZsh0EVnibbOHn3Gjy9ylPaQR5PflAoitLmpqazHVP/f39GBoaylgFk7QbAyAHEpGbIfYqX/J3Li+8HWtraxgYGEA8HkdBQQHuueceM5PPwbimsDlQlJEBVAfOFy4L5IBrAI4beg4wSUFKAxQMBlFZWYknn3wSr7zyCvr6+swBPZIvtu+awdPSaZTNwSCeUDj3lStX8J3vfAc/8zM/Yw6zkAaSOzvyvlI5KcWdYlsEAK8nHzfpdBoVFRXo6OjAwYMH8fbbb6tjjL/vRdZtRlYabOJRMpnElStX0NjYaGRLAxmkR7ghpHy0cFvimVYfkuOqqipUVVUhEokgHo9ntDuXNmZLu729cxfq6uoqNjY2zCnZXFZke0mfcV2nyS//T7/X1taiqakpAzR4rbtXHSQBNhHXC5wHpAMoP15/rld4e+jKnWz1sn2XddfkOi/v5inEWjkcEHK9JiN0eN5cj1L76V5wmU+uNsSN8vPz0dzcjMrKygy54npYtifbQTZcd/DJ1dHRUXONE0+zW7I5PNS2wsJClJaWoqqqysgF1wtUV/6uTb/L8SEnELitSqVSWFpawttvv41oNIpkMumYMJD5yrJulQ/0jEKOH3jgAVRWVhosx3WFrf2a7HOS0SzcztDY4BNKxBeSBTog8vr1647r7XjZtvFpq6MN27iNezeHhNpWVFSE5uZmHDlyBHV1dY5zNfgiDa+fLIPkg0/e8PFBz9wcWFv7ZVq3PovH4xgbG0NfXx+mpqaM86yt/Gt12K1dz/UdNxyr4TBbecTTgoIClJSUoLy8HHv27EF1dTUKCwszDiaV/aj5Hfwzx1OBQCDjyqtses6tLdoESi70vnagtYGk/Z5rfrm+rwECWT+u2C5cuIDV1VWsrq6ipKQE1dXV5tAUPjA5mOPOEv3Oy7bVSTquEsBTXjblzck20HhZtvQyTI4rcAme0um0CQejA0Wi0SgWFxczysnVILopDS95uv2Wi1PD09GezM3NTfh8Puzbt88AEu7AcEDhptg10MOVDKWlVRAtzNaNSE75ilV+/s6hUCdOnMDc3JwJlybZ98IbrQ7ZDJiWzs3QEnCemJhAKpXCE088YQ4qkrPc3Enms8cS7HKFL8eVjaQhCYVCaG5uxoEDB3D58mVH1IX2XrZxn42kE5JO3zyIam5uDvF43JzeTiTPRdBCCOUqGueZNtFH9aVrfqqrqzEzM2Py3E07NT1ORHkmEglsbGxgcXHRHIzF08q+lc60VjdpxOlzeXk5Kisr1XMlbO2ROpI/t73DdYWN6H2yLXJrjSyD9zHpIHngVTZbZCNb+ry8PMcqnnxHOqJEctJT9gXnD+kBOnQtW5143XKhvLw81NfXIxKJOOotVyW10GZt1VVrD/8bGxvDwsJChjNps7mS3H6Tdjo/P9/gl6KiIseErCxXAm7eBv6cjw9bP5OuWl5expUrV1wPDqP0t0Ja3ekzRdAcOHDAbAny4jByPtkca34DAH+P58V1LtfjsVgMMzMzuHr1Kubm5hz8yeZs8P/yuS39bojq7/P5UFJSgj179phbC7Q6cnulYRzJP7f2an1kww1uY0VSLBZDNBrF8PAwBgcHsby87NhKodmI3Tpvsi5eMVauedqIj9OCggIUFxejuroadXV1aG9vd9zgIPnppselz8P1H0VjaDqR6qxNonptC3/HC72vHWgbuTloktyMeDYwnM0I0fu0YkWGc3t7GwMDA7hx4wbOnj2LT3ziE2aTPeCccZUz0VzZUp58Uz5XMKScEokE0um0ETxy5kn5SuBrc7iAmzOe3IAT8Rk2zoPtbedp4rwM6dxTuwCgsLAQhw4dQjgcRmVlJb797W+blXwJ+rwIvZYml37N9pvXdFw2qf3xeBzz8/M4d+4curu70dPTg46ODtNfqVTKhK1IIAPAGlnAVxLJuLrVVToO1I/8Gg1+ejWdFE7pSkpK8Oijj6Krqwtf+tKXEI1GrcD2dit8TjaFSTxYW1vDzMwMxsbGEAqFUFxcjMLCQgOoeSh3Or1z4BCFz/N7TGVIstwT5aY/+NgKBALYu3cvSkpK8MILL2B2dhbr6+uukRDZSPLXlgeNpYKCAsRiMSwtLWFychJ79uzJqCefcKHPFDXDDaUEfJQ//c73M9I+ygMHDiCZTKK3t9fUjcvurRCXB5rIjEajeO+99/DQQw+Z/ama/qJ6yMgCGXLGxx4/nZUOUpEz57xuXp7Z2kXl8q0edLKpBIX0mU+CUX+kUinHJC6/lYHS+Xy+jO0ivB7EG5uutT2X9pZWLug3PvZ4u7jt0rYq8TKonnR2AU2i2FZ7JY6wpXFrV0FBATo7O1FbW5sRLkgribwt0q6RvaX+5HqYl0/pLl26hPHxcfUMCt4ON/ni+MHW3ry8nUmOjo4O3HPPPY6TdGXbuB6VfzK6iYicca2u29s7ZzbMzs6iv7/f9CHXlfLdW3FSpC0hftP2m0gkgpqaGnWPp5wE4vLCbTOvN/GF60vexxT9o+Ezku+JiQl897vfNZOh8sRn2cfZ7JRG8l3tN94ujQ8+n8+sPn/wgx90yArxT3PAeB6c1xxr0zt89V7WQz7j9p36iL+r5UOft7e3MTw8jIGBAVy6dMlc7cnTaDrTTYfkQhrmyYZBNHLLQ0tH55gcOHAAHR0d5twM4Kb8c4wgbZHNvsvtOlz3uUX5uUWpUplcj90K2U+4eZ+QlwGh/W7rNNtvboBBq4vmWJKBSaVu3tW4tLSE733ve3j22Wdx4cKFjEFnqw8pXw7iNWHgZfPrIfg7EjjKcGHiIwegclWU0lCdaJM/fdcAD9WDr8zQO/Tn9/vR0tKCe++9F7/4i7+IAwcOoKSkRHVeciHJ11wBazbQawMMMj31C516G4vF8NRTT+GZZ57BO++8YxxnuqKFeMT3mWp7gDgPObCgQ7MorEZbgSYjzPuTEwc9fGaQwu9LS0vR3t6Oz372s2hsbMy4S/Z2kK0PZBoZ/kfvbW1tYX19HV//+tfx7rvvmnBz4kUymcTm5iYSiQSSyaThg+Qf5U084LLOx5OUDTlLSoCpsrISP/MzP4P29nZHH8t2Ae4TXZrRs33n/xOJBAYGBvCd73zHcaAZtYOcD14neY2EdJJ5ncgZCAaDGSctNzc3Y+/evYa32grkrRDvCzpU7ty5c9jY2ACQuYWBy71mdKVM8Tz4+36/H+Fw2OyDpd9zrbtN3nn/bG5umgktzkdyarSDpaht0tHhMs51jVxJ9yJn2fSg5C+XDw64uPMsJw1knTTQzid9EomEmVzWMAOvr62/bH3C9UVxcbGZ/OTjmZ81srW1hcHBQczPz6sn+/M+ojryOtGk4NLSEjY2NrJOMLvJH3ceJG/4hHsoFEJjYyP27t0Lv99vbhyhfb3S1gNO7MCf8cMY5TjjGIba8t577+HNN980h4xKUM7bslu7wzELf8YxzsmTJ/HQQw9lRGVo70uspfFG9rVtcYTLF+dhKpVCX18fzp8/j6mpKQd/3MalRm5Y2mbXKF022SO8UFhYiPvvvx9nzpwxUWD0J+0btds2zjk+8uqQkj2XkRy20F6eJ+E22pc7NDSEq1ev4vr1647zKKQTLXnlRhKj5tpnXn/T0mlpObbMy9uZRGtvb8epU6ewd+9ecwWm3H5Bn2Xkjewn/lzqCo6tpG0meeT2Qea3G15ko3+WK9BEbsIv03llpqaENCFwe58rn+3tbUxNTRmwQPt/y8rKMhwXWQep0KQy0VaX6Tc5i2NrnyyHAxpuBKSy0d6RdZX15HXjdS8qKoLf70d3dzeWl5fNvmjtPsNc+lLW85+apNEnQDgzM4NgMIhAIICqqirU1NSgpKTE8S4Pneb5EXF+agAIcCo3ApaUVs7m83L4KhvVW056FBcXo6enB01NTeZ6K20/9G76K5vxkWNSlkX1TyaTGBkZQW9vL8rLy3HnnXea9FympNHWnAf6ziM0bKT1WV7ezbtE9+3bh3fffRczMzOYnZ21Oiq3k7heikajJvwsEolk3OeuhQlr/JZkM2z0R05mMBh0RMl4bbfXsUxtpevkaKJA9oscN/w3t/I5MOATBpFIBAsLC+aqrlxln5ettTWdThswx8czd0z4+NYmSeXqLrWBRywR0L1dJNtCDjR3HLw4sLJOmgNAfzQxxnWgV/m12XrZ/2TP+ZkRNieAJu9s9tRWHn1PJBKYn5/HxsaGGs4s6yzlSH53k01qV01NjTkkSMoXtdnm6MjvfFJGOk7SCYnFYpiYmLjtBw7a2ir/k/NaVVWF5uZmNDY2qm2VNoPIht94mTJ6R5Nj/tv29s3rCEdGRjAyMmJW5qUTdjv4kWs+vK3EP7o3u6OjA7W1tRm8kjy07aOV5Ui951YnTTfKfG26FtjBQPF4HMvLy7h+/bo5QFVGY2arw4+TbkcZGj6n++0bGxtRV1dn9ACRFtWqkexnTmSntN/ILtl8Ftn/2XRitnMnNHrfO9A2p20372fLw6uTzNNrgiFnyzc3NzEyMoLp6WncuHEDjz76KPbt22dWWjWFKVcN+YDlzgwpHRIovlrE60fgicrgAEsDBrx9PB3ly09g5m3m+XNeUn3lCjlvT01NDR5++GHs3bsXsVgMw8PDBjBw3rgp12yUTdncDhmTxMujVaSRkRHMz88jHA7j5MmT6OjoMDP7coY2lUqZWVSep+xnABmz2cRfcuDoN8qLz8RyebUZB77qVl9fj3379pnDevgVDlrbbTzbTT9qxpOPA2rf2toa3nrrLaysrKCnpweFhYUOeeYTOVp+3MmjVWTqC/57NiDFV/hoJXZxcRHz8/MZhl0DwDJPm1GR32V+FB45MTGByclJs6rExzmlk2AXcF4pQqGGbuCShySSo1lWVmYicbSwTK0tXonXN5FIYHZ2Fmtra9jc3DSRHFobZSSHjbjDybfYFBYWor6+HqOjo6oO5e/b6p3tGV2bEo/H4ff7HTLIHRq+csvBJnDzajwJKrkd4bJg65NsTib/LmUL2LkfnEeucFvD7ZRtLBAg0oB0Xl4e4vF41vtYbf2s2XRtjBPI5JEWXJ9w/m9vb6Ouri6jrZw/Wj2prPX1dQwNDWWcxE584uS1rbZ+o3bt3bsXNTU1GViCJlnoPW4rSLZ4ODqfOOByJ1cEqU/ptH6+t9eLs6KRTX/a2k3tCwaD2LdvH5qamlBeXu6QYTmhz/+k/tOcY+Cm7pRt43LBnTiKahwdHcXAwABGRkaMDs3W3zbMY8NR2vsar+S4pDbT6n15eTkef/xxVFVVobCwMCN/jk14nhI7EsnyvNgLXg69Q3JG5Ujbz1dGk8kk5ufnMTg4iLffflvdj8/rZbPbNnLTnbZ0nNycU+19rc/oPx/fFFV17NgxVFRUoKioKAMfaBO0lB+3pRSBJnWFJDedprXHTa6pj3kbeZi5V3rfO9C3StkAjKZobMZGGnRZDs9POpZ0Dcn169cxMzNjDtX56Ec/ioaGBpSWljrAqQyj5ERgRwINvnJAxow+E6gikk4aN2pckWnAlsriAJSHGUvlxHnBZ5Wk8aFV2aKiInz+85/H2NgYLl68iB/96EdYXl5Ww8NyNahewAa10wvZ5IHnz3nMeZRIJPC9730Pb775Jtrb2/Gv/tW/MidGy+iBra0thwPM//OZWy4T9EcKn66NIFkgeaB8OfCm7/Q7rXjx1a/t7W088cQTOHToEM6ePYunn35ajRrQ+JSroXHjrXzG/ycSCUxOTmJ1dRX/6T/9J3z2s59FW1ubdfWE2s2NBSlebeWZf6fr2jjY4uCYPodCITzxxBNoampCX1+fY5+mV5CojUuNP5xPBNgSiQSi0Sj++I//GD/3cz+HBx54wHENEjc+nCeAc9aZRyhIXnAdkk7fPH2/rq4OP/3TP42/+7u/w+TkpBolI/Pi7csGVshYE4Df2NjA+fPnkZeXh0OHDjlAG3dgpDMvbQZPS/wsKCgwsl5eXo57770XV65cwfr6+q5mu2084GN7bm4Oc3NzaGhocIAfCca5buchjHx/M9fLRLQHmvNBG7c2e2eTQy7/fr8fkUgEfr9fveaJt4vrEW6biL/c+eJ1GB0ddYRLZ9PRsu629FRHmjSpqqpy6GWph3n9aQ8tt60AHIBcRvFsb988FPGZZ57BysqKw6n0Sm52TnOeS0pKcObMGVRXV5s68rS8P6XDSM/lqjPZDGnHfT6f2TqysLCAL3/5y5ienjYTIF5tvmaLvfKI45rKykq0tLTgySefRFFRUUakIF8I4DaIyznPl+cv28HtFI1ZqTtSqRTGx8cxNDSEH/zgB1hdXc2YgORtzQWfaml4OrfnkifU55FIBPfccw/uuOMOVFVVOfbK87bJe5f5mQx8soJseDKZRG1trbmnnjvH2uSGre/54W18vJJeof/xeBzf/va3MTs7i9XVVXNmCe83qaPd+OuVvPBbps+WTqsPH888uvDgwYOoq6tDXV2d4TXlQXzm9kXKNLepxGuON4m4PuC4gk+i0nfJW+oHPja5vdD6hRaobJhDo/e9A20TylyAN3dispEGzGzgQKuXzWngA3tlZcWsJLzyyitobm5Ge3s79uzZo+6hsw0QPuClkSKSYRb0nzvaMqxP4wn/zA0lH4Qaf3hZGq/kLDytppSVlTmE//XXX0c0GnUosWyAx0ufa2lyla1c0nAABcBcs7K9vY2nnnoKd999tzm13VZf3gckA/RdXvUC6KdIS6eDT4RwMMHfkyta+fn5KC4uRkNDA44dO4YbN25gdHQUMzMzrnzhPL8VQ0Pva3LA+ZxMJrG+vo4bN26YA6w6OjrU8cD5Rb9Jxa3JvLwOiL9PefJ+Ky4uRm1tLXp6eozTpa2AeuFTNnmVv6fTaQNWR0ZGcOPGDXR1dVnHi9QvUq9R++TKAaXhjlFRURH27duHsrIys8JkG4OaYZZ80YjLOe09ra6uxoEDBxz508STxicu51LXcSeB/tN+0WAwqE5M2sjL77xN6+vrWFlZUW0Cr6Nmu7Q+4rJPMswnl/h/r7rOzZbQcwrh5v1gs3GcbOCH2zAAWFxcxNrammteuyXiW2FhIRoaGhwnirvZbdk/9JuUQ3qX/jY2NrCysuK4+9lrm3J1IPkZF6WlpY4rOOX4kPXk40Nrr1Ymr+fCwgKGh4exsLDgiB6gtNnGU674TradVp6bmppw7Ngxs7VMq79cgdVwI9VJsws8naZfuLOxsrKC4eFhXL58Gaurq9atCTbKFRt5wT/8Xe58hUIh3HXXXejq6kJ5ebkV+2mTBRouoefhcFjFNpyHWtQMt0FyLGr1AnYi8BYXF3HlyhVMTU05Jiy4vP84SNMDudp3L8TlLT8/3yxcdXR0oLm5GZFIxBy8aXvXTZ61emm+iFwMBLLfEKTpBEnauNsNn973DrSNNOPEf/tx0q04WAToaS/bm2++idHRUayurqKiosLsEZR5aCCY/6b9LlfZpMOgze5KBWVruzSO2cAC1UFzCHh9KK/8/HyUlpZiz549qKmpwezsrAlhoz2G3KDaBosX4LebgaVRNmUn206rZOvr69ja2sLTTz+N2tpa+P1+VFVVZfQFB+70XTpdPGxFGg+5UsidBKlQuexwgy1n/Px+P8rKyrB3714cOnQI29vbWFlZcTiE2XhjU3A250Z739bPJFO0h/Dy5cvm4DobOOS8knySROW61YH3GVFBwc79okePHsX4+Lg5HEobK7Y250I8Xxr3sVgMIyMjGBgYwJ49e6xjmcajjFrRwAk901ZgyXFqaWkx19jFYjGr7pb8tPFW4w13oG/cuIHW1lbHTDc5CzIqh/elLEMDyvROIBBATU2NOVzRJq/Z9JGbo7G9vW2uR6R22vQx55c2vuR7wE0HWk7iyjbbnHc3kv3K7/vk+WuyZ8uH159PbKXTaTPZ6mUM2cCZVg7/HA6H0dTU5NAjXD9SNIQkTY5sEQvpdBqrq6tYXl42e/lt7ZBl7EZH0Ari3r17M8LsJZagsSIn4LlekFEdst1E29vbmJmZMXcaux2Mdauk9S3ptuLiYjQ3N+PgwYMZh59q9oh0o9T/XkE9pZU2iEcwzMzMYHBwENeuXcu4Mkm2Q5afTddkm5SQ7dWek9yEQiFUVVXh5MmTKC8vRyAQUB0jvmIsJ/VkWiqjpKQkw0m2YUv5nb/H66y1PZVKIRqNYnx8HOfOncPq6mrGHc82DGvDK15lNlddpX13Iw2f84iTmpoax3VtMq1mB3i+trpxTOq1vja5kHlr9oL+tIjBXOl970DnIiDZ3vdqVHYrpDYFysuUDg+tjE1NTeGdd97BBz7wAdx3330m3MDNKcjL21kllE4TGTVZrlQ2PATIJoj89Ey6esIG0Hh53PDy1TkZYsNDw7ihoj2LoVAIhYWF+Nf/+l/jqaeewosvvmju+NVCu3bT39nIzShqabPJj1zFTCaT5rTHL3/5yzh69Cg+9alPoaqqyqxu0AmcErBIRcPDomToC+9rHpacl5fn2DLA+4s/58qJ+orqUlhYiCeeeMKsnr/11lvG8SaAmwvQcwMHXvlO6ansWCyG1157DcvLy2hpaUF3d7cJXdbeJx7KMng9pHPN/0s+8bbQIT0/8RM/gd7eXiQSCSwuLlrb6VX2tPSyfel02uype/fdd7GysoIHHngAoVAoo728PVxfcCdRto1Im10GgHA4jP3795vDWWwr1zw/DXBmG9tU/+npaczPzwO4GUYLOPdzyzAykls5OSBXAOk3n8+HSCSCkpISBINBxONxFXC4gS63NhDRvnl5tZgNSMqyOe/4hCU/ld9WD/4/lzbwtJRHcXGxmWzQnCRuDzh4lfUj20fjmPTo3NycWbHdDdkcEPpO/X348GGzNYbqw68zs13jxHW6JAno+/v7cf36dXP6Ou9jm87T7LnWPml7A4EAmpqa8MgjjyAcDhs54f1A9oK/z3+TB1ZSv5C8cr1AaWKxGK5evYrXX3/dcbI0r7+UX41ylUceehwIBPDggw+iq6sLhYWFDh7zsSL1P48ClCvTHN/IKAmOA2QEA03uJZNJ/N3f/R3m5uYc13nZdL3Wxmxks31aHvJzfn6+uaqqp6fH7Hnmh+ZyvEnbayi8l0fxEFFIP/9OfJU85PyXEwsSZ0nHimMo4vX09DSee+45jI6OIhaLmTHH37fx8HaRxu9c8tfGvXReied+vx9tbW04cOAAGhoaHCdhA1APP+S80+wJL5vzmD/j2FdLL/uS52PzOzjWlNEK/OyPXOh970BnG9zZ0mkOn5e8spGtrGx5yE7nwjc/P49XXnkF4+PjuP/++1FfX+8wzrJ8ck55PtLQcIUs6ycBIn9HDjheBk/rBvZ5GttAlgaf/tPBRvR7MBjEyZMnUVVVhWeffdas2nODohm4/xdIAzty0AM7ymRlZQW9vb34+te/jl/6pV8y98sSSWeEKzfOP/rO/+gQLHqHGx0uH7yPpLGhtBw0cRBy4MABFBUVYWFhwew9zgZiNTmSz7z0qZsOAG6eqDk8PIy//du/xa/8yq+gsrLShMtLYCTfl8+k4ydnWt2AB+VXXFyMhx56CEVFRXj55ZdN6CLngcaHXEGTlD0CMfF4HEtLSzh//jwOHjyIsrIyh/zQTDStfMiZaf7di7NCOufIkSOIxWK4fPmyuu+ek9b3bs8433jEz9bWFoLBoENHSl2pgVkO9rmukeOkoKDARBHRSa1ugD5bGzSi1Uh+Fyq9p4FzeRUbjzrif3wyzA1o7GZcyvfz8m5eY8WfaU4f11WyTtKG8T5fX1/H5uamp/pIZ0SzIZqM0B5ore6cj+RA8r6SzjPvJ963+fn5GB0dxdjYmOcDGql8r895u6qrq1FdXW0ODaI+kE4O55NsF28Ttyucr1z2UqkULl68iPHxccTj8Yx9jJJkubJtbmNOazv1ZXV1Nbq6uszeTxvoB5wAX5tk5Tzgcsnz4bIrbcn29jaWl5cxNjaG5eVlsyovFyAkX2z80tqdK0n5Jp0XDAZx//33o7OzE5WVlea8CwAZsuyGxWUINvGMDk3kkTGcp7KtUofKsjRHb3l5GTMzM3jllVcwOTmpHham0Y8ba2r2IBf5lsT9gerqatTX12Pv3r0oLy93nNFAad3GmIbtOVF/cvxqGx+yTzhpjjWVJzEbpZU4JVtkrY3e9w60JLeBn4sC0fL6cQ4GLW+a2aUZtI2NDYyMjGBlZQW1tbVIJpOoqqpCJBJxADXZBi7MvCxp2OVz+T7Pk//mBbRLsgE7L3yhAcBBbn5+Purr61FUVISJiQkAwPT0NBYWFjwDbLe6epWRbPlopAFDDYhub++c0D0/P4/z589jcHAQbW1tqKyszOgHDbC5tcutbtwxIl7bQDKXFe7o0Ux0dXU1gsEgDh48aLYpxGKxjPw0xayB2Vslnh+FzC8tLaG3txfXr18HANTV1WW8YzMcWv7ab5ozp+Xp8/nQ3d2N+fl5XLx4EXNzc7tyUGz9zAGe5ihsbW2ZSZu2tjaUlpY6dE22PtjN2M7Ly0NDQwPq6+sRDocdp75nIzmOeFukniPZpomT1dVVx74unk7qPF4G/5Pt4zJbUFCA8vLyjGt/bgXwyHI2NjYyxhPngeSN5Jl8R0ZEESjWwJPWZhtJ3ST/AoFAxp3qWhvkZIatbfQuTRDQNVbZnIdsv9v0Kp0oX1RUZE3D/3Mn31auVubW1hYWFxcRjUY9OZb8fU1GbEQTFQ0NDaitrc2491jqLxl5Y5MX+k0DydyBHhwcxNzcXMYqe672wGubuSz6fD6UlJSgo6MDVVVV5uAw6SDYHFabXshWRxv+TKd3IvAWFhZw/fp1xGIx1+uq3NrsVVY0yvZbfv7NPeN79+5FY2MjQqGQQxZ4OVJmsoXp8rpqOJV+4zyxjQ/5G09D27uGh4dx48YNbG5uOpznXPClVxt2q76G1HvZ0tFn+istLUV1dTVaW1tRW1vr0MVe9F82+ea4Xa4a89+94As3He1Ff3spx0a37zLH/wuUraO85uElX00J2QbtbknrbB7OsrW1hVgshtnZWfzDP/wD/v7v/x4vvPCCCXOg1UNeH9pLxlcUeaglz5uHRZFQydAMyQNtj7QGdCQQonz5wTTaPkoeEkplUnr+mcLLKioq8LGPfQwf/vCHcerUKRQWFjqucNH6zK0vNaUh6Xb1PyfJa95P8Xgc0WgUX/va13D27FnE4/GMd3m9ZR9qBiWdTjtAgRb+Tg4mAdBEImGcYL5STSeI04ncdJULsCOPlZWV+Nmf/VkcO3YM1dXVDrl1+/txEecB1X1lZQV/+7d/i3PnzmVsI5Dv2Opmm+XkfOTjW66yUr4tLS3o6ekx4aDafi3b92ztpvI0mSBeLC0t4bnnnjMn31I6qieFQ/E9w3Kcuuk2SdyA80OY3Maol3ZLPURlb21tYXl5GTdu3DBGna9maH3O+06Gc3NgLevU3Nxsrv6R/eCFJDCQ/RaLxbC2tpbBD2oPry8HD5RW24fIia5p0/r0VkCfdL4KCwsz+p33Ge8H6aTxuvFnNM5o0s7mQO+m7ry/CwoKUFRU5AhDpzrzFX4NiPL6cv7TKbW8/TQ2l5eXzX7ubE50LiTtsc/nw4kTJ7B///4MXCJ1FgCj+2mlmcsOtUHqG2mjqIzz589jamrKYB23Ntp0gVfnhf/RCmpDQwMee+wxR8QX120UxSKvELO1kyJepAMp6yp1Dj+NvL+/Hy+//LJjT3iulM3W2nSqlFf+nPQnTZg/+eSTaGlpQXFxcca7dE0ijXXqb42P0l5Q/4TDYfO+bduKDPmVbZd6hNKmUikzgfzKK68gHo/n5DzfLuxyKzhI2mLtdx5FEgwG0dPTg/3796Otrc0xZjlJGc1GclxTX/M6apMc1M9A5v542Sbtu7TTNoyfS1uI3tcr0FLgbc9sxAdyLrNI9JvtPf57rsTrL4WIBjQN9sHBQUxPT6Ovrw8f/OAH0dzcnDE7TAdqEdGqtrZngYMUCf41h4H+c6UllZ4ENZRGM7jyPXlnJC8HyLzTmPIMhUI4ePAgGhsb0d3djb/5m7/B/Py8MTSS19n62Y28Kg4bSUCsvavJ9NbWFiYnJ/H0009jYGAAv/RLv4Ti4uKMPc68T7QyOD8TiYRjbxK9w/ubnCTbjGQikTB15tcCpNM7ByltbW2Zcj7wgQ+gra0NX/va1zA/P2/e3S3lMvZ5ev6deJVMJjEyMoK33noLPp8PH/7whx2njmtKlyYhiPiKCr3DZ9n5uOBgjKchvu3btw/FxcXo6+vD4uJihizn0kbiER+TRBLc0thbXV3Fe++9h7y8PJw4ccLIgnQOuJ4iflCZcu8arxOdn8AnYhobG/HYY49hfHzcAdLd2ujm2GntTafTZiy9+uqrOHbsmNkewsfN9va2qSPtlyK55ne2Ut25Q8qBcWtrK27cuGF4IR2+bJQtXSwWM4dJcVDOv/NwYfrNjX/UBrqujk9I8veofm7858/cdB8/udptgoI7oxws8fd4m7a3t034pTZhZdO3NtLAcn5+PhobG9U9g8T/VCrlCDuVeXC+85W4vLw8M2G5vr6O9957z4TsZ+vHbHKmjSPuSPr9ftTW1qKystLUSV5FxYmPH64vuN3gdZb2nG5HmJ2dNRMetkk3WzuykRtOI5k/evQo9u3bh9LSUlN/twMGATiuhuO8oLREcp+vhkm4XqUJ9KeffhrDw8PWg+N2wwcgU+Y1PGcrg8u/z+dDW1sbOjo60NTUZA6+5e3Ny8vL+C6J6wDtN45BqT4cY3IdyO2M5LN07tLpNOLxOBYWFvC9730Ps7OzGRMVuTpbXilXX8RrXjbbT3wMh8Oorq7GkSNHUFtbaybruf6RYfbSRkq7sL29bRZSpB7kfOR6htdX6nkqT15xyNPJiV/tNg2y39yX2E1/vq9XoHMlzeAD3maRtM9u+dvy5b95+Z0LGZ9JodXopaUljIyM4Pz583jvvffQ29vrCOnh79qAv9YGNwWTrb5c0N2ID17A2wnfEkhpvxcUFKC4uNjsWbr77rvR09ODSCSSsdrJ2/zjIrf8c5EBekYyEI/HMTs7i2vXruHs2bOYmpoyEyZSkXHlqfGAZIPnT+9oSpHqJVcNZB/xMjmgoD02e/bswenTp1FaWrqrQxxyJY2n2m+pVAobGxsYHx/HpUuXkEgk1ANaspVhWyGzAQYbhUIh1NXVoaenBxUVFa6r0LweGsk+l89lOyji4Nq1axgeHs4Ketx0gDbGJbAnp7S0tBSdnZ3mtN9s/NqN7FBd19bWMDo66riOhNpHYf3SWOei3ymvyspKlJWVWWU9F7nQHFW+ukX52Vbv5fhPp9MZ45aHbHOe2NppI692k/Lnq9wSeMm0mvOu6UzKj+yjFnmxW+J1yc/PN3uFJe/5ygudrM+BHOUlV9O0yKx4PI6hoSH1/lmNsukDrS3ceaYD8PjedLlK7Sa/Ml85PuRkXCqVwsLCAnp7e9WDwyitrQ9vxZaQ3BcXF6OtrQ3Nzc2OqyOlTtf4oa34aWNQawd/xv9isRj6+vowMTHhuLbMJvs/DnKTF3Keq6qq0NHRga6uroxzeuSKoMS2Wj9ynnqtC+8XWUebreP2YHJyEpcuXcL09DTW1tYcdXOTOy3ffyqS48qNiJ90LWxbWxs6OztRU1ODoqKijMUYbdFNkiaHtj6z6QquHziOkPra9p4bZcNfueKy9/UKNKAPIEmasnMjW+fIz27K+nY7ArJO/EL3ra0tvPHGG6ioqEBzczMqKytRXl6OcDjsWCkBnLO8/L/WPj6DJwEJ/SdQQO/x32yKShocQD+UiepAv0ulyMuVqxS0UlJYWIiPfOQjePvtt5FMJhGPxx17KjWQ5oX/2m8aMJA8vVWivGkSZX19HYlEAt/61rdQUFBgDjvhvJf9L4EYB8/cgaS0cr855cn/E8kr1oCbM/l0AAzVg+7G/fjHP47e3l5zsM/tMDqaXHt9h2QpkUhgYmICm5ubWF5eRiQSQSAQyKgb54uMcCC+8rTyHZmGpyO+00mmp0+fxsbGBubn5zMOyONtsNXPjR9ybBIvgJ3IgitXrqCsrAyxWCzjED8uB3I8SXnKz8/PWImW75MD3dbWhkgkgrW1NSQSCXV8eXXObPUDYCZLNjY2EA6HTfuAnWiEmZkZlJWVmagKfoqn5D93tHkaAKisrEQkEvE0IaC1RY5DSWQPaCKNg0YOaKRTR7LKQ71l/WXIczY956YXs/UZrRSR3PDfbPyV/cpBGLdVa2tr1muQtLq4pZHlke2hPfxyXPMTgTc3NxEIBBAIBFBYWOjIQ+YtVzhTqRRisRgGBgawvr6uRlbx77JfNLyijStqT2FhIerq6sxp5m6rz9I2a8T7hXQCt0fkQM/OzuKNN94wK62aA6O11Uv7ZP2kk0Ur7nT3rTY2ZF/xCSfqex7xIfW/jEiSfOPtpIm81157LeMubInndms/tTFkI81BpZD39vZ2HD58GG1tbRl5kKwSLtCwhJuO13SMLfKR40epiyU+4thndnYW/f39eP31143saRNu2caVjW+8Dv9UDrasG/Gf7qs/fPhwxiFvGskTrDU7Iu2NTMtJYhgNV2h6nMYYH198tZxI6yteDuc/jV+v9L53oL3SrTgwGvO9goHbQTaATIKTTu8cHpNIJLCwsIDh4WE88cQTOHnyJKqrq1UjB8CxSiGdYumw8hBLOWNOJMvgA0eG09kUH7VLA3tS0XDjw8E55Uv1LS4uxqlTp9DT04Pvfe975kRPar9mgHIlNwfmdpCUgXQ67dhHOz09jb/6q7/CuXPn8LnPfQ6VlZVmtYBfNcD7T/YhDwum2XYegsOVC70fDAatewmp71KpFNbX180Jx3w12u/3o7KyEg888ADKysrw7rvvZoCk3Rqc3YxLKZd0WMuf/dmf4cknn8SBAwcyDtDRjDcZYg4MuSzzEEBtVZYbe+q7YDCI06dPY2ZmBjMzMxgZGTEysBu5c3Mu+RintmxsbGB0dBTPP/88HnvsMcdkCYFG7hin02nj9AIwYaskNwSS+TkIxBsKkw6FQjh+/DgAoL+/32EwbW3mjqYXosmojY0N3LhxA36/H9XV1Yb3RUVF5koz6gvusPByeAhZOr0TBkgrngQui4uLUVJSYvYqeyFNR8vvRMlkEsvLyyZSgeu3vLw8MwlA9eVEvKUxyveoScdbmyAlkvaRj2UbGKY8+YSdBnw13kg+yFBf0n3xeNyxl5bXRwJrtzJ5OskTn8+Huro6VFVVZUxK5OXlGZmYnZ1FWVkZioqKkEqlUFpamqE3uD4iPsZiMWxsbCAajTocKckLW/21dtraQ3/FxcU4c+aMieKiMH4OmjVnQqsPB8xypZa3e2xsDDdu3MDc3FxGRB3VUwJvt35ye87rSvJfXl6OT33qU6ivr89YfZY6HYBjQkES/00uCnDnjL/L27y1tYXLly/j6tWruHHjhrmyyoZdJG9uNy6RPKdxW11djZaWFnz84x83K88aP/ikiTb+SMa4DiJ++/1+x/WSXPZtNo0mfCgd2XB59sj6+jquX7+Ol19+GfPz8+rEjczbpovlb/ydbLz10l+a3uPPJW4iIh3l8/nQ3t6O1tZWdHV1OSZ15eQwt+GSZBkar6S94L9L/W5zePnZAzxf3k5tlVqWS3XhOpWX6yV61tTJc8r3AXlVoLtxft0E2maQbM/dyrUBP7fySQmQstne3sabb76JiYkJVFdX4+jRo6iqqjKnv/I6aEpBlitnUOXA5PnIsDNAv7NNzuZyofWyqiafSeXJHet0Oo1gMIhIJIK7774bNTU1GB4exptvvunY1yKdBq+0G0dtN6QpKs7b5eVlDA4O4m//9m9x/PhxtLW1ob29PcOx4fxNJpNmbyP9yfK0fXr0Ox2eQv0uV7EpD5qAATIVIAAcOXIEpaWlqKiowMsvv5wRZqkZC00GtM+5EAfgBG4SiQSuXr2KSCSCaDSKe++916S1gRdqpy30TK4YSdmVgJjAQ1FREY4fP46CggJ84xvfwOrqqgkDlQbbxg83vcTrI3lNK7Gvvvoqjh8/jqqqKjXiwJYfGWjpUJHc8bLoeyAQwN13341oNIqRkRGsr687Zre9OFW2tnJDTyG17777LoqKilBVVeWQZW2Sw41/9H91dRUrKytIpVIoLi5GMBhESUkJWltbjWOQTefY6q7JDLVjbm4OLS0tDl0swbaUM+4QyQlPWQ9yoPg7trpnsy9STvl+NJtTwJ/Lz272eHNzE2NjY45Qfa1O2vuyXfI71b24uBhFRUXmRHc+IUCHmK2vr2N5eRmJRMIcAklXQ7lFfNHnsbEx9PX1mXbw37P1hVZ3LS3VvaSkBLW1teju7nZcX8XT8bI5DqA0hE+4HdLsAHBzn/q5c+cwMDDgGpVkGzsS+Lu1V8ofhSC3tLSgpqYmIwRZ4iabE8UncdycO80uAjcP5IzH47h8+TIuXbqEkZERx8pzNrDP++l2Yxpu8+m2iI6ODnR2dprT5ykfbVVPjjOamOSTKpQ/2UvS1URS9rmjJq8IozJ4mVRGIpFAf38/xsfHMTY2hoWFBceVadkmqbPZAi/vSLuY7X0v9kLKXX7+ztWYFRUV6OjoQHl5OSKRiCrjlJ6Xp01mStni7+Yin1pEl60+fKJaa7OmD3i+blEPuYyT97UDLY277TORVyO/GydqN+m95KO1RTOulI6U9sDAAEZHR1FeXo7CwkK0t7ejvr7ecYWKRtpzOdOqOTOUjn7nBy7xunLDzJUiT6eFf2UDTjaiQZyfv3NK9549exCJRFBdXY2JiQlMTU2ZA0rc+n23MsHfscnlbvOjz/RHe6JffvllADtOGl2bk06nzaFFdIokGY7t7W0Eg0GzOgjcXMHh4d5EnBcEiHhIn3RMyBHiExQS1Le1taGkpAQlJSXo7+/H3Nwc1tbWdqXUKH/bO176gBvera0tTE1N4fz580gmkzh8+LDZs60pe8pbhvLxOw1lWTIPPgY4IPP5fOjs7EQwGMSLL77oOD1fc3rdyKss8r5cXl7GlStXMDExYU5UJ8cgW+gTlyUJHEkvUDu5Q93d3Y2LFy+iqKjIXNGUSzttbeIywidKuru7jexLoKwBeW1s0PN4PG5Wi4LBoHGgm5qacP78+YxDHt0cOsrfVh61Ix6PmxB/nobzV7aF2wSpf+X7wE0HWtZD8semN2wOqJxskn3tRrxtGpFjNj097Zh0kn2s1V2SdNDoM+0npJOBifhqG010kO4lJ5WfLSCBnXTapqamMDg46Ij+sdla2R4J1CV/+ViklVgZkq71C6+HVrZ0oGVoPtUlmUxiYWHBYBi3U4+99JENC2ptphXOmpoatLW1mQkDN2dH6x/53Ua8n6U+y8vbmeBeXV1Fb28vBgcHMT8/7xp1ZBsrGt9sToeb7eS84vwqKSnBvn370NXVhba2Nkd6jX82WZET8TY8ahunpLe588b7STpehGHm5+cxMDCAa9euYWlpyaofNF5otBubdCvv23Sq/E8LSc3Nzejp6TG3BEjbnU6nM+y1zNtNptywhewPIHNig4jj91xWhnkd5TjV6sK/awed2uh97UBzsgEqL8bXq7DaAFs2UJMLyTLc2mIzmCQUdF3HN7/5TdTV1eHYsWN4/PHHEQqFMvYvcaAPIMMZIueHQvtkXeWAoAEI3JxZ5Gn5qrkUcmn4NOGXQIvP9sqTkClMlOpQVVWFiooKtLe34xvf+AauXbuGmZmZjGslbIpDklfD46aEswFnrWxpuPlK+ssvv4zR0VGMj4/jYx/7mJlhpFM8gZ0w7dLSUgewodlk7kzz/qfyJHjmq18kS/x0Yn7isDxQjK6yCAQCKCsrw0c/+lG8+uqruHjxojk8xisvvf7u5T0e4pNIJDA6OopkMokXX3wRZ87shDMCzpNFuaxKo8Sve+J8lcQdnVQqlREyTvsRf+ZnfgZ//dd/jcHBQeuJ3F70kpux45MeJCMbGxt46qmncP/99+Oee+4xbdVAGeAM5edtlhNucrsGjfFwOGwM/uuvv54ReuVGXgw65ZdMJs19s1yOqS+oTBm+zevKww7T6bS50og++/1+VFVV4eDBg3j66ad3ZSvcHAFyoCcnJ7G5uYlwOGzekbpe6lXSkbwf6F2uw3mkitTRNmDrtZ000UnRCqSbZHgslcXryvlO7eKRGdvbO/uOZ2Zm1G0nu9UZXM6DwSA6OztRXFxs9B9F+ZCMFxcXIz8/34D0UCiEYDDo0MEaoCXZo1Pjr1+/7rCjt0I2AF5QUIAjR47grrvucux/lvsg+WSrDOu2OTzUB1Qu2YVoNIpnn33W3MzAT0zXcFG2dmVrI28rTWbccccdOH36tGPCgDuCNPHBdZqsG/13iyjgdpXrSCpjbm4OAwMDePfdd83p8bax5pU3Mp3b2NQmIHi7SJ8dPXoU99xzD4qKigA4MZiMKOH6k4dVywgY+k6T8Lyemr3jekDTPRy3UJr19XUsLi7ir//6r7G8vGzueHY7I0GTqVx0h82PcMvDrR+koyzf43isubkZnZ2d2LdvX8Z5Lvz9RCKhTma6Rc7JtsjVam7vtTFN9eRlclylTcRQGp6/5JHmG/HfiOhK1rW1NbVNGr2vHWjegbaOvF3Os1u+2kBwc7Sy5edG0mni70rwz5XW9PQ03njjDUxPT+PQoUM4ePAgamtrHe9K0MTBLlfyvC4SiPFBQO/LMFwiOdsuBVqWZ9v7YHNCSGmQoZMnVpaXl+OjH/0oBgcH8cYbb6Cvr8+ER3kBJG4KMBcDb0srFTN3ZuTv8rd4PI6xsTHE43F0d3ejvr4epaWlyMvLc8w60nv8vnCpqLhMcGeJyyIPVeZ9TgZSht3KvgV2VrXC4TDuuOMObG9vo7CwEGfPns0AFrsxWtnIZki40d/c3MTs7Cx+8IMfoKmpCZ2dncaJloqZOymUJ4EBYGfSQFtlkt8l+KB8w+EwDh48iO7ubsTjcQwPD6vt0gzJbvlDYy2ZTOLKlStobW3FoUOHUF5ebtUX0vGRJ+lyncHHNAAHv9ra2nD33Xfj7bff9rQywOud7TfOo3g8jsXFRczNzaG1tdWk5SsiHOhpskhyn5+fj/LycnM9m8/nQzAYRHl5OZqbmx33HPO6eKkzrzcR1SmRSGB2dtascHIHJT8/30xm8fc0x0JbYeY6dbey5EZ8Ak9eB0b1ILnS2s4PzaS60vhNp3cm8uhEXUm3olOorFAohJ6eHjNxwXUs6dmCggJzSB1NDgSDQcc5HtK+8/G3uLiIlZUVx/YjGyh0I03HU1uoPcXFxaivr0dDQ4OjLK3/uYxoUTZywpzjAhoHsVgM8/Pz6Ovrw+rqqsNhtJEcx26k2R6OFQoLC/HQQw+hvb3dcX6IJhvUHmnr6Df+Wa6wUZu4reV9yE8gP3v2bMZWM40fmh7S+ELp3JwfLQ/evzQGW1tbsWfPHtxzzz1G5gE4Do3k8kv8JP7wNsk7wvnqpLaazNumYWCb003Pkskk+vr68Oabb2JxcdHoS9tp7xovZZm38tyNdoMtgZv6tKysDN3d3WhpaTGHYXJML7EHnyDlTjPvC24LeR9rzqr0K3je0vEluQFu7nuWY0heR2bD6xyPasR/GxoawsLCAmZnZz3z933tQAO7d5zdKBcBzTZIbgfI8AqqpPKh73RADp1CTZRIJFBdXe1QfLLOWtlcAduMKK8XPZcAmZ5zcOr2jlaeG38kCASc4T8+nw+NjY0oKCjAxsYG4vE4ZmZmsLS0ZNJqbdkN3S6wyQ2f/AzcrDPts9ve3salS5ewubmJpqYmc4cnAQYeXiydHa0c2RaeVoIE6XjLNsj88/LyzIx2V1eXWRFcXFx0XGPC5WE3/eK1LyR/6eTb8fFx9Pb2oqCgAIcPH85YYeDv24CtBjBl3WxtJANSUVGB7u5urK6uYmRkJGNG1639tvrKOtj4sLS0hMnJSYyMjKCiokIFMJSX9hsvK1vod15ennE6w+EwksmkdcVdI+mIaO0jnUkn3U5NTaGlpcW8KyeAOF9s/MzPz0dhYaEx9tRvwWAQpaWljruOZf28yLVMS58TiYTZd00gXdoEWWY2kvIq9eqt6EfNmeH/uaPF+0+2neohwz95Hjx0Wtb9VttAK3J1dXXmbABpg7iTXFpaag7Z005llyCU6jg9Pe3JudwNgOc8o9PEKyoqHBhBRijIvrGNL9mmdDptzs+gfpudncXY2Bii0ah1n7rXfnJzEqVtouiBSCSCPXv2oKKiwky+2Mp2c7Jszqz2ns2Bvn79OoaGhkx0HJ98sPHBpmuzOc1eidrm8/kQiUTMnufq6uqMqBReFykDMjRX0yeaPGl81eTNlp5HP42MjODGjRsYHR11LJx4GVNuvJT9czt8Ea9+Dv9O0TzV1dWoqakxe/r5xC29o2ExyQceUcojTuSEWTZfhWwRkbQtNl/Bxpts5IY/KGIrGo1iamoKi4uLWFxc9JQv8M/Agc6F3JzBXEkOUvnMVr4tj2xpcyWpjGlmLZlM4ty5c7hy5QruuusuPPzww2hvb1edABJiCVa1GXLJRzq5Wc5WZWurtqJt44cb4OfhIxy88hN8t7d3ToFubGxEXV0dIpEI3nrrLZw/fx6xWAyA96sVtHq5pclGu5FLrhS4onrqqacwPz+PY8eOmZNhgZsKVobpcBDK28BBOD3jSjU/P99xD7XmdNBnCYK5DAWDQezbtw/V1dUYHh7G+fPnMTc3l2GIbfySvNvtGKe6UjtoHMTjcXz/+9/HysoKuru7EQqFHDIlV1PlSouUTckTzbgQoOVbIfx+P06fPg2/349XX33VlKXJ7G4dJ8kL6v9EIoGBgQEEAgGcOHHCMROtjfO8vJsH2XF5orBm3i4ink9ZWRnq6+tRWVmJeDzuuKZJvpcr8X5LJpMYHx/H5cuXceLECVMGl2U5BmQ7KU+SHXKmSA74nbo8hHG3dkiOJX5vNdVd2yvP20Z5SZ5QvflKkVzJsbXfRhIQ8890+i5fvZKrgDyk0wawpcNAtiiZTJrQYTegzPNyI84/6uv6+nqEQiGHIy9BIXfaKB8+AcbbxMf11tYW+vr6MDc3Z04St/E3W915OVKOaDX2yJEjDtDNiQNnHs7M7/AGnPZIgnVagadx0Nvbi/fee89xUJass629Wjo3R4c7zwUFBSgrK0N7ezva29sd/cfTa7pV2gfin7Sl0s5puIewWiKRwAsvvIDp6WnHIWraSpoXHZ/NDttIyzMvL89cVXXnnXeisbEx485gnjffPsfT8DNBZFQRX9WXdeARQLKd1Ed89Zq3m3TA5uYmnn32WXMGDq+D5KuNl15J1m+3ecg28d/kZ1p5Li0txdGjR9Hc3IySkpIMTG1rb35+vmN1mOtfwtLcyeY6V/ML3KJEs5Gso5Yfz4f3I/dBZF40zpaWlvDee++Zve+5TM7/s3GgvTgqmtDmIsi2tF4MlZe8czF8Xn+T4RUkfFtbW3j99dcxNTWFvXv34vHHH0dxcbHj8C85MGkQyxloMhj0WTpT9JyIHFlOXFHyk2ll6B6RPL2Wg8XtbeeVBbTXQ4J0ytPn8yEQCODOO+9EW1sb7rrrLnzta18zp6Rmm13L1h9uBt4tjRdyK5uMxfr6Ot555x2MjIwgmUzijjvuQFVVlQnj4QqHg1bOcx4aCThDrySwoHe2trZMGTYgxAE5lyu6SugXfuEXEAqFcPHiRQwPD2essrrlrT3TjJkbT7nMc0C0vLyMd955B6lUCp/73OfMqaM8BJ4bFr4KSPJJSl+2iQM3DgDkafgAzAE/nZ2dGBwcNOHCu9Uhmg6SPKZVvMnJSeMY00SMzJcbWj4BQOOOxuvm5qZxnEifSNkoKSnBww8/jGeeecaAHre2ZOtnSaQX6SqrT33qU46zADjYlifBcr5pE1K8HhSyW1lZieXlZXPi/G5IcyK3trYcK9DcqaE2yO0sXHfyZzxMlYMpnh/VQ8qd5igQT9wct3A47OChDO3k/OR6SoIl2Q8bGxvY2NjIusqkleOlH+iKMjpgkOoggaK20iUdLNsKfzKZxMWLFx1XO2Ub67wf3JwtzkfaTnPvvfeiqqoq40wU2bd8DPAJQ44NuLxRmdTOVCqFlZUVDA8PY2hoyPWUdDeSet7WTv45P39nS0x3dzc+8pGPmEkN0ln0WbM93EHgq3qcx5xfXPfztKR7CNBfv34dCwsLRjfIsOJcMCDnh+SNV/4Sn3w+H0KhEGpra/FTP/VTjnBgPrHI/3w+n1lB5/qfR6xpcsxxhZw8lnrPNkY5fkynd/Y8j4yM4Pnnn8fMzIy6DcKNd25lUd3cnu3GcfZSLuDcelFRUYG6ujqcOnXKcaChzENG+fA0HMfI9PQnQ7DpfakLuLyn02lzngJw0x/g/UrPZX78v3YauyQ5MUJjMJFIYHh4GDdu3MDy8jI2NjZMRI8tL43e1w60xlROUiDcQKF8rr3jpT5ewPw/FWlKkhvu1dVVjI6OIpFIwOfz4cCBA6ipqUF5eblD4KWy5/lzxcMdAgm6+Imk3AjL/GxtcHN2sikobVBI4w7sXCNSW1sLv9+PRx55BGfPnsXk5CQSiUQGwM0FtPxTk6xbKrVzh+/8/Ly5pqejoyPjtExOMspAGiJeDm+nXLm29QdfsZRAg+cViURw7Ngx+Hw+LC8vY2FhwbGHUwLw3TqO2UhzIJeWlnD16lUMDg6iubnZhDJroI3aw8eMNFoaGOVly7wJ4FVVVeH+++/H7OwsotFoVuCZzXnW0mt6JJFIYG1tDePj46irq0NhYWGGzPO28OcaIJeTYFxOaEWsp6cH586dw/j4uPX+8VshcuZXV1exurqK0tJSMwFnswka8NO+834sKChAbW0tZmZm1JAxL7Is03C5osOXiIfa6qHN/tnaxcesDDm2jXmv+o/S0f5gm8zLtnIwp+klXpeNjQ2zrWU340PWldeLnLCysjLHJBpvgxtvbE6BHHO0h5smyry2wauzRHUvKSlBQ0MDSktLHZESXsCl7AdJHBdQW5PJJC5fvozp6WnHNjMvEwQ2cpM97jzTzQbt7e3mPAdbXraxzh1kIHOVUNZHTkTQu3Q/+MWLFw2olw6AV7LhIlteNmeN+EQRa62treju7kYkEjGRCW44jd7n8i3Hh8RoMixYyzMXHqRSKayvr6Ovrw9DQ0OYm5tDPB63HspmK4OPI+7ga2P2nwL7cWyRn7+zhaSlpQV1dXWoq6szk3lSZ7npfi8TLVxmZVqZJ+ctz4uPETf9pPkLHBvwZ7bP9J3OOFlYWMDk5CSWlpYcEQi50vvagQayK8ls72YDEdkGRLZB5+bEu+XlpSy3tNo7UsmRE7C2toaJiQlsbW2hq6vLHB7CZ7Q4uOf58dlm/pz+aIYqEAiY3zVBtQmvBK62yRLZXp5WOr+as5dO76zSlJSUIBQK4fHHH8fi4iJisRgWFxdVJ1yTCy/gUVNU2dpN6TRlor0nHT4AWFtbw4ULF1BcXIytrS3U1taaUDVuDIg3/Dh/fj+jNOi8T6TzI4GuBozl7CRP5/P5cPToUYTDYVy/ft2srHEwn40HGk9sCp+TLQ1thVhZWcHW1hYuXLgAv9+PsrKyjBOzefmcT3wmXnOM6Te3Z9RfVVVVePDBB/H888+bFQsvwNOLTpLl03vp9E74ZSwWw7Vr1xAOh1FYWJgxKUJbOXiYqyxbjlVtvBN46+zsRGVlJQoLC802C7f25erMpdM7e4g3NjawuLiIUChkdaC5TnQrS+NzQUEBmpqaMDw8rDpXWv291N3mQGvAxgYQNdAjx7i2ZzdX0upEIFD7XZJsG68zt02U19raGlZXVzNOkuX/3eqXrS0lJSWoqKjIiNDi3zXAKceAJi/UHrpFQe5/ztWZtrWB+iASiaC9vR3hcNgxfoGbDrDWf4B+QjInbh/oO93BPj8/7wix19qh6fZsbdN+y8vLM9EgBw4cQEdHB4LBoMlTC5WV+o33a7aJGds4p77d3t45gZy2kPDVUd7+HwdJHsrvPCS4p6cHR48eNVFH2TAy4Azr5n/8GYXzUz42+2zDRbzu9J34mkgkMDc3hwsXLmB0dNSx4qg50NoY9KqPc9Hbuep4WT/gpvMcCARQXFyMnp4e1NfXWyf0iWxjx+Y0y3clJs7W9/Se9pvNf+A2lp9JQBEfWhSftAc0LukazpGREYyOjmJ9fV1dQc+F/lk40F6BkUyXbdDzNLdSPwlGvJZ9O+phUwBc4GhF7Qc/+AEikQgaGhrwcz/3cygvL0coFDLCSwaHSNs7x8ulQW0jaYzoPT5o6BkNGPrOB69mGAmIS/DI9yZRGzhfqM4VFRX4+Z//eVy/fh1f//rXMT4+7jjIyo3HGk92qyhvhXhfUz+n02m8+uqrGBwcxNTUFD7+8Y+bvTGURtaVK1TblVIccEiwLUEiV2qasuRALj8/H6FQCPv378cXvvAF/Lt/9+9MVAC1zdZ2m1PjtS+k0udGncLj19bW8H/+z/9BMplESUkJWltbM64i4RMPPG96LoGavAKEO5WcyPjQtVYPPvgg3n77bVy4cCEj7Fy2wytpOpPLwcrKCr7+9a+juLjYcZiYfEebfEqnd5xwCgHnxA0bHcIFAOFwGF1dXVhcXMRbb72VMaGTrf424u2iyZF33nkHZWVliEQijlB0GaqoAUPqVy0sjED74cOHcfXqVfT392eEgdvI5rRwIsBIe8ULCwszDmqj67b4vnSuN0nXE0/kFWR8T6zmdGv8daszEYFAHjpL443GDOe3toohQ6TpvdnZWUxPT6vh017q5va7z+dDc3Mz9u/frx7GyHUO/U71JP7y6/24raNn8XgcCwsLGXZI47mbHbJ9Jn76/X7s3bsXH/jABxx7x/kYlVsZZHulvHAnjOuPdHonrHZmZgbXr183J6RrTo0kW/t5PeTv/DfaLtDa2oojR46YW0m0Qw25zSLiJwHzlVjCS/xdzTnh7aQV0h/84Ae4du2auTveCx9sOjcX0pwYrgf8fj+Ki4vxqU99Cg0NDYhEIhk4ijtKHLtJLKFtS8rLy3Ns95ITNNoiiMSJMn+68o1WG7/zne9gfX3d7HN1463XZzZ9oGEMG+7IxTGX/2lcBQIBtLe344EHHkBZWZk6aQ1k8krqQdl/GlHfSD3GSS5wyDHAHV/bZInWP9o4tKWlfEkGhoaGcOPGDXNVGZUv889l7LyvHWg6iIUOBtGudCDyIqQawMzF8dHezwWo87I0R/tWwQlPL4UmL29nhj6ZTGJjYwPf+MY3UF5ejtraWpw5cwbFxcVmZUACRukIcdBCpIVySueZ9ubxOkrnggaqZuQ0cJBO37zahPOKg1yeL3+/uLgYbW1t+OQnP4mRkRFcu3YNly5dMiEfmmPA35c81j67Ua5G0PYuB/x0IvvU1BTeeOMNrKys4MiRIzh+/Li5w9EmHxwAyrZrYJaDPLcxIfcuSqeEFHUkEsFP//RP49y5c3jrrbfMfX2a0ss2XriO8DpmiGSfr62t4ezZs1hbW8Ov/MqvZISn8TrxNktgLeth2zoh65Sfv3MY0enTp5FOp7G0tIQbN26oK225khtfyQFbXFzEhQsXEAgEcPz4cfMeBzgyrJXyon3Q/KRqbX84USAQwLFjx5BOp/Huu+86DhPbTRs140lbHt58800cOnQItbW1GQCRv2PTc1LnyDKbmpoQiUTUcE8v9SWSY4v6hfZ2lZaWZrzDHTUOgGTUCP2ng96ofL76lAu5pSd5CIVCpi3SMZerylq7uBzx7/Pz85ibm8u6UkhlyzrLsUo6jw7BopNu+e/aZ9kOjSjKhpc7NTWFc+fOZZzLcSuyz9tBbWlvb0dzczPKy8sdssAPLeO2mrcLuOlYavJPtoOAN7Bzfcybb75pnBsNkGv2U7MpbnaG9wNFmzU3N+Pxxx9HJBJxbCvh/USfNb3OdTjnpeSx7Ts5eYuLi3j66acxODhoIps0B4fKzNbf2fggn2u2h/6KioqwZ88e3HHHHWhpaUE4HDYTijIChP7zusqINf4nf+MRXPKsCa9Ek1Kbm5t46623MDk5idnZWYNvNafpdpGbbtLKyaVsKXu0ram1tRWtra2orq5GSUlJRnSQFhqv9b3mL9nGGJ/o0KJQZb35eKfJcZIfLQyb7DBfuJP6V3uPP08mk5iZmTGn+pM9lDLI89CwpBu9rx3oYDCIkpISbG/v7B1JJBLW0xuJvDibNmGwKaJs6dx+u90DOVv7ZBncuUomkyZE7N1330VpaSnq6urQ2NiI9vZ2x35ADTzJsrUZSc2xADJDO+kzH9yy7jz/bJMWfKBKp53qJ9PQVQ2HDx9GTU0NioqKsLGxgaGhIWxubiKZTKrGQwNct4N263jz7wSC19bWEI/Hsbq6iu3tbUQiERw4cMAxO5xNeWrAkD5Loy8dDQ10aLzjs6g+nw/Hjx9HIpHA9PQ0rl27ZvaIZQPWt4MkoCdZSSQSGB0dRTKZxNTUlAkx1urBwZjkj+QLkTaDzIEt/bW1tWF2dhYjIyOYnJw0upDXnb9L5UknhdfTxgf6Tysn169fR2lpKY4dO+b6PpcZ+i5PWpVyxVcf8/Pz0dLSgsXFRfj9fnUMynpmaw9PT/26ubmJkZERLC8vY3Nz03GGA18h5P3lRZdzPpeXl6OwsNAR4nur9oC3YXV1FbFYTM2H6zkOhmwyK3UtX4F2q6cmz7y/ZHl0zZctHzf+8N+pvnxVcHV1FSsrKyqAlONQI02eiDcU3lpZWZmRRmsHz487XfSMr8xR/RcXFzEwMJCxL9aNvDpbvB3t7e2oq6tDKBRyvGuLGNPykxNg/BmPLlhfX8fk5CQGBgbMWSNe+oKTG3iXbQRurp7X1NSgvb0d+/btQzAYzDohJNvulkZzdm3jcHFxEWNjYzh//jxWV1cdTt6tOl3Z6mr7Tv3l9/vR1NSE7u5us5WKt9OG0aRO1MYtd1i0BQ7AOVnPZcqNB2ST5ufncfXqVUxNTSEajaqn79+KzXB793aS5DPZzJKSEpSXl6O9vR179uxBUVFRTpOaMl96JvtAfufPuZx6tbHyIFH5O//P68mfuU2u0NYy2po6MjKC9fV1x5ZEW1m50vvegS4tLUVzczOWlpYQjUbNIRRyFpN3so1hcsDn4gDZQFy232xp5ecf1+Dkg4MrsY2NDWxubiIajWJsbAyf+tSnsH//ftTX1ztWf+UMFF9ZIyG3rdLSShNfzeUhq/K07u3tbRPmo4WO8XRUHznD5TbI+eo3KSJa3WttbUVdXR3uuOMOfOlLX8LU1JTZjytX+rw60W7K6naTBEJUz4WFBbz88svo7+/HH/3RHzmuZOLAiu7rlDPOcn8fB7p81U5GIMhTvWXIGxEvMy8vD9XV1Th16hTq6urw+7//+wZwaGPFK++9kE1uyCDE43HMz8/ju9/9Lh5//HG0trYaXvNQJ81ZpHz4Hw/n1M4goPz4bLPf78f+/ftRUlKC9957z9ylmqsucyNpKNPpNDY3N9Hb24t0Oo0nn3wS4XDYyi9Nfui55AHJHpcvWhEpLi5GOBxGIpHwdJhYNgPPf6c+XVtbw/LyMtbW1lBSUmLkmM+ec5nmoE+eKkqrIlw2g8Gg44Amei7bYnvmRgTMV1dXM97ljhCNRfmc+CBXqOl3PqEgySZrtjrzulCoqNzawPUKt9FyBUsrizvQy8vLKljfjS7g+jEcDqOoqEgFsZoTKn8jHcuJr9gkEgkThiidq2y2Q+oYCYTpMx3gdurUKbS1tWWMSe7EaKfmUhnUDq7/eR78e29vL27cuJGxH5HjESmTGnFdItNJ55ls+t13340jR444Tv/n20VILmyRVJLHkg+ULznEWp23trbw7rvv4p133nE4z1pbveoGrW6yXK3O9Ix45Pf7UVpaio985CNobm42t7RoK8paFI2Gg7Sxysc61/s8HT/JG7BP5hBPh4aG8MILL5itd7SiT6RFHN6KfczF8fZCNj+AeBUKhXD48GHs2bMHtbW1GVsruU7l44pHGlE6js+y6RVtTGpk4y/XD/SMML3Uq/yP50NOt7YdJJ3eWRzq7e3FxMQENjY2MsaftCO30l/vaweaFCGFMbS1tSGZTJorAKLRqHoBPZDdQdaMjNsA+3E4PrKTcy1DpncTGM2RJtCXSqXw3e9+F2+//TZ6enpw5swZlJSUOECUTUkDmeCYjDV31MhIcWdUXjvFBxoHqZxkOEk24CxBC28LKRgasH6/H6FQCL/6q7+Kc+fO4eLFi7h8+bKjXM2I83buxgDayIsC0NJIR2V9fR3T09P43//7f+Ohhx5CV1dXxp5U7sRRKJ80xCQ79JkrZs3AUn7y4CiuYOWedZ/Ph4qKCvj9fnzmM5/BCy+8gP7+fkdYo1eHMRfFKQ2kdPJo1vuNN95AfX09UqkUOjo6MlZi6ARxzg9uyOiPX99k23fOV3KIQqEQampq8NBDD+HcuXPm6rJcHDBpOG36gvqWVmxnZ2fx1FNP4ZFHHkEkEnGk54Zbji/ZBs1RIl5TmRQZcu7cOQeY53lwGcilr8lhTCaT6OvrQ3FxMaqrq82EH9Wbj3ku5zz8Vrab+EbP/X4/gsFg1gPRshFvP+U/NzeH5eVlhzyRTg8EAhnAjK4W0YCubCOFcXqpl/zs5oQEAgEzASP7lOsVzSGjNPSc0/b2tpkU1uqVq9PP65Ofn4/GxkaUlpZaw/w1PnBdyScxJNjNy8vDzMwMFhYWzOKALW9Zhs0OSrBaUFCAUCiE+vp61NTUZNwZy+vL85cOlOSXdoYDnxx88803MTo66rjrWNaRl2cjKS/8u3SeQ6EQ7rrrLrS1tZkbRygtd/4Jl0he836ncvjNENwWyj6Rfff666/jypUrmJmZcY0ssLVfs0vZyE3WaXU+FAqhqakJH/nIR9Da2mom1mVb+OQwkRbJYtumIutiw93kBJJellv4qD7JZBLnzp1Df3+/icLStjJJZ5H/Jsv3Qrwd2TBnrvlyeQuHw4hEIrjvvvtQXl7uOC+CiNscfmWatJM0ISbrrtWfeC/7keNwKe9yUsRNl9N3blM0Hc0/88W7RCKB+fl5TExMYHx8HGtra6bvuU9gm8jaLb2vHWg+axgOhxEIBIxyrqiowNLSEmZmZrC+vm69H9U2gDXSftMAoMyXC4its9wcUGkUbjdJpULPOL/4nXlFRUVoaWkx11xky5e3Acjc28mdBupTOehlvrIvOcDT+kkL/3Ez0Dw/+p32ujU2NmJlZQXAjjN548YNc/iJxk8JRt1kziZPknYjB9o729vbJuTlypUrqKysxNbWFg4ePOiIJrDxSvJaOtNSQWqUzdjwsZOXt7NKVVRUhJ6eHkxPT2NzcxODg4Mqf3MBYTyNW520/iU+Li4uore3F36/Hw0NDY79nDIPzSFwq7PNkaX/BGRDoRAOHTqE8fFxzM/PY2VlJUMXafrKrb1uv1PbV1ZWcPHiRdx9993mRHLt+rdsYJDXTzN4dEvA/v37cfnyZXPgjsaTbG3T6sZB8fj4OBoaGjLS2vZu0WcNbMhxToeJhUIhLC8vO2Rcc3i8gD3ON7c9X1JXehkn3BGhEG5p17zw2k2eCLx7IVu5pHs4yKKJA23CVLYvFwBM/djQ0ICSkpKM1R8NBGpjTzprnLa3tzE+Po65uTnX+udKvO8pJJRCQfkdrFR3/t32jJ7TM+3wp3Q6jWQyifX1dSwtLalXi9k+u7VD1knKN7WTrsOrqqoyW9JsjoNX0vAMB+yyPolEAisrKxgYGMDs7Kzj9oRc28/TuWFE3j4p6/zP7/ejra0NXV1daG1tNdtMND2i5U35u+kRKVdSljiWsvULnXtEtz+sr69jfHwc169fN5GoXm+k4HXerQxw8tpnbmOHfie5raysRGVlJerr61FfX2/8HSJbFIBb+zU7RTjCll4ekshlQ5Yr2yr/5G+yHlpe1E+EOzY2NjAzM4O5uTlzLSR36m9lTGWj97UDTY4W7d0JBAJGOdJBMG+99RampqZM6BZXaNrg1BjrBRzYnGsJXLO9ow0gt7p5oVwAJFdg3AjS1RkrKyuYmJjAiRMncM8996C7u9sBGniZWhiHVh8CNjSY6WAhDirkDBjvSxlKKYlfjSBXKXnbKQ1XWnIQkoGh63TKysrwve99D4lEIuNwF7f+cjMwXn6XlKuzQMT5MTExgRdffBFTU1Nob293zF7yOkleceeN+CpX4GTdtHyIpPKWoYAUedLR0YGNjQ2EQiFMTEwYEGJbtd0taXKiOXupVAqxWAxvv/02YrEYjh8/jkAgkBEWSO9rq05a+2UdOHEHnsqgg7auXr2KyclJrK2tZaTx2m639NLZXFlZwYULF7C4uGjAqXbQEHfi+Ay4ZpD5cw72ysrKcOedd+Kpp54ykUacH7mQJpdknEdHR1FXV6f2O68315s2EMbbQ6sDRUVFKCsrw8zMTE51dmsDlbWwsOC49o2IO/9yFZmDEz62qd08vFOzU7cCTPLy8sweaDfbyHlIbSPdznlM7aBVCH7Q6O0gqoPf70dHRwcqKiqMzdDqJGWIp3Mb31tbW+jv78fY2Ji6j9NrXfl/+bygoAAVFRU4efIkwuGwkRd50jZ/TwJtDetI4EvPaMWIDg7T9Kl8P1eSzjPJV1FREY4dO2bayQ9Hk+9y0pw8vvKuORCSZ+R8RKNR3LhxA1euXDH7MzWgL+ti+832ru09mQfHPEVFRTh58qTZDiR1Mcdi3M5LfktcIMsifMfHK+cdj8LiGIDGWCwWQywWQyAQQCKRwOLiIl577TVcv37dwVPZdk0muV6x6W830uy7G9nyl84l9UkwGER7ezs6OjrQ3t6urgRredom3LgN0HQibwfvY77IJfWWjBi1RR/KBTQ34vaY6sXHXywWw8zMDN59992ME9ZlPl4o135/XzvQwM0wBSK/32/uLqysrDSrhRMTE/jhD39oBpY0bDYFTpQrY/l7UkHYyM3ZlvXI1bnKRWCpHGkECIQkk0m89NJLeO+993DixAmcOnUKnZ2d5sor6SSQ4aLBnEqlHPsXKB0pSb6vmA8cW4gId7S19moDW5JNGfCyCFRvb2+bq67uuOMObG9vo6+vD2+88YYJsdP6J1dg4CaLtryy9bWmKKm+sVjM7O2em5vDv/gX/wKtra0mpJI7ByQbdHcjfSYjJ2c2tZPQ6T8PRZYOCPUtv5aMKBgM4uDBg6itrUUikcCLL76Iubk5E+Ll5jB65S3nqQ0McqJQ7qtXr+JP/uRP8G/+zb9BXV2d2TtG70hgyh0ZMlJan/H3ZH24DBcWFuKRRx5BQ0MD/tt/+2+Ix+MZ6d1k0Kt+4QaO7k9+9tlnsbq6igceeCCDN1RHPtlC7eJ6hofu87qQXPn9fjQ2NqK+vt7IKze0Xuqv9Sf/jVZx5+bmsLi4iPLycvj9fkdYKv/MJwBsIJvzLC8vD3V1dejq6sL169cd+0vdgLEme1JPb29vY2lpyUyeSBDO68snCvk4c9MrtPdetonX0auO45/pGittYoV0kNQBfPKV9z8PIbSFGdp461ZX/p9kcc+ePSgvLzdptTMj+Luyfvw7t2ekV69fv46pqamMNnjBFG5YgupXVFSE2tpaHDp0yHEivuYUcTnnddCc9HQ6bfQxl7PJyUl8+9vfdpw4rbXHTY74b9kcEuonumqMIhZJ9/LJb9sNH4RNePSGdhYLySK1lbd7a2sL6+vrePvtt/HDH/7Q3Evu1fH1Oq688ErqLIpC+PSnP42WlhZzVRV/lyas+OSvxm/pEEv+SN1jaxN3nHlU4Pb2NkKhEAoLC43tv3LlCsbGxhzXvLnZeDcsLfWOF4fYLY2G2eR44f1Dfz6fD7W1tTh9+jQaGxuNzMrQbK1/+QITEWEiLsfyN8kfytPn88Hv96vh3HzRQquLFtFJbeS2X7P5HE9yvfjOO+9gamoKi4uLjsOjbf2eDRvvxsd7XzvQtgbTAKcOp33SjzzyCG7cuIHZ2VlMTU05HGk3w7obxso8/m+TVIQaYOTPZb35bBKFTWxtbaG3t9ecTH38+HHU1NQ49s9SudLoy5kxyluuXPLBzD9LsMTrnm2QUBlyXyKRDM+kMqgcrjgCgYAJewuHw3j99dextraWsRqdC+XiXNvANE9HzzS+cKVGEyTr6+uYmJjAc889h0OHDuHOO+/MCEXWgBXlwflq278rQ0ht/JXt4HJBK9EVFRU4deoUZmdnce3aNUxMTDj2pEmeSB7aynIjjZ/UXhofdLJqT08POjo6ANyc7dVWpXk+mpwDwOXLl1FTU2PuXLaBk/z8fFRUVKC5uRl79uzB0NCQcabcAIvGm2z84P2ZSCTQ39+P2tpa3HXXXY67PflKgnQeeBtkmTaD7Pf70dPTg1gshqWlpYy9ltnIlpbrSgK8o6Oj5twHLoNUFwl+iLSZc/qen5+PyspKNDU1OWQ+m9Ngqz/v13R65yBImjhxA4PyEBY5LuXKLh02xSN7NB5ma4vWNlpt4XlwkrrBFiLLnVHu+LjJfra6Sj5yXkQiESMb3MbwSTytj2Wdt7a2jJNC+nh+ft7YFJuj6aX+PB1vA91h3dLSYq4n48R1kG3M2GSA2wX6vry8jPn5eUxNTXk6GTnbeOCyaWsnray2t7fj6NGjjig3OfkCZE6gc37xtlG9+CSwbAc9Iwf67Nmz6Ovrw+rqasbhVra28N+9OnS8DvKZjHwoKChAJBJBXV0dmpqazGF4vN28bW74A3D2t5xEkrafTzZIPvA2U1oeHUPXDV69ehWzs7MZzrMXPcqf2XjvleduONrtGX2mv/z8m3c7Nzc3o6GhwREZwvtPTkbb6qZtp5AyQZ8llub9w/tLs0eUF2+n1IMc39hIc/Dj8Tg2NjZw48YNjI+PY2VlxbHPndcrF98rF9zA6X3tQGvEO4kugA8GgwiHwygrKzMnZdI9mfIU1x+Xw5tNwL28s9tO3k2ZNkXAFeP29rbZZzk6OoqysjIUFhaa6644cWdXA+Y0mKSilOl4el5nXnftHU1pceWTzdnVHEeqb319PSKRCCoqKjAxMYGJiQlEo1FzYI0Xvt4q2RSGNHJufKMVKACIRqM4e/Ys4vE4Ghsb0dzcrIZtavnx71p/E7/5QXL8T4IR7pBrjlQ4HMb+/fsxODho9iGvra1l8Hi348eLA0np0um0uYMyGo3i/PnzKCwsRFNTkwHYmrxqPCMZ4wBvcnISoVAIFRUVav24US0qKkJNTQ0OHjyI2dnZjOiIbEYmG4iTdSaAOD4+jvHxcSwsLKCurs5RJ274SebcyufGmK/skAPd3d2Nubk59Pb2qqdt2og7L5zfcrxQRMHw8DC6u7sdMknEQZ1tfMlnlK68vBz19fVZw9psY9iNNjc3HU6Xm5PD9Tu/h5u3l6+6y7tGtTxtZUodLYGj7XBKObnKP2t6n/PK7YCmW7GrtKeW9g1zvQbcnDDjOkxGGsjxwNu3ubmJqakpx35OG9mAuUzD5ZT6s7m5Gc3NzVlBrVuZUq9IJ4j4PzMzg8nJSTPp5aYPs5VtSy9lq6CgAFVVVWZvLx9vvM1c12pjWrZZyp/GD2p7MpnE0tIS3nvvPYyPj2ecyyM/83xl3m7PbM8l/uB/hYWFqKmpQWdnJ8rLyzN+z0Yaj2z4Ta5ecj0s36XxJNu0vb2z53l2dhbnzp1DNBrN2PPM9bqXusvxo/WlJFv+Xu2qhlHIbykvL8eePXvQ3NyMSCSSYau4/Mq2uukCWb6GbW315n0nZVVbeNJ4wqPo+Di0jQP6HI/HEY1Gsbi4iCtXrpizTySmku13e67VMRdM/s/SgU4mkxkXvROgPHr0KA4dOoREIoHnn38eg4ODmJycNCuGUvHzfAHnaoOtfCD7KqgGYrM5hfI3/o7XTveiDN2UhQYwNzc3sbGxgS9/+cv44Ac/iAMHDuDQoUPqvgxSjhSyyh0FLwOYSJ4qK9PxVS4AGWEi/D3Ja7eVbQ7m0+m0kbNAIIDS0lL8+q//Ol5//XU8//zzGBsbc1y94HVfrq2/bYpaA6RSCXl1Avlpl3Nzc3jttdfQ39+PL3zhC6irq0NRUZEjT+1aC23VTQISqiM3kIDz/lZtZlVeoUbPfD4fnnjiCbS0tCCRSODdd981M5O2MeJlzHgFdLyPyJGMxWI4e/YsAKCiogJHjhwxzgGFePJ2aLyh/XnEp4ceekgFBxyc5+fv7OsLBAKora3FT//0T2NwcBCxWCzj3uRs+kfywSZTVN/t7Z3TjgcGBvDtb38bv/iLv4jCwkKThjtqMtRZtksD+lzWwuEwjh8/jrm5Obz88svWgyLd+szN0aB+mp2dxcsvv4wHHngAxcXFAJwrAABMv8o93/KKKl7/VCplogSCwaDZv0VpZb9I3ttAO5VBDrTcY8r1A/0m5UiGphI4ovxpBVrqHh4GmA24yWcAzIqufJ+XRXrB7dAtChtOp3eiCOhKN20il/NQAmdZf+mYFRYWorKyEsFg0LENgyJgpDMpQ9M1vtHhe1Tv1157zbFa6RUMyrrz//xzIBDAwYMHceDAgQznmesU7R5VPl6lPuOhnpRuc3MTzz//PPr6+hxhl9Lm5kKanHG5pX31H/3oR9He3m5Om9e2BfEwUdtEgtR7vC81m0Z8mJ6exj/+4z9idHTUuu9Zkz8vDp4bDtT6nLc3EAigs7MTp06dMud2SD5qetpWHqXjn6Vt45NxvC6cJ1QmbWniN7XQBP+bb77puG1Hls3r6NWW83e0/tHSSv3phXhePDKrpKQENTU1eOyxx0zUk9Tfsk/lxBsAs22Cy7GXyArNSeZt0yZGuN0hbC3P16DvpJs1nCv9L8KjiUQCb7zxBubm5rCysuKYGOb1zJX3u9Gljjbt6q3/R0gb1NwBoL2TPNTM7/fD7/ejsLAQ9957L44cOYLV1VVMT0/j0qVLmJ2dtYY6ymdug8WtQ7SOd3uHD1DNCcgV5HshXp4GlrnRIH5vb2/j5ZdfxqVLl/D888/jjjvuQHt7OxoaGoyjZTOUfNBKEOrGFwlM+HOepxampZUFOI/mp+fS6aA/eaBCJBLByZMn0dLSgsHBQbz11lsYGRlBLBZTFYTWvmzKWv6mKTnNuMq0NuJpyND/+Z//Ofbt24fu7m6cOHEio684D2g8Sn5LZ4Lzle+FsoEISkN1lHJYVFSEffv24TOf+Qyi0ag5PJDXMVukgRsvvBCXMwrlvnTpElZXV+H3+83eMrkalkwmM8KbqXxtxYrKonZxBxPINMgf+9jHcPbsWXz/+993vWvUq97i37lDQM7L1NQU3nrrLTz44INobGxEWVmZSUvvcjmVAICXJR1tLjvhcBhtbW24++678dxzzzlsgZQjrW1yLHKiOsXjcYyNjSEajaK0tBSFhYVWvctn17U8JfAJBAIoKSlBaWmpua9Uq6NGbn1F9i+RSCAej5s7XLlsSX3MdYd0/nhYXDqdRmFhoQqCsukazZZwx5hssw1cydUreo/aw3UycPOAysnJSWxsbHiONNL0p+Z8FBcXo6mpCWtra47wc9nP0oYAyFhZk3zZ3NzE4uIiBgYGMk5ppvS7BX6kG/x+PyKRCEpKShAMBjPGDZ1xQRF9HEDzvHi96b/829jYwNmzZ81Y4hMCu22L5J10SgKBAOrq6nDixAl0dHSYW0PkFp+LFy+ipKQEnZ2dGTaLj2c+kUTlyf6VzkheXh7GxsYwMDCAoaEhc9iR1MG7GedUni2NbXKB+r6mpgY9PT248847UVNTY07clmmpHrJtPCpN6j2JAyg/vniiyYs2RgnXLyws4OrVq7h48SJmZ2fNHnptFdJG2u9c37nx0YarciUuMzTJEwqFcPLkSVRUVJhoWaqTjFCSds02McftiZRjfl2orBfly+26hsm0dvH92Vxny33pmk4Ebt7qsbm5if7+fiwvL2N9fR3z8/MZd3pLrCvJ1te3i973DjSf3ZRCpYFsviJdW1uLqqoqJJNJVFRUIJlMoqioCBMTE+b0UlvYF5VxO8hrPjbj6fb+rRgmbcBqoJQ/m5qaMvexBQIBc1Jia2trxmyYRhIAe1FsmuHS0kuArg0kbQberVypCPPz81FXV2dAycbGBnw+H4aGhgwI8grieFm2Osj0sl25KAvZx+QMpVIpXLlyBYlEAltbW+ju7jYAmpchHWRt7Ml6SR7aZFoDSLzvqfyysjLs3bsXhw8fRl5enjnYiq/wcD7dyhiW4E3WnQzBwsICNjc3cfHiRRQWFpq7G7X3b6X/gJsAj4fHBwIBdHV1YXZ2FqFQKOOAPi888Jomnb4Z9jw1NYX+/n6EQiEDXDWHVgIpN8dX8icQCKC6uhr79+/Hyy+/bICplCUvfORlyzFAB5WVl5c79uhKefJaHrWZ76GlMESbXHrpAz4mUqkUkslkxuSdbSzJMrhtlTpL2yvrlpfWFm0sU/iixj/bCpPmJHBHJ5VKYX5+3uwH98pHmU5z1goLCxGJRIye5ICX15vrN8pHTjBK/bG+vo5oNJrhbMr0uRLXx4FAAE1NTeZeb942bdzx1Vke3aOtMnKiyJS+vr6MQ39sJPktP7uBY5KlUCiE2tpa7N+/H6WlpebsCS5/NJGk9Yu0W/KcBR4lZXOgk8kkRkZGMDQ0hOXlZaOjNLxq0yEaLzRy4w/vdzp1nQ5Va2trQzAYzLDRbqHW0q7LaAIbSb0i+8FG6+vrmJmZQX9/v4mo8nK2gY0fXtJ64Xe2sm2OJv3Rtsfa2lp0dHSgrKzMHMhr07Fu+MiL/s3WJhsWk22xtV3TI9LOy5VueraxsWGuuBsbG8PKyoo5c4nbsd2063bT+9qBBvQZQM5kabA48VnY1tZW1NfXY3p6Gq+//jouXLigntgNIKvip3oRee1srYNtQuxlkGhASXtH5uUVbPLP0mhsbW3h1VdfxaVLl9DQ0IBf+qVfMgeMyfw52JdlEBihU7w1sETOiMZzGqR8Bs/tsCEv4IzLkzQoFDZD+8o+9KEP4fDhw/ja176G8fFxxGIxR9vclI9X0mQhm9NtI94WbtxisRgGBgawsLCA48ePo7GxESUlJWbVk8CVDJXn5cqTpeW4pXR8ptLmoKTTaRM2SzJHfVdYWIhPf/rT+N73vmcOmQB0h9Em+7Zxpf3uBnZoFXB1dRXf+ta3EA6HUVVVlbGHma/ucHl26y9pvLlcU9gX6ary8nJUVVWhurraXElnA6i5ggHebvqjw7d++MMfmnvjOa+4oyo/86tN+GFrWl0LCgpQX1+PO++8E1/96lczwvZ5vWw62aZ3qV7Uh9evX0dJSYnZI6htJ5COKtWfT+BIkEm6Ynp6Wr0TNxvvbc/T6bTZN9bY2GjK5CufBIC5HHG5I2eCeEr6lE8i2HSZDTjafiee8pVQXk+5Gij7lD8nG0QrGXQvrGZjNMfAC+Xn5xvwq4U12hwqmY7bKv6d7jUlDJLLKls2In4WFxfj1KlTqKioMPZMrjRL/vBnwM3r+4LBoGOSnL+XSCQQjUbx7rvvYm1tzXrFkFt9vRLZ+4KCAlRXV6O1tRX79u0zofGpVMpMAFG+R44cMfJNK6Ry0pV+5/WRdgDIvHFibm4Ob7/9Nq5everYTsHf0/rVC8bUdJuWjv8R5u3p6cGBAwdw/PjxjFBq24qjprPpHSkjXK/YMLrXe81TqRTGxsbQ39+PixcvmrGcyyQwb4d8R8q21kf8XVs6rRz5nY8Pui2oq6sLJ0+edET28G1evA42nmrjVDtRHsiMZqN6cbtE8u7mL3jpP+l3kY3nE/2UXyqVwuTkJMbHxzE4OGgmm7KF51O+NpnV3skVZ2v0z8aB5iTDanlYpNynw4WVwn0ee+wx3HXXXRgaGkJfX19GR0rAAegDeDeD2su7Xg0PB2xaGTK/XATKDbhQfhsbG0gkElheXsaXvvQlHDlyBPv27cM999zjeMd2OiAHetpR/VJZU524AaNntplNLg8acCDi1zbwmVaqp6aM/H4/SktL0dXVhc9//vP4i7/4CwwNDSEajaor0bsBRdneycVZlECP844Az/z8PMSnjgcAAQAASURBVP7n//yfeOyxx7Bv3z60tLQYsKKF7mghXppSk2GXlI6DFl4n4GbYM+XHx2VpaSkeeughNDc340//9E/Nvhk+CWMbs9mcREm29DJ0aXl5GU899RQmJyfx67/+6w5eS0NHcimv+OIySoCQGxitLrTK2d3djc9+9rP4kz/5EywvL6vjKpuxcdNz0jnc2trCyMgIrl+/jra2NrS1tWVcVyWdjLy8POP8czDPeSrlgsJQu7u7MTAwgJmZmQwgIOtqax9/RrK0vb1t9tVHIhEcOHDAEZ4o92bTc+KBrAdNCJJcFBUV4fDhwxgYGMDS0pKjftlAmiQ+dlOpFDY2NrC4uOjYyiR1AqXn+z+J15TG7/c7rmby+/3qQWJe6qqBPupr7oDJbTnaqh3gPEWcA2qq6/b2zv5Ttz3y/JkGLrW6+/1+FBUVoaKiAn6/P8Nx5J/5JANvF+ksGs/JZNI4zH19fbh48WLGfj83crP1vNy8vJ2Vr/Lychw7dsxEiGj5EX9Jd0rdJEG+PMhpc3MTly5dwoULF7CxsWHd658N88h2SSeO//f5fAiHw/jABz6A7u5uxzWCxAfSz/yKTUl0Irr8rOlbqXNSqRSWlpbwla98BTMzM67XK/G2eMV2XkhiEpo0OXLkCB544AHU1dVlRAbK/fsSS8vyKR3pNK2OvP94P/D/Gkbb3t45LOzSpUt44403MDMz4ziviPLOxSmy1Ys/c8PKbraQ8nL7DYC5MuzQoUM4cOAAIpEIwuGwQz/Y9DWw00ekf3kf8XrasLKt7bYzgUiWbXyh+vL3bbqT8qa+JgyXSqUQj8dx/vx5zMzMYHV1NeNqKs532aZcfCLeZm0c5kLveweaSAqMZqCJbM4UAQU6TZpm2isrKzExMYHFxUUT2i2N9a3MZtyOmRAv5BXceMlDa7NmCGn1YnJyEoFAwFzHceLECXNVAs+LAI/c88F/y1ZvN2Uq6y2VOS9Hvi9n5N3C0cmIk9Gia30ikQh6e3sxOzvrOPjCq/HkYCwbH3h6KkPywkZaWlqJm52dxYULFxCLxeD3+1FdXW1WHzTHhQMWqbg0Z0WOWc24Ef/lOCcqKChAeXk5Ojo6cO+99+Kdd97B9PS0FYR75Ysk2WeyfSTLFMo3OzuLkZERzM/Po6ysLCNsUrZX1ofaT+/xlUH+vtbG4uJitLW1obm5GQCwuLjo0GO7ab9G1Je0MjU8PIzLly+jra3NCh61sa7xQ3tO+8cOHDiApaUlzM/PZ5xhkA1MuLWDeDQzM4NoNJqhQzT7ok2KyDaTg0dhtKFQKKN9t9IX6fTNFWg5vohI/1J6Kb8coHHdzFfwZH94BTKarpJjn9fDtv9U5ivbkUqlzCFckmxAj7dd+z0/f+dQ0kgkgurqaoRCIUfkiFfdyp1ubl/o+iopy16BohtR/cvKytDY2Gj2x2uYSYJq7lgR8UUF+s7lbXNzE5OTkxgeHs4Iw8zmPGfDI1qdKXS7o6MDjY2NqKiocBx2SWVpk1zaFi4tlFZzGiRPJicnce3aNczOzpoTg722hZfvhRfaRILMk2xifX09jhw5YuRWq4c2Buk3W1n0XeoU/l2m15xELjsLCwuYnp5GX18f5ubmsLa2ZnXSte/ZyKuO9eqE8vTyOfHU5/OhsrISdXV12LNnD6qqqhAMBlUsYdOTMmpTyh5/JmVT49lunFEAKk6X9laWSzJBtoi2qSwuLmJ6elp1nmW9NEyktU3WQfstGx50o/e1Ay3j523Mc3OeNTBHM+EtLS2or6/H3r178e677+LatWtmpoSUrgQk2gDg37UyNfLiVEshtSlbr45ZruQGSmXI4sbGBgYHBzExMYH+/n7U19ejsbHRcbcd5aU5pqRo+Qqc5ljxz/THgYnkEXfWaYZZ44VUShp4k7+TkiOgTDO+tDJEK/TUHk1ZuskTPeNptTyykS29VMqULh6P48KFC5ifn0d5ebkB/nIGmkLhOC8oX63exAe+ak3KlqejPG2hp/QsFAqhuroaTzzxhDmIIperjiSP3AyofMbT85Xo1dVVzMzMYGhoCPv27UNpaalnI04hrH6/30xW8FVDTebJgUin0+aqkp6eHmxubmJ5eTljUsM2prwSN3C0cjs4OIhAIIAPfehD6oQV1Z3nwQGCJguyvaFQCMePH8fg4CCuXbtmTi/XyKaXtfL42Jyfn8fKyopDZ9hAbzagSc8oOqC5udnhQOcC7LRnJAO0As3HiZyg1EI2pQzTd3pP2y9pA5O5EOcpH6fk4JG82ngjwRb13+rqqlUmbCDVVjfiQ3l5OWpqasztBHKLCv9P79scC16P/Px8xONxLC4umugBma8baW2ReKCgoAB1dXXo6OhQ97NTPeR2GrfVQj4ZTpNI29vbWF5exsTEBEZHRx2RV9mwkdc+kXX2+XwoLi7GsWPHUFNTg3A4bPQlTehzovHAIxX5b3ximKel/tSigOLxOK5fv46zZ8+a/Zu2yX83so0lN8xJ/+VfIBBAQ0MD9u3bh2PHjmVgHWlHuR6hfuXRNjyNfF/LT6svz0/+0X2/165dw6VLl5BIJDKiG2R+nKT+lTqN8yybvnVrQ7Z3eB0KCgoQDofR0tKC9vZ2dHZ2OmROi8ri9efPNcwtn/OxyIn3n8TTGo601ckNO2r8knVOpVKYnp7G6OgoJiYmTHSKNlZs/SfrZasPT5cNV3ul97UDzY0ZOb1EpEh5xweDQTMDyhUicBOckpATqCgo2Lk/8MyZMzh16hQWFhbwox/9yNxzykN6JWVziG5H++V3G+j1IiS7BT6a80qf+R9debW+vo4/+qM/wpEjR3Dvvffi4MGDBjDzUEO5YuAWYi3T8brJwUvv0QmjAMyx+5qB5ady8/zoN1v/k1xSWYFAwIQ9d3V14dy5c+jr60Mikcioq+Ql0W4dmlzSusksD+ceGxvD1772NTz55JPo6elBd3e34w5XAhrpdNrBaypDhnsDcOx5pbHI+49fjSDrqyn5YDCI9vZ2fOITn0B3dze++tWvOk60tUUb2HifzcjKumkO5dTUFP74j/8Yv/Ebv4Hu7m5z2qbWLhoPNH6kTtNC6mx1KygoQFFREX7qp34KBQUFmJmZwdLSksPISufPS3s1Y8nDuOfn5zE2Npax95BPgFBfcFDKHTytHC4bdCd0c3MzysvLsbm56XB+NVAnnUON/9wJo2uhUqmUelI0vUvjXpsIpLy53FEUR0lJCQKBADY3NzMAk/ZZ1l2C2e3tbaytrWFiYsKUycE/4Dy5mvKVYdBcL5HDTyuukmzgzi0dlePz+Rxh3CSTeXl5GbaA3ue6mdrB+bK1tWUOtdOcGDcZ0BxP+vP5fDh06BB6enpQWVnpOFlYhvry97iTyccZH+M06URXb2lybOOxG9ClvqcV2p6eHtxzzz1WOSX8Q58l7/jNGnyskONNE8Xf+c53MDAwYFaV3BzJWwGzAMz9ue3t7Xj44YdNZBTXlbzu6fTOWRp8JVmeVsyJY00KdZZ7nre2tvDSSy/hwoULGBkZybgiVcMvXsaN5vhp/2Uaihjp6enBQw89ZELauRxqkzlEfExJ2eW6gU+a8MgKqaP42CZ+cV1DcvPMM89gcHAQMzMzGQcA2hwyrf5S12s8zJVsWNumL0hvlpaW4tFHH0VtbS1KSkocGJHy43wkkttDtG1DXPfw9Frdpf6VJLGV1GdEXNdpeWj2KZlMYmNjw9x8tLy8bLbX8fHB6+HW38QzW3s1e3mreobofe1A24iU99bWlgPo0CAFdpQCn5HmR7pzgMc73+fzwe/347777sPk5CSuX79uDIPb6cq3o6Nsed6qg2V7R1MOXuujtVcOvKWlJfT29mJtbQ1jY2M4cOAAmpqaEAgEzCDSVoT5CpYGhmx80Z7Zwk+0ttlCB92cXv6cT+jk5+fj0KFD5gqUF1980TFLnYsRzVZ3r6S1QXvGVzwJ3L311lsmRJLuEuWOMQEOm+MnlZpc3bO1TwMgPF++N72+vh5bW1t45JFH8Morr2B5ednwW5NZDUy7UbbfiRdkQKLRKF566SWsrq7ivvvuy1jNA5BhQHnbSE64odXCDwFkRAYUFRWhu7sb0WgUTz/9tHo4nxfSnAwp/9vbO6Hry8vLuHz5Mrq7ux1XWmmOBueBNHayLL5fz+/3o7m5GT09PZidnc3oW9vY8dJ2agdFENCtAvQb36bA7QcHi1QW7z/6oz2b4XAYq6urnoChl2cUwm27WosDYf6M2sIdfl5v7dwHL/XSyufOMDnRUkdkK4PLCz0jZ5Tuwt7NCqCt/nl5eWhubkZ1dbUDwMk2SlvB+1+mJZsXi8Vw6dIl029e+1z+busbOnivqqoKxcXFjkkS2RYNxFMe2fhJ4350dDTjrl4bcNfa6EX3ckdx//79OHr0qIlkknZb6hgp+/LcCVkWOSrEK8Kb6XQasVgM8/PzuHDhAqampjydNi7rYHP+tHey8SY/f+e8guLiYtx3331obGw0Z0xoEwtumIrqoxGf4JHOM3+fdDLX+1yWtra2TJTitWvXsLS0lLHnWa60anLi1Z55weY2OaH+5zaK20T68/l8qKioQEtLC9ra2lBXV2eiItxwlnQ+JR+l86xhGE2GgcxtivJATI6NbfqH7BZ33LWyqBxaQBsdHcX09DSWlpbMzRPSHtrK1chm420yoPkqXnCCRv8sHWgOLCUAAJwKV4bmEHHm8/DhQCCAvXv3ory8HH6/3wCU9fV1rK2tZShL6YxIAPh/i7zUw63uNtLekQMf2DnVeWpqCtFoFGtraybv2tpahEKhDOWrOU9ywHJlISc/bHnIutucf+092TYNKNFz+iOl2dDQgHA4jPLycty4cQOTk5NYXV11vcbmVimbQrH9xt+ToT4AMDw8DGDn9Ou6ujqUlJSYu3K5UeHET9SVhoKPQ1vdbMqa8uAOdX5+PkpLS9HU1ISTJ09icHAQ29vbJoSZ3nEbt9lAjc0Bl7wiYxOLxXD58mUEg0Hs378flZWVqgNMEwoyL/pzi37hxpinCwQCaGlpQSwWw2uvvWbOJdDkVxsj8rvbeE+nd5xcam9DQwNKS0sdkyS2cWRz0CQf6JnP50NDQwP27NmD1157zfXQulz0MfE5lUqZcNSmpibHpIZcJec2xosDlJeXh5KSEhQXF2N2dva26IB0Om2cfhvIonQ2/tv0r9SvGlj2Uj/pQGsr97xsmsDzYosoWka7O1Tm77XuvF+rqqrMZJAWxaLJtybTHINsbW0hHo9jcHAQq6urDmBJZNNFboCX9xWd+l5RUWFOUydy06s8Da+3Vg4AbGxsmGstaQ/wbmXaTQ/wPikvL0dnZyf27t1r1Sv02aYDsskW1618tXB7exvRaBSDg4MYHx/H6uqqun89V8CfrS42XEOrm6WlpSZ0my8o8UgZHnmnyRqXW/lM0x82fas5mJTv9vbOnueRkRH09vZiZmbGNaRX1lXjiYb9bge28pIHTV4UFRWhoaEBnZ2d2LNnj9nvzBcaNOK8cau/V1uRDTPJct1sOv3JmxEkUTqKAopGoxgbG8P4+LjRCRqG2Y0dsb3nBa/tlv7ZOdDyBG46OZQcZGI2XxXjK50a4KH0nOrr61FTU4M777wTAwMD6Ovrw7lz5xz7NGzhYjxf22/ZKBdleyvCcjtAHP/MjU4qtXNPaW9vL4aHh1FTU4Of/MmfxMGDB1FWVqauQEhngodg8/7jSkAqaQliqO/lgSDSEZPtooGvrWTL8DeuCCncr7KyEpFIBP/23/5b/M3f/A0uXryIyclJc9VFrkaD84XITU7cAIb2XSoq6sONjQ1cu3YNU1NTSKfTuOuuu7Bnzx7DBznGJPHZUH4QD5WjyYHGb2kgeP/7/X5UVFTg5MmTWF1dxblz5/Dqq6+6AlQ32fc6diXAofolEgmMj48jLy8P4XAYn/zkJ1FUVGTe4f1J7df2QkrHXIJKLr/cgaY9t11dXbh+/TqWlpbUsaq1zyZrGpGMrK6u4nvf+x56enrM4TV8FZ1f96S1QYYek1zQagqwE765b98+FBQU4Jvf/KaniA7SR7b28HdTqRQmJiZw9uxZnDx50tE3FM1E3ylaiV9bw/lGqy78FojGxkY0NDSYvaJu/LWNBdmHNMGbSCQMeJZhd1zeJPiUIdy8P3jZt2pj8vJ29mjKFQ3S77wcm/Mjv+fl7dwDv76+bnXecnVaqO1+vx+VlZVmMkiuRHE+ydV/WhmVUSTkQG9sbGB4eNhMyFO7+X+3umvOA8mcz+dDMBjEmTNn0NLS4uAvj5jgIFlzdIi47eR9lEqlMDw8jKeeegpra2uOCAAbMN9Nn/C2hUIh3H333di7dy+qqqoc+56lo8fHPI1B0lVyWwCRXJnm+eXn52NlZQUDAwP4x3/8R6ysrFhX3LPZF5tMu02UyMUfGjvhcBhHjx7FI488guLi4oz20HkaFIFJfccXImyHIUr7wleXiZekp93qTmVubGzg+9//vtkeKcO2NT1tkxWuJ3Yzxm311b7L8UEyFQgEUFlZib179+LEiRMIh8Nm7HN/g2wE9zOorTSu+NYtWRe+nSA/P9/0JZVB7xYUFJjVfCmXHGfZxqXNcae8uV2RWH9jYwPnz5/H0NCQw3HW8s21j+RzW3reXrc0udTpfe1AcwNPpF0TQAqP78O0ObPU4RywyZk5KtPv95u9Ja2trWaP9NTUFN566y0sLy+rVza4dfxugUi2AW7L93bNxMg8NedLfudGiFYKvvGNb6CiogLNzc04ceIEDhw4YGbsiPiMPSeuxPgzTtIZo0HOV5Pkqjalkbzk5bkBTG2PCCksMmIf/ehHcfr0ady4cQP/8A//gKWlJevF8W79aSMvwMuLYyQBLCn4RCKBlZUVvPDCC+jv70dnZyc+85nPoKioyJxGLhWUjBCh5/SbJA7wtFlPaWAlAMzPz0dJSQlOnz6NlpYW7Nu3D1/5ylcQi8Uy8twNjzU+0WetnvF4HBMTE3j++edRUlKCo0ePYu/evRngVfLCth+JE3foaJWB5+nz+RCJRPALv/AL+Ju/+Rv09fVhYWHBsdc0m+Pplk6C5GQyicXFRTz77LOIRqN4/PHHHemSyaQD+NF7MpxMCy/lQKK4uBgNDQ24//778eabb2Jubs51Rc3GQ63PUqkUZmdncenSJcTj8Yz93JQPhSEDcFz9pDnzZG98Ph/279+P5eVlnDt3zqFrssmhDSTyFU0tMofepUkrOf756oAERLY93py0MSTBL/8LBoOOMxSkXpa6kPLn20O4ztze3sbS0hImJycz7h3O5sRobeF6hK7xonElt53wkFaJOSSe4M7z1NQUrl69ilgs5lg113jq1gbNeSgoKEBZWRlaW1vR3NxsJqklD+V+bl4Ol3UOguUe4t7eXly+fBk3btxwXN/E66s5Kl6J90VBQYG5kuuBBx4w97TzPpATRvyOXS4XPKxZ6g1pc+g90m3f+c53MDg4aCYMNFvmZSxzftj4o9lzzpNgMIhIJIJPfOITaGlpMVsNZN7ceeN5c3nm/abZNWln5biXE7+y/Hg8jtHRUfzgBz/AxMQEYrFYRti2re02vmVL7/aepgtteUl9RrxvamrCsWPHUFVVhXA4bE661yYENSI+ysNXOU8oDfcvgJv7++mqK94ePmkny5P9Kftb4wHPR65Gr6+vm62uKysrWFlZMVsVNX9AktexYiMbRtHsqhcHW6P3tQPtRrYBIYUEyFxdlPlw4ZJpaSW7qKgI5eXlqKioQCQSQTKZxOTkJObn5zE7O+savuQ2iLx05m4dqlyNVq75E2mCzAcnDehUKoWxsTHMz88jGo0aYNfY2Ii6urqMgcvzsvWhl5A0yo8fpGNTxJqD7sZ77TRhes55UF9fj9LSUhQVFaGvrw/Dw8OYnp72fNXVbvoyF3nM5jCRfM/NzSEejyMWi+Gdd97BiRMnUF5enpFehoJLBUZ/ttlv2U9cKUp5kMa9oqLCAPOamhrMzc1hY2PDyKGtXpIPGmWTBy6zNOs+MzODixcvIhKJoL6+HiUlJa5laGRbfbcZ/Pz8nf2Cra2t2LdvHzY2NjL2yrrpJS/EASRNsgwODqKiogKxWAyFhYWOtLZtF9lAEe8nn8+HkpISHDlyBFevXsXS0pKqe3PVmdQWOh15eXnZHFBk44mmlzQwQvWvqqpCTU2NAzTtlricEZjS5NntfW3yhttBW99w0n7XdChwc+JB6nnpmPJ3aPLBxv/19XVz2KdNr3kBYvyPHDaaRJC/83w154T3jaz3/Pw8bty4YVZscwV0vBzNsaqoqEB3d7fZg0lE9o/S8zbwFSuSCamXue5NpVIYGBjA6Oiouq2Nv2OrsxtJftMe066uLlRXVzuiUnjbbeXZ9KScULdNsMdiMfT19WFwcBBzc3PqarsXytXR03hBDlxFRQUOHjyIPXv2IBKJOHhC79HYoskELq9SnjV9qzklsm6aTeXyH4/HMTQ0hOvXr+PGjRuIx+O3FOp/O8lNFqXjTLwnH2Dfvn1ob29HSUmJ43ebM2ory9YH8rvN4ZX8pogYre80DEbftYkRW10SiQSWl5cxOzuLyclJTE1NmevHJG53a3supNVtNz5RrvS+dqBtIaEArALLQz1tSkKuRnIgoaWn74FAwDjQXV1d6O/vNxfA0z4sTYDos83p9EI2UCK/5wokf1xONg+ronpxR3pzcxNzc3MYGBjAAw88gDNnzpi7uaUSyLX+2sCVRoHCLwGns6spqWyKlm8hoLLkieJ09UYwGMQHPvABnDt3Dq+88gpWVlYMv7S6ewWFtwOQu4F/+o2UZzwex1/8xV+grq4OpaWlxoDzPHj4Pa+nNtaIOKiUYWs8DecP5z39Vlpaira2NvT09GB7e9sciMbHoQxHsvFFklta/hvJ8ObmJt577z1UVFSgsbERBw4ccBgsaQC1FWlZJgdEfIaab3EgsHX8+HH4fD5cuXLFHIgj89DIi0wR72m7xtjYGCorK7G4uIi6ujpHyL5cbeR14OVpY5CHDxYVFeGee+7B888/j8nJyYz93bnUn96htHSN4cTEBEKhkNFJUpfwLSU8RNdtsra8vBzl5eVWh9BGbmlJ/mkVmoNaetcLEOMgi/pJhtTLcrPVTZLf789wdIiXtrGulcnbsbKygrm5uQz9zclNl0qi1efS0tKMftJwgXQe5SQXH5Pb29uYmppCX1+fw4GmtLaxaAPZHAPl5e04/rW1tbj77rsdtxlw2eZXCFJ7CfhSe9xkmOz3hQsXMDw87FiJ1UjW24tDIXkXCATQ3t6OBx54wOzp5qHb0o5oesRmMymtjFTheCEajeKHP/whFhYWXFdObc6TrZ2ao2rLi+rq8/lQWlqKPXv24GMf+5jjkDg5ac/DrPmp3FKfcfmU9Zeyp6WTbaUop1QqhWg0ildeeQXXr183t2N45Y3b717fk7LB5S8bxuOySHqhra0N3d3dOHToUEbYtaZ/NGyRTWdK3KzhBGkbeZu4vHN7oI0DjrW036Uc0TkhV65cwbVr1xwrzrY+84IvZJkaPsp1fPE0XnS/Ru4xWIK++MUvZnRCXV2d+T2dTuOLX/wiGhoaEAqFcObMGfT29jry2NzcxK//+q+jqqoKRUVFePLJJzE+Pr6rylOZNBPMQ2K1wcL3F0hQqYVgkSLkaTWFTOXSHiO/3w+/34+9e/fiQx/6EH77t38bd999N5qamlBYWGhCv9xmr3PlQbbfvQiTVq428LPl57V+PB/qEzo9PR6PY3V1FYODg/jWt76FP/zDP8T169fNfj4Ajj63kW31idrK98LzdPyEdg6GtfxJVrSw4q2tLced4eRIEKChkEUyfn6/H4cOHcJP/uRP4rd/+7fR3Nxswn804Grja66U7R1NOUl54O2LxWKYnZ3F17/+dXzrW99y7OvmIfj8M/U/71eb4crLy8u4lob6iF9HxvdS0h/JRCgUwuc+9zk8+OCD5lRleWK4zbnINga0tPyPh1LRQU+vvPIK/vzP/xzRaDQjtI6PE1v/0H42ziMZYsyNKRn91tZWHDx4EMePH8+4l132vU1XZDOQ1NZYLIbBwUF87WtfM9sUePSHtlrh5jTwMUG6Oi9vJ8qgvb0djY2NGXrWK0nnhXRTLBbD888/b67mojxJ9myHYdF3bqP4PsRgMIhwOGzuFHbTyzZwIYnki/QmyQk/7ZqPXQn+bU6ydg+0Vp9c7EcoFEIoFMqQY/rPdT19DgQCpp3a+FpeXsbU1FTWKKRs9pHLWlFREfbt24dgMOhw1KhszkcNV3A7x7d4JRIJLC0tYXp6OmMrWq42nvONZKysrAw1NTWor69X736Wk3Pp9M1T7kleZJ152SRrCwsLWFlZMauJsm/c6u31N2qXz+fDnj17sH//frP9heM2bcxLm0M2mtLTiqzP53PYGD65mJe3Ezp748YN9Pb2YnFxMeOwOlt7tHZJHav1u00P8LFQVlaGj3zkI/jQhz5knGeuH3n+0sZyJ1zqMOK3dLA5v23OqMRYBQUFiEajuHr1Kv7sz/4MV69edd3v79XmSj5rz93Sa7JpI44f/X4/wuEwzpw5g3vuuQcHDhxwbIOg9NIm03MbnuO6mfNXOo+S95zvvD/5xLimu6ks/pxPaPOtJnKrzNbWFmZnZ/HCCy/ghz/8IXp7e7G6upoRScMnk2+FZH9pMiJlMZsM5YoPgF2sQB84cADPPfec+c6dlz/4gz/Af/kv/wVf+cpXsHfvXvzu7/4uHn30UfT395uwxM9//vP47ne/i29+85uorKzEb/7mb+LDH/4w3nnnHVdHyCtJwKjtc6F0nEgIqZM1ECkZrCkL/h4dihIMBnHs2DE0NjZiZmbGhBZq9yJqjr/b81xJglPetlzz96JgtLS8LPrMn3EQHY/HDdB+7rnn0NnZiaamJnOXoVZGtkHAVyO1fsvWXtnv3MjI/Hl7uIIiGaM/ek5Gi055f+yxx3D58mUMDw9jZmYm4/CF2yUXXtpukx16xv8DO4BweHjYbHG47777MkIHef6cbH3IeeWm8GQdpQNK75aXl5sV2MXFRaP0eTm58NdNOUuFzz+nUimsrKxgfHwcL774Iu644w40NDSo70n9xEMMCegQGMwG1GgVurq6GqdPn8bQ0JC6iiLHbC7E5TSVSmFtbQ0DAwNYXFw0TpM2/qRuIPAl5Z/Xib9DV3XRqetewZemu7gDlEwmMTIyYk63pgkA6UhJQAJAdYwpfx5+ubCwoPLZDQTaAAOt9GxubppyeRSWthrN08j+cJvcuhWiiWcO3KXe4UDeBiLpjyZs+Cnkt0LEk8LCQrS3tyMQCGTodUpHpAFFaR+obpOTk47JM82RIHIbi9IhIhDd1dWF5uZms9pIabg+9mo7tXrR6tP58+dNyKbWDlt9s/UPt69U78LCQhw7dgwdHR3mCkzZLq77SQ9wGeO6gc7JobL8fr9jspPyS6fT5tCw3t5eh870qmsoL66zbHyQOoOI8AOtPJ8+fRptbW2ObUoS38nx4jZhKuvK02j6hkhbrSZdNDc3h2vXrjmuqdIO3nXTdbY0uxnjXjGUZjsLCwtRU1OD9vZ2dHZ2GtzG66PxnfKQ+tetDW74QWuLLE+bMNNwuIw8s/GHHPK5uTlHuDZdaWqLJrD5BrL9XuTQRtnScPnX6udVjnJ2oH0+n2PVmVfov/7X/4p//+//PX7iJ34CAPCXf/mXqK2txV//9V/jl3/5l7G8vIwvf/nL+NrXvoZHHnkEAPD1r38dzc3NeO655/DYY4/lVBfuaEnjqRl5PpPjFn4mZy5l3ryDJbO5sHKDv3//fnR0dGBhYQGbm5vw+XxYXl7GxsaGw2BKReQFpGggO5ujzylXpZOr02Yb4Lyu/D8RV6qJRAKvvvoq5ubm0N3djZqaGpSVlZmVWRuAkYpAEjkj2fjsxjf5rlSM1BatXPk+yQuFpj300ENmr+XGxgbW19fNrJ40vFpd3WQpV6fIi1Ki/+RozM3NmZNwu7q6zDVXkrS62MAh9bdbv2mAmerF86drpMrKynDu3DmMjo6a60ekHHkFejayGQgCFpubm4hGo3j++edRW1uL8vJyczI3r4esD+DUWSRDGpiTMkPgq6KiAnfeeSeefvpph4zJ+u+27VSX7e2dEznHx8cxOzuLsrIyhMPhDEAm5UHTufJ3GZ6+d+9eLCwsOMYZ1zOShxqfZPp0emdVjq6do1N7qUw+ccEBoRzr2rgjQFZXV4fh4WEV+Gbjsab7trd3DtOiU201cnPE+HcbGNPGr1c7RvnSyji3zzReZcQY5ccjf+SJ0hRuT+cbSJ3gZpfc6hoOh9Ha2mpWvykvel+e1sz1jaw70fb2NkZGRsxBfrnaVzl+qDz6Tw50U1OT4StfZLCVJ22rG27a2trC0tIS3nnnHdeTz3m9ZX1tMiOxGNnHyspKHD58GHV1dSpekzaJ/kjOZFvS6bSJDuF6lH4nfUoHvvX392NgYMA1VD3Xces1Da9jcXEx6urqcM8996CysjLjqiQizR7wCVcb76X+BZxbfDje4XqWnhMeiMViGB4exqVLl9Df3+9YRJJ1c3PgsvFU46cbn7UyJA+krqYtmx0dHTh+/DiqqqpUTMLbxXUEz1PDcF5wvbSDkudUFtVZszsS28hxIcuh59vb22Y70+DgICYnJzMiTnh6yWcvfbpbvJELecG+NsrZgb527RoaGhoQDAZx11134fd+7/fQ0dFhDj36wAc+YNIGg0E88MADeP311/HLv/zLeOedd5BMJh1pGhoacPDgQbz++utWB3pzc9PMngMw+0K1mWjAecCJDKGyHerEZ+S5cuWgiBseIDPkAXCCBz7TS7OlpaWl+MxnPoOlpSUMDw/jxRdfxNjYmJmF0waSJkS30umynl7T5pq31/fdnGg+67uysoILFy6gv78fr7zyCn72Z38WnZ2dqK6uzgoCiMhYcGUvFU22dnEFwbcPSAPO6yMdaHqPDDT/nVbWt7e3EYlE8PDDD+P48eN49dVX8cwzz2BmZsaMBy4fmqy4GQwvbaV8vbzHQQa1f3NzE4uLi1hfX8cf/uEf4rHHHsMHP/hBx5VNABx77zgv5cy0dhIqAMdECt+7npeXZ06jpLypHXl5O1fn+P1+FBYW4j/8h/+AP/mTP0Fvby+i0WiGs2obi7sl4hPVO5XauR+6v78fL7zwAtbW1vDoo49mrDbbwDI5c5x/+fk3r7UgPtF3Khu4uf/08ccfxxtvvIGXXnrJrKp6CbfyoiO4nK+vr+Pb3/42HnzwQTOZyscSBx1yIpTvm5YHIZF+DgaDaG9vx9TUFPx+v2NGnOpC9db6VQMu3CFdXV3FwsICFhcXTaQAT0/OYDweN+WQLHJ+UZ40kRGJRHD48GG89957iMViGeBVq59Wb66Dtra2MD4+jr179zpCcklmaMuDFnZMechoDAoL9DL5qJEmv0VFRQgEAo7bMvLy8pBMJh1OKd9bKPuPy00qlUIikcDm5qYrMOTfbbzlzgo50OSkSNzBnU6OKzhv6TPZos3NTbzxxhtm3zDVw+bk2wA3ryvVxefzIRQK4dChQ2htbTX9z1dhNR0D3ByTFKbJsQ9/h6IcxsbGcOXKFXOzAdXHpkO4A6bpNd5WrtP8fj8aGxvx8Y9/HLW1tWbvs2aHqe4artDKI3mjPy7/NJm/vLyMr3zlK1hcXEQsFlOxILXP1m7ePukYub3P+ZCfn49wOIx7770Xp06dQkNDQ8b4lXnRc44zpF0k4qHIfGwRX23OkIwg2dzcxPT0NK5evYrnnnsOa2trBvPKuvH33HgoeWIbGzwPzQnV8pKf5ZgqKipCc3MzHn30UZSXlztuZJB5ShustdfWJs3plc8pPz6OqC7adWxaW7keJbwkMSxwU79ubm5ibW0NL7zwAqLRKDY2NtRJEFmOW1/eqk/jRlpbeH12W3ZODvRdd92Fr371q9i7dy9mZmbwu7/7u7jnnnvQ29uL6elpAEBtba3jndraWoyMjAAApqenEQgEMk7lra2tNe9r9P/9f/8f/uN//I8Zz7mwcmMvnQqeTio5btBkek0RyQOltIHL68KVHZUdDAZRWVmJwsJCVFZWYnh4GAMDA7hy5YrZpyaV1T/FTEw28loHL8rPzWDI9nJe0JUYW1tb+O53v4vm5mZ0dXXh9OnTRonxPtQUM4AMBcQNrzyOnxtHKQ/yuzQcMryWiO/HJ2PGgR8nGjMnT55EOBzGlStXcPbsWccJp1oYphu5KVWexu2ZW1mUP2/L5OQkXnrpJczPz+PTn/40QqFQxooTvcsdZt6Hcq8s5xkH93JCQhuHHBTTasaHP/xhNDQ04Pvf/765r5CDYI0v2QAP54fbb1Svzc1N9Pb2oqCgAA888IBZ6eKgVcuPTyhy3nCn2QZk8/LyEAqFcPjwYczOzuLNN9/ExsZGRl63QtwB3drawtDQEDo7O7GysoKKiooMncfbSs848bHO20G8CAQCCIVCqKiowMzMTIbe3g3RREcikcDIyAgGBgaMA80dKL5fksqUocm8vvQ9HA6jo6PD7DH2Wk9ub3iexO+FhQUD9AkkcQeIjw9bn/M9dPJqOhtoyiY3XI/ya6zkJCUvR05o0/u83hTRQft1JdiU/yWfeb2IKEKADo8jHtBv2vv8Nwmu5UT87Ows1tfXPTlj0hnSnpFuKy4uRk9PD0pKShx1liv39C5fWeQTaMRvyXvi94ULF3D+/HnHYaluGCaXMSjbVFNTg7a2Nuzdu9eE0st0ckxQu7jtl3hAkyd+2GUqtXO/9YULF7C8vGy9oovX+1acBhtOosn3YDCIxx57DD09PaitrVUPh+Pv8HpqUXtyLCSTyYw8Zb8S8Xe5jMTjcfT29mJoaAhXrlzJiHDyoiOy6WwbVvGKcbzIIk3ctLe3m22EFRUVRmdxXcAnbaivqDwZeULt08Le5WfNftFnOn+GJvZs+XEbpeFk+Z0vYmxtbWFkZARzc3OYmZkxe/+1aBM3LMTJC++9jqNsabLVSerobJSTA013dwLAoUOHcPfdd6OzsxN/+Zd/iVOnTpkKyIp5EWK3NL/zO7+D3/iN3zDfV1ZW0Nzc7EijGRL5WT6TwqgZVCmoJHiybE15aPWjQebz+czdhXSi5+bmJmZnZ7G2tmZCW7iy8kpuvNwNcLSBI9tvt5K/Tci5Y00g9tq1a4hGo1hfX0d1dTUaGhpQXl6uTopQ3tJoZJMV22+yj6XTLoGDTG8zWACM08ZBbTAYRH19vfm8tLSE3t5eo7y0fvXSN7fLOdJITgisrq5iaGgIsVgMx48fR1tbW8aeIV4feo+DNs4T+o2DPc0B4OBWU5QEksLhMHp6epBKpcwpkpy/NmN7Kw4ZvU95k5GamZnBjRs3MDIyYsJFpWMkAZVNxgBkrKTQO3yCJz8/H3V1dWhoaEBtbS1GR0dV/Uh583p4MYrcgaWw4unpaYyNjSESiXjioVcwSsClqKgIjY2NWFxcNKuvuyWuT7a2tjA9PW0mhyWRXGp6SKs3n1ylq3g0O5ILGOf8JrBPvOd7yfn7tjLpPT7+boWXsr55eXnmzBBZd+mcSvutPSfgngtQtwFT+pyXtzPJVFJS4ugfiT20caI5ddyx3t7exvr6urkN4HYQ6bWioiJ0dXWp509IncbHtVxRkraNT96ura1hdHQUo6OjjtVeL86Rl985fvL7/WhubkZbW5vRG8RTkm16R1tp1pwLrS5cv9E7tMre399v7uq2rbrZ2pOrs6fJIeGASCSCAwcOoL6+3myF0doC3NT3vP+yOQw8bbY2yN/T6TQSiQSmp6dx7do13LhxA1NTU4794rax7MaD3ZBXJ832mSYr6uvrsWfPHjQ1NaGlpcXwVC6UyMlJLqMSK0qy8UKOKbc0sg3aOHeTN5k3RfIsLS1hdHTUXM9L+tVLlFo2jGAbA7Znu9GTml92K/o2p1O4JRUVFeHQoUO4du2a2RctV5JnZ2fNqnRdXZ05adKWRqNgMIjS0lLHH5HWKdpeCukcSyXKjYYMt+Bkc6RolomHtREope/8lG76HwwG0dzcjIceegj/8l/+S9x5552oq6tDYWGhCaukvN1Ai21AeDVQXkgDC17euZUyqU+440ynAMZiMUxOTuLNN9/Ef//v/x1nz551hD3yPqXZY1vIPf1Of26KTRpNGSbDwSbJgXToNFDIV60kn/LydlZompqacM899+DXfu3XUFtba+4j1U791QBxLoYkV1nTiHhGq3bLy8sYGhrCl770Jbz33ntYW1vLSM9lXq6wA3CMB+k4Ul9TPTWQLXnFAUlNTQ2OHDmCz372s6isrMxwZGxt15zrXPjOAQXt3RwfH8c3vvENh77k8iSNtpR57sTJNpPM0GdanaC7oe+77z6z917TO7s1Onw8Urj6008/7Qhnp7ZQG/i4kuNU8pjepxXW6upqnDlzBqFQyNoHuYB8rgNGRkbQ29tr+Ewyzk9Q5zqH2qOFk1Mav99v7m2VJ1HnwnOeNpVKYWlpyVwTQ3WVUR600stlg/Lik1k8DF3TMVodvNQ9HA6bUFwut9o42t7e2apBvOT6nf4otNBmz930HK8vt+dVVVWOlT7OSz7m+HiWOkhiAgBGbsi2aMCO89rLBEZe3s6+8oqKCtx7773mTlpbWjnRSLZWO52d6xmKxhgfH8f8/Ly6H/hWQCpvs8/nQzgcxunTp3H69GnHGCOHjXhI9aA8uF3ndoPLOulByoP/JZNJvPfee7h06RJGRkYch1/ZyMukTba2Sz7Qyc+VlZXo6elBe3u7WQnlY1GOYRm9JO2E5sDIiTbeFzw/iX+IhwsLC/jBD36Ac+fOYXh42DjPMvzbxodsjrXklaYrsjmL2h/9RlgjHA6jpqYGTz75JE6dOoXOzk7HDSoSe/l8PrM9TGIU+Znbad5mGX3H+Wa7MYEfpAc4tz9JjMF5TL9zu0p9mJeXh+XlZQwODuKpp55Cb2+vuR5SOs9e+kvrD9s7XrCmZh9zxbm5YFpOt3QP9ObmJq5cuYL77rsP7e3tqKurw7PPPotjx44B2DEKL730En7/938fAHDixAn4/X48++yz+OQnPwkAmJqawuXLl/EHf/AHOZfv1bHUHBYi2eF5eTf3B1GefLULcB4S4mbMeL5cyHidSbFRyOGHPvQhPPjgg1hfX8f8/Dx+9KMfYXp62hxYww2XNhOlGd5s5PaO9pvX/PngvxUDSuQ24bG1tYVvf/vbeOWVV9Dc3IwHH3wQzc3NKCkpUfdJenEs5cE19JlfKcXbycE+GWxpcLT+4yunnKgs/k5eXp45+fELX/gC+vv70dvbi9dee80YdAneNHJTFrfaV5q8UOQGtWN6ehpf+cpX8OKLL+KRRx7BqVOnUFpamqEM+aw5OUVcnqRjTc9kGD6RXIHhYJXGcyQSwZEjR/A7v/M7ePHFF/Hcc88hGo2aemn82Y3ytRkRatPy8jLeeecdfPWrX8XJkyfxwAMPOGRxe3vbIYtc3qRzyZ0kHpLH797d2tpCIBDAnj17UFRUhMHBQVy/ft3co5vN6EkAkE3GksmkuWLo4sWL2LNnDyorK8279Me/8/FgK4cmQ1KpFKqqqvDggw/i+9//PpLJJNbW1oxDJSc9bHWWz6nc5eVlzMzMYGpqCjU1NWbCgfKUobG0tYCiAeRVIKQHSktLUVdXh5WVFROJpNUxmxxyHlGoHdk2+l0CKQJq8pl0GBOJRIajLfW8VxBDY7q0tBThcBgAzN5s4iN3TLPZK2AHmwwNDWF+ft51dcTmqPLPVEe/32+ueyNHn/OJv2trO/UxfSZdePbsWbOPkPLLZjf52CDik/Y+nw+dnZ04ePAgysvLrXXjfW4D9LJOBLYTiQQWFxfx9a9/3YBqSnurdoTrAHJIKisr8ZnPfAZdXV0oKirKsJv8ClOu10n38c+8fXILFZVL7aQ+euWVVxw3qORiZ+XYyNa/HLPyCRc6W6irqwt79+4116nxtmh9THaYRx5R++bm5lBSUmJssMS8RHx7FJd5sjn0fHNzEy+//DJ6e3vV+4Aldt0tRtTGgPzdyzP5Gz+jpqurCz09PdizZw/Ky8sd+N1NfxAfud/A+SQjAgA4oqSkHvL7/Q5bwdNIPtp0nqbbuZ/DHey5uTlMTEygr68PsVgMm5ubZouJ/JNtzxUj8TZr+dnGkY1y8WduhXJyoH/rt34LH/nIR9DS0oLZ2Vn87u/+LlZWVvALv/ALyMvLw+c//3n83u/9Hrq6utDV1YXf+73fQzgcxqc//WkAQFlZGT73uc/hN3/zN1FZWYmKigr81m/9Fg4dOmQOksmVbM6dptS4MGv5SIeZiDOd55tt5sL2XAJESpufn29CupPJJCKRCFZWVjA9PY3p6WkMDw+bsDQ5eN2ASzbgK9uY7X0vxMvwAgbke1qdZR05qNre3sb8/DxWV1exsbGBoqIizM3NoaOjAw0NDQYAuoE8m3xIEG8LEQfgMCJyhVCGLckysoE5ni4/Px+NjY0AdvZIr6+vY3Bw0Nz3qilKtzwlr93ITTlqwIu3i+qVSCQwMzODRCKBkpIStLe3m9UFDnxs9ZP9JK8ssbVNa4usG804d3R0IBqNYmVlBc8//7wpV5PFXMrkZfN3uDzRigddlVJWVoaOjg40NTU5VsQ03kj+ZDPy8nkwGERtbS3uuusubGxsIBqNWrcJeG2z5oRub2+bsLB3330XpaWlBqDY+GSrvzZ28/LyzPkBra2tWF9fx/r6upqXGwjj9ef8JYd8aGgIJSUlGXsx6T//4/sQednUBgJK1dXVmJqawvz8vNpu+Z3Xj9sVqi/dyZtKpQwQy2Y7ssmMtH1e9bwN1PIVG56nlOVsROXLfd+51Ef+Rs5LZWUlqqqqHGm0FTpb/rIudPjW9evXM+5MlTZUq5tNr1N9m5qa0N7e7rrQkG2CQas//S0uLuLGjRuYmZlxRDjcKsm2EDZqaWlBW1sbiouLHacL87rRZ/nMJpuaDAM3+bK4uIiJiQlcuXIFCwsLZizl0k4vgN5mU6gPyC41Nzdj7969aGlpyThPyKbXtTpwvcQn/2jM2RadKI2UT1rM2NzcNKdsj4+PZ3WeNV7I9khywzNaftlwusSBdC1YXV0d9u/fj5aWFlRVVZlJGFkuPSP8x7elEdHEvhtftToRz3h/cV66LQ5KHKh9lu2gCaOJiQlMTExgbm5ODdXW9Go2O5qNbOOVt9tNxr3kb3sucasXysmBHh8fx6c+9SnMz8+juroap06dwtmzZ9Ha2goA+MIXvoBYLIZf/dVfxdLSEu666y4888wzjmtrvvSlL8Hn8+GTn/wkYrEYHn74YXzlK1/JegKyRnL2RpIcsG77vnhH2VYDKU++R9VrJ0onggSfDwp+ii6d2v3www8bI7W2tmZONObhSVQvWY7GD5ujxtvI02rfvShnr797Ba4yD96vBEopfItAeUNDA+69914UFxcbg0szzTxklLdfzgryPub/pTMF7MgXrW7JVW9aIdTACleqfGZRU458L2sgEEBTUxMqKytRXFyMp59+Gv39/VheXjYhaF76QNJuFIlbek3JkkGdm5vDK6+8gpMnTyIYDKKhocGEIUn+5uXpe9e01X1+eqymlClP6RjydJFIBMePH0dlZaXj0DYvYywbHzTHlwM3+ry5uYnR0VFzTUlNTY0j8obe5av7fHWB8pVROBoIIB76fD4UFxfj4Ycfxvj4uAlXzOaIaG2T5cgxvLW1hfX1dbz00kvo6upCR0eHagtkH/KxyycUZH/TyuGBAwcQjUYxPj7uycnTiAM/Aotra2vo7e1FZ2en2VrET7el+hJvqY6kE7ge4v3Z2NhoeC9Bk6x/NhBDdaUw4cLCQocN4kAsnU47Dk1yIwny+PNs/NXAIR0iJvPlkSe55L2wsGDGLC+L80l7T36n/z6fD+Xl5aisrDRpiLdcJsnZ4Y4IxyJchySTSSwuLpoDRG2gNBeiuvh8PrS2tqKzs9M8p/rJ8yVkeC+1WdofibmmpqZw6dIlxONxR9iz5iS56T9Zf/6ZHJrGxkbs37/fceqxtA9u23dkO7TJAa476fP4+DgGBgZw7do1M0lgkymtrbbnuYwZCs8tLy/HHXfcgb1796KsrCzjPYlX5GozL5vLA0UocB0rcZBsh6bLNzY2sLCwgB/+8IfmhHKb8+zGN608Tm72U3snm+xxntFEfmNjI+68804Tri3HiGwHbXmgyDBOJG+E8W08lPaYLxLx6CbiNz2XW104fuLt1/hIz0iXxeNxXL16FVNTU2afs9Z/Nr5qfLf5EtKe2bCDm96mNDyd9q4sU5IbdrNRTg70N7/5Tdff8/Ly8MUvfhFf/OIXrWkKCwvxp3/6p/jTP/3TXIpWiYdaS4ClhW3LNPJ0XvrPVxi5QeGOLuXHnWky9PJ9AidcufE9nJQHADPAyNkvKChAXV0dqqur0d3djffeew/nz5/H5cuXzawQvc+NM9WPt53+ZwMiMi1/bhMw7ph4Nfi7Tacpel4+8SQej2NmZgbnzp3DiRMncPr0aeOA0Luc+OEnsv94WgksyQnjM+LSMefGWeMjKTsKXaT3eDqeP4VS0eejR4+iubkZ165dw1/91V+Z1V0OaHbrOGSjXI0ZyTg5faurq/gf/+N/4OTJk/iJn/gJdHV1ZRgLjaQxovQ0pnj9ZMgez4O+8/A0Mph0VsEjjzyCc+fOYWJiwjE54TbGePle+C5lj+R6Y2MDfX19mJ6eRldXFxobGx3nQPCwTT6ZRHlRPqRPbLqJTxym02kD1lKpFL773e86DG0ubdP4TvnQyaGzs7O4evUqqqqqcOTIEYe+lFslOG/lCbEasA0EAnjwwQcRjUZx8eJFE8Gj1SlbO3jZW1tbWF5exquvvor7778ftbW1xg7QgVjc+dPyIpDE2+Hz+XDo0CFMTEzgwoULDkdBAzE24n1M+nBjYwOlpaWOlXC5T47qV1BQ4LgSTpuMku1wW83k9ZI8yMvLc+yBlvuWpTMreUqAkvcRHchpq5cGzHg53FYWFBQgFAqhqKgIoVDIkQc/2ZqI62bSF9JupNM7VzMuLi5iaWlJXX3OVT75WA4EAigpKUFxcXEGAKewX97fUgY4v+k51W17e+fQs2vXrpmzR+S+TDe77QacibhOq6qqwrFjx3D//fdnTILTJAXXbbLO0h5Im8wxAXeI5ubm8Mwzz2BgYADr6+sOubQ5gTZyc+JsY4o++/1+9PT0YP/+/ThzZudMB23lUYZvy7BhTlxXysUcTlzv8HwI95DjNT8/j7fffhuvvfYaFhYWzAn4ctJFyriNH25404YxssmUfFfymyYp6DYO2gLI85QTvJJvxA8Nc2t14RNswE3dlkgkTB/z0G6po0nX2CLSNOLyT/06PT2N8fFxXLp0ySzSaQsx2fLWfpdpNb2bzR/xWpYX0sq0yYsb3dIe6P/bpBlzLqxSqLhzSe/LAccHt2YAKF+pwKVClnvDNIeJt4EDRSJuEPLzd/bGdXd3m3DOvr4+c5Q8KXY+GLOBRNvvuxFmm4LwQprC81on7RnfK55KpTA6OmqM4YkTJ8yhGzwPrpT4f/pNOt18xZieaaez8898xYmIOz30nRs0/j7nMfUvd6orKirQ3d2NT3ziE3jhhRcwOTmJubk5dQbYRtmMD/1mA54yH5kXpZUrucvLy7hy5Qr+8R//ER/72MdQV1eHSCRirQsfuxIESZIGivORz/LK/aDUD+FwGGfOnDH3g9LJy9qMvia3kmduvJVp+GRQNBrFD37wA5w5cwaHDx92XPnD3+HjX+pD4j3nmxaNQSu3HR0d2NzcxGuvvWb2/nkB+F4NGtWDrjopLCzEsWPHHI6Axk9ZjhzDEtBEIhFUV1ejrq4OGxsbOTmhtufktC0uLpp7TXmfaAe1cAeE6spXidLpnRXg+vp6E85uk5dscsTtGTk8q6urqKmpAeAcL5SXbXWEp+e6iuuuW6VgMGjC4OWp8ZqjJx2yRCJhrnyj9sr7f3MhLkc+nw81NTUoLCzMsJt8nBHJiCLNLgPA2NgYpqam1FWebKTpM+JdIBAwJzNzW+LmHHktkxyEixcvYmxsDPF4PCMP2+dsGEE6Nvn5O+cZ3Hvvvejs7DSTF7JNMkKB6z2OrzQsyCeY+TuxWAw/+tGPMDExkbE/fTd6zw1XafzhTl1bWxuOHDli9jzzBR8eRcXv8JW8kRMmtqgDW7247aB2cNv00ksvYWhoCNFo1OE8e2nrbsgLbpRlyX4Gbi5IVFZWmkNEGxsbUVxcbN36p7WB40StfZxntnZI+bVNSHG7oS0O8P7XdCelTSQS2NjYwPXr1zEzM4NoNIrV1dWMg3Jt41mS1hYb/yReyZb3j4NuVQbf9w60nN2SJIGUNGBug1BT/JozIAWAhNoNMNucNi5oBFAIjPn9ftTX16OqqsqEzdNduktLS+YQKS0sNVdBsRlaN8rWD7dC2dqgDXByipaXlxGLxTA1NWWUZUFBgVnFo76QilXmJYFSLsCWAwJt1tstHzfni/JMpVLmftJIJILFxUX4/X4kk0ksLS05QttsfLPRrfa9W1r6vLm5ifHxcUSjUXR2diKdTiMYDJrTk6Uxke/bJscA973tHOjyd7huocODpqenEY/HMTs7a/ZWyrJsbc0GUGz8obolk0lsbGzgrbfeQn19PRobG83NB9r7moxy/cIjV/jvPF1BQQFqa2uRSCTQ0tLiuBbIzTB6Je4wJJNJjIyMmNUybTbdLR9Nt/PJqFAohOrqarS0tGB0dNS6IpitTKnzKQR9eXkZ6+vrKC4uVkP96Dtvt9Q33B6Ul5eb65Li8bjJYzd6lMqLxWJYXV01PMmmTzXgxceSBOH0zDZGNd3FiVbtJRgEMg/hlHyVuoEmZfiJ4dlWoW16myaTamtrHae5czttGwOSV1L3jY+PY3p6+rbsHaYy6KCp1tZWI4+8r3h6Tl5ALNnURCKBvr4+h/O/2zrLz3xcUFsOHz6M+vp6EwnBdZnbBAF/xiMDs6Xd2trCysoK3n77beMQygnT3ZLWZvk7/QUCARQXF2Pv3r3Yu3cvmpubHc6z1odS72iyx8vO5jhL4no7Ho9jZWUFo6OjOH/+vAOH7oZH0tHlz2W/SXzupmckdqPnNF4ikYg5L+Do0aOOw+h4fWz84HnKA0zdbKSst8T//EYHngfvT37AI2+/nJiV9p/sweLiIq5evYpoNIrNzc2cFlx4O7w82w1l6+9s9clmd9zezUbvaweaiBtPLWybr7DwFWIyqtvb2xl30fKTGPmfDG/iHenz+TJmzHlokawzH2RyTyPPn4eCBQIB41h85CMfwfr6OmZnZ/Gtb30L4+PjWFpacjgbZGDcZpA0kKeRLV2uIDrbrNStGCdSFNzIklLY3NzEs88+i5GREezbtw8f+9jHzF4qIPM0bOK95uhyOaDftT0qBAi58ZarzBzc8JBPuXLK26fNOpIiDQQC+Kmf+ikMDQ3h7bffxt///d8jFoupM+g2fnsFGrz8XIkbBlLaW1tb+Mu//EucOXMGp0+fxl133eXgPzcA0gGRRouHAEpecX3At0xIvlBZgUAADz/8MDo7OzE/P49r166pIX23Stp44GBkYWEBL730EhYWFvBrv/ZrJnyUZEIDGeQAcD7Rc66fOC+p3X6/H3V1dfj5n/95/K//9b9w7do1h/zISQdeb7c2ynK2trYQjUYxNzeHlZUVlJaWOk4dpbpJvayt8koQRkB037592Nrawrlz5xzXBfF3NZAl+4PqROMzkUigv78fkUgEtbW1GQc2cdvEdQEPveN7UtPpNMLhsDm7gV/1tlv9uL29jdXVVWMfbEBQ6j75Gz9Blsue7AOvxPUfbZugsHFJkqfpdNoRwlhaWuqYRKYzMXKpk9bf+fn5KCwsxNGjR1FRUZFhD0gWeL9Kh186p6nUzjVuly5dwsDAgHr1k6yPmwNE45j6paSkBB/+8IdRVVXlOHmdiNdZTj5QvtIRoHbTdYTnz5/H/Py8Y++2zZbYeC3HLMkDtaWwsBDl5eXmRg2pp+QEqN/vz1hRpnEut9jxdvF6p1IpTE5Oor+/30Td8Kg2LxhJS2OboJBtof4MBAKoqanBnj178PGPf9xx0Jd8n9pE147R2OBjmm83lJOHPOJDC1GmiRP6T3+jo6O4evUqnn32WRPGz3nlxicv4zIXZyabzaE0nF80QfH444+js7MTlZWVGXaQ+KJFl9Jv6XTa4H+ul7LVjfsUxBNu2wiXSJkmmy19Bv6Z15e3g3TjpUuXMDQ0ZLb7yUmPXGRdm2DQHH+NF9Leuo2d3VIucpQLva8daKlIbSGcmsIlsE6GR4I6DqBlOBnPz+2/zfjxvIDMPWjcSHDh5MT3aIbDYXziE5/A7OwsJiYm8OKLL2J1ddVctcAdp/+XSTp22u9EbgBQDlyuUNLpNIaGhrCwsIDx8XHcd999aG5uRl1dnVV+AOcBdFp/0HOeBwdOcuJFc565c03v0HfqR1Le0tDxPEiZNzc3IxwOY2FhAX19fRgbG3OE5mihv5oy05SzrQ800t6xOWAUennu3DnMzMwgnU6jp6fHHJhCfJXXaWh14ZNZnN/yd85Djff0G93Z/rnPfQ5f+cpXMDw8bLZP2IwF54HmxGsAkvOG57u9vXNq9eTkJPLy8nD27FkcPHgQkUjE4XhodSDHUwOPUtcQkXyFQiG0t7fjyJEjAIArV67csl7h7xCvk8mkubrvoYceQkVFhQP0cSOtAWjZv7KdlZWV6OjoQFlZmePAI853rzLN+ySZTOLSpUsoLy/HqVOnMtpncypk3bkNSyaTKC4uRnV1NWZmZhx95IWv0vaQA72wsJDh0PM0sl9k3eSKqraqmc2J0hx4HmmVbTzLsEoJIlOplJnccgshtdVP1pPGfkdHB4qLi01Ztr6Q4Jnzm3hKdYxGo1hbW8voN5uzpdWV85NOai4vL0dtbS0KCwszJoh5v0msY+MFb8vMzAxeffVVR4h8NrCtkQx5lW0JBoNob2/Hgw8+aEK3qb/5eLABeV4vnoZPIEr5T6VSWFlZwTvvvINz5845nOdslI1/NhmT3wmTNjY24sSJE7jjjjuM88wnPLhOB5wHYkrbznluqxt33IjktXzEt1gshoGBAbz++usYGxtDLBZzTAJp5WTTiRrlopNt7ZLt42O6p6cHx48fR0dHB4qKitSDhul9rqPomZcxI4nbNCDzujJZd+032b9ahCHX18AOLzc3NzE2NoYrV66YMyJ26yfkMia8kkz/4/BZeJ+5+Vhe6H3vQGvkRZlrjq7bO9osi7Yy6bUT5KDRBrpWHv/d5/OZ+xFbW1sRiUQQiUSwtLSEiYkJzM/PY3Fx0cyIZ1NqvP5eBdcLqLPldyuDww1YaL/xWejV1VXE43Gsra2htLQUq6uriMViaG5uzrjfMxfiTq0bMOFGzw30y7Zmm1Tg5PP5EAqFUFtbi0OHDiEvb+fgmMHB/x97/x0c6XHeieMfhAnADAaDnBcZC2AXmwPzkhQpkZJoWpJlJZ/OlhwuuOyqK5d9dl3dH5fvj0tVlsv2SbYsJ2VKIimKUbsMS25ebAIWOQODHGYGk4D5/bH19D7vM93vvLPkXf2o+3YVCjPz9tv99NNPP6mffnpUeamlkq1zOmRTpnItJgWfG66JRAJLS0tIJBK4fPkyPB6PukaC3s2GM6k06uraOUJkfVpvfr8fe/fuVed0t7e3EYlELB5i+b5JGc7Gb2RbXPEOhUK4evWqOpdZVFRk2x7hQXqypUEqYSdlrqSkBHv37lXXNnGlMts4OB7txrmzs4NoNIr+/n4cO3YMgUAgYz3JtpwqMUT/paWlqK+vRywWQywW077vVCniymIoFFL5BngmaclzpfCWMNL//Px8ZUDbOfZ0bZueRSIRbG5uZjjfTDSbbX0TbWQrdgafrCMVQN0akOtWzlsymcTW1lYGjWaTVTojnwwHl8ulsj/rxiANUqnsyjlMJBJYXFy03Kghce6Ev8o1zMNR+VlZglGud4KPFw6HVMLj8ThWV1cxPDyMWCxmiXSTcOUqHzgN8HHwpJJy/Uha1TmFTWOTxjbtzA0ODmJsbAxzc3MZ4+P9m8ZnojUpe3SF1hRFzLS3t6Ours6WB0h9lDuOuRPfrnB9k+DjNEBlZ2cH8XgcW1tbGBgYwOTkJFZWVrI6Uj5Io4zDnO03uaY5fltbW9HR0YHW1laVWFG3PmSRRwio7Vx0ZiCT/nT0Qn/S8a0bn47PUD+k9y4tLWFqagrT09OIRqMW28Ckn+RiWNrJUh3956rvyjq8OG1f9969zCPwITegaaB8h5gzPN0OFBEt96xxxk3vyXAavmvHw4DkziLBJXe9+KRwLxeHhQqNQ3qppMFOnvhUKgWPx4Py8nKUlpaisbER/f39uHnzJi5cuGC5A1QyuXs1YrMR5r0IUNnuvbRhUpjS6btXyFBoXzKZxOnTp3H9+nW0tbXhi1/8IsrLy+H1ei1t8XmWjC6XRS4NF9P45W4yFR4pIcMCOVOnnVOijwcffBBtbW0YHR3F17/+dYTDYZVhkfrga8OpknmvtKMrvC0ezv3SSy8hHo9nZGDVvS8VWq4A6Hag+btEH+TJ5d522h3lxuSnP/1p1NTUYG5uTl0PZPLgOqHjbMYPp1+6pu3ll19Ga2srfD6fOh9I45OeZ07Du7u7lhsMpDLKQ9IIF263G/fddx8KCwtx8eJFFbbpdIcv29iJfsPhMM6dO6fCTwOBwD3RGTfu+I5TcXExTp48aQlnzqV93VrZ3d3F6uoqlpeXEQ6H1a6fND644apTmvhv+fl3kgK2trbi7bffztj9NSk79Jx+43903o1nrweQkXSI9yGVcv6MHLgmOHS/m5RAiiohmuSf+TGJvDzrVTCcV5Lc3N7exvLyckaUgcSN/E3CRHPocrng8XgQCAQsa4JfV8Z3pkxHtvhnyqy/ubmZcf+z0yL5GeGtubkZJ06cyKjP17uUMXx++G6W1GnW19cxPz+PkZERiwFtKnbzLvUZifOOjg50dnaisbHRooNxmZWfn2855y539/iaIh5I+WQIPpIViUQC6+vr+MlPfoLFxUVL7gE+FvmZ45/jVP5uKnxOiNeWlJTgySefREVFhYq2knqjxCOQ6SglOOyupJP6IMlenR5MDpSpqSm8+eabSreUcyPHJw2UXPQMp0VnPHM6ID5DxwI+/vGPo6qqypLXANA7w4j+edQbH48ci12IvOTl1J5ch9JwJhlJn+VYqV3ePs1NJBLB1NQULl68iI2NDbV2+Vh4W07m5oPU/+z6eT99ZRuLtCFlv9nKh9qA5gIBuOtp4cQolQVpZHCCNF11w5kDCXQKn+bnCySD5fV1hRa0HAMtYF24JS0IrrgQ4y0ouHMPcUFBAY4dO4a+vj4888wzmJubw9jYGM6dO6fudeMhwXYG9b0awrmU92NsO1kcVJcbmcQM6Sza4uIiRkZGUFNTg5aWFnz605+G1+u1CC+upHGDg9MNv/aFnxfk8EpPIT/zxxVXmmPaLabfpVJAihOnI2KObrcbyWQSLS0tqK+vR09PD86cOYObN2/i6tWr6qorybydzIes935ohY+HvpPh89prr+HixYv42c9+hn/9r/+1JYM6FbtdNcodIGmACxouIKktGb7G12JJSQkeeughdHZ24k//9E8xMTGhlHbiLdlwY1LmJR7479wJtrm5iW9+85s4fvw4/tW/+leWc85ut1vNq+Qj0hmkU6CIlwJ3M3IHg0EcO3YMf/Inf4L//J//M5aWlixK9L3OP/VH4dCbm5v4u7/7Ozz00EP43Oc+p2AgPsevGqO1IY0Z4O41Z263G4lEAoWFhQgEAvjUpz6FyclJzM3NYWNjI4P3OeEr3CFBmWhnZmZw+vRpPP3002r3nPiHVGQlz5ffXS4XmpqacOLECXzve99DIpHIgEsqW7px8PGsra1hYWHBMt+klNMcc14klQreB+GVaE6uJd6/Dhb6THMqE+HQf3quO9vJ6xCNE/2MjIyo0EQ5dzr8mUp+/p0rlHj2Y+k853BIJwdP6kn97OzsYH19Ha+++qrtERA7OpT6As1fRUUFOjs7cfjwYRVuTrBx2pOGLzcaOH65wbCzs4Mf/vCHuHnzpjKcdHqPCVa7wuVYcXEx2tra8Mwzz6CxsVEru+V7QGYiSV6HxkROH86jyaFx+fJlvPTSS5iZmbGcpc+FZnTj5/xc4oRoieR9VVUVenp68IlPfAI1NTVqXriTi/NlLi/4OMmZoHOkSlil7KXNBRo7RV0kEgm88MILGBsbw8LCgiXySmdEmnDB+9ThRL6r4yP8u4nmqC7J8uLiYjzyyCNobW1FfX29JeEjN1blRhx3SJADX+pLEh6iK8Aa+VFQUGC5RhFABo1Je4NvnnH8SNuAyxhytA8MDKgjixR1ZbpajH82zaVurKb5uVdd8F4NdDt6M/UhcZirDvOhNqCBzAXFlUUp/Hl9HbPVKSAmhsz74MSuEyimfvj78hmHVwezqU0SlB6PR3nNPR4PfD4fiouLMTk5idnZWczPz6ukD9lKNqLSPbdjjnKcJqGka8NU1+6ZbFMKCzKcyOsciURQUlKCgwcPora2Fj6fT+v9NrXNlRW58ylpUyd8pOHM39PRnqRTyQhIaSBlt6+vD36/H16vF1evXkU0GrVkUs1Gs/I3HQN1yoR0gpKPK5lMqh3zRCKBc+fOoaenBy0tLbZX7nABIT3K3BiguSKBx40iXk/io6CgAD6fD/X19Xj00Ufx3nvv4fr16+o+V9P4JM6cKB3yOcFKVyhNTU3hypUrOHTokLpmRwpcrjCaeBrHm44P5efnw+fzobGxET09PcjPz8f09LQtrThRNKXSkUqlMDMzg8nJSSwvL6OsrCzDgONt8P+6EF8+lvz8O8mmmpqa0NjYiK2tLa0DIJvSL/k9GUW3bt3CE088YXG06Rwqsi0dzEVFRWoHSjrhdLDY4ZoUKp5MUIdDXvja4O3Q+2T4moyDXH4jJVfuSurGRjggw1/Ct729jZWVlZwzAUt+QXBVVFSgqanJknhUwkTv8uQ+RBeST1P227W1NYvDIhusOtnPfysoKEBnZydqa2vVmVmTos7ljlTe5bhIPsbjcaysrGB9fd2R3kBwOVFKCWfkqDt58iSqq6vVfceSX0g9j4xdvrFg0qU4POn0HUfhjRs3MDg4iMXFRWU8cxlit3Z5H3JMVEdnaHCjqqCgAH6/H4cOHUJ3dzcqKyszHMJU+BqRfTgJ9c4GpxwT5aYYHx/H8PAwFhcX1VEQE1/T8WknxU5/sOMzOj2JaKS4uBjBYBB9fX3o6upCVVWVJacK1ed/fNeZz51cGyYdSEYfmeSuhJ9vAOr6ySafaLd5cXERS0tLmJiYwNLSUka+Al6c0riufzua0sHqRDdwUpzyFLvf5XPupE8kEo7g+NAb0ECmwcuVQSoSWZLZmhQunWKiM9L5uzplTAopaoe/Q59NC5vDKRklV9a40VZYWIjKykoEg0G0tLRgdHQU/f392N3dxfLyskr+oFvsJuX/gyxODTNTXa7E8npO3qXf6Y/CkzY3N7G4uAiXy6WURL67JwWipDeuYOnmTvbL4afwMlIK5DEADgP1k06ntVEWMsogLy8PLpcLnZ2dqKqqQmVlJZaWlrCwsKCut5GGAcfx/40i++HZiVOpFN58802k02lUV1dbsrLKnSbpwOAKLMchX0e6MdsZY7Rb8vjjjyMWi2F5eRkbGxsKXt14nAoNuQZ0cNCZPUrq09bWpnYGSTHTjYG3ZyfQJB8E7jhjgsEgDh48iGg0ioWFBbUjIukz10Kw7uzsYGVlBbOzs5iYmMjYKZDw6Y5X0Nxyo4jWCyXYa29vx+3btx0r+aZCBsb6+jqGh4dVVAePZCBFncbAeYY0sOh3CuWUZ1mp5AIz7e7LpEicP0ijSMevuFHBozQk75Cw2dEZl1u8TXqPGxp8F1UnPymiaGVlxejI4u2aCu+zoqICra2tFriINxNOeASbTmfg+AmHw1hbW1N3C+sUWKfzyncwXS4X9u3bh7q6ugwcSWNHJ3uIBnRZhpPJpEp4xnf2ZXu6YmcMcUOnoKBA5e24//77UVJSoj0KoePjtAalAa0zbPLy8ixyJRKJ4PLlyxgeHlabCibj8P0o/VIGETwUVlxdXY3jx4+jpaXFciuMxCOPnpROrmzOOt6W5DkST4SfjY0NjI2N4ezZs5icnMzISs5hk59NfVM/OvzQM6drgL8jcev1elFZWYnGxkY8/vjj8Hq9GY4lnZ7G++f6ukknlrBT/5w3mMbOP/MkitS+LopG2hd5eXc2G0gPGR0dxcjICDY3NzNyIOlkqAmvJv1BB0+235wUqX/p6EDq0/cit3X4p6M6brcbW1tbjtr5hTCgOWO0E2CkaPPnRFyU1RqwMiF+fo4vCJpY+l2+KxeNiVnx52QI8QXIGRm1T0ogX1x83B6PRwkAbkh4vV7s3bsX7e3tePrpp3Ht2jWcPn0a4+PjSihyWHSGFIdZzoHumWkRvR9BxIud0M7FWOFXNFAI03e+8x2cOXMG9913Hx5//HEEAgELrQHWKw2cJOwgfCaTSbWzxOeQBCc3gPh4dIKdMxsgc/eVKzvUfmVlJUpLS7Fnzx68/fbbeOWVVzA3N2cJ+zIJC92YnOJaJ6x17fHnHJ5Lly5hYWEBN27cwO/+7u+iqKhIOTnIQCFFW+5oSYFIbdI646H61K+ds4xooaSkBE899RS6u7vxh3/4h9je3rbUt1No7sVw48YCAIRCIbzxxhvo7e1FT0+PuiNe8iZ6VyaQ43QjFVPJYygU7iMf+YjK6Dk1NZXTbp8Jn7y/WCyGoaEh/O3f/i3+zb/5N2qnM51OW44rUOSELvTexJt3dnZw7NgxuN1uvPHGG9pda4lrU+E0tb29jZmZGWxubqKsrEzlUpA8XMopcg4RfMlkUiWuovN6dKuCxHM2xUYal4lEAolEQhnl3JiQ45V0IsPPSdngY9Ep1NlKfv6dK3u4o4EbEHzMunBv2n2kEo/HsbS0pA1VlLRtckzQ2i4sLER1dTXa29sz6nFHCc8MDliPEnA9IJlMYnBwUF2lZoLRCV+gvsh49vl8OHz4MKqrq1XYO42PZyQneLmcJ/wRH+WOx93dXaytreGHP/whFhYWMvIfODHYJMzyM9HA0aNHcfDgQXWzgM5QkAYG8SVZ6PiEDL8lYzuZTGJpaQmnT5/GrVu3sLq6mqEHSdidzgnhxe53gtvv96OxsRG/8zu/g2AwqEKmCS8y3JzGxmWU1Fcl7eXl5VkcnVK28fXD+dX29ja+//3vY2JiAqurq4jFYhl8xTT/Um/MpkNInEm86drQGcLklPB4PDh+/DgOHTqEtrY2uN3uDFrStVlYWGjJS8BxRboFX9/8XY5TKnwuiK9z/Vz2bYdLDi8fSyqVwtzcHK5cuYLx8XFsb29bckDw97NFXN2Lzm7XntM2+HOncsROr7L7jc8/8fmDBw+ivr4eZWVl+Iu/+Avbfqn8whjQckEDVgVKGs90Z5tp15Da5f+pTalk0Lt2STp4uzKRDIfZpMjxNnl9KVBkkclWiFhcLhd6enpQVFSE6elpXL16FbOzs0qAcE+YZJBODSu78ejayfX9bCVb3/w5pw96FolEsLCwgPfeew8rKyvo6upCX18fgsGgmut0+q7TQyqcvPB2SZgDmUo1b1e+L8fE6VV3RsZO0SBFtLKyEsePH0dZWRn+5m/+xqKo6zyu1DYfUy5FV99ufuWcxGIxLC4uYnd3F9/97nfx4IMPor29PWPnga99KTw47LRrwY1tKvJdKlKBLygoQCAQQENDAx5//HFcvHgRi4uLSKVSRoXK7jdTkWuQnCMU5v7KK68gFouhrKxMnRM3rVtOR6Y5ofYlb8rPv5OMq7e3F9FoFN/61rcshqSuZDOuOK8hgzIcDmN6ehoLCwvweDwqlFuuXUB/IwJXZnj/hYWFKC0tRXV1NaqqqjA/P280IrMVDk8qlUIsFsPc3ByCwSB8Ph+Au8opzRlfsxyn1B4peiSnGhsbsby8jM3NTcfGFccFNzRTqRTi8biCTdKn5Pc6pzHxEZfLpd0py7XQOLmzQyo7fC1yWcd5KsmtRCKBaDTqaL3ZySCai+LiYrUbKndCuUNbymLiKVzhTiaTmJqawvj4eEZItQ4mk0LKeX9hYSHKysrQ19eHkpIS5dSQEQU6vk1yj4rM15KXl6eSsg0ODiq8OlVwZZHjIWPH5XKps+Z79+41jld+5iHn8rmkFzn+paUljI6O4sqVKyqZGzc+TTBnMxJk0SnuRB/FxcU4evSouo6QG880Pt1ngoPg5bDpjGepf3C+Iw0s4I4TamFhAWfOnMH4+Dg2NjaUw4j3LcdpR7u50oquDdkPX280nsLCQtTX12P//v3Yt28fKisrVVQfb1fH+3gfcj3TWuF45zByvOoMVzkm0286/ib5Mn2miJubN29ifn4eU1NTiEQitondsvVvmieTnmAnj0w8J9c1lA0ODo9OP5DzSbKmtLQUZWVlaG5uVsc17Y5ByPILYUDbFWlYciPFFBpB9fg7us+ANaGD6cwKLzoPlVPC5N8505TjlOOQygcZT9XV1fD5fKiqqkI8HkdhYSHW19exubmZEV6mw5OJkN+PYWXCm4k5O2lX1yYfgw5eUnbIoNza2kI0GoXX61XXHsjsjXb9m+ZSCnm5eDnzljBL2pb90h9vkyt2wB16bGlpQTAYxPnz59XdxpQgROJQJzT57/fCEDnMEj+88DlJpVJ47733VNZ0SjZD9bgzSyfg5G/ZYNcp2rx9j8eDYDCIo0ePIhQKIZFIYHV19Z5oVvar4xecfnZ3d9X1K1VVVWo+ZSimxAEfTzYeRPySfnO73WhsbEQ8HofH49HujNoZBXbKCykf8Xgc6+vrGBsbQyAQQFlZmXoOZBrNPDSPh7bqxuf1elFaWorm5ma18+T0XCcvfC7I8J+enkZ9fb0KpTUZG5zuJI/mO4L19fUYHh5Wz0xr0cTr6BlXuHRzI+lKx2M4PZDjSZZc+T+1xXmSqZ6UbVIpIycB7ZJKHPBx6nAk13ZRURGKioqUYcONaH4swE7ec2WbMugvLS1pjRGdkpkNd+TA6+npsdz7TP3qYJMKulSyOU5WV1cxNzeH5eVl7ZVbThRaXd+EHzp20traiqamJnVdoekdCZ9dPTlO+hyPxzEzM4Ph4WHMzs6q3AB2/NqEIxMcJrzTnLlcLtTV1aGjowPd3d1wu90Z0Srysx1sOp1WwsHXtm5DJp2+k418YWEBo6OjuHr1KjY2NixJxXS4yEavJhmbK6/gfEmOkYznyspKtLS0YN++fdizZ49xU0LqNXb6P/3ZGaWcd9rRCdfhJR50GyE6Gt7dvZP4LhKJYGVlBaOjo1haWsLGxobFYZsNHifFqU4n59hO/jttQ1ffjpZ0RfIbuvq3pKQElZWVqKqqQnt7u+KdTs8/Ax9yA5orHjqGxQUJZxh2xE27iCZDVzIdEtSkVErikUqSTqHj8MsdCs7U5QLlCgdXHvkil2cquMLDQ7/q6+uxvLyMgYEBvPPOO5iYmFDJNEgQ5yrcs5VsRpldnVyKTmGXz3WF7xwsLi5ifX0d/f39ePTRR3H8+HF0dHSgqKhIhfjwM3ocV1zBp2dc8eK7ojqPuhyDVLhpnmW4Mf/jcHBa5Azl937v9/DCCy/gwoULGBoaUiFAXAHkxcQo7ZR8p8XEJMmI3tnZwcjICL73ve/hxo0b+P3f/311vgnIzC/A8cBxSfX4uqd+THTD26AdpsLCQpSUlODUqVOIRqMoKSnBW2+9ZXRC5YoLHS8iOAl+ugIqFAqhp6cHxcXFlqtPOD5oHHyuiIZ4nzrFAYA6W5ZOpxEMBi0eb7sxOxWetJMYiUTwwgsvqOt50um0cgARPyP65+Fv9EzON63PgoIClJWV4aMf/SgmJiYQDoeNRhW1Z8c3CIZ4PI733nsPNTU12Lt3r5GG5H9dmGZ+fj48Hg/27duHa9euaRUpO7xK2GntbGxsoKamRqtw6/gWl0V8jbjdbq3MM+HLVGicvD9+xEXXLm+fcA/c3WXnybn4e/wdk4FDfLGgoACVlZVqt16uI6Ix6pPTG+fpNMZUKoW1tTVsbGwoB6UpYkPCZPqdjM/6+nqcOnUqA49S1nCc0zgIDrlzSfi8evUqzp8/r72xIdscm2Q75y3EO+lqQI5HrutwXsRpkRt2/D2uq3FnRSqVwtLSEt5880309/cjFoupBEtOx5LNqJD0xXU6Clf3+/146qmn0NzcjOLi4ow2pHOK0xXxah5dyXU9qiN5IteX5Q4q8YdQKIQXX3wRAwMD2NrasiQYpfo6/VZ+/yB0N0nL/Dc+JtJjKCdJa2sr6urqbM+S8/8yrFnyP5P85biX61+Hdzqeo0suKIsugoT+4vE4xsbGMDExgYGBAeUANhn4JryanunezWYYv9+Sa1t2uqZu/oinl5aWoqKiAkeOHIHf77dEUnFZ4qR8qA1oABkEyxUnTkz0XRrRksjpN0mANAn8nCRfJHahojw0TQozSTS0e0aMXvYvFUL+jApXdlwul+WaDKrH4aNkWXV1dSgtLUVPTw/Gx8fR39+PoaEhrKysWIwpjvd7XaS6sf/fLCblScfUaK5JUXr77bcxPDyMxsZGfPKTn0Rtba0670j1AavBLPuTSSWoD3mO2kQrcpHrdq7lM1obUnBSH36/H08++ST27duHM2fO4Ny5c1hfX8+4L9opPnMp2Qwr3jd9j8ViCIVCiMVi+G//7b/hn/yTf4Kmpia1I8rHxsfM1znhg/MGzguo0HOp0AFW3Pt8Pjz00EOorq5GNBrFtWvXEI1GM7zC7xdHkjYBKONocnIS3//+9/HQQw+pxGIcF1wZ5Y4XHpkgeSA3Wom/uN1ulJaW4jOf+QxefvlljI6OWpQxO7jps8kQ5Abf5OQkJicnMTU1hT179mQoyaQ8ybXDaUAHh9/vx/Hjx/Hcc89peVy2ueC8lMuhkZERLC0tWfAnHa8mZVDyoIKCAhXxQoqXU4NVp/SRgtzY2KgcThIWuQvGcc1/c7lcGecKc6VvUmqKi4stclI6ek0GGzkt6GqYSCSi1ps8fmCHG/mdnMs9PT3K2UBwcX5C8pO3L/FE9ePxOC5evIj5+XnlBOT962A0KbKEN0qI19TUBJ/Pp/qS+ozkX7wtXpfoi/SPubk5TExMYGpqKqf1YVe4LuNyudDS0oK+vj4lRyUd8fr8Ox+bxBcpwnweKEJka2sL//AP/4CxsTFtXoFcx0Lt2z0nHBcWFsLr9aKrqwvHjx9Ha2sriouLLeMArPxTHg2U8yfr8jZ0Ifl5eXmW8/GEq0QigbW1NXzzm9/EwsICwuGw5ew81ZW0bhq/iX55cYp3k86bl3f3CEN9fT0+8pGPKDqyC8WVOORrQ8o9uVNMhRvN0niWPJRvsgDmozHciS2dVbu7dxLera6u4p133sH6+jqi0ajxaqoPukg5QTDrZBkV0/qw0791fereNfFwyStozQWDQezfvx/FxcXwer0oKSmx5Ezh9OS0/EIY0Ha/EQHaedpN7fD2uLLEFW1dXzqikUzORHROmI6EWcfUdMQkxy1DPMmb7ff7lecyEAiobLgUOqtTkuS478WgMr1jt0CdFrnY7fqRn6Uiuba2hng8jnA4jJqaGhw8eBDV1dUoLS21HQsX9HawcCVAF2alG48J5zolWveckm5UVVXB4/EgHA4jkUhgcnISExMTag1xhu+k6GjPNF4nhQsTCkfd3d3FwMAAzp8/j3A4jJ6eHsUE+Vo1jZ3/z4XWdPSSl5eHsrIytLS04OTJk1haWkIoFFJZznX1nRpsEi655kgJ2traQn9/PxoaGlBaWoqamhrLmE2KiBQ8nNfJ+tS32+1Gd3c3bt26heXlZZX92Ili6YT+KVRtcnIS169fR319fcYYnLYnC2UUr6urU5noTW05UQQJ3q2tLXU/ti6SSbbJ8Unf+edgMKgMi2x0aeLD3IBYXV3NiJTRFTnX0nDhBq/d+Hh7ukI7cvLYBcEs8SF5MymOOzs7SqE08fJsPJKPs6CgAA0NDQgGg+o7j/oytcvpl48jmUxibGxMZcbV4UhXOP51MLa1taG5udmiCHJcyXd5mzpcktEVj8dx69YthEIhlZ3ahNdcCxktPp8PDQ0N6O3ttUQQybo62Wd6zutxXYXyKoRCoQx9ho/HyRjt9Dfdcxqvy+VCe3s7urq60N7ernQtHZ+V606HA7mJw+HRhYPL9ukvHo9jdnYWo6OjmJ6eVkZZtjl3qqs6rZetbR0+a2pq0NraiubmZuzZs8d4a4FdkdGevD/TGCS++TwQf+DONF5PF81C/Ul8k64zNzeHlZUVLC8vY25uDvF4XJuIMBd9ItdnvGTTl+QaddI2p0tTX9n6ozkj+qitrUUgEEAwGERtba3aMJSRu/xdp+VDbUCbFolEPvfIEkHqGDWgnxgpLHn4DCUj0ym2RAgyvFa2Qf3KxaozkGgc0svFmSHV4e9Rn1zx4cRD8BBuampqVGKSiYkJvPjii5icnEQ0GrUY0XznXyqCJqHGcZ1tIWdbmLm25+SZDn7pyU4mk4hEIvjRj36EnZ0d9Pb2oqury5LNfXd315Jchrz7UtGRcOh2iOm7nF/6nXtDOY3QO7qjAzp6y8/PR0VFBe677z5UVVXh8uXLWF1dVTvRHK5sTE4WHT1nq6vDARWeOT0UCuFHP/oRZmdnUVNTg8rKSoV7mZFbFr4GpRA1zZFpHDs7O4ppP/XUUxgdHQWAjPt3eVu5FJ3iy/vOy8tDLBbD9evX0dTUhJKSElRXV1t2nfm7PAxQZ3xlW9eFhYXo7OxER0cHlpaWsLa2lpUOqA2T8OW4pZ27gYEBAMCpU6cAWK9QoiKPPxAculBFqdAuLS1hZmbGFmbdGKSBurOzg1gshkQigVQqhaKiIlWf6JDgk+uI2uIRRHl5eSoxVC7Gqu55Op1W154Rn+ehx3JM8j+HjcuRXJUO3ia1Q8YTjVHunPFrBLljgu/IU34EU/4OHV2a4CY+3dLSgvLyckUvvD7HA71DMEm6o+RtQ0NDWF9fz6BJO0VUwsV5vNvtRl9fH3p6ejJon485m0yjQvyUjoScOXMGMzMz6qiaTrl1WjjsBH95eTna29tx8ODBjHBjiVOJe4LXTmfi8CYSCSwuLmJkZATr6+vanTs7Y1FXuNzksEulnIcYU2RQXV2d8cgg5wWcl/ExcicM1yt0begMNi4/Nzc30d/fj7Nnz6oIDjnX9zrvEl+50Dr91+GTjh/u27cPJ06cQENDQ9Y2ed8mXUj2z+0GDr+MMOR6PueTxMuJb8loOKmXS3pMpVKIRqO4evUq5ufnsbKyknGcIptuwfnA+1m/sl1TX9mKjic5oQdd35I2aC24XC6UlJTg4MGDqKysVDKG1o10AN8LXj7UBjQnGq4E0tkPKeg5k5MhsMlk0hIHL5UvzuCIaGXomTwHCOgVPeqbFhbPBAxkev6pcJg4cykoKFAhbDy8HIAKL5OLjY+BM1/CHxmCbrcb+/fvR0tLC6anp/HOO+/g8uXLyiNNmYYlczcVOS7dOAkO/l/3zO73bIvS1IadwcQNLMLj5uYmXnjhBbzzzjtoaWnBF77wBVRWVlrOn/L6ND/SCKF+ZKgdv1IEsDqN5M44/0zfdTtg3DiSkRHEwIuLi9Hd3Y2GhgYcO3YMX/va1zA3N6eylcq2OP5M8yDnVDfv8j3Tb5IBx2IxlTV0eHgY/+k//SeUlZWpMEfp6DHByhUWEoTcIULzI8MjJbyU6fm3f/u3cebMGTz33HOYmJjQhkHaCSZZTOuECgnjra0tvPrqq5iZmUF7ezvKy8stV6RxHPLwM84XdWHr/D36XlJSgo997GOoq6vD+Pi42tkxhXFnK5L/JpNJlShlaGgIra2taldQRnXwz3zd8vXD72P2er147LHHsLOzgwsXLryvcE7CWSKRwPLyMmZmZtDd3W0Zv5MwWu4cJR5M57Ti8bjREDStJ6pLsNHuRV7e3fBjiTPeJnBXWeQyzuPxwOPxWPqwg4XPDxUyLEpKSlQ79JucU/rPb76gcRFMoVAIKysr2nOxHB865Y3TSGFhITweDyoqKtT5VDq/KOmM06GcF8JnNBrF0tISVlZWlOyU86MrOpwRjG63G7W1tWhsbFT5CDh8LpcrI4yZ1js3kEh/AKA+Ly8vY3JyEnNzc5b1bOLLTpRfrtwS/J/97GfR0dFh0VMIDu7o58nLuE7GYef0S3TEd+jW19dx+fJlnDlzRjk07XbusinsOjqS9UieUMKwp59+GgcPHkRpaam6zkhn/HAcSN7A+6XNDHpu0jXpM4eXIrhWV1fxrW99C6FQCOFwOMN4zsYPdWuf/65zDDgtkgcQTRQXF+PAgQM4fPgwOjs7LWf/s7UnYdU5s7hc4TRF+jznQ1T4UQ76PZFIYH19HeXl5VoHhy5ai+ZmZ2cHW1tbmJqaws9//nOEw2F19ENummUbs9O5NL2rw61JDpnq6XSeXIudTCF+4PP50NLSgvr6ejQ0NGQ4n+WNLfQ+pzWn5UNtQCeTSZXoShrTVExEpgutkDvJsi1eaJFxASoZMleM+GLlfevOsnLFT/Ypx0WF2ichT7/x9ziRcIWJ6tB38u7xHWnOzFtbW7G+vo6VlRX09/cjGo1a7s2TsGVbZE6E772WXIyTbEVnAKbTaXXFQywWw49+9CNUVVWhqqoKDz74IFwul+0VLTrYdMYy/53TFZ9bvgPN39ExOhONcUZE811YWIhf/uVfxvT0NGZmZvDmm29aFCq7uf4/UTjcfM0mEglsbm5id/fOFVeHDx9Gd3e3JXszN5C5QSjb5njhOOa7g/SbSTgVFBQgGAzi4MGDyMvLwwsvvID5+Xmsr68b+9X1KcdORVef85WtrS2MjY3h29/+Nn7pl34JNTU1KCoqsu1LGjf8uY7nEK8oLy9HZ2cnPvGJT+CVV17B2tqaEva6vnRjM40znU6rrOavvPIKnn32WQQCAS2f5+Mw0SI/QrO7u4uqqiqVLIo7N7MpyPQ75+2kWE1NTeHixYtoa2tTxqBUoDj8XIbICJ/CwkL4fD74fD5EIhEjzpzwyZ2dHaytrandN3l/se4zh4Ur/HQdolPlygRvQUGBOo9mUmQk76PPdG8xHT8KhULGDNcmPEmZSDvi1dXVGWHF1JakPQk39U/zOT8/j2vXrlnO3Eol3WmhcQcCATz22GOoqKjQ7qRI5xKHXcppep+OgUxMTODtt99GJBIxJtjiynU2Y1Pi1+/3KwXX7/dn8Du5rnjhz+RnKZPS6bQK3T59+jQGBgaUjLgXWWVnDEreyfljR0cHOjs70dPTg0AgYHEQcWcZwSyTTEm9UtcvvSf7l45MwsnQ0JA64z4/P5+hx+nGbjfHpu86vGVrX0c3lABqz5492Lt3r7rpgG5DkXp2tsJxI+vrZBbX33guBBO+SHfmVyPp5kTOTzQaxebmJgYHBxEOh1XiQVqHOr2LF51dkEuR79jJFScyJ1f9X/IAO3oiXbW8vBxlZWUoKyuD1+tFeXk5AoGANjkff9+JrmxXPtQGNKVxl0a0Tul0ghRdqLVuMjmzpp1nHuZB78k/EwPkRSps8rvJWKHFrBsDZ8Q6eHR1OIOgNsvLyxEMBtHT04OVlRXMzs5ibW0Nq6ur2NrayvBempRQ0wLNtmglDu0YRTbFV/eOqejGwMNyaJcsEolgfX0dwWAQDQ0N2LNnD8rLy+H3+1Wkgg4madDI+ZGGgZxDel+32yzryX51ihdvx+v1wu1249FHH8X8/DxGR0dx8+ZN5TTQJa/IJiCdMN1sRdIBKao0Fy+99BLi8TiKiopQXFxs8TpyxUXOp4RVR1MybJXTOhW+89DW1oaqqirMzMxgd3cXsVjMEtKdzVCz4xs6QU9rlu7M/ulPf4re3l643e4MT71sUzplTIKejz8/P19l8v/IRz6Ca9euqV02zgNMNCJ5LB8PwUB3XZ89exbHjh1DU1OTJXGfdKBKJUq3c0jv+f1+BINBlJWVIRKJZMx7Nh4h529nZwezs7Po7+/HL//yLyshb0dffLeMR3gQnfp8PpSUlGBxcTGD9pwoO1RvZ2cn405XHc5170tlkZyDOnmbDU8c3sLCQvj9fq0DUNaV8NJuMX1eXl7G2tqakcea5Kvkq8XFxSqLr0zMxJVhE2/m9emIyc2bNy07qbkWvt7o/P7JkycRCAQy6InWDZcLfL55JBQfEzneJiYmcPXqVYvBr8Op7rMObv5H0Tnk3PR6vRn6CcGVjbb4ezoH/u7uLra3tzE/P4/z58+r8Fd6V8rYe5VPkjYJ73ysPT09GZmhOfxcP+Dj161xkt2mDR4y3nT4S6VSWF9fx+DgIIaHhzE8PKxyNkj8OR23E8Na1tPpA6b1SDywtrYWBw8exPHjx1X0C2BNtCY3qbLB7mRcurVdWFhoyf4v1wPNX1FRkTESUP5FIhGsra0hFArh0qVL2N7eRjKZzDirrxvbvfAUXfmgdDTZHp9bJ7DKd+QzSmJZVFSEhoYG1NXVob6+3nLGWedkl+2+n7F+qA3o2dlZbG5uqjBNyrZmUkLtvD4kVIC7Z9XoHWJ4xJToHdpd4YyAK6BUZLY+MrqpHfqvU8S5ose/S+aYTt+93oWPLRaLWcLXpXLJPZXSEJOGBv1Rxu7q6mocOnQIt2/fxtDQEF5++WWLp4yPi8POYeb4d1KytXWvxU7xzAYHFzyRSASxWAzLy8v4d//u3+GBBx7AgQMHcN9996ld/fz8fKUk87FzGiS8ywgFueCJQcgwZRnCSO9wWtQJGS44eFgYnQesqqpCMpnEiy++iNHRUcXg+ViczKdTJpqt8L74PKyuruKll17C5cuX8Qd/8AdoaWlRmYzlmgIyj2jQrhatFT4PhA/iAbzocivQTvRXv/pVlJWV4c0338TNmzdtFVJT0dG95APA3cgW2pX/5je/iVOnTuE3f/M3LW0RHRCtSWOQxklHRDi+qA7tZJaUlGDv3r04dOgQAODWrVuKxnRGtK5IGuK8isLhrly5Ao/Hg8cff9zyLo+akDsL1Bbhhc8TnVm/77778JOf/MQS4u10p0rS4fz8PFwuF7a3t+F2u9X5TuqX81++c0L90plTUsLq6urQ0tKC8fFxi2JtBwd955/pbCs//yhhkkXyJcILd8jkwr+lAkO0ww1TXofWn87IyM+/cwWWy+VCLBbD2tqaZYdRGknZ+Dz1EQwG0dfXp+5/5mfnqL6cN2mMEt6SySQWFxcxODiodvhk3ybY5G/kjAkEAqiqqkJDQ4NFt+DzLXe9+Bi5Ac2PW+zu7uKtt97C9evX1e5zth0vXZE0SN/JWdLZ2YnPfe5zlh0ivitLc87XH/3nobLSMcBhpQztQ0ND+Pa3v43FxcWM+4zlPHB4ZR0nBhfnqXQG84knnsCJEydQU1OjeCmtezqixcdO80PjTyaTKts9p3t6j+NIyiP+nRx0KysreO6553D79m1sbm5anGmSX2QrJieck2Jal1L3pPOsx48fR3d3Nw4dOmQ59sbfcdo318Pl2OURB9kmd0xx3NORPakv0G8SRt52KpVCJBLBz3/+c8zPz2N1dRXxeDyD/iU/o7Hblfera8n3czE45RznYkTrbClqo7CwEI2NjWhoaEBPT4/SrbmM4P3z9yXfBjL5u9PyoTagKWnI0NAQQqEQSktLUVdXh56eHpSWlmYYI3aMkRgRZwh850CnJEiikoyAFo08uM7fp/e4EOXfnQh/aeRyeOmcDfUt4eNwSUVAwkXvSObd2tqqLq8/ffo0pqenMT8/nyF8TQvGyYLMZmy8XyZxL+9yBsYVfcLrxsYGLl26hKmpKdy6dQu/9Eu/hOrqaktiMarPFUOdEcvHSc/4XADWnTcdEyEFXsfIJDPmc8KvXvB4PDhw4AB8Ph9u376Nl156Cevr60oxtFPu309xangBd8Mmo9EoQqEQ/uZv/gYf/ehH0dvbi+bmZu04uWKi65MbmLxwvsLb0sFcXFyMRx55BJWVlRgfH8f29raj+0ezFR0fkobnwsICpqamMD4+rjL2Uh2pgBHP4m1J/if7JB5aXFyMj370o/B6vZiamlLZx+VayWVcHK+xWAyXL19GQUEBHnvsMYtAlHDZFYqqAe7MYV1dHR555BG8/vrrFuM1l8L5XCqVQiwWU4Y0KVekMNslEqR+uWFLBjQl/soGh24dU1t07RMP4SY80H/JZ3QKEDmt76VIY45yRhB9SINP0jSdEXS73QqvqVQK29vbiMfjlr6k0pqt0K5ha2urZTdDtsn5gSk5HBksa2trKrmZHU7sZDw3Qvfu3Ytjx45ZnEY6/kW/y0RF9BvN7e7urnK23bhxAzMzMx8IbwLuOokozP6BBx7A/v371VVDnD/IjYFshh1/l/NoGt97772HmzdvWmSUyRDhuM6l6Ixnt9uNpqYmtLe344EHHrDoo9yBTfPFdUXZNjcWaVykQ8hoKKonjbh0+o7hfvnyZbXzTPlMpL5p52TK5oAimHOhG8mr+LgoHPfhhx9GR0cHysvLld5JeNPp6NKByot0skr4aZ1wfYbakvoS1dFFQBGPoHqcr3JDe3p6GnNzcxgbG0MoFEI0GtXeuW4q97JGncyR3XOnBrWdzZQNPvrP/4qKihAIBLB3715UVlbC7/dbrizTtW/n3KFn92I8Ax9yA5oGTcJpa2tLhW0Gg0EEg0HU19erEAodg9AxP51XzVRME2YyGqWHmv/nDN0kMIDMs3O68Uh4TP91TNEEuyRm+i0QCMDn86GsrAyrq6soLS1FIBDAzMwMtre3M5iBVIx1sOvw6mRB34uC/kHU5UY0fY7H4wiFQtjc3MTGxgba2trQ3t6Ompoa49kMaov6tDMMpOCza4e+60K+7Oic1yenSWVlJdxuN4qLizE3N6dCuqPRqJFuTbT2fgpXEKWxR7whEong5s2b6ionn8+nsurysUu6sVMIdMa2HCPRAleQ8vPzUV9fj1Qqhc7OToyOjiIcDqvnOjyZ1ooT3HBjIxKJYG5uDteuXVNnoXk0jRy3VBYkn+EwcTwUFhaiubkZ7e3t2LNnD27fvp2hCGQbi64ejSeVSiEUCmF2dhbb29uWLNfyfYLNpIhwpcfv96O5uRmBQEDdNMDHmQtPISU3FothamoK5eXlKC4utjgnqF2+M8H/pKOrrKwMNTU1GaHoJrjs+DqFiadSKUsYJB+vqT0Ok10IqZM2eTv8aIGdHJBGD+d/qVQqY4fRydxJ+VlQUICioiJUVVU5chBIhyVf/7u7uwiFQlhbW7PIQQ67k8Jx73K5UF9fj9bWVuO6lGtX9ikV/93dO9fFTUxMYHFxEeFwOKvzm7crP0tYaEc2GAyio6MDLS0t2vB/HuVn0sfs5CLBkUqlsLKygpGREXUtE3cW6uhIBzsVk3Ep65OjoKysDK2trdi3bx+qq6tVHbv1YtK55GfuXOK40RkDfG2MjY2paEHKUcEdFDpcONV77J7rximfS75CTrXa2lo0NTWht7cXlZWVFj5hFzGjWxe5FC63TfDbGbh8LNwI5/Oxvb2N5eVljI+Pq6tiiUdkW3v3ortm0ycl7E76+iD1OV2bxI+Jd5SUlCAYDKobRnRXwDlt21Rywe2H2oAG7np5yfO8vr6OqakpdefX448/jurqavh8PqWw8B0A3o70zAJmYtIxV51glIo0b0MXo88Xjwxh4OF2nEnw/nhWSt43ZzpcSZPKphwTxw1/h/7oO+H08ccfx/b2NlZWVvDtb38b09PTWFlZsexQEvySYTstdosg17bs+shFaebvcEZFuz3b29v4+7//exw4cABPP/002tvbLWFb9I7OKOP0YOpfJmvSjYfa1zFUgsHUR2FhoQrjdbvdqKysRDAYRGtrK/7yL/8SAwMDmJmZyTCUct3Fez9F1+/u7p17eV977TWMjIygoKAADz74oEpcw9eGNLb43JBSQmtAl1hIh0PaeaSSn3/nmrDPf/7z+OY3v4nx8XG140ltORFyspgUFVrv8Xgcw8PD+Md//EccOnRIncUzKU18h9bE87iSwuedQjSfeuopTE9PW8KFs8GsK5xn7e7eOdO4ubmJxcVF1NfXW9rjhiendZ2Hme/ceTweVFdXo6GhAZFIRJ1Rz5UPcPxFo1FcvHhR3SVM7aRSKbV7K41mvuvM6ZDCdUlh4LvCJuXeThGOx+OIx+MqcZrcdc7Ly8vAmeRRPCMtL07pl4/b7XZnyDRTOzpeKXfWncyZztAjZa2oqEhlzk2n05Zz6URXPOKHHC4kB3k+hmvXrmFyctKSPIzDl8144zyaojxod1OOx7Qu+Trnu2L0R9ebvf7662q3Vh4zk/BKOHX45bvPXq8XnZ2d6OzsVKHn8hicLtpBZ4SY+qf5ikajareVQrc/CFlkMqI5/Xg8Huzbtw8nT57EoUOH1M44wSfxyvmQ1Md0dYjeqB1K5KfbWaVdznA4jO9973tYWlpCJBKxTfqqK9nmWUfDuue6OtLgJWdLY2MjHnnkEezbtw8lJSWW+Zc79/Q7l+m633mUCxUJG9fLeTg3LzQPnEdy3PO5kno68apQKKQSbhLv0jk0ZL8mXJrqy/8fhNGr61fyrHvVxeV68nq9KC0txYkTJ1BWVqZsOT7HVGREi5Qj7wcuXflQG9B88XOCJcG1vr6OhYUFBAIB1NbW4uGHH0ZZWZlKa86VYL7jIBFMi0CGa/KFIcPqSNjpJlkuOq6o8rt2dVcYcQWN98+ZBoeTX5UgPZMcNk5YkgAJZs6k+R+FehFzoitAfuM3fgOrq6uYn5/Hj3/8Y6yurqrsrzqF1o6wP2jCd9KunVCQdeizFPJcKVhaWsK5c+cwMjKCEydO4MiRI+ju7rYk4+HCgSux1C4XjtyDL4UYpyl5TRavw9vTjVMKWR7mSUbAl7/8ZQwPD+PSpUt49dVXEY/HlYB3Mm/ZFG67edC9Q04jWrd0vmhsbAx/9Vd/hc3NTezfvx/d3d0ZhiKHRWcc8Papno5Z5+XlqXNrJJAJ136/H319ffjlX/5lda0K5106w0cyfynA7AQj9bu9vY2FhQV8/etfx8c+9jE89NBDFgOf05vcUeP/CQbCg3T0uVwuleTrtddew9TUFFZXVx3TAy9yvKTsz87O4rvf/S6++tWvoqKiIgMXcuzyiA7ffae14PF48NRTTwGABV5ej8NkgpHmMpFI4MqVK3jkkUcszwEo3s7hJFqRO3OUcbmsrAwejwfb29uW/k3zLn/nSt/Gxga2trZQVlaW4TTj9M3DTolvcye07sy/rmRToCmEm/rn73AnMNEotUHw0I6jEyXUVKjNsrIylJeXq/BwMqppjqh9OsvKM5lzWU11b968iZmZGYsRfi/4otDgEydOqGQ5PJxVRi3k5+dnXCdHRRoFGxsbmJqawtWrV9XZZydwmXgz1w/I6K+rq8PnP/951NTUKPriCbV0iZik/kT8nBuLtGkQj8dRXFyM5eVljI6O4uWXX1ZnSbnRmitd2I2PPpPRV1ZWhvb2dvzSL/0SKisrLbkPuHHGYeB8lGCUThk6i89lu+4dygdEeNrZ2cHg4CAuXLiAubk5dWzItBMv51Qa9joeKOWDCWc6nEqHgdvtRmNjI7q7u3Hy5EmUlZWpmyNoncnjCJSvhNqksXHdifML4O5Gk4l+eWi71H352pbXxHLcmCIBpqamcO3aNUxNTWF5eVnxMMn3+LvZilN6dmo8Z2tP6jr3ArMOLjKaKX9AT0+PSl7s8/ksR1Z0m5LUhpxv3ofuO9fPctnR/lAb0IBeseFClcIXKdyvoqIC5eXlqK2tVdc/cORxpqYzhiTTpM+0iKRxafKS0Hs6JYeKzmDlxaRESyEk+8rWjvzNrk0ajxyv1+tVV8MEAgE8+uidLM6hUAjj4+OIRCIWgamDXRani99pcWoYOyk6A4e3sbOzo86YJRIJ3LhxA/F4HEtLSzhw4AAqKirg8XiMeJZGEv/vhIFxYSA93naGqRSeko5cLheqq6tVO9FoFMPDw5ifn8/INJ0Nfx9kkUYURalQdstkMonCwkJ0dHRY8EEl29qXwpI7GGQ9uV4KCu5c29Pd3a2uuBkaGkI8HtcqkO8XN1x4x+NxjIyMoLm5GTU1Ndi7d68WZ3I8OnriY6Xx0Xc6u/bggw8CALa2tjLWuyymsfLf+Y7K4OAg1tbW4Pf71VUm3MDhCiZXUHi7fCxEDzU1NfB4PBYlymQ82+E7mUxidXUV4XBYKfdyt5fDQmPTPSOnZDAYVPeBOoFDt7Z3d3cRDodtr8TKFh5Jn7ksk33bFdmGTApk6lfyO2onmUyqMGkTDenal3w0Ly8PlZWVqKiosJx95sac3OnT8WK+uxsOhxGLxYyGm50ckn26XC7s378flZWVFqMs2xg5vFSH/01MTGBsbAzRaFSbQEnSkg5mHS8ghbi+vh7d3d2oqqqyRL7I93XrzaT/SNjy8/MRjUYxMjKC/v5+FaZsx3N0fZvGSHV0MriwsFCFbR89ehTl5eWW4xG6MaTTaYsDKhuN8nZk9CDnj6T7JpNJ3LhxAwMDAxgZGVGbF3KMunZyLU51KR1OOX/r7e1FS0sL2tra1FExuQZlZJQuSz7HkR0v43KOwyvpX1ekk9mEx3T6znG+1dVVhEIhTE1NYXp6Gmtrazkn6btXQ9Wp7uzENsgGk5M+5DridEDRjWVlZaivr4fP58u4ScUEh4RXxzc+yPKhN6CpSGWT/lNoRDQaxcrKioqfP3DgADweD7xeryUsDrhLNKTscI+8bmeGPuuErJ2g4QJXR4SkAJK3X4Z365RDEpT0jCtkkombFENqnzMs7mGTjgK5Y0rvUpr50tJS1NTUYGpqCiMjI+paiVgsluEhJ/hNRt0HYVDINk396JiHE0Fhwin939nZwdDQEGZmZnDz5k11L2QwGFShjJyBSwVI0h2FiGVTSqRCZBfSplOeuPCmsrOzA4/Hg/r6epSVlSEQCODVV19Vwppn+HSKRxMO7YqdkcON+O3tbVy8eFElt2pubs4IpdUZkhxunTIqjTZej+acngN3DMyOjg4UFhZibW0N8/Pzlh0uk9KhW7umtSJxkJeXh2Qyifn5edy4cQM+nw/t7e0ZRj8vTulLvkd3Fz/xxBNYWVmxnO/SrWNOYyZByHEdjUYxOjqKubk5BINBFBcXZ7TJ29BFvEh6cblcaGlpQW1tLfx+v8XAtOM7OvyTEhuNRrGxsYFwOKzCEAmncg6545cKpye3242KigqEQiHEYjEtLLLocE070OFwOKu3nd6VuzlcBuWqoEjeSrt3BK+sI3kG9c9D7BOJBJaWliw70E55iISlrq5OnX+mNUy7e5wHmmQ355vJZBKxWMxiyDnBj+432pnp6+tTBj7BTHU4ncvoNcnLeFTawMAAbt26lRHaa8KfnXLKaZzC89vb23Ho0CHL1XN2+JCGtOxHx+8LCgqwsLCA/v5+XLhwwZLF2KmB4rRwuGiMjY2N6O3txX333afO6uqcLBwOaUDrnnHZxOlPdxSA8hskk0lsbm7inXfeweTkpApjzwUXdoavrq6cD91a1uGPdp7Ly8vx0EMPoaGhQUUV6XRkzj/T6bQluoivU8CcTEzKGP6Z6wtc15V44fNFMpLbDtRWIpHA2toaRkZGMDAwgPn5eXUFqE5HNPGtXPnHvRi29J7dfDvh9zp5KfEt6ZmOznR0dKChoUEdoaH5lrRg0q95HZNzUY6B6Ab4f2wHmheOPG6I0UKgaw1WVlZw69Yt+P1+tLa2oq2tDUePHs3wdgGZYUV8kfDFJUNzuBFLdYkI5NUCXIGXbZBxT894v7q+ONEAVkLWMQL6SyaTFsZD32WoKlemqL7Og8YNrby8O9nzWltb0dDQgGPHjuFnP/uZygbJz0cT/E4WyP+J8kG0azIMSEHmSl84HMb/+B//A3v37sW+ffvw7LPPqsRIlG2T5ljSFKAXDLxfABYGxI0hCsGUygq9bwppkcYI7SD5fD709fWhsbERjz/+OP78z/8c09PTalfDpHASjLr5pmdOip2ix2l0a2sLN27cwOzsLHp6etDW1oaKigqLwgNAnfmmuZMhcxyv3DCk59zocLlcSKVSal2Q0dDR0YHa2lpsbGygv78f4+PjFiVWR+smGtUJB94GN+r6+/sRCoWwb98+tLW1IRAIZCgfPMxZOtFMu3BUSClqamrCsWPHEIlE8OKLL9oqWk7GSGNJpVLY2trCD3/4Q6yuruLZZ5+1wCATEXFDCLjL1+UaIcfG8ePH8dJLL1kUMJ1iYlLsida2t7cxMDCA6upqtLa2WnAoz0LSWif8cbmVTqfh9XrR29uLiYkJlXwuW5HykHjQ4uIiVlZWMgx5fjSI46awsDDjmJPL5VLnL3XKkh2dShzy6BtOg6Qg0+4D50m0LtPpO9nZx8fHLTu9/E/KQQ4L/UZrs7u7G21tbSo0lBuDVJ/TA+GVYOTncEOhUEbYbC5Fp2AGg0GFL75m+XrSRVxIRzXBn0gkMDExkeHkorZM/Ff3jNMO8YCOjg709fWhr6/Psh5l4bxVrg2TLsANp0gkgv/9v/835ufnLRFuTvinSbGWdMzpkmiCdJtf/dVfRUNDg7pSh49LGgwAMuaN82mKMKF2uCzifJd4IS+0C//DH/5QJVsk4/leadCEP9Na0n2XbRIt+Hw+dHZ24stf/rIlGz/HHc9LxHHF/+g5Ha2Q2fPtrlflv/Ps9JwnkUzhx1j4fEi87uzsYHV1Fbdv38a5c+cQDoeRSCSy3k5j0pEkzp3oUbkUnd6arW1TPdN3LlPoz+12o66uDnv27EFnZyfcbrdFrujkkYRDygXZlwk2Pg7O252WXygDGtDvRHPk0wKhEJdUKoXFxUWMj4/D4/GgrKwMnZ2dKskO3wWWjN+k8Ou+S8Vb7hjTZ84Y7M6XScKSTISPl/9m8q5Io5ufNaD3qC3eNodDCjbZH7+r7eTJk+jq6sLa2hoWFhYwODiI2dlZbG1tZezE6eb0gyi5tKNbeE6UC0mH9J+OF9Bu0PDwMNbW1hAKhXD8+HE0Njaivr7eokjowvlJeZDMxXQ+hOrwOZXrgzsyZH88UoMXvj7oCpgvfvGLeOeddzA+Po6xsTElwDh9SGHsZE50gs80P4QjXocyYALAd7/7XezduxednZ14+OGHM5w3UtBJwUntEl4ks+b45c4Keu7xeFBYWIinnnoK9fX1uHr1Kt577z0kEgmjYNbhwa4QzAQ/jX9xcRHf+c538PTTT2Pv3r0qFF+2z/uQCrA0rCU8brcbPT092N3dxenTpxGNRjMS+uQy73wuU6kURkdHUV9fj9HRUbS2tiq+xelXRgfQc943wez1erF3714kEgmcOXNGJdzRKbomHHFaSSaTGBgYQGlpKR599FGLs1QmojPJEFKQyYA+c+aMGpsOJtmGTgFeWlrC6uoqAGuiO37tIYdB7mySA0h3/teuyDrkfPN6vRYDQq4xbjDwNojPJRIJzMzMZByD0PWpg4lHelVUVGScDdeNT84ZP4uZSqWwvLyMd955J+P6KqcKGue9dO/pwYMH4fF4MhwfZEiZIt90fIycae+++y7m5+fVjq1uZ9MpHjltFxcXo6ysDB/72MfQ3t6ulGK7NqVOQb/xz3Jednd3sbCwgOHhYSwsLGBra0t7Ft5kAORS5Jz4/X7U19fjmWeeQW1tLbxer3FXWaezSX2KaFEXFaWTS/Te7u6dxFTT09O4fv06JicnMTc3pxwJOoeK02Li7dnwZPqN1llxcTH27duHlpYWNDY2wu/3W+SU1DUk7fDfdQaV1Ne5LJD0xx2HMlEub4f3w3ctad4SiYTlGNva2hpWV1czrvqktpzotCa+nq1uLvNmwq2uXi78gL/D9c6SkhIVou33+9VfUVGRJQeIXPtUdPoth8cEo24DSuqJuZQPtQFtMmDk7zpFmrzGsVgMKysrmJqagtvtRnV1tXru9/vh8XgQCAQyBJMkfKk888XBd45pQcqFSIUrJHI33KRMZ1NAZV86nEmYdEaCXbu8jhRYXBDQb62trWhtbUUqlcL09DRcLhc8Hg/m5+exsbFh8dRRm9kWyAdhWDsVELkYejrhLaMIFhcXsbq6iunpaeTl5SESiSAvL08lIuG7n4RHjhvpeeOKp8SRnAteOIPXeYJ1RSq0ZBTef//9SCQSKC4uVuePSYhw2sjG6LMZCbpnJsbLFcloNIpz585heXkZa2tr6OjoQEVFBbxer2XuKPs9X9M655ZcQzrmLRUhUpb2798Pj8cDt9utnCm0m6ZTOrOtd51iysdDZ0XPnTuHhoYGeDweRWvyHYln4k26PuRvhYWFqK+vx+7uLmpqajA/P2/Z/ZXr2Om6Iv69tLSEiYkJDA4OoqmpyZKISu6gc9g5vLxPl8uFhoYGpFIplJWVKSeriV6zwZlKpTAzM4Px8XFEo1H4fD5tckkdX+YRTnl5d5wte/bsUVeQmdZjNgUnnU5jc3MTm5ubFjrkES78s+7cJCnBunVgt0blf1JY3W53RmI3qYDxZ3J8ZLDmEiot26C1WFJSojK9yjpSxkm4yNFAjtEbN26oK5R09e3gksZaTU0NDh06ZEk4SUUnc+V88rrE56PRKK5cuYL19XWLg1NXnOKV4CVHal9fnzKO5Jza8UupRHMDk8aQTqfVkbAbN25gc3NTOQI4XpzAn02X5PNBNFtTU4POzk7LvEg5IMege07zJY1MKpJ+ZBTY9vY21tbWMDAwgEuXLmFhYUEdkdON345H2NGmaVy6+qb17nK5UFpaiqqqKhw8eBCdnZ0oKyuzyFjpYNedFc8mM3T0RW1y+SDHJo0sueZ5fQ7nzs4O1tfXsbS0hMHBQUxMTGBra0vpsdLpca/lg9BzTcWp/qubc7vvNO8ulws+nw8VFRWora1Fe3u7Sg7G51W3IZENFpPOI3XY98vfePlQG9C5FJ1yzQUNeWSnp6exsLAAr9eL2tpatLW14eGHH0ZpaWnGOS36zBk790DrBBj1x9+h0D1+fli2D1jDx+XYqB/pteN9cSYtvbh8J0l6Re088Rw+btRJL57MGE1j8Xg86O7uRmtrK7a2tnDlyhW8+uqrmJ2dVdlAeR8cjzohZJrzD7o4ZTSyro7p0040/b322ms4f/486urq8M/+2T9DdXW1UkCoDTl+ojVuKHAay6aM8u+8H264S+OaaEUWHi5+6tQp9Pb2Yt++ffirv/ordWUD9aczSuzmTY7dKYOVwo/gjkQiGBoaUjsXX/7yl9VOJsdpYWGhMiR4EhwK3ZR4lbDxUEt6j9cpKirC3r17UVVVhcXFRbzzzjuYmprKmCuOM9M4db/zNmh9J5NJhMNhvPjii5iZmUFXV5flbCW9w3kTKY/0TLdbJemdrj371Kc+heeeew4TExNaY8KJUcFhIgPg1q1bCIfDeOCBB1QWWlk4TXJ+xumXeC9dYXTo0CGcO3dO7WrmQneEl4KCAmxvb2NjYwPLy8vKucQL4ZeHdPI1S3LH6/WqO+SlEW7ynuv49e7uLjY2NpQBzeUKz/wrx8uz0RYWFqodaF7XCc/l8ojPC+1Q8sz4EhaZvZzaIYOVGww6XJgKN1RpTDs7OxaZz+Ui3yEjBwvVox2/cDiM0dFRRT92xqL8nf+nMOE9e/bgxIkTRgPM7XZnnFXXzT/hMh6PY3l5GZcvX8bm5qYlUkPKdaew05/b7UZ3dzeeffZZlWdGGix28yF1GOkMI8dWMpnE2NiYOvfMnRVU367oZKmpHhUKp6fddTr+x/UnkhHcWONzQf9lMjA+B/RMF1LMYYnH4xgbG8ONGzfwxhtvqPwjMurAVHTP7XixEx7Nv/O//Px8lJeX4/7778exY8dQXV2tooby8/MzwtF1fEhuLPGEihxuXQZmkuu6dULyndazbtOM60hUl55tbGzgnXfewY0bNxCJRCz5X7JFddjRoNQZdTqkXT274nQudY4IpzwMuIP3srIyVFZW4tChQygtLYXb7TbKalmy6QbS3uB1dU5E/rsJn07KL6wBnU0JlwyWGB0tLjKml5eXMTY2hvLyclRXV+Po0aPqQne7ieaEwQ1j6o8r5rpQWt6ePMvDlWC+0DkBUXtut9tihHJD1C5EXBpkVEyhg7pxy3ngY5d9kVfyyJEjaGpqUh7lixcvqrMjPBRVN7+5MI73U+6V0ZnwxuvSlUuU+O7P/uzP0Nvbi66uLpw4ccKisModKicCL5tnjwsTwCrQZT1pjOgMKa/Xi+rqani9Xvh8Prz33nt49913sbKyoujaLnRGJ9glLnX1dGuc/85pNh6PY2NjA5cvX0ZBQQEOHjyIp556ypITAbB6wU3j5goRzRHvl/DOlWAemVJSUoKPf/zjAIDi4mLcuHHDVhl0arBIGKjPZDKJjY0N3L59G3/5l3+Jr3zlK6iqqlKKBoUAVlRUZBi8fGz8P++X6KmoqAinTp3CwMAAotEo5ufnM/iV03HQZ+LV4XAYi4uLuHbtGrq7u1FTU2Mx+AjHwB1eTIn6eDtyjdA8TE9PY3V11Xitj4SNj5nwTRmir169irKyMqVck9INWKM9eCFjgXhrSUkJAoGAiurgiqCO/xFupaIei8WQSCQs73KZINckVwRTqZSKYDA5V53yZzKc5dqSRgW1Tddp8TbJkOKJeSRdmfDD4aY8DvIss+S31C+953K5lBJP/czNzWFubk4le3NC3zq4SEfo6enBnj17FExc9vPCHZsy8o3vyqZSKdy4cQPnz59XdCRxZoJZ8lNeCN7e3l709PSgoaFBhTXznCmSvkxKL8HD69PxJ7qq9Gc/+xkmJyexvb1tgd2pQpytHsd1QUGByoZPzlafz6cNNZZ9SOOLz5EcIzfoeO4Uoi+S47FYDK+//joGBwcxOTmpjgvoDG4Tf9DpJXa4sFtTfB65jkA3T9TV1eHJJ59EbW0tSktLLfoiX1/8KI6EUVdkmDXHAZe5cgNJR+/EY3R8lOCkPuimhdnZWVy+fBmLi4vY3Ny0vSqMFz4++bup2Ok1drqvbt1mm0vd+3Z9SX20sLAQRUVF6OnpQXV1NYLBIPx+v3KoSX3JNP5s45O6CG9HRt/Id+z4WbbyoTag7YjOCSJ0RMoFCZ0VjEQiWF5exsrKirq2p7y8HDU1Ner6FF3/uknli9m0Myhh5Aqv3XilwpDNwyIJ0unCoc9cGMg2ZPtyfDKclfBB971x5jo9PY25uTnLVTiS+O0UN16yMeL/k8XUL1dggbvRC6lUCiMjI+oqtsLCQpXwibKZcqWV40AqErp6JliAuwIMMIf9A5mKjnyHDH5SqpLJJHZ2dnDx4kVsbGwoBVOXJVkHlw5v2erxIumF8JxOp7G6uoqBgQGk02nU1NTgwIEDKCoq0jrKdG3K9iXTl33rlE8KIT5w4AASiYS63kq3/nUlmwCVONvdvZsl9MaNGxgdHUVeXh6qq6vV3aqpVEp79ypv064/ooPq6mrs27cP4XAYy8vLiuazKeomhZTgp530GzduoKKiAtXV1eoZh5mPme8uSCObjKLW1lZUVFSgqKhIGYy58A4uR8LhMG7fvo377rsPgUBAu2aloKffeAh1QUEBAoEA/H4/VlZWcoKF90Vzytd2NiNcFo47/ptTOuV/UlZRv7K+jIahsdCOpAnWbEYB8aiKigpl0OucZE546e7uLubm5jA7O2tMXKSDwQ6ujo4O1NXV2Tq96R07nkMwxGIxzM/PW3JTmNrKVvjc0Frv7u5Gc3Oz4p88pwo3AO3aM0Wb0brY3NzEzZs3LU6uXNdotnFxeIgv1NbWoqOjA62trSgtLc1watgZI3bzL3U4aVzJd2OxGJaXl5XxTHfXc71KV5zqgSZ8OCmSHmpqalTIbktLS8ZZV8lL+HfOG3U6v+TlOqe1LuKSz5OUjTralzInHo9jZmYGoVAIc3NzmJ6etoTN50KLujnIVdZkk/3vt5jkA33nf3Stm9/vRyAQwJ49e1BaWori4uKMTTlOA9xRm63QnOru++bzmQ03vOSKpw+1AU3FzhuSazuANTFTXl6eOiu9traG2dlZ+P1+tLW14dSpU2hqarKcfaF+0+m7YY/yOgLAekcpD5+Wi44TBM8ELBmDZATk7ZWhorxQ0hPd7iJX4AAYFWaCwWTMS88gxwONiS8g8kyRk6Kvrw/nzp3DmTNnMDY2hng8btkdNSkKumJSenJdNHaMxGnR0SzhjAvBra0tDA0NYXp6Grdu3cLnPvc5dHV1oaamJiN8khsCpp1PCb+u8LBKrsTr4OdzLxVLTq/kuX/44YfR29uL7e1t3L59G0tLSxlXXdnhKJcixymVc86wqd709DQ2NjawuLiIP/zDP1ROMv4edxQAmUcr5O6yxA0903nBgTtr7b777oPf78frr7+uEpDw9t4P/UkDemdnB9FoFDMzM3j33Xexu7uLyspKxONxdQ3g9va2CsXM1rYOpoKCAni9Xjz66KMoLi7GlStXsl6Nla1Nekbwnz59Gi0tLejq6oLb7Vbj44VCc6XSz3k+AOUora2tRUVFhUpuaFJmTWuZ8LuxsYFLly7hV37lVxT9yHmQBjT9xpPP0NwEg0FMTU0ZFQYOl6R7DhcPzee44WOi+lSH5BXxatm+bg55e5JP8D/+G4/M4EoyhXqm02mlyJJcMMkhHS74/Ofn38kY3dzcnJEJ2KSE8TFygzCdTmNwcBC3b9+2DSmXeJFzRnLc4/Hg4MGD6miJKerAxNe5jKDdzNXVVczMzGB6etoYHkztmqKQeL88os7tduPEiRPYs2eP4v18PFyvkDgwKdYy6iCRSGBubg4/+clPsLKyor1+y7RWnRRJjzQ+n8+H/fv344knnkAwGNQaz/w3DrOERcpmSUOStvg8UIbnmzdvYnBwUEWt2RluuRhlTvQo/tm0rojvHzp0CF1dXdi7d68ag8SzLjqO60S65Gw6o0mHMyAzCz3vn68pky5C/+lqusXFRZw+fRrLy8uWkG3dzqZd0a1//r6OjnTv2fVpx7t0fNlEP6b5ljyAEsTV1NSo3Cp8bji8vF2Je84vpI5lgo3Dx3UsnSzkdU1HZO3KL4QBDdiHJ/Df6HdJQDqC4fX47iDd7Tk0NITy8nK0t7ejq6sL+/btg8fjUe/Lcy+8TSkcuJHCFQiusEpi4nBJ5kDjobOb1L6dAsjhlNeZSMbEFSkTw+ZMVF5jRG0SfHwB0Tu0I/fggw/i4MGDmJ6exltvvYWhoSHLvYamEA27edWVbALG9MxkzGQzcuzokF+VEI1GEY/HEYlE8I1vfENlY/3kJz8Jv9+fEe4EZF6DQ7/x+TSNh4e7Avq7KuV8pdPW6zSIkXIHDCnDhYWF+N3f/V2cO3cO165dw+nTpy3ntngf2XBuV2QdSRuEX+qTIk7o/3/5L/8FTzzxBJ566imVVIjjjhsj3CHGYaf25Xri/UpFPJ2+cw63q6sLf/zHf4w/+7M/w8zMDLa3tx0pZfK5SQDTdx5u9sorr6CwsBCHDh1CIBBASUkJAFjuJ5e7ogQ3V0RongnPdJ60uroa3d3dePLJJ/Hqq6+qc7g6xVE3d5x/Ef4onDMUCmFwcBB1dXU4cuSI5UyxVMA53+LzCUAd4SkoKMDJkyeRTqcxPT1t4WEmmuKF00MsFlNHgioqKuD3++H1ejMMQ/4uGc8S3s7OTiwtLeHGjRtahU+uUV3hxjO1z41kOU6uZHDDluM4F0OF6lMbPHmmxCsAC2wcR4WFhdja2tImENMpiDo46Jnf78fRo0cVzZP8pffoehx6xnHH+WE0GsX4+DgmJycdXV8ljWBqi0LKW1paUF9fj0AgoMatUxalAshxSTRN+su3v/1t3L59W+2Y6Rz4OjoyKd00F8FgEAcPHkR5ebkleofTFMkFqbDLa9KkEUSwpVIpvPHGG7h27RqWlpYsScMknHZFJ3elHkT06XK5UFxcjC9/+ctoaWlRx1yoPs9kz+UBpxe5jgHrdXuSdjnuuZyIx+M4e/YsBgYGcO3aNWxsbBiPLmTTcU04sTM4qD3TZxq3x+NBfX09Pve5z6kM5fLaO+lIlPTFHfA6OHjhvF6+Q1FTuo0AojUph6hNngQsFovh6tWrGB8fx/j4OMLhsHb9mHQPPp8mOWent5ho9l6LSWflz3WyhNMHrX2v14uuri7U1dWhsbFRHYGTdATc1TFJd+V6qo7/6OZO5xDhNolpnDoeRzSQKy4/1Aa0neGSDREmJYjay0bEPIwjlUphfX0dc3NzqK6uRkVFBRobG1XCGBmuJJkjV0ikcS2FjI7BScYmlUzOrHVGLMchV/x149cxed08cLh0uJSKCBVdvz6fTynw999/P5qbmzEzM4ObN29ifX1dGV86BigZtF1xWi8bbeWiZOsMA174eGjngM6ABYNBdHV1obm5WeGH04SOFuxCALkSIBkMN9A5/fDfJZPjsHD6LywsRHl5OXp7e+Hz+eByufD2229bMsESDCZFXocrU3FqiPN1DQCTk5M4d+4c0uk0nn32WbWWde3Lz5L2ucfd9J7EcVFREdrb2/HAAw/g+vXruHHjRsZuvQ5HTovkJ6lUCpubmxgdHcW7776Lj3zkI0rhkQoGh5/v1sloG65g0vnj6upqPPDAA7h8+TISiQS2t7e14Zp2SoakA1JuhoaGUFpaqu6cJdg4DzatQV6HFLfm5maEQiF4vV5Fm7q1ajLOCDbKfD41NYVAIICmpia162nK6E6KCTfc8/LyUFNTY0n2psOTiUfJNZxMJhXvkA5RHV/WyR8pt+zWmo7mZVI6STuch3PaoLbC4TA2NjZsZbquf94O7ZTRPb7yHT5OPq9yLMlkEsvLyypvB4c7lzVKMFFeEAp9lHxdtx5NshqAShw2PT2Nzc1N25BfHbw6/kVjpyR3Dz30EAKBQIZThD5zfYcXubvO26Z3EokERkdHMTo6irm5OcvxFjtnfrai04NoDbrdblRVVeHAgQNoaWlBeXm5inDhtMHb4jjluo5JkdfRiaTVnZ0dbG1tYXBwENeuXXM0h/daTDxO0p/EGdGtz+fD3r170d7ejoaGBnVzAHBXzzDJd5N+SnJZl8SS15VOSd2OsPydj0dGGqXTdyIB19bWMDg4qByhOtzLOdCtKTvebComvL+f+Za0qOONsh595/gtLy9XWbWrqqpQUlJiOdoqC9f575VmdVEC/HcdL9TJfZM+5rR8qA3oXIsd8cp6ukVAzJ8Il7z4dI3C4OAgWltb0dzcDJfLhWAwiOLiYvj9fm278jdi2Py7NIrsCIIKV8Q5g+HhijpGLYWH7E/iRMIkd+CoSOU4G+HK76RkVVRUoLS0FHv37sXMzAxisRhmZ2exurqqPIF8vnRFKujZ6tvBJcv7FV4mY4hojowEOlNZWFiIRCKBoqIildhOl+lU55HTKaSmiALJ8HTMiwtPnZLL3yPvdEtLCyorK1FeXo7x8XGkUil1zl3CqSu6ueR4lHV1z+Q46bd0Oq0SPy0vL+Phhx9GMBhUESZSuMu25fria9g0FvmddmwfeOAB5OfnY2ZmBisrKzkJZVOhd/hO2s7ODuLxOCYnJ/HWW2/h5MmTFkXYxHukIiydBVxZoWycR48eRUNDAyKRCOLxeNa1qBN+HJ7d3TtnucfHx+FyufCZz3xG7djJsHOTcNUpz3V1dWhqakJJSYnK8GsHl64QfKlUCuPj4ygrK0NVVZXK+Mwdm7xdUjSlgkprRl79kY3/8Dmn+U4kEhYniU7ZlOsYyLxi616UDxqjlDWcbvh3wqMc69bWFtbX13Piv1IJpFBpOhoj5R6XiRwW3h4532ZnZ5U8slMQs/GDgoICBINBHDlyROW84GsvmyzTOe3D4TBmZmZU2KmO32cznnR4zM/PR2lpKRobG3H8+PGMs44cj1xf0M27rn0AKhfI9evXMTExgeXlZYvMz1X+2ukdXJ6VlJSgqakJDzzwAKqrq1UCWeks5g4Orn9JPU4nIziOdb/t7t5J6Dg/P48LFy5gYGBAXdllp6/mghu7eZB40X0nmeXxeFBbW4tDhw5h7969KC0ttcDBExXq2pOwcH0bsBrQ1A79povEozo6vUWHN7mGtre3sby8jKmpKZw7dw7b29uWnAv8/VzwzMecbf2Z6pvWjKkvO3hM/er0cXLuFhcXo6GhAXv27EF7e7tjOaCzD3RObqftyU1KGflh138u/cjyoTegnQ48m+GpI2Jp7MkFlp+fb8kIGYvFcO3aNdy6dQunT59GfX09Dhw4gIcffhh+v1+1Q4oRTTgpMBwG2bc0Ynh9OSbyihFD46FtXGAS49EpQPIsHGfkHKccBn7m1VSkkSXniD+XZxXp2hS3241AIICWlhYsLi5iZGQEP/rRj7C2tqbNKJptsWRjYE6UU904c6lrxxD5ODi9Xb16FcPDw3jppZfwT//pP0V3d7fameLzIneIiPHL8++kjJgUYh6OxxmdDNPmRwZ45lUZIuN2u1FUVAS/34/f+I3fwHvvvYef/exnCIfDqg2OAydFJwR1z0w45wYL7W6kUin86Z/+KT796U9j//79SnjQeOROnS5kXvYvnUo8jImvO0q+VlxcjEAggG9+85vqeje7IxnZihwzwZBMJjE/P494PI5XX30VJ06cUPe183f5uqKdAe6g43MtYSTn4he+8AW89tpr+OlPf2oJDTbBaSqET8rKOzMzgwsXLuD48eMoLy9XsEtalOOhRGn8WVFREWpqanDixAn8/Oc/V3jn7zkp6fSd3d7+/n74/X50dXWpezF15225bKCx0f+ysjKUlZXB4/Go3XsnvErOeSqVQjweV5FSFKqqg31nZ0cZlpJ+5VrSGQK8f25IuFwuyw64DPmVhe/GEwzLy8uYm5vLwINdkYq/x+NBSUkJgsGgBQccDq7w664f2t29k9iKzkXqcjuY5ofDQvylpKQEVVVV6OrqgsfjseCW6xJUZLtcBpKDaWhoCN/5znfU/bQyLNLEFyXv5HK5sLAQHo8HTzzxBI4dO4bi4mL1PsHHM0rrdp/S6bRypBEM5Piid1dWVjA6OoqXXnpJe+Y3V8NBjhGwyrj8/HwUFRXhox/9KHp7e9HR0ZGRLZ5HJej4vE5nlH0RHFz28OvaCDc///nPcfXqVYyNjWmvqrIrOv0mF7zItuT6oYzKVVVVaG5uxuc//3kVsi2dCPQO/SbPxXOZyuEoKirS8h/TzQH8Sj4e3UC8nt7h+oDUjxOJBM6dO6cStfFzzrr1lg2PdnqJXR2733X1nMqBbAa4bs6IN9XV1eH48ePw+/2Kh0vnhlwLul3/vLy7Gef5GLjumq1IXYj6kXqWHI8ugiGX8qE3oE2MwU4R0z3TTZ7pGReoVIeIgM4akYdqa2sLIyMjKC4uRmVlJWpqarB//36Vyp0mUXeNCTcieX9SWaFnkvB1HnzJJGR7OvxIfPD/MqyNf5f44nCRp9AutJLqSsZKzLCkpAQulwuBQABlZWVYXl7GwsIC3nrrLWxtbVmuNZHzl40GPsiSS7tSCOjom2iGhGgikcB3vvMdVFVVobGxEQ888ABaW1vVbilnEPRZGgo8HJTe4coVVx7pfCjV40xOGtl2Sezod5fLhZ6eHlRUVGDfvn04c+YMhoeHMTc3pwwHk1LutOiMZ0mnOtqgDM9Xr15FJBLB3r178YlPfAK1tbWWc8G8Hx7uzBVNvu7S6bRW+ZVrpaCgAG63G3V1dbj//vuRTqdx9uxZ3Lx50xL6LNvJ5TfJX+LxONbX1/Hiiy8iHA7j6NGjOHToUMb7UvDo+Bg5FDjdkULV3d2NjY0NbG1t4cyZM+paJdOumJ2iQe3H43EsLS3hueeeQ3V1NYqKiiwZX7mQ52MmWOV5/7y8PNTX1+OZZ57B1atXlYPOlABNhyOihVQqhbm5OayurqqQV+k5J9wlEokMJROA2uHx+/2oqalxFLFBv3HHASXG3NzcVMmQJAz8XYKTO1s4beuMBx0upHPV6/VabhTQwc13laQsS6VSWF5eRigUssDHlShd27zk5+ejtrYWzc3NxqRo1LdJcSY+HIlEcPv2bZV0jtOALDq+Qfh0uVw4ceIEjh49aomg4MYrfed98O9cX9jZ2cGVK1dw7do1LC4uamUjxyvvT36XxrPP58OpU6dw4MAB1NfXZzi++XsSLt4nGVIS/p2dHUxOTuLixYu4cuWKMp6l082OP+jmVKdvAHdvQygrK8NnP/tZdHR0oKysLKvBzMfJ4eIOfT53EtdchysoKEAymVTn+19++WWVaZt4kDQSZMnGP+2KCUd8jDzEvbS0FI899hiqq6tRVlYGn8+nHPQygkm2wWWlDq8SX6RjA3f5Eufv9B7pidJhSjjT0U06fcdZcevWLSwsLGBxcRELCwtqt99uTZvwrdMRJD6zzY3ETbbyfnVZuc6LiopQUlKC9vZ2ld+gqKhIRahxZ48OBjkvvD53cHP8Oh2r1Dd0m3wcBqmrSt0kl/KhN6A/iJIrsdkJQ2IGpGRFIhEsLCyo8LC6ujp4PB5LineeoEi2qQtzkQtfJ/SkIi7rSmHLlRsdY5BCW/ZlMoL5+4DVo29aICbBx2EgRYfumQsEAlhfX8fCwgJWV1cRCoWwvr6uMnRyHPGx8yJxzBm3Dv+y2DkOshWTwNL1TXUpeUUymcTAwAAmJycxOzur7qWsrKxEWVlZhmIi6UMKFxoHZyg6IcTnkbfJhaIdHriCXFZWpryadGVXQUEBpqen1Tid4Eun1Oj6NdEgpw2Cf3d3F4uLi4hGo1hdXUVzc7O6C9Tr9WYIDR0dcfxzBZErEbqxEY2XlJTA6/Xi+PHj2NjYwObmprqCRhd2m0uRfVMStaGhIQSDQbjdbnR2dmqv9OLj0ykKJuU2Pz8fFRUV6OzsxNraGi5evJihnDhRLHSwR6NRtWNQUVGBPXv2WOjexFO4ocrb9fv9KrpjbW0N8XjcCIfkGXK+t7a2sLm5ie3tbUv4Mr0r8SXpnoz84uJi1NTUYHx8POPdbPgiWOgoiIm3yyIdGzoDOpeSl5cHt9ttuZebP7Pjz3ws4XBYGaz8d1lX1wbBX1FRgbq6uqzOANO6TafT2N7eVjKHn3/OBR/UrsfjQVtbG9rb2zMiFOwivGQheJPJJIaHhzExMaHudjeFN8r3JXz0R869QCCAgwcPoq6uDn6/P0MX0hnROn2EDB5O++n0nciNoaEhDA4OYnR0VO0C2vEXu3GZaIuPi8LRDx06hJKSEksyOfmOCU928PG6XM5w+tva2sLs7CxGR0dx5cqVjNBh2XY2I8tujZrek4YgH19+fr6K2tizZw8OHjyIsrIyeL3eDCNbF02mM5T5Z1PINceldJKZ5kS2IZ/v7t4J1Y5GowiFQsqBT9FYPGLUru1sRfee07buhcdme9fEY2kduFwulJaWIhAIoLy8HG1tbaisrFRROk50YyfrxiRDdJGLppILX+RwvR+8fqgNaJ3R6UTwZquve8+unmQARFQkaFOplEqWMz09jevXr6OyshItLS144IEH0NzcrMJdpLFD3lzOiCTRyrAIzuwlgcodF/4+H4+dosmL7loNU13ely7BiKzD4eRChvDB3y8qKoLH40FVVRU6OzsxPDyMgYEBvPrqq9jY2LBkSiRmqFPITEUaXZKRZ6MxXfvZFq6ufSlgaBykJEWjUSwsLKC9vR3Hjh3DRz/6UZSVlSlaAmChDwrLlGHHFH4tIwDy8u7sGHM4+G4Uh1keDzCFmxENFRYWIhAI4KmnnkJ3dzdu3bqFb3zjGwiHwxnZiCWOZN8mvuCEF0jjJy8vD4lEApubmxgZGcHXvvY1/O7v/i7279+P5uZmreIuhYR0MJEBo8OnVDrJw1tQUIC2tjY88cQTqKurw9e+9jWlVJkEl4mGsq1Pcv5duHABS0tLOHr0qLriB7AKK57NmfMriQ/ePu3ytLW1oaSkBC+88IJKksPXphPDUPJbWgdnz55FOp3Gnj17kEwmlVOG75RzWAnvNLZkMqnmp7S0FG1tbdjY2MDGxoZlfHZygeM8nU6rO7fHxsbQ0tKipReCj9O7NKgDgQDa29tx6dIlbRZiJ3hLJBJYXV010gPHK8+QLxVd3TEgHe3p+vB4PCguLjbKGr4G6ZncPUokEohGo0aerGuD91NYWIj6+nrLGT4+LnpfZ3ByWgmFQhgdHc24UstOv5DymZRWSjTX2Nioslbr5JaUg5x3EG5I97h69SpGRkYs52adKO+6uaWdxdLSUuzZswfHjx+3JLKUMoPTjU7uSr2ER/Ntb2/jhRdewNLSEmKxmAV2J7qbk/FwHcvtdqO3txdHjx5FeXm5gpng4jvRfLyczniUnWmcFPacSCS01xSOjIzg/PnzuHjxIqLRqK0jWX6W4zXpHtkcDRw/HG95eXeOPbS3t6OnpwenTp1SiaM4L5bjTqetEWvyHLGOh3A+RO9z/sv1T3pGGecJz5JvyJJKpTA7O4uxsTG8+eab6jYO3fVodvhyUkf3jpN5cDK/8rMTOE3zXFRUhGAwiOPHj6OqqkpFzeoiCrh84jyN/nS3YFB9XRJNqTPS3PL2+fi4vNSdkbfDCaevXMuH2oB2YpDkYqTYvedE0OjgoQXOjT86L728vIzh4WGUlZWhu7sbfX19aG5uzvC4yDMiXEByxY9+I2OEhyRKQS0JSgo9+Y6sL0OApfCQ+OPeZekE4J+5Qc6TuVA9Xds89C2dvuPJ7unpQXNzM44dO4arV69iYGAAAwMDiEajGUJeN3ey2NGWVNB4MS3cbHRJdZwoYYBV8O7s7GBoaAihUAiXL1/GP//n/xw1NTXw+/0ZOyz8bCsv3MHBFQbAesae6nC64DCR0JfKKymDVJ+MyFQqhaKiIpVgrL6+Ht///vcxNDSEtbU1pWgQ/E6Elg6f2YqsR2NJp9NYXV3FN7/5TRw5cgTPPPMMurq6LGuEh7HzdnT3DPL1yr3cfGxccfB4PGhubobf78fa2hpeeeUVzM7OGq9ycUJnurGT0UROv//5P/8n/sW/+Bfo7u6Gz+ezCER+VECGb9oJJlLCKisr8dWvfhU/+MEPcOnSJeVYMPHTbLCn03fC8Pr7+xEIBPCpT31K5ZnQ0SJ95rySr1u6ouPpp58GAIyPj2coYyalhNqj/8lkUl3H99BDD1nO23LnIuf1kodQFvv9+/fjxz/+seJpuZR0Oq2SX3LHAZcpfE1T4fKDJ0GTeHDKT4uLi5VThssxboBy/p6Xd/eqNHqeTCYtfMHUl44H0xVaxGskjqRxJeHihtzw8DDee+89y7U3Eg92OgvJawqJrq2ttchAk2zl/Jw74Anmzc1NvPrqqyp0W9K3E+WdCjlVKQri5MmTePzxx5Xzn3AiZaPuKBXnFTpHLiVku3LlCtbW1jLO/TqB365wuiBj1u1248EHH8SxY8fQ3d1tuZmC5BQVvhYIBgrlp2gd3XrgOCXnJ3dUx2IxrK6u4oUXXsDc3FyG8WyaPztcOMUT1ZPGMl8H5Dj56Ec/qiJzZHQSj5rgvEXSAR8T1wckLfOik2ucZ/E1SXMi6xEdJZNJRCIRvPbaa5ibm1MOUr5+s/EznY6Xq56h08lNvIPmwk43lLKN6kleKHU3cuB1dXWhvr4e9fX1lnB8Xfv03bQppTsqwvON2PFEDhvRCl+TEjdcfvA2dO3o7IhcjegPtQGtK/fKTKk4UURMipPdApLe+93dXeUZpgUbi8UwNzeHqqoqBINBVFZWWrw32cLLZP/c6JZwSoaaC96kkcTbN+FPxwyy4U2GzTgJ5SAmTzvSPp8PqVRKJWQZHh5GKBTC1taWFi76TbeInRQn4zcJMx3zsWtP0gJn+JFIRO3MvP3222hra0NjYyNaW1stAtFEP/y7rk42nJgEj1SKZbvkQPF6vSgsLERXVxceeOABBINB9Pf3Y2FhQWtEZys6WpO/69YDxwHRYiKRwPz8PG7duoVgMAifz4eysjIUFxdbmDw3gmXfEo+yjlSsOWwejwfl5eU4dOgQpqenkZeXh/HxceN61s1ztrVHgo92c8fHx3Ht2jUUFBSgr6/PgkPukebCitrnCpHEJe34dHZ2oqWlBTMzM5icnDTuFjhZD6QgbW5uYm1tDevr6ygvL7fwKJ1SazL+SMFubm5GTU2NOp8o23OyJnZ37ySamp6eRjwet5zP5jJCCnOuAKTTaRQXF6O6uhoul0sbAZKNn6fTd5wMdC0e3xHQFWkYcaM219A5PiZKIsbhyvaOrEvzLenXbr1xHkjZZPlRKo5T3pdJxtJuPp3FdjoPcmwFBQUoKirC/v37UVpaql2rcp5NxgQZc+vr67h165ZKPshp3InyTfX5bjeth5aWFtTV1WVkkifckVGk403cYSLh39nZwdraGqanp3Hr1i3LVZV2ciUXWU31iYb9fj+qq6uxf/9+NDY2qttT5C6/7FfyERlyz/GYrWxubiIUCuHmzZuYm5vLSKhpN3fyd5MhpvvNpO9wmqOoodraWjQ1NaGrqws1NTWWK4tMOOI4NBmkJrqz01t5H/SnO55AtMidW5FIBKFQCJOTkxgbG1NHa7KdrbcrOvhytUnkmnYyf6Z3TTBS4Xw8GAyipKQElZWVaGpqQkVFBcrKyizv6eS7qW072J2GZTst0k4wwWS3aUZrNxd59qE3oO0WFZD7LkwuChHV132WfUvlkoQchXcPDg5ibGwMfr8ffX196OjogMfjUYYEjVXXF4dXF5bNPeUcBs4kpPfIpGRTe1R0BrQcs6zHBarEM4dbdyekruiUYloMxcXF6j7C7e1tvPTSS7h8+TImJyctQlmOWeLYruTKCHJhqHZGmIRb4oEUqB/+8IfYt28fDhw4gKqqKhQXF1t25KgNOXc8qoF7h+2YuxRkpnFz7zI3pvhY3W43ysvL8bGPfQzt7e1IJBLY2tpSV8QQ/LkKKDvY7WgMgPJaR6NRjIyMYGlpCfX19ejp6UFDQ4MaB42LG408SQYfLzeeyHDi64bPAwBlNPX19WFpaUmdFac+TQqKaVy69cr5EwBsbGzgzTffRCKRQEdHh7q/mLzWck0T7LrkVJInFBYWoqGhAXv37sXi4qIaixNlRGfQUNuJRAIbGxvq7mW32215TnPC25J8lUpBQQHq6+tRUVEBt9utwmDt8CrbpDURiUQwNzeHSCQCn8+nvWaL+uYh8ZwWioqKUFVVlXGPtBNFneaWEq5xpRKw8neaB57plitA3NiUY5D8WOI0L+/uGWj5TPeO5M0mhdkkW2S79Nnr9aK4uFjtovE/vhOlk4+0RqLRqDr/LNegkzkhPLrdbvj9fpVoVPJ+aYjwrNYcJgp/3trawuLiIgYGBtS1VdwYs8OTHZwulwsHDx5Ea2srSkpKMoxkHX+nvuQ65e/QbxSpMTQ0hJs3b2YkcOLw82LSWTj8pvFUVVWhr68Phw8fVuuSyz1dn1zu0hjoj0dqcT3VpB/RDQg3b97Eyy+/rBIE8vHmwtvtim7OTTijteByuVBSUqKiJVtbWy1zxo0xnUOL+pA6ttRdqR6nDZIlnC/ywvUY0/VxpA8RvwuFQujv78fFixfVsQudI9FO5piKaU3p9HbT+7pyL0an1MupHeLrdIVfU1MTGhoa0NnZqa5qk/DIqABpjOvwJseyu7ub1aaxK0Rrpog7aftIfsdpSDeW/6cM6GzM//14OXIRLE7a4MxWpl2nxb29vY2zZ8/i4sWL+PGPf4yuri60t7fj4MGDqKyszEhmkZd3x4POr4ngCpkMAeTKOFfo6TPVIcKTTDsvL0/tvgBQhgw9k7BR4WHoXFGTgleOj3YbZZZo4O4ONTFXkzfb4/EoZ8QnP/lJHDt2DJOTk/jxj3+MxcVFS2gY9WEnpGUdU3k/75rqOumTBBgxmo2NDVy+fBkDAwM4c+YMfuVXfkUZfJy5cgFF8yoNa4knaXRLpsaNSU5Tkvb5vHMnUH7+nUQldN74v//3/47bt29jYWEBiUTC0r5JycmGWznfcs3rjDl+rdBf/MVf4NSpU3jooYdw/PhxbRgRfZf4ku3z9UhrWyoftG4KCgrw2GOPobS01LI7z9et7CubUNc9o1DugYEB7O7eSU73kY98xHIkgJR2SrBF8HFlRob4ES3t7u7C6/WqLK5vvfWW5ZymNMZMc8nHQgb06Ogovv71r+Pf/bt/pyJ6uAHIjVK548uVXoI5EAigoaEBIyMjlqtQ7IxviU8KGxwZGYHb7c7IQs1pmWQFhU4Cd9YmGVqUPDEWi2np2a7EYjGEQiHL+WZ5Hk0XWsvXOdGo5PsyTI7TPTe6KZsrwStDpamuHA/RVzwez7jSLZvM5mvI5XKhpaUFwWBQHXvitMH5I6cPfhNBKpXCrVu3EAqFLNmheX+mQm3T/DY2NqKvr0/do8zXsM544G1T3gr+7L333sOFCxfUmU5T6KOdQcXXQmFhIfx+P+rq6vCRj3wE5eXllveJhmhdUSg2b5PWMj+uBdwNZ04kElhZWcGPf/xjjI+PZ9xXLen8XgwcbjwUFhZi//79OHLkCB555BF1Jp/GIOUixxvn9ZzHEn3wzQuiOw4vfU8kErhy5Qp+9rOfqZ1nzjuz6SMct9l+t5tzqi/n3OfzobKyEr/+67+uPQ9LjiSp49H71B8ZT3xMXCflfJzjjq7DIjrgmytcN5S6LpcH3Elx/vx5jIyMYGtrC7FYTLtjbWfc6nQNp3Mk6+dS7ObM9J3DyvV7j8eDuro61NfXo6+vz5KHSepVJt1aRpHIfuU8cx2Q6/+6jRDuNHZi3FIdeVxUV2TuJs5TcikfegMayNw9BewVGLvnvI7pvVyRLCdGCgGugKXTd86mxeNxlQmXLnGvra1FR0cHmpub4fP5LLsAZKACd5P60GfdYteNQe4wSuYPZCYs495vk+EhizzDII1iHRxyMfLFodsxkUKK2qXstR6PB8888wxmZ2cxOzuL27dvY3Nz0+KVkp6rD7LoGKmONrP1rVMedI6AWCymFKjXX38dIyMj2Lt3r7q3kyvq3JgzKcC8Pwm33GXl7+sYoO7qIEk3dO7q4x//OJqbm9Hf34/r16+r61hklIWd8JN9ZcMvX6P8d2LAa2truHr1qtqdDQQC6qwcvcdxw/vXfeb0z+me0z89KyoqQmtrKz7zmc/gO9/5DlZXV9VujUnBlEXyB/6f1s7Ozg6i0Simp6dx+vRp9PT0oK6uDoFAQBkwtOvF3+OJhXT9cpry+XyoqKhAc3MzpqenMxJDZZtX6pfwTLu9U1NTmJ2dhdvtViFp3CgiZ5Eu9Evir7a2Vjng7K6PMvFaopt4PI6bN2+iqqoKNTU1GXiX9CLnnYy/iooKLC8vY3NzUwu7CVfA3URxJiWD6kiYJC1Kfu1U8czLs+5A6/itSQkiPEajUe0tCzolV643Uu5bW1vVVV46fiblE3BXAaNEQ7du3VK7+RLPTgrBsmfPHhw6dEibqIfDzXHD8c+dUnRtGtEqN0B0xaSn8L7dbjcaGxvx6KOPKj4nndfSmSnPEXMcc4OLYF5ZWcHLL7+sojRk6LYJ/my8nM8nGc9FRUWorq7G/fffj/b29oxwZLv+THonl0Wkf+l4K3DHIJ+fn8fU1BTefvttLCwsWMbMnTi56gKm3yQ+5Ge+k1xQUIA9e/agtbUV+/btQ319vYqKlDoaj7biegh9l7jRrTOue/G2dZs5nDdwepORIwBURAM532dmZrCxsaEcXnJesuHOztjK1T4wtc/bc6qn6OCQdO/3+1FeXo729nYEg0EEAgEVRSKjiXQ8UK4JuQ50cEh9nLdF8yQ3V6Rxrtt1ljjIVqht0hm5fJM2jpPyC2FA2xWd8LyX999v+7p2JGPlhgtNbigUwsrKCiYnJ1FTU4NEIoGCggJUVFTA7/fD4/FkXAPCmQ03iugZMTvdQftsxG9SLmhxSqVSCnsAGbscvEijTRceqFMqdJ9lISXF7/fD6/WitLQU8/PzKnPq/Pw8IpGIymxsCkkx4cYEo06xtGPAEse8rqlPKWT5Z/K8kpHT39+P6elprK6uorKyErW1tSgtLVVhO1yIUTGFiZKglEyRhBK/IxCwZvnmY9QVjn9S3o4dO6Z2PpeWlrCysmJROAg2nfLsRJmQyjdvQ7cOdnbu3Kc7MTGBWCyGsbExtLa2orS0VBsCyOdK9k2fTd5eSRck8Kqrq/HII4/g4sWLAIDFxUWL8mAaj66Y6lKEzOrqKvr7+zE8PKyukHO5XGrnW+4U8Z0oO2OA5rekpAQ9PT0WR4AObp1SKuHf3b0TpryysoLx8XF1X7xuPnQ40Sl7VVVVOHDgAJ5//nnlvNHhUPedryu6mufAgQMKRxxvMnJItkU7llVVVZiZmclZvqXTd6/84mvRji/x/rmyw3fo7N7TrUluQMtnnPZ0SjYZ0LqdOt6WLHz9uFwuNDc3IxAIaB2xkkZ5GzSXqVQK4+PjWF1dtT22ImHg7ebl5akdoY6ODgs96PCoGyfBQ3Ozvb2N5eVlLC8vG0NqnRRu/JSUlKCpqQlHjhyB1+vNyMBOMEhjSrebLuGmvAUzMzM4f/68MnCk8WTHP7ONgT7TDlwgEEBnZyf27duHyspKS+4KOzxnwyHxvnTamvuBl52dHayvr2N8fBwDAwPqrDe/MUT2beor1/mUn+VvlFAtGAwq/Bw5csSSRM3UBo1dp7/k5+db1qtuXfNn9Gdyouk2UagQTVGeoZGREVy7dg1LS0uKd8swXt52tpILznW8nPPbXHRLWTjupA7P1y6t34qKCjQ1NWHfvn2WI6J28PFxmPRPk15up+fKtaSrK9uhuvz4gGzXadHR6v9TBnQ2I8Rp/ffTl67fezGo+TNulCSTScTjcUSjUczNzeG1115DXV0d7r//fnR0dKCtrc3isZbeQZmEjAwYroxlMzzpfzYlSy5knRJEIbukBMkU9HwXierJ3Qlp3PIxc6ZEhiMV7l3Nz89HW1sbmpub8cADD+DmzZu4ePEi+vv7sba2lhGuZWISdsxD95tJAOsMbY5XJ7jXCS3uBU+n79ybur29jaWlJdy4cQP3338/nnzySfT29maMy2RImmiBfw+HwyrUSxp9vD4fL48W4DRB7xcXF6Ovrw/t7e1ob2/Hiy++iKtXr6r7bE2KVjbDIJdCdEt0RFetzM7O4j/+x/+Ir3zlKzhy5AgaGhpUHS6kyHiRCgKHm0cCEF5o3fI5Au6ch62vr8fv/M7v4JVXXsFPfvITbG5uKmWaG2Mc13b0xmHlY6Zwt69//et49tln8Su/8isoKipS9SmbOo2LZ9uUoXwEA63x/Px8NDQ04Ld+67cwOzuL7e1tpQRJOO2UWLn+w+Ewvv/97yOZTKorAyU9cjrkPEiGoFPCpEAgYDGgdTt7UpnhhkIikcCtW7cwPz+PWCym7m7nc6+bH1Ju0+k03G43uru7MTs7q3YZTQqODkdkQNP5P3kWW46F82BuGNGc6/o1KYL0W1FRkSXLq269Eg3Rd47r5eVlRSe8XYk7Pg9cBrjdbvT09Kgkc6lUSvErHhIt55E7ppPJJMbHx7G+vm4JXzXhUX6mOa2vr0dDQwNqamoyDD65y0P0Scck5NwnEgllLDi9tkryR86faP0ePXoUR44cQX19fYbxLGW+SUbQb/zsOjkizp49i8uXL6ujVZwv6vqwKzpc05wVFhaitrYWPT09+OIXv2jJmk1rgRygOhlPehYVyb9phxvIzAhM447FYnjllVdw/fp1TE1NaRNYZePREhe6OdS9nw03Xq8XDQ0NePrpp7F//351pEDXP9cpqcgwbf6f626mHWkZ1cDP3tLa4048ao+OM9Lf2toazp8/jxs3blgMZ75OTXyLihP5KHGTixFn6t+kr5jmmMPB56WwsBAejwcVFRU4efIkqqurUVpaaom4IV7H6cUUYSWdvXbjpc06nZNT0qDU6XUbbTyylt6jjTvZhh2eAKsT+F7Lh96A/r9ZclkUTtuTC5X/xomJFC9SvuLxONbX1+H3+y2X2Xd0dKCzs1MlibJTfCTDl6EyOni5YS+z6nKjgDNMYppSCaI26DfptZaCiy88nUCgutlCSqRRQoucsm8+9thj2NrawhtvvKF2FrhnP5uyZleyMWMnjNtOmMp63Jjg5+QpwmFxcRFnzpzB7du3sW/fPjz00EPo6OiA3++3GBS8T10iCTlf+fn5KhELF4achjij4891xgPvi85kHTp0CPX19ZiensYbb7yBq1evqju/dUaXHd4l/nS/md7la2Z5eRnf+973cO7cORw+fBhPPPEEysrKLOuL0xEJAODuGqczsXIeqegEg9vtRnNzMz7+8Y+jvb0dX//617GysqKUMo5bOUbTuPgccF6USCSwsLCAV155BfPz8/iTP/mTjJ0JOYeyDSCTf5DDrK6uDp///Ofx7rvv4vnnn7eEpEvYpcLO2yN8p1IpTE9P48qVK6itrcUjjzwCt9ttUTYkPvj80FqhXatgMIinnnoKb7/9trpX1w6PEk5ag5ubm0gmk4oHcvqQoblS2JPxt2/fPty6dQuFhYVIJBJGOOT4gLvnxLe2tlBeXq6uI8v2PocjLy/PImuo6IwO/oz+ioqKlHIu+YhOwaF6tIs/OTmJcDhslFe6fgGoxDkUzkgJ5qT84HDItbu7u4v5+Xlcv34d4XAYiUTCVinXwUdncD0eD5599ln09vZa6JJoQtI+fdftLNPO83PPPYeJiQnLjqZJburmiP7T1TaBQAD33Xcfurq6LAkEuZGsk9f0meSCrJNKpRAOh/HTn/4U169fx8zMjDKec9mJNRXuBMjPz4fX68WxY8dw7NgxtLW1qSNMVMfj8VjGL2WfbNcElwxhps9bW1u4efMmzp49qxwvFAkiI4f4XEgc2K0xp3ih/zSfXq8Xhw8fxqFDh9DY2KiOu8kIIuKrPMJI177OwJc6Ca9rglE3Rl1SMUrwOTo6iosXL2JtbQ1ra2sZZ52lPMpFh9PBaCefeR2nBpupnuldwj/NhcvlQlFREbq6ulBXV4eSkhK4XC4Eg0E1nzJfAqC/+UYHi85u4UYs1+mAzDPHxLd0DmzZhw63ds5e/g6HUxfpxevlsvNM5f8zoDXFqfKsK/fyjp1hyOtwxYJ2DyjUprS0VDHi7e1tVFdXq7T0HDapJPCFw/vSGUgSNvmuVKxMTEU+Myk/UkDIUGEdLFx5NhW5uGkhl5aWqgQpsVgMGxsbKC0txczMjNoRo4QoEn6nhokJHrt3nNCUrk42oU7fl5aWsLGxgVgsBq/Xi0gkgvb2dqVY8vd0CpDENVfy7eAyCS2dUUT16PeCggKUl5erkKStrS0kk0l13lXS870KSN3cmuaah3PT1XQNDQ1oa2vDnj17jOcauYJs6ksaYHI9FRTcuT+2oaEBHo8Hhw8fxvXr1zE3N4dYLJbRpm5t6hRfXocrHXQeGrizC1hZWZmRDIuPT7Zr4g2UOb+npwdra2t47733MD8/r51DE51QHc7rtra2MD09jWvXruH++++3RKxIXOpwTHRP5yYPHDiA4eFhTExMqDO4skiYpUOB8lxsb29blHjTPMu5yM/PR1VVFUpKSjIicGR9E25SqRQikYjapXQqvzhdymMadvxM4ppfY2VS0vh//pl4VywWMxpuunbpN4/Hg9LSUhWKrFPiZLtET+TsWl1dxe3bty1Zovm7TuAghbetrc1ybYyEwwmP393dxerqKsbGxizOBbu1Z5pzekZrsrOzE/X19QgGgwCsDmi7MEoT/QF3eObW1pbKPk138UrHgG6sTvQ0vsbJ6URZzjs6OtS1dPId/l9n0ErjmesU2eTDwMAAbty4gYGBAeVE484Cuf5Nc6ejCRNOuOEqx0BrmJxJ+/fvR09PDyorK+FyudTuoew/W7SF7Fu+b1fkOEx44L8nk0l1ReDw8DCGh4dVMjbunDDx6nspTtYk4d2J3qt7T342zSVFiZBeVFpaira2NlRXV6sr+mTUiByHaVfWTjbo+IuEkcNtV3KRP6a5dFokj8qVRoH/RwzoXIxap8i7V4XcSd8mJZcLnXQ6rZKYpFIpxGIxrKysYGBgAD6fDw888AD6+vrQ3d0Nj8ejPIw81EuGbHAFgRQUqsfh4ItNwk/GK4Vt0DsUDsUXlY75yt1OGb7nBH+87YKCArUzQ0xGJwB5CBDtCHzsYx/D/fffj6GhITz33HOYn59HOBy2CDxeCGcmJdZOoTJ9dlJ0hoUJL/w5303Z2dnB+Pg4FhcX8e677+KTn/wkHnroIZSVlVkUhLy8PEuiHCDT+6mbVwrFlrjOy7sb0qaDT46H8Et/lEjpqaeeQn19PS5evIif/OQnGbsu9Kdbt3ZGil2R65XmnzLenj9/Hjs7Ozh16hRqamosCbU4LihkkIf98bFzQcmz3hPO+Xe63uhLX/oS/uEf/gGRSCTjGIMTxdNuvOTAC4fDWFxcxLVr13DkyBHU1taqtU91OD51zhs5PqIzuk6jr68Pa2trKqEYx40TeAnH8XhcZc7+8pe/rK4CM/E2ep9oSNL4sWPH8N5778Hr9WYYT3a0w2kmmUxieXkZc3NzqKioyAhP4955HX9Ip9MIBALw+XxqR50flbHDC+GRdsIpDJrjQxfJI40IcuDqeLRJRnI8y2usuPzhu5tyV4TwQkmXTMqUyWDIy8uD3+9HbW2tRQ7KMUgaJZwBd2RTKBTClStX1O6zE8cBfadxEA4rKipQVFRk6ZNHJHBjlY+D87lkMomxsTG8+eabtrdLmIqcb9p9rqiowCc/+Ul1TnhnZ0dFHkiFmXi6NBp0SurOzg5mZ2dx5coVjI2NqTPtue4G6fQl3Vhozh988EHLVT18/nkSVh2Oqa6MopIh3VTonUQigfn5efzgBz/A/Py8JWTbNF7d2jfBk61IJ5c8ytDU1ISenh48+OCDSlbJ9c5lqYxilLyT3uXRZXL+eYI52SYfv9w55GuNcBgOhzEwMIDTp0+r6Cspc96v0aUrTvm9pMl7ac/Ez/iuc19fH5qampRziPM3uXHE6U6Xz0OORdoLfIxy7nQ6XX5+foYOYzdODqfcMdfBq9MZeZscVl1+qFx1og+9AZ2NgeSKEKfv6RhGtvZ0iqvdwtMtJLkggbsTn0qlEI/HEY/Hcfr0aVy4cAHBYBAHDhxAW1sbenp61HkzrsBzRkTwcUIk4iV4uHDkhS9OXR1uvBKz1BlW9Fwq4NLgpzbpj5994eePOOPnBjlnRjomT+dGjhw5gubmZszOzmJ4eBivvPIKwuGwOjsohYhu7kxGrMmQy2bg8Xq50qIUgMBdY5q85H//93+Ps2fP4uDBg3jqqadQUVFhYYg0F9zhwRW7dDqtjEKT8khwyyyt9J+UDppffh6ej5tCz/r6+tDc3Iz77rsP//7f/3usrq5mJHrKZuToDIZs+OVtcXrY3d3F1atXsby8jJs3b+L3f//31frj7cr1xnHIadM0jwQbN2aamprw2c9+Fj09PfjzP/9ziyde1062wvkOrTVKKvZnf/Zn+M3f/E3cd999SsGm+ZIKDOdZsl9uQHo8HvT09OCrX/0qBgcHsbCwoBROPi86GPlcUf8UsbOwsICf//znOHnyJJqamtR4CH98Dk24SafT8Pl8aG1txd69e3HhwoUMBdOucJgGBwdRVVWF/fv3q7Yl/5CKOtUpKCiA1+tFMBhEZWUl1tbWMmCQCrBuLGtra4jFYkoucBrmtBeNRlXWZVI+6LwkFSfrigq9z5PtUX/caOQ8guafPodCIbUDLdeoSeaSsVNTU4ODBw8qZwpXRoG78pBwT30SbiKRCNbX17G8vGxMZCbhkXNRUFCAYDCIjo4OrYEp2+BhiHwNkcNqZWUFIyMj6oYCXUhwtkI4IKW8sbERPT09OHTokApv5oqnDu/SEaNbq6lUCmNjYzh//jzOnDljubpJwmsHu44fc4WdnBRlZWV4+OGH8dBDD1kiPjjcuvFwWuSOeclLOV1KvScSiWB4eBh/9Vd/hcXFRaU7SNkk5b6JDiScEg7Tb5L2XC4XfD4fPv3pT2PPnj2orq7OcBYC1usrqX+et4D+63J0yAgraUzKI0yEB36Omngg4Yz6SqVSWF9fx9mzZzE2NobFxUVsbW0pJ0yu+HWqd5neMRU7g85EgxIWkz5dWFiI+vp67NmzBwcOHFDh2lz+yv6l7iDXGl8/Oqes5FU6PHJ9kWCRG0x8TelwRTYAwUFFF35ukjHSluFjk8Upj1Tjyqn2h6zci/Gcyzu5Ilv3bjbjKJf+iTiSySS2trawvb2NcDgMAAiFQpienkZtbS0aGhpQV1enhAi1Jb1TThUhXTHtRPJ2uNEhx2TXt4SNKy78fb5QuCDkQp6PR14FRnW8Xq8KZ6LzetPT05ifn8f4+HjGDp/s/16YstP690LjOuWa8EO76ysrK0rJ2d3dxeHDh1FXV4eKigpLGJDEN29TOip0AkznaOCGPXeQcAVXMmh6z+VyqeiB/v5+jIyMIBwOZzDv97N2dfjk7XKFMRKJYGFhAel0Gq+++qo6W2aaE/7ZJDQ5/DxKhHBTWFgIt9uN2tpaJJNJnDp1Cu+++646y6/rRweH3Xg5vSwsLOD8+fPIy8vDk08+qYwsKWD5eDh98PFwg6moqAg1NTU4cuQI+vv7MT4+bhGA2RRsvgbJwIhGo3jvvffQ0tKCuro6rVNPCl0qnFbdbjdaWlrQ29uLq1evag2VbGtzd/dOCDKFgcvdcKoj1xt9pmelpaWoqanB6Oiodk3JIml1Y2MD0Wg0o45UMOQdoTRPZIDKubCDgSt/FAJuMnhlW5z2yOiS9eyMC4K7tLQUDQ0NlvB3uevPnXVy7dANGYlEwjFPkfRPN2ocOHAgY9dPrhm7cQF3ZBYlpIpGo8YdcZ0yzD9zo8jj8aC7u1tl3ZY0IWWIlMM6Q4Ce7+zs4NKlSxgeHsbW1lZOSfB4WxI3XO6TTCguLsb999+P3t5eVFdXW8Yp8WCSWbwvWeSY6bednTtXxfX396urzkzh/veibzmR/3JcnP5ra2vR29uLzs5OBINB5eDlPEbXjql/k95n4o0SzxLfVKTulkqlsLy8jFAohNHRUQwPD2NxcRGRSESbxVxXTPh2wjudllzmT7cupeyn3/Pz81X+o8bGRlRVVaGiosJynz3XlaR+b8dfdXBwxyb/netruqgL2T5/R7YjP8vCnVa56tSyzWxr2Wn50BvQ2ZBnh6h7KXbtmSZfMnq7d3T1dO+ZCI4biqlUColEAkNDQxgfH4fX60VbWxsOHjyIdDqN2tpauN1upbjxXVgu6HQCSicw+LtOFqhUhCXDlu/TAuLGqvQuyXal8JDKPL+vV3cWimDzeDyorKxEeXk59uzZg8HBQQwODmJzcxMbGxuIx+OW0DM7Q81OUZS4cqqMZyu692XICvcwk3K/sbGBiYkJxONxHDp0SF1tIRV1OZe6UHkp1GQbOtqX2ThlyA2fSzIePR4PPvnJT8Lr9SIcDmN6elqF8dvRrVO82RXeDkWErK+vIx6P4/nnn1cJ0EpLSzNwRkWGaPJ6tAb4johUeskwKSkpQXNzM5566ilMT09n0KjEufzMf5PPuBIciURw/vx5xONxnDhxAqWlpaoeF65yPDIsT/Ibl8sFv9+P++67D5ubm5idndUmTdLNgY7/kAF94cIFPPTQQyrZIrVBu3u8cIWQKzB0ZnVrawtut9ty3Y5uLDq40uk7SedobshAkXNOfUqcEkzBYBD19fUZu4J2vJv+7+7uqh1oOWaJQ37dFN+Flnd92ykg0ijUGeByvPSf3uU7URTya+pXKqi0RgoKCpTyKUMcufEgaZ23OTU1hYWFBdtrh+x0AsJddXU1Dh8+bMkObyqS53KenUqlcPXqVUxOTmYNKedFzgnHUWlpKXp7e3H48GFLRnLOe3TKqW78fGw0dxcuXMDs7KzFCWGSmyYcmP6TPKBjLY888ghqa2vh8/ks79u1ZwprNfFD4O76oWiu2dlZnD17FoODgyqsXmcs2vELk8GQTX7yelxGFBUVoa6uDvv27cMTTzyBkpISyxrgO888Aaap6PQn3rdul9G0zvj4+Xeqt7u7i83NTUxNTWFwcBCXL19Wso0bWKY1qSs6XpmtZNPd7HTgXNqV80LO5aqqKtTX1+Pw4cMoLi5WEX/yPU4fdn3q+D7JRPrNFHkh6VDyFLm+uK3B8UP0IOlpd3dX6eryyJ+EicsSzh9JdtrNbzbeI8uH3oC2K04YywfdXrZFZdcu/+4UXrk4iGC5kk2GdCwWw7Vr13D79m08//zzqKqqwlNPPYWenh5UV1erfmkhSWIz9aWDSZ5z4OcNJLPkZ4d0O7m7u7uWKyVk0hqqYwcTcDdkkNejcdKOGb3Lw4fkos/Pz8fBgwfR3d2NJ554At/97ndx+/ZtzM/PZygCdkLnXosdk7Z7RyrRurZ4uCJ3wvzwhz/EG2+8gZaWFvzbf/tvVYZtaoP+5J2C3PiQocuSDkhQc6OLG0xSSZcCgh8zaGxsxGc/+1k8/PDD+F//63+pbKc8CZzOu+6EeZqUYo5rgo9CElOpFG7fvo1vfetbuHjxIv74j//Ysh44o5dhcPwaMEnn8lgDrV8Ka3e5XDh48CC+9KUv4d1338WPfvQji8JvUoDlfzvFPR6PY2FhAQDw13/91/i1X/s11NbWArAeC+Fw2oWW0vyT8vvwww9jZWVFJYchPMiQQtNccJxRyN/Fixfh9Xrx5JNPWvArjSGuTPI5cbvdqK+vRzgcRnV1Nebm5izh5XbwcDxsb29jdXUV8/PzqK+vR3FxcUZ4Gh07oe8822l+fj4aGxvV3dTZdl/k2tvZ2cHCwgI2NzfVeE07SJxW+Zojw08aELJwZYqeu91uC68lHsDzZ0iHD8Edj8ctma+dlry8PHi9XnUvOClrMrqDrzkZJZVKpXDhwgUMDAxk8Hxdf/I78cPy8nLU1dWhubnZYuBIRZjDxpVcyjUSjUYxNTWFgYEBLC4uOt6F42OivojnBAIBfPazn0V3dzeKioqUAkrw8XBrfg0OD/mkuSF9hEIx5+fncfbsWSwuLjo6C2zCJYdfOkEoseK+fftUiDLlgzHpXDpZT3AT7ER/3JEFwBIJQTukMzMz+MY3vqGc7HwnleNdNw7dcxMe7OiO8wrKpn78+HE8+uijqKmpUUn0AOtxBQAWpwk/4sIjn7jDQPZtMmJpnHQ0Q/JyekaOMtJFwuEw5ufn8cMf/lA5/uiss+zHqTH0QdkJuerxUveSjhH+n3TXYDCImpoaPPzww/D7/SpUW75jiq6QvI3/pgvDz+Y4kWPQzbXOiNbpErSeZDQSoKdDp4WvbT5uflwJgKI17kzOVj7UBrQkgg/CSObtmfqThpUJBicLSqfE5wKLrnDPMCdeYvx0fjGRSOC1115Df38/qqqq0NfXh+rqapXQhjNBvvuig19HoDq4dIY5f5/Gyxk4h0OnhHHDQe4WcRhpcXK86uZLZ9zxwnfsCwsL8cQTT+DAgQOYm5vDW2+9pZIeyXCTD8qYvlc6d6JU6+qm03fO++3s7CCZTOIv/uIvcP/996O1tTXD8SLvN6bCE7PQGEwMldeRSop0xFCRu4eUObaurg5f+tKX8N5772FwcBA3btxQnupswsGEKwlrtjVPTDoWi2FxcRGFhYV45ZVXcPLkSZSVlSmhIMdJCgpX4GSfHNf8fY43t9uNrq4urK2toampCTMzM8qRwPGm2yXIZgzSe3Qe+sKFCzhy5Ah2d+9kIOdrjhxh9C7vT0YZEFwulwslJSU4dOiQor3t7W2j8W9XuOF1/fp1uN1uPPzww5bkbXxcXLgTLXLcFBYWorS0FCdPnsQbb7yhFGQdjiSNEC+jHfzr168jEAigqKjIsnakASl5U15eHkpLS1FXV2dxBDiRPdQG3d7AjWNOa5LX8kJhvjp+rqvPn3OHmc5BIMfM4Y7H44onOTUUuSERDAYRCAQstwxQG0SjRIMc/yTDdnfvZLve3NzUZoy2g4EbqX19fdi7d6+KBNPxdinHOa52d++Ess/Pz+O1117DxsaGiobg72fTjzhcBQV37jlvbGzE/v37UVVVpe7X5fTH55gb+Hxt8npEy6FQCMPDwzh//rySkybZo8NFNvj5Lt3DDz+sNgh4iDxfY1InkfLITnnX6Qi7u7uYmprC9evXcePGDayvryORSNheJ2Y3RjvDxCQ3dTgpLi5Gb28v2trasG/fPlRWVmZkwNfJAt1uIXcwcGNX4kFHe5xuuIFM70g9m+TL8PAwpqencfv2bZV93xT9IXEsDT0THqVckXxb0r2so3vHVEzrkdMm8ddgMIienh4Vpl1eXm4JtTfxB/pdZ2foxk19mqLUJJxSP5O6iMSFdKhzXU6XvI9/1skUqUfwkk23I7qjs/S3b9/G1tYWNjY2bN/j5UNtQMvCGTlw74bGBwWLXZFMUafc2C1U07t8Qcj2OHMgI3poaAhTU1NKkW9oaEBtbS3Ky8tRXFwMj8djUWpkGnwJB/dSmnAiFRM7JsDHJo0kvnjkLpEOp/x33fxkE1JynPS/s7MTDQ0NaGpqwvLyMubn57G6umrZCZChMaZ+Jdw6OJ0opzpDL1vR0QwXgkQzb731Ftxut7rWi193ZReKaUfHUvmShqLuuU5o0jtkfBUUFODo0aNIpVLweDzY3NzE3NycJQGcfD/XYrcWOc3Tmc3FxUWcP39eOR/Ky8szhJ4cs52w1uGK/5aff+e6o9bWVuzfvx9ra2sqOzfnCfx/tvFy/NPuQCQSwdTUFG7cuKHyBshoERPedPNOfdAd16lUClVVVQiFQo6yTcu+iFckk0nMzc0hGAwiFAqpq794nzoak4Wy+vb19eHixYtYWVnJyFBvBw+tqVgshtu3b+PgwYOWHAMcL6aSl5eH4uJiBINBlRXZrujkDCVE5LtIJocpvcP/8zPEvJ9syiM3njnP4vxf1186fccZFQ6HHRmvkq7y8/NRWVmJQCCgPasv5RT9ySiRSCRizPTLYTcZNIWFhWhvb7eEkUs86trgfezs7GB7extLS0u4detWRoiwrg0TfmichYWFqKysRGdnJ2pra9XRAl2uEt6GHQ+l9xOJBCYnJzE0NKRCzXUGj9Niwq3X60VTUxP279+PlpYWS2SHjl9LGtHxXDk3OrqMx+OIRqMYHh7GzZs3MTAwYLnT2knUjCyS394LPoiH9vb2oqurC42NjRkONx3t8TapnsnxrDO8dDoV/yznnuOcZGY0GkUoFMLQ0BAmJiYwPDxsOaJwr7Qj19X7lf+cbpzKJjvDlOQLOUi7u7tRWlqKoqKijGgZKWM5TFKu5QqPk/o657tsi0dfkO7M6UnikfCgK9nmKlsUVTqdRiKRQDQaVddJTk1NqTvDnZZfGAP6gzaWsyktpmJnDDltx0QcuSxMXrihSt+JOKPRKGKxGLa2thAKheDxeODz+fDggw+ir68Pra2tKC4utmQZpbMIxOSk4qSDV47J5OGSTE0qpKYdbLkbLdun/yZBQX3xMDqOLy4ceLh3On03G25ZWRm+8pWvIBQKYXx8HN/73vewvr6uPKU6PEjhyD/b0UEuxalRxHFB4yZcEYPb3b1zNvonP/kJ3nnnHezbtw9f/OIXUVNTk7F7RjuOurnVJf6hPvg79JzjhIcF8jPSEodkvBUWFuKBBx5Ad3c3Ojo68Nd//deYn59X2XtzCXV0YljxwtcaKbarq6t48803EY1GceLECXVeWwojScfSqNGtNU7jHB9utxu9vb2oq6vDzMwMJicnsb6+njF+OTY7HsX7I+U6HA7jRz/6ETY2NtDS0qJCuYG760YqUnwedYab2+1GVVUVCgoK8Oijj+L06dPqXLuOv9gZfTwUcG5uDq+//jqeffZZVFVVafEqeQ1XWNxut8rs+/zzz2N2dla7+2eHu93dXUQiEVy4cAGPP/446uvrLeHEHB6OZ6Kp3d1duN1u+Hw++Hw+hMNhlblet+sgeQEZ0HSWWO6wybBaTqMUycGPbchx65RK+k87/9w40ymFxJcJX+SsWVpassglpyU/Px9dXV2ora3VKu5cRnBlj0d20W0Xkq/bzTfHIeVC2Lt3L/bs2WPhtYRfiXNqi/gIGRhzc3OYmprC3NycNvM2p32iG52eQuMsLi5GX18fPvOZz8Dj8VjelbTI8STXNed7BOv6+jpefvllDAwMqAgCnQEl58RpKSgogMfjQXV1Nb7whS8o/UXyRA67yYgmhxKvx9cthzGdvnst3a1bt/D9738fm5ubauc5G43eq/HG35Xw09qivCW/9Vu/hWAwqOaUCuk+dIaWopOo0M4g8RQ+H5xO+bWUOj5DfelwIX/Py7tzA8fa2hpmZmbw3HPPqZBtndNF6ri54E4a0aa5sJMrUm46mU/ZnjzCEQgEcPjwYTQ1NaG+vt7i5OWw81tM+GcOG1/zOtioHSDzyIqOhzsZI+dlfL5MuoMM4Zb98Dnmu9UcLp0Th/7TuuV8c2hoCEtLS9ja2rLkMXFafmEMaF25Fwb8Qbdpp9jJZ04mzmQMOVn0cgFxYzSZTCKZTGJ7extbW1t45ZVX8O6778Ln86G4uFhd5dTa2poRcsf74QqFDH+UYdXUN2cIOuHO60nmwb1XJoVTLjCdks4ZCMHH30mn796HbVqslJjG6/WipqYGnZ2d2NrawuLiIt58803cvn0bkUhEMSgnDOheBKtOON1r4QyPh0vSztn6+jomJydRU1ODPXv24Fd/9VfVNQo6I5gzfWm88X64ks0Vaq7cSmeHDD/lhojX60VVVRWOHTuGhoYG3L59G5cuXcKbb76prroy7Q5k+273TKdw7e7eSYJy+fJljI+P49y5c/jt3/5t1NbWwu/3q7HSf747RTQnozf47go9JzxQ/gDCxx/8wR/g7bffxjvvvINbt24pBS9X4cHHzMdHDoL5+Xn80R/9EWpqauDz+Sz4IUFfUHDn6i3J1yRvoF3DL33pS9jZ2cG5c+cwNDSUISB1DgDd/MXjcczPz+O5555DX18f3G63CovjcOra5Yo0XUN0//33Iy8vD+fOnbPwnWyFwhPn5uYQCoWwtraG6upqi8HC8cLh4/B4PB7s3btXOUTleWyT3Eqn7+zmxuNxJJNJS0izbp55yCWNn9/mwPvicyB5LTm2uPIqo5ykYUV0vbOzg9XVVYyPj2cklLErtJZcLheOHDmC9vZ27Xk6U7+El7W1Nbz11lvY2NjImGcdvfExUmRMZWUlnnnmGeUYon74Oufw8Dpc5sXjcfz0pz9Ff3+/JfO2yUgxyRTCi9frxa/92q+ht7dXRUNwGDguJW6pTzofTSWVSmFrawuzs7P4xje+genpaUu2ZGpfVyS9ynVIfRM9lZeX4yMf+QgOHTqEtrY2yxVlXGfQ7eDpDBreD3eg8B3l3d1dxGIx/OQnP8H4+Djm5uawtraWEV6czUDLVnRyXPIIGhvx1ePHj6OzsxOdnZ2orq7OOCYgHVgycpCcm5zH64o8yyxhlMYOj8qTvIF0JjqSEA6Hsby8rAwcnZxyYvyaDEcq73dectHXOG1xvtTe3o6mpiYV+VFSUgKPx5ORIIzLJBmZyZ2NOjgJhzLbOnfO8rwUvCSTScTjcQDWazO54c5xwWmf50ggOKSzmO9Q87Hool+kfWHSy+PxOMLhMEKhEMbGxhCLxZBMJhGLxdTmFpdp/58B/f+nxWT82tUHMsO27Iz4XDxhXGjTd/LsJJNJbGxsqHs+XS4XVlZWsLS0hPr6epSXlyMYDGYoO9JQshsHX/jcMJLFtOtMRYaX0Xc670i/cVjtjBGChzMpziS5scb7pD5oR7qkpASxWAyVlZWIxWIoKirC3Nwc5ufnVeifbEenrOuKE0PhXg1nHZ1KI5dohRjqysoK1tbWUFdXh9bWVtTW1qrrQnT0y/FrR98SN3IueH3TuLniGgwGUVxcrGh6YmLCcnekztgy9aPDjw5vfBy03lKplEosE41G8c477+DAgQPo6OhQRjRX9nRjkjBJxVk6GgDA6/WitbVVhb9SAql4PG7kG5LOTL8TPyF6IEP36NGjaG9vzzCKaT1KZVYa0oRDuu/y0KFDiEajGBkZseyK6OZH0jJXfin52a1bt+Dz+VBRUZGx3k1tcvjIeF1cXMSlS5cy7q+nsUnnIP1OfCoUCmF5eVnthmfjAfx5YWEhGhsbMTAwYKljohP+OyUKTCQSKjyQxmbaTedrUZfUkbcvFWT6r3MGyDo6Qxq4cyf18vJyVllnMtzLysqUU8e0ZnVtptNpRKNR3L5925K8yLRG+G+8f7/fj97eXnUtojSEACv+iW45bMlkEuPj45icnMTy8rKtEpjN+MrPv5OZub6+Hl1dXWrHS+JDvm+3PgjmVCqFyclJ3Lx5E5OTkyrawTRfku75bzp6Irnr8Xhw9OhR9PT0oLm5GUVFRRk7k1Tf7oiZrE9F7r5S/UgkgqtXr+L27duYm5tTZ54lzZpKroabThbweXS73SgtLVVHdvbs2YOmpiZLtJZcY5wHm0K0TeMh+tUlEeN96MYpHRHj4+NYXFzE3NwcRkdH1TExOm5kojfdOuVw6PifiUfpxmAqOjpx+i7RbTAYRElJCSorK5XxXF5eroxmHf/kRepFVI87jkyw2el6ut+5oa3biNLJCAkTtaN7X7Yh1z6QaWTL9wjGZDKJzc1NrK6uYn19HSsrK1hYWFBRIdL5mc2Zpyu/EAa0aXHeqwGRrS9eTIvP9Ds9c/KbqX8nioLTomM8XMkk5erKlSu4efMmioqKcPjwYfT29mLfvn0oKSnJCMWj9ynUW/bBvY+SUcurMvg7dgud16d2aUcdgLreSO5iUjupVErtmkq4SKjwvnShjcQQafyUBbS4uBgVFRVoamrCzZs38dZbb2FpacmSWIQLepOgknNvV9dJMSmKdnRLY+dCMRqNIpFIYH19HXNzc3jwwQdx4sQJ5WDRefyl95AbmhIuXbgc718aUDqFi76Tc6O1tRX19fUYHh5Gf38/JicnLU6NDwKndngmmtve3kYqlcIPfvADbGxsoLi4GB0dHUalms8PzQVfs/SZ+uQ0ScK4qKgIBw4cQG1tLa5fv47R0VGsra1lrMVcxs/r8uiEH/zgBypjNZ1JJ9hpTdnNn2zb6/XigQcegMvlwgsvvGARpnJXTMfbOM3Q+dGzZ8/C6/Xi8OHDFhrVKSC69eZyudDX14fl5WV4PJ6csngSLMlkEpOTk6irq0NPT0+GUsJxJWHJy7sTot/W1qacL3Z44L+n03dzG8RiMXUFGY2f96mbH3JMSVzpcCbpmPgtn0NpQNJ3HuKdl5enDGgnu898HdH6LyoqgsvlUnxaV5f6lUpWJBLBwMCANvuvrm/eLjlcgsEgOjo61Plivt4pIRM39rhcJXjpTvPl5WXlALsX47mgoEBl+O3r60NjY6O6T5bGzNdoNv7Gd5joDOuVK1fw5ptvKn7nNGqAw6ujI8KRy+WCz+fDM888g/Lycni93gy4OY4lnniEAWC+EUIq/Ts7O1hZWcFzzz2H5eVltbvF5+Je5EiuuOG78IFAAK2trfjEJz6BpqYmyy4hwa0Lx+Z0bxeNZdpl5sXJrjXRCumZ0WgUZ8+exeTkJEKhUFZ5bNKDdcayrm+77zrD2Mk82hniEtcUvdPc3Izm5mbs3bvXcte6SSfT6RKcH3N5aMI/d+ZyHSrbeGg+pKyVcFBd/kznwMkm83WJ6fgYqA6nEbo+NBwOY3h4GKOjo5aIFx3PNukb2covhAGtK/8njGdTkYvUbgI+CENHJwB0xQSTyRDlbUtDiZTiSCSCt956CxcuXIDf70dLSwuOHj2KtrY21NbWancidEYakHlVAhG/bnHJxDryzBzvlwQdGc3UBjFqeZ+pNMIkw5Zn/Ki/wsJCS8g6MQkOD/1eVFSE/fv3o7OzE0888QQuXbqEy5cv49atW2r3kwt80/zo5tNp0Skg0hg1zRW9J+mPC9xUKoVkMok33ngDly5dwiuvvIKvfOUraGlpUTiXc8pDdHRKNO+DK9TyP3+fK0u8DR6+T7TxW7/1W7h58yb6+/vxne98R12pwsPIc8W1TijIMRETJ8VseXkZL730Eq5fv47f+73fQ0tLi7orWjpqeB8yrJLPCz+TRiFZOzs76uoLj8eDP/qjP8I3vvENXLp0CaFQyELPcr7teKqkTeIXU1NTePXVV7G1tYWvfOUragw8GoSHmgPWM1MyvDwv727W6c7OToyMjKis3LnyQ/JSX79+HU1NTYjH45bzgZwe+RzI8MP8/Lt3MXd1deH69esWmOzoiNpJJpO4cuUKioqKLFdrcV4nlVtqMz//TtKk7u5u5dA07UTK9Uu43d7exsbGBurr6zPGqcMjzZ/L5VIh+CZlSCeHCGb+jEckSMcQvePxeBCNRhEOh7G0tJRT2F1e3p3rqxobGy3OUv7Ho5043yVaWV9fx9LSkjZhXDb+Svjq6enB4cOHUVRUZJFrnE54VmMp71OpFGKxGJaWlvD666+rcOFsBpvkrxyuYDCIvXv34td+7ddQWlpquWlC8mCCwaSAFxQUqGMxiUQC//iP/4gbN25khOFynEkcmuaPfyY69Hg86OzsxPHjx1FdXa34SCKRUHyPHORcTkuHI41PykMaKz0jWRePx3H69GlcvXpVXWHJHR12tGEaZy4yh+OAHENtbW342Mc+htbWVpSWlmrzE3C+RYXLDsIPYDVgCBfSsaXjE4lEQns8ArAmkwKAtbU1DA8P4/nnn8fGxgYSiYQll4RJ/9GtNw4rp1vJk3Ip9/oeh43jnHad6+vrcerUKZSUlGB3985RHn4fNy9S3lCbEpdUT0at8Z1jnX7JjWLObzmOyVFFhetvukgPybckbyVnoM5BS4XvdnMHlqS5nZ0dbG1tYW1tDTdu3MDm5ia2t7fV0SQpJ+x4ZC7lQ29AywXyfoj9/cJg+v5+2rVjtNnGavc8m4Kjq0tEv7u7qzLX0VmCoaEhVFZW4tChQyrDqTzbQEUqoLIvHWxS8eNwSSFPyged0eDefCmE6T3uHSMYeft8kUtmSG3x9yVOyXhzuVzweDzYt28fSktL0dnZidu3b2NkZESFful2o3Xlg6J1KZhM9EvPJLOUO4hbW1tqHD/96U/R29uLQ4cOWXY1qD1OByZ6MBnUnBHr5pXTiWyfPpeWlqKtrQ1utxvJZBLvvPMOFhYW1Fl1qpttx8TpXHF65mNJJBLY3NzE9PQ0XnjhBTz88MPo7OxEY2NjTrxNKrqktPO+iLZdLhdqamrw6KOPIhAI4MUXX1TOHOm9zmY8m2CMRqOYmJiAz+dDNBpFcXGx5XwV/UlljitufC3m5d3Zba2pqcHTTz+Nv/3bv81I0iMNORNPI6UiGo1iZWUFk5OT6lyshEsqtpIvFRYWorq6GidOnMDw8DDi8bgtTUgYd3d3sbGxgfX1dWxvb1vCormzQTrZiI4pLJnvaEr6N8FCBvT6+rrCP+elXMHSfTaNjeOJF25M0jh1oaUmg5QMIic7wLxQmHJLS4vl7lT5vg5mGuvc3Bymp6e1CWdMOObywuVyoa2tDT09PRlRJnx9Ske0dCiMjo7ixo0bCIfDGVFMpqIzQEn2HTx4EEeOHIHP57OMQyeLdOtMrjU6p04Zt1dWVizJn+j9XGUYxyXhs7OzE/v378f+/fstjieTPObtEBz8M5dJOllHtPfmm2/i+vXrGfRgwhOVe9HpTDKMQrbr6+uxZ88eHD16FC0tLQgEAmptcZxJ3Ov0Le78l0Yw543SQJM0YtIl+Pq9desWJicnMTs7i9XVVaU36BxjOn4g8cnfyabXZitO9XiTkS7XmMfjgd/vR1dXF8rLy1FWVoZgMKgckG6323LNo+TfvC8dz+J/2dYZl7E6eclpX64jnpcmG83q5CV9lzxOjkeuS1mIhlZWVrC4uIhIJIJoNIrFxUXLFWeSTztdj07Kh9qANhH4B2XAvh8Ysr1jR1jZFJD307epZFMEuNJGiid5YdfX1+HxeBAIBFBcXKwEpc/nUwxcx7x5X3zh68YolTY7Bs2NCJ4xnC98Wd+0oKWglb9JRVbCJOEnptTU1ISamhp0dXWhpKQE6XQaMzMzWF9ft2QnNc2Tjk5MYzMJnlze0zFzzmgJfwQ37UZTuLrf70dHRwd8Ph88Ho8lq61UJPkcc7h1QoDvTEpBpqMROV6Xy4Xq6mr4fD6UlJRgbW0NeXl5mJ2dVdePyDZ033X41dEnN2b4WOkc7M7ODt588034fD4UFBSgtrY2w+lAfTnlf/J8G+EtPz8fPp8PR48ehdfrRX9/P8bHx9UuvJxnO0GjE8LkVafs/rOzs2hqaoLP57M4pCSeuAIn8UyRHxUVFXjkkUfw6quvWs5UmpRW2R43EJLJJFZWVjA4OIjm5mYtH7Az8Oh5WVkZDh8+jB/84AfKsMmGNyq7u7uIRqPY3NzExsaGMmSIb/GIBUkDtH58Pp8lnJqK5FWmvikruykcWyruMlrBSeFtUEg/N6BlkXNGf3S0KBflh3DU3Nys7gTWzY+Ohgj3CwsLmJ6etj3Da+qbdgmbmprQ2tqaofSaioQjmUxiYmIC165d0xpu2XBA/2keXS6XOpLFo0Ck3Kb+TbyV/55MJrG4uIjr169jbm7O8ZVj2eCmzwS33+9HT08Penp60NLSkrFrpitE4/RZPuPzL7P97u7eCeFfXFzE2bNnsbCwgK2trYwrEbONIZdnprrkwK+oqEBHRwd6e3tx/PjxDIOHry+dYcV3+SSeTXoG7R7KaBFJK3LtAlBX0K2srODy5csYGxtTt5VI+tLJnvdj8Egc6tqTcs9OL+XfdXKX5sjv9yMQCKCyshJHjhxBaWmpyqpN9eg79W06U07P7ehcOr7sdEnTuOVn4O7NCVIW6eC0k8E6vVqn70n4qc94PI5IJIL19XVMTU1hYmJCGc26aJwPgmZ05UNtQFMxKQjZiF4WXf3/U4jPlZm+H8GTTdA7aVsuWFpApIBGo1FsbW3h7/7u71BUVITy8nI888wzaG5uRnV1Ndxut8VDLo0m6oNCTKlwb7BMzsP/03k28hDzwsP1+OKia1t0xm86nbaEgvFdIIkXrnBKr55uh4WUKVKonnzySTzyyCOYm5vDmTNncPr0aWxubmbNjqxj4nb1shkVdiWbEJFCj2CenZ3F8vIyrl69iieffBLHjh3DwYMHLYo/vUN44slw5Fkt6QHnDFIXMkb9cANEjonOqre0tOBf/st/iVu3buEf//Ef1b2q/BodnRGmKxwuk4LM2+Khf2tra3j++ecxOjqKtrY2tX50IVWEQ11SHL4eeMZjuasYDAZx8OBB/Mmf/An+w3/4D5iamkI4HHZMX7pxcYdRNBrF9PQ0/ut//a/4vd/7PfT19VmcAlKppzZoPUkBSjuJzc3NeOyxx1BcXIzz589nGJdOaJuM/MHBQXzrW9/CiRMnUFFRoQxRiVcOI2+bMgDv27cPlZWViEajGfdsm9YfwZ1IJLCysoJLly6hoqJCXb8weVxQAAEAAElEQVRjUpby8u7uElAWV9rVTSQSWeeI/9E1hsSbiFearmmi8+OxWCzjDLGMXtDhjZw3/A5pikzQzSP1vbOzo67d4teYcdzo8EznfAOBAPr6+lT4tHSq8v6kYbq7u4vbt28rw9VOKeWyjZRo2n2ura1VxzN0ziIyDnkYK1/7q6urGBwcxPXr1zN2wp3ICeIZFKFVXl6O9vZ25TyS0R9cPuqMJcn3d3d3MT09jUuXLuGll15SBma2HXITzJI/FBYWwuVyoby8HEePHsXHPvYxlJWVZSSlo/XB36MijXn6TPNB8BJ90FxtbW3h3Xffxc9+9jOEQiFLHhOJfxMP0hmlprniMNFz4vt0Fdpv/MZvqHPrZIRxHkxtkkPPxMd5FAM/TkHrmYcB8ygXvu54hAyX4fQskUhgYGAAFy9exI0bNxCJRJBMJjNC37MZP6Y1a8KhHW/QrQ8ntMr7lTRK9FZUVISysjKcOnUK1dXVKC0tteijfDwcl7Q+Zdg19UfPeLQK1ZHGs44ny/HxfEVc55K6Ba0xndNOym/Ju3W41sFsh/tEIoGtrS2VkJAc1VxPkHBl01mc6HOm8gthQJuKyeChZ7rvsu4HZUTriMlUdIaKk7E4actJ/9n6kIITuLugIpGICu9+/vnnEQgEEAwG0dPTg87OTlRUVKhMr7rFxIWcNIjkGQ2pcHGFRIZeEbwypInjlSszMoxRdx6NmJwOr3znnT6TMkpCmeDPy7sTltrc3IyPfvSjaGxsVArS8vKyNkTPNIeSrp0aPDpcOaFTXocbupJGdnd38e6772JsbAznzp3Dpz71KVRXV6sstPS+zuDkn+XuoFTMpSDibcj5lwo9Pevu7sav//qv4/XXX8fAwABGR0czslRL3GUrJgEvDQVySFECjK997Wv40pe+hKamJgSDQVVX8gNOo7rCaV7Sd35+PkpKStDc3IwvfOELePvtt/HGG29YjDAn9CDHxBWieDyOsbExvPXWW9je3sbJkyczYON3rhJcclx8zjweD06dOoVUKoWRkREsLS39/8j77+C4suw+HP8gNTojNXJORCSYhuSQnMyZHY52Zmdmrc3SriSvZcWSVbIkl+1yeb+qUll2ySrZcklaq7akXXu1YWZzmLCzEzhDDiNIAASRA5Eb3Y3UQKO7ge7fH/idy/NO3/e6wRn796V+pwqF7tf33XDuuSfdc88FYAz5NuORNB5SFra3t7GwsIDBwUG0tbWhsrIyxTFGfaP1S/0iZdNms8Hj8eCBBx5QWdbT4Ymvl52dHQQCAVy+fBlnzpxJ2aGQdM2jcgAohc1ut2NrayvjuSKjdHl5Wc0Zb5dyAtA5YDKsyYg02/WWSkwyabwKMD8/X+1Cm/FhGW2UlbWXQCwajZrufJkBGRzl5eUGOcOdY7K/nO+Gw2Gsrq5ifX1dKwPNaI3o2Ol04tFHH0V1dbXW2cd5Gzc46Rq6ZHLPyfKzn/0M4+Pj6rqy/YSxc5lGicNeeOEFVFVVaXMQmPFhafxzXMXjcbzyyiu4ffu2ig6hsegMzUz6y+kxLy8PdXV1OHDgAM6ePauOixEO+fqUfM9MgecyiOsGVIZuJXnppZcwMTGBYDCoIoYyUdp1Ol2mY6fPnP+43W40NTXhgQceQF1dHdxuN3Jzc1W+C3IO8fblrjsfuzRauF5nhiueLE72kbdH/GVmZgY3b97E+Pg4AoFAyt27VuvYykA2w7tOzsrvZnq/BG6MmukjRDd5eXnweDzo7OxEaWkpioqK4PP5YLfbU66jIv4qZTqXM3ztcB2Hyy9pvPLfpY6hGxvnIXxMUv5KWWwlX6WeZWZ0Uztc9hBQmPba2hpGR0cRDofVcSM6QsrHq6MFszGb/bYfuK8NaLlg6ZnVYtsvECF8UETfi6Itn2ViKKcb737qygQkfkhw0RUbNpsNDocDsVgM0WgUZWVlKC4uRk1NjcqKzcGqX7p54IKcl7EypHSfdYqQLMeFijTaeB38N7P2ZRlivHS9EjkZpqamEAgEDFcNZWLIZUKzOiaiow+JRx1edX0gxk9Mjq74CAQCaGhoULsx5eXl2nWs+28FfB508yyNaA5EQzabDUVFRXA4HFhZWVFK5cjISMq9nrz+/a4Zs3ep76Sw9fb2orOzE/F4HG1tbXA6nYay3AOdrk2pjPLdBlI8e3p6EAgE0NfXB7/fv28FXa4FWivxeFwl+HA6neoKH67s6niBVGaloK+trUVraysOHDiA1dVVg5LB8WtFw2SYhMNhDAwMoLCwUN2ZqivP+8bxkp29dx6xra0NU1NTGBoaslRaeL8IB+Fw2BCORufXzdrlfcrJyYHD4YDT6VRHEeS86OYrmUyq8HE51/yqumQyqYxnvvtBfNyqb7rx01EOPrc6WpbKUTgcNhyvsGqDA/FVOh7B+YGkW9nm7u4ulpeXEQ6HU87yWgHhJDc3F06nE62trfB6vWnf0yn8PFqCHKuZ9EEnk7Kzs+F0OuHz+dDd3Y2CggLtjiL/n05nSCT2cqMEAgGMjo5icXFRe1Z8v8D7TFEELS0taGtrQ3V1tXLgAMajFmY6AK+Xf5a6DBkWsVgMoVAIIyMjuHXrFoLBoMombqa8S9yYQTrcch2XdASXy4XGxkZ0dHSgs7NTGc+698yMClnWzIjm/eO6VlZWlpZny/d3dnawsrKC2dlZTE5O4tatW4arhKRRla6v9PzDMoBkW1b6Rjp9jpKDeb1elJaWorm5GT6fD263W8lXM1zrxmbVTzM900ynpd90ugvROY924f9l27Ids37Td+lokzTFgd9HTskiNzY2VKj25uamNuojE7oxG4uO12YK97UBLe/1JcjUMJDfzRSOD2uRWrWRSRmzcX5YfUrH6K0UUOCucsuV5kgkohbA9evXVebuz3zmMygvL1eGojROiUFbATFwKSykoSMThPH3ddkmCfgOlJlAkrunVCeV5Qp9OmOB+kp3AZ44cQIDAwN45513cOvWLYRCIa3HVgp+WWc6+rUS3mZGqRmjl21xWiBlZGNjA1/+8pdx5MgRHD58GC+88II6k8hxKEOTCJ9mwEPFJG/gdejC2qQTJisrC48++ija2tpw6NAh/Nmf/ZlhN0WGNu7XiJZ45PPId21DoRD+9//+3zh9+jQcDgcOHDhgUHRpvGZzT0Bh6Hy9cKAQ08bGRnR2dqKnpwfvvvuuupKJ+qVTdKzGBtxdG1tbW7hy5QpisRgOHz6Mzs5Otf7i8bgKP6b2CCe8z5zHJJNJOJ1OdHV14ROf+ARu3bqlDD4+32b0zfu3s7ODzc1N/PjHP0ZxcbHhKjEdTklhInrleDx16hRGR0dx4cIFda6Pj0nWx9dxJBLBzMwMwuEwSkpKYLPZDJlvk8mkIRyf0yCFkRcXF2NhYSHFGLBSFLa3t7GysmJ4RvybFBl+NRAZM5QYR2aT1tGHXGOUUI7jlUeh8Lpop293dxdLS0tYW1tLCfWWY+L4yc7Ohtfrhdfrhc1mM/AHojEAhmMz3Hm0vb2Nvr4+hEIh011HKz5Kx5rq6+sNTjA+F8S3srOzEY/H1W/Ec2KxGLa2tjA6OoqVlRVVxsp40wHNHeXgoOtzOL5oLDzyiifokjtFJK9DoZC6WotyKejmReLMCo/ceHa5XDhw4AAeeeQRNDY2Go4A8HBjWg9Ut5QBfKySjnj+h0QigaWlJQwMDOBb3/qWSrKoM/50YLXerfQ3Tv88ZJv0p09+8pOorKyE3W438DG5nijqTae7cJwQfyHZy2+1oN/pP9eruK6mO26zvr6OS5cu4b333kMoFEq55ovjwwxvZng1M3L3K4czKa+jSZob+u9yudDd3Y0DBw4YMv3z+Zb0puNhBPs59iCjC3T8iRvuvO/UDwK+460zonXGs8QT3xnn7WdlGY9iSj2GnHBra2sYHx/HxMSEOg6ly3Nipo+Y4fTDhvvagG5ra0N2dra6M45fPyOVbUlM96LsfhjwQdrNxGDJRKBn0g8dAaYzFKTiA9w1oPjdbCsrK5iamoLdbofL5UJHRwe6u7tV9kizXQhdv3VhzZxpccNVhxNdeCi9Iw03aosnJuMhX8lkMuU34K7CYiZs6TcC8qjn5OTg8OHDaGpqwubmJsLhMN555x2Mj4+rsGLqlzTEPghIxUjOezqlR0eTXBEmgfv++++jv78fr776Kv7ZP/tnaG9vR1NTU4riw5m+3BUkoS3PMkoliMpzgSfxxa9UoBDH2tpalJWVoaKiAt///vfR29uLhYWFFCeNGf4zYeCSbqWRuLy8jDfffBO3b9/GU089hVOnTqG9vd3wLpUnZUuCzqnDs7RS+/n5+Th27Bhqa2tRX1+PixcvYmRkRGWVlmPNBKg9yjR+48YNfOlLX8If/uEfoqWlRe32JpN38xIQ8LFQPTzxVE5ODqqqquB0OvHpT38a58+fx+3bt1PCz3X45p/pyp35+Xm8++67yM7Oxic+8QmFH570TvIXjpfs7GwUFxfD5/OhuLgYS0tLqu9WeCNaJqP16tWrSCaTysnAeRnHDVeKbDYburu7sba2hqGhIVNDj+aajyMSiWBlZQXRaFTVyxN1kdFJETI0L7QjKPmlFdD683g8SsmUv/P/9JmMWtrdtBqfrr2uri709PQYdoJ080EOFVLYdnZ2EA6H8cYbb2Bubi7FAOBjln2mNXXkyBGcO3dOOQr53HEZxg0Rvl53dnYwMjKCCxcuYH19Xc1LJru71A9aN+Qoe+aZZ/DII48gPz/fQMsUMk4GGVf2uTOLG8c7Ozu4du0aBgYGcP78eayurio86fpoZsjJ+Sdc2e12dHV14eDBg3jooYfgdrvVlXPEB7hxR/2Vdeva5OGjnKbW19fxne98R+34r66upkTkZIJ7KSP4GDk+pPOCxkRJEx9//HG0tbWhqKgIRUVFak3ytkhucblppsvRMwojpmf8rLQZcNkrn8diMYyOjuLq1asYHx9HMBhUZ1X5et2vHNH1QfdZN0Yd8LlIxz/oP6f/3Nxc1NTUoK6uDm1tbfB4PLDZbCqyRm7AmOkFUu4TcOeVnLv96P1SF9e9L/VTnQ1l1Z5uPfB+mNFiIrF3A8Ti4iLm5uZw584dRKNRFbHKeQg3yK3W3weli/3AfW1AFxYWwul0wuPxqLsRKZtoNBo13ea3Ij4rkJP3QRZ/ujbMvmfybibMwIzIzNpLR6j0rpnxxA0oUsxoB4NCF6enp1FaWqrOe8o78WSfrfB/L4uD6jQLJZXCykoYSoPKTMnTCSpu5OXm5sJms6GwsFDtQFRUVKCurg6XL19WIYVc6bLyWkrmkYkiYCWAuFJg1R59pvFS4hBasxcvXoTf78fCwgKOHj0Ku91uEEK6eqXzwExB4IoUp0Xd+PiuN825zWZDY2MjTp06BY/Hg0uXLhmydGfqJU4H0hgD7grR9fV1xONxXL9+Xe1KdnV1GZRGjiv+mSu6pPhyg4fjkxKqVVRU4NixY1hbW1PnlyU/Tcf/dIbJ7u4uNjc3MTMzg3feeQc7Ozvwer2GvAiSv0rFk9dLYdOFhYU4fvw4ZmZm1JUomRgXnP4Tib2z0NPT0xgYGMCzzz6rkk2ZjUn2FwDy8/NRWlqK+vp6BAIBU8Gv4xuJxN4Z0tHRUdTU1KjrjiQezfrj8/mUQ0JH62Y4IAdCPB43hGSTM4sSN/GrpyjhIzeC09EDNw4cDkfKjpnuHRlaHAqFsLm5acrLCOSaLysrQ3l5eUoZM2OYPm9vb2N9fR2hUMg0F4IEbvw5nU6UlZWhoaHBkISH/zfjcdTW1tYWlpaWMDQ0ZHllkhlv4/LE4XDg5MmTOHDgAIqKigxtSiPZTO7zdnd3d+H3+zEyMoKRkRG1Oy7lnhnedPyb4y83NxeNjY1ob29He3s7iouLTZ0fsl5eXzpDltpMJBIIBAKYmZnB0NAQ5ufnsbm5aRk2mq79/YyZG2gejwdFRUU4fvw4Ojs71a4zT5gm9RJ6Tjc7AHcT0+n0S67zSFmmiwLjxh6nu2g0iqWlJczOzmJkZASjo6Pw+/1qc0tHC/vVxTPhMxLS0R2v16w9whHJR4/Hg+rqalRWVqKiogJVVVXKOcbr5u+n01d1/Iu/S3xQ4t1Mh+RzmW6tWPFg3W6y1B3S8XCp29CVU6FQCOvr61hdXUUwGEQwGDQklZO82ErvuBdbzMyYzrSu+9qAdrvdKC0thcvlArAXhhYMBjE+Po6NjQ11yJyUXHnVgFw8kuAI9jsx97LI6b10xJhJ2UzfJzAz7D4ImCnBJKBIUYxGoxgdHcWdO3fgcDhQWVmJhx56CA0NDaiurjYYUrxfckFyJqLDSybjoWzFMtSQhJSkGckUzYR0JsazzoijUKqsrCx1fu/o0aPo6OjA2toa/H4/5ufnsbGxga2tLUN4pZlCqMNLJsaQ7l35TOLdqj6edTORSODChQsYGhpCY2MjysvL1brmhpUMXee7AVwJkG1z+pDnHSXojDgA8Hq9OHPmDBobG7G9vY3t7W2EQiFEIhED/swMo3sFGid9psy7a2traGxsVOGzZGgQcHxQHdwxQ8+5gRKPx9UOhtPpxNGjR9X1M/Pz84a7FTleMzWa+Fg2Nzfx+uuvIy8vD83NzaipqTGEEVK9NL9moedZWVnKGDt69Chu3bqFsbExrK2tpbRt1j/6T2Gyc3NzsNlsWF1dVUlfeDn6bMaT6F7Wzs5O3Lx5M+VWADPc0P+dnR0MDw+jvb3dMG+8n9SuPPJCCWukg8Rs3DT3tPvNr4YipZuMXB4Zw5V8nQIvca4zFHgWbh1epNyg3+iqv0wUQqL37Oxs+Hw+lJaWmspNnVJKyp7u3KtV2/yvsLAQpaWlKC8vT1GCzeZItrG6uorZ2VmMjo5qd8Al7nT9yc7eO69eWFiIJ554QjlayHEGGHe9KAqB44IbUNReNBrF+Pi4WnsywZvV/KSTTeTAPHToEA4ePIgDBw6kHBfgvEL2Vcf3JciQ5e3tbXVN2PT0tDZZ273w9HTyU9KNw+FARUUFWltb8dxzzxluJ5F1SHlH+lUkElFrl+s2kpdKnYOeycgueRMKj5YKhUIYHBzE1atX1U6izJDMcWc195ngTjd+M3mUTg6YGYeEJ0rKRnNSVVWF48ePw+v1Ij8/H7m5uaZ83qxu+YzwSf2UNGs1Nk73VJ90POrwxNeImbyk9cN3sIE9WuG3NJCeTKCjyURi71aOYDCIxcVFjIyMYG1tTa0vvs4ykdlmOLWC/Za3gvvagKYMnna7XYWWUWbCcDiM9fV1zM7OYmZmBqFQyHBuSudJ1Al/M2Tv93kmoDO+/m+AXDxmZdLVIUEuALlAaQ7IU0pZTqenp+FwOODxePDII4+go6MDjY2NBsWNK9qy/zqBz5Uy2VeuuFO/uJHByycSiRRPLnfMELORBp308HJPP8efDLPJzc1V4TW7u7sqy67H48Ef//EfY2ZmBmNjY3jppZdUBnTJ1MyUB8lM/2/QLu8TX4PhcBjRaBTBYBCTk5N48MEHcfz4cTzyyCOGUGM+DmlYcNzzs4zSkOQhsfLsEOGD727TPLjdbjQ3N+N3fud3cPjwYVy5cgVvvvkmtra2DEmV0inY94JT+r++vo5bt26phGyf+9zn0NTUpG2XGzmcJnR0CdwN4yKDw+v14rHHHkNzczPW1tZw48YNrK6uGsLXdburvH0J3EkZCATw1ltvYXl5Gf/hP/wH5QzQjYUflTBTSNxuN5588kn4fD78yZ/8idbgt8I10cfW1hYWFxfxzW9+Ey+++CKampoMtCdxKJX0RCKBAwcOIJlM4gc/+IHh/K4ZnySaIz40NzeHpaUlbG1toaCgIKUtzj95HQUFBSgqKoLdbkckEjGdBzluChOmzMLE45xOp1IgaU3J0GnJl81CdmX4Y0FBgeEmAjmnnIdyWREMBrG5uakNC9TRIBkQpaWlKCkpMfwuc19I2ksmk5iamsJ7772XsvMrFVLeHvU9Ly8Pjz/+uOGOZcnr+TNeN89+/pOf/AT9/f3KYafj3ToezGWRzWZDc3MzHnnkEXUDAuGAGwo8qkY6R8hRS/x7c3MTCwsL+MpXvmJwKJr1UYIcP8chnXkuKyvD008/ra4AkrKT8wbpVOX8n+OC+ILUR7a3t/Gd73wHg4ODmJmZQSQSMY1kScfjdfTBx6d7TkarzWbDs88+i+7ubrS0tKgz6pw++HucH8fjccTjcZVwieeWICCnCfWRH/3hTjsuq+l4Dec9iUQCy8vLuHnzJt5++21DdmQuQ61wp1sDEo9WONbhMV153fu6OaI1UVJSgqqqKjz66KPKaOa3DxC98r5z3iJ3hAlklmurTQDeN3llmxkv4bok9YnLL1lW1z/JV6kcd3TT7zLaj57T3fVzc3PqBgGekFLK+kyA91f2L1P964PaWfe1AQ3AsPBJYAGA3W7H7u4u2tra0NjYiGg0ipWVFUxPTyMUCqVc3K7buSMwIyD52QrSlbMyNjMpfy9gxuAzBTPFRRK2FPJy0fE6uCDb3NxUVx9VVFSgo6MDNTU1SpDq2pPjk+GPEq9caMiQYd2YJEOh+qgt6QWXzIQbAZwR6Yxp/pm3SUa8x+NBXV0dvF4vPB4PxsbGcOfOHQwODhqu2NAZEGaf5XxI3OnwbTb3VmU4w+fRIaQg37hxQ4XRnThxAtXV1eruVF6fbn51YzEbF2fWvC6d4KBEWzabDceOHUNJSQnKy8vxgx/8QIU6S4X8Xtap7h1uQJCS2tfXh6KiIvT09OCxxx5LGaukTT5+vv50IZv03263o7y8HB/72MfU2Ta/3294l++ISrrSrSWa+2g0Cr/fD5vNhosXL+LgwYOoqqpS5bhBposMoAzV9CwnJwdlZWVobm5GV1cXRkZG1JVDOv4j8U3l6Mzr1atXcfLkSXV/p8SvDkiGuFwulJaWorKyMiXpkA54H2gnnHYdPR5PCn8gvEhlg0J0CwoKsL6+brpzJhVGWnvhcFiF9fKdPu6Q4njQ1UPPzZRk+kxZ2Amkci7fo35QFlYd/jjwdykEXXc1os7gozWTTO7lIBgbG9PmPTAD0ktyc3PR1dWlrq7S8WPOd2T98Xgcq6urmJycxNLSUso5Uqt+8HHk5uaiqKgIDQ0NOHLkiLoiDYAhCsDMeOF9pTWys7ODwcFBXLlyRfE/aTSl02N0fSYj0u12o7W1VRkt5NTRyWnqE+8zl7W8H9LxRMYhXbPU39+PpaUlbG5uZnxNldV4zJ7JNUH6q8/nQ2dnJ44ePYqysjJ11ttM7+QRWrQ+6DgG/c4d8TQ/ZADx6DqiW7kGqB6Or+XlZfT29mJ+fh6zs7MIBALKMOLtpMObjifL37ksk7/dC5gZywQUiWW329HZ2YmKigpUVFSgtLRU6Z5SjyNZKNd1pgadbpySxnmZTOqWehZ/R24e6HQC/rtZH+UcA1DH81ZXV7G8vIzl5WWsrKxgfX1dJeKTvNCMNnSfrUAn6/i4dWXv1ZC+7w1o3aICoHam6UqarKwsrK6uwuFwYGlpCUtLS2rXi+4t3s+VLekEDX+23/FYCcT9EkA6xnQvoOuDTomS33WMkhtTtIi4IBgfH8f8/Dy8Xq86515eXg6Px6OS0PAdRYkHaRjI/uoEkc4IkWXpN+79TmfM6RY0gJSdKTMa4oZQMrmXsIzOildWVsLn86GkpATb29tYXl5W50wyZUJWc5gJpBNufI3oDFmaQ8pEHAgE4Pf7kZ+fj2g0ivr6ehQUFBjukuXzq2PCcj7lOpUeU6vx0Bzn5OSgvr4eXq8XBQUFGB4exvT0NAKBAMLhcAoO7gWvZoYe7TAkEgnMzs7i8uXL2NnZweHDhw3ZkK12amU7HE8Sjzk5OfB4PDh27BiGh4exs7OD9fV1w7k2iTMreqPfaY3TDtaVK1dQUlKi8lrwPvGdIx5iyo84kELgdrtRWVmJw4cPw+/3KyXYzHjm36lfJPwnJycxOzurnFQSl2b0Dewl9PJ6vWhsbMTKygo2NjYyUqT4HK+srGBmZkYly6TfdcoVQU5OjgrTXVhYMGRztmqT2qWznnInRHdLgZwb/pzjWkd7FE4sDVpel+4MH90/raM9XpZ/zsrKUnKCG8y6dSkdEuTIkMarFVCbtJNYWVmJwsJCA53Kdsx4VCQSwZ07d7C4uKi9Zsxq/Hz95Obmorq6Gg0NDaitrTUYzdxISqd0cmV8eXkZw8PDuHHjhmWY835kCfWXjkG0t7fjgQcegN1uT5HV/B2dYSHlpa4vRNtLS0sYHh7GlStXMDMzo7JFp3M+7wd0c8z7SbkTyMlRV1enHB2yvK5efhyDRxCQ8ayTuVJn4bJQ6k5ZWVmGaMGxsTFlQPNcLPdCA2a6m9m7mRqluvI6/sD/SOY5nU4UFhYqA7qwsNCwky/XhTQq+ZyZ3Sgjx2AWmWg1Vt6WmR5kphvtRzekyA1dWfpOvJmuRVxeXsbc3Bzm5uZS6IOv2XR81cq4Tmf7mMkgs7rSleVwXxvQ3ADJyckxKAukTDmdTnXWyuVyoby8XBln6+vrmJ6extTUFAYHB9U1Nbo4fKlo6frxfwoyNejT9WO/TCddHfcybjPjUC58vmCj0SjW19cRCARgt9tRUFCA9vZ2PPXUUygvL4fX601hXFzQy7b4Z6Idfo1SIpFQmUilEE6n+PA6ePs6HNB/qQzovJj8s/R0krPoyJEj6OrqwtNPP41XX30Vt27dQl9fnzovyBVlKzCjESlsdTiwqsPKmCQjh3YwdnZ2EIlEEA6HMT8/j4aGBpw9exYf/ehHDZnaOc75Dg9XCqVSznFBfZJnfGQ5HqZKOwXFxcVwOp344z/+Y7z66qt48803MTg4aFBg9hPSLfGoE4yEHxLIlCG7uLgYzz//vCEjMt+ZkLtfUlDolCX6T2P99Kc/jebmZgSDQUxPT6uESrrIHbPxcoFJhurOzg5+8IMfKOO5q6srJUkOnxPedxmOT2fUfvmXfxljY2NYXV1FLBZL4QdyjNQW4ZauW7tw4QKysrLQ0NBgCHWVY5KKem5uLgoLC/Gxj31MeeBp7szWALWflbWXsXxqagrvv/8+HnvsMa3ixumW8JmVtXe2uKmpSYXKUVnd+uPzTtEftbW12hBeCp/l9dAujXTY8H7KdoC9deF0OhXtkJLJjVxpaCYSe+fneHSNGfC5JYWYn/Pl+ODrnNYujZN2TsgRk6mDnXiEy+VS+CEDnOZNnlPnO6jUB7/fj+9+97sIBoOGZJHpjApuDFA/nnvuObS1tWkTCMq+S1nM5zGZ3Mu0/MMf/hC3b9+G3+83GJu6OtPhinBCePN6vYrfeDwew5ik/DLjbVLOc3rkayYajeIb3/gGxsbG4Pf7M7pj/MMAGjdFR5SUlOCTn/wkDhw4AJ/PZzgqxs9py6gfzlNo/eTk5MDpdKqIKUrWSvotgJQz0bJfAAxrgSJjpqenMTo6iu9+97uGZL2cZnS0w8FKF9XpE2bPdPqklbEly3LnAzmaPB4PHnzwQdTX1ysnBtXBHe781g6d4SojC3XAnRi8bj4+nQ1C5eUYZT+k7ko8lm9CSPxIWSbxJueY/lNUwtLSEgYHB7G2tqaun5LRUjpeYTV/mdgamdJIJu1lCve9AU2DJ6V7d3cX+fn5sNlscDqdSkjTBBKDJsHicDhQX1+P48ePIxwOIxAIYGBgAAsLC4o5cIKUu6VWffqgcC9Kt1Udus/7NYI/TKGi64NkEFzRIQZOhtXMzAwKCgpQWlqKM2fOoLy83LBDSXXzhSINUpmQRPefg25BcuWQGznUpnxHvq8TYgSk7PHQKsIN1cWVdjKmz549i+PHj8Pv9+Mf/uEfsLy8rK6S4P2woon9MB4rhSzTMnyNSSN2YmIC4XAYW1tbOHz4MHp6egxOD1KGeDvc4OUKhgz/lAoivcND4Ok/N9iIn1BSnsbGRvzN3/wNFhYW1E6ebnxWuLEqI3+jiIzZ2Vn86Ec/QjKZxJEjR3Do0CFDOelM4Ao67U4AMFxVpXMUeTwe9PT04Hd/93fxl3/5l1hcXFRJxiQtWfFBLnjp3Y2NDbz22msIBoPo6OgwJA6UBqOsQyodAFBSUoInn3wSTqcTP/nJTwxJgug9acxKZ0U0GkVfXx8cDgeefvppFBYWGniLTskmXNNOcEdHByoqKuB2u7GyspJisPF2OSQSe5mAKSkTDz/moZSyLrpWqq2tDefPn0/Z+TZTOGnXe2FhQe14c6eSzWYz9I/6QspYOkWR44fmUWYT5rjRKacUWUMymf9m1hbt7NXW1qowYL4bJHHDDYZ4PI5r167hzp07GYeM8ygVn8+H06dPq/OrHOc0NplPg/OWYDCI2dlZjI+PG+5UzgS4kl9UVIRTp06hsbERRUVFiodxZ4VcB9ypQv2iRHOBQAC3b99Gf38//H5/StIwiRsrOudRX5SkqbKyEs8//zyamppSjGd6Rwdmz/lvHL9bW1uYm5vDj370IwwPDxuO4aTTm+4VOA+jnfby8nI0NDTg6aefRnV1NVwul3ZnWJegiXQajltKapVMJg1JAKkOyT+Au8YeX/dEF+RkWFtbw6uvvor5+XksLy+nRG1msiZ1/bfSJ/aDb0nHvB75jOsF2dl7dzg3NzejtrZWrROHw2G4kYCPTacLSV3Tqo+8bTJsM4l24MY21xvlu2Z6qoyylOMhvqfToTnvIvrZ3d3F7Ows5ufnMTc3h0gkgu3tbUOYthlfkGOUMtxMZsnnXG7s1575oHBfG9AcODOg6zH4PXk67ySFt7jdbqUwFRcXI5FIoLS0FFtbWypj3NbWVooH2ExY3MviTzfxOgPm/y2w336ZKXRmdcvFS9liNzc34XQ6sbS0BIfDgaqqKpSVlaG6ulrRQKZ9559JWTDzBEpjRDIWs7plPdLQ484CeocLSJ2Sw+vngrm8vBzFxcUoLS3FqVOnMDc3B7/fj4mJCYNjyMoh9EHpLNP3zZg+fY7FYmreb9y4gVgshu3tbXR0dKi7F83q0/VHjpXPjTSq6D0rby8lKMrLy8OpU6fQ39+P+fl5+P3+FIeFmRPBTCHXjYuAh0HPzs7i+vXryMrKgt1uR1tbm0Hp0ikn9JzvxujOoQJ3Q4NLSkrQ2dmJ48ePo7+/H6OjoyrTq66PZoa0XE+U/drr9WJmZgZVVVXq6I0VfejmirKId3R0IBAI4I033lA7sTolRdcvwsfKygrm5uYwMjKCw4cPG/qkc9TIXVOPx4OqqipUVlZibW3N0rHAIZFIIBqNYnV1FeFw2DTcmfMNajs/Px+VlZVK+aOyfIy6Me/u7qr7e3koIR+v5ImA0QjKxHFC5XgSHqpfRm7w/tF5YF1UkQ4nVE9eXh5qamrgcDhUGWl0cMOKz8HU1BSCwaBp1I7kydQmRSB0d3en8Ccr3FAfdnZ2cOfOHYyPj2vv0OXvyPZ5P/Lz81FcXIxDhw6hsLBQ9cWMH8jfeJuJxN2kYTdv3kQgEFAJFNMpyVY4o/mw2Wyora1Fa2srDhw4ALfbnZJ4jfqko2czeaPDWyQSwcTEBIaHhzE8PKwiVXQZo+9V79LpbJxP0PVczc3N6j8/m85pWa4t+VnSHnfk6crq5JmkfXq2tLSE5eVlzM/PY2hoSF0jpwvH5fMhP+vmxQqsaNQKdMaj/J2cXHRNWGVlJerq6lBRUYHa2toUp6CuDrP+m70jy+jWHZejZjxbyp90/SGQUXuZOL1kSDmPDlxbW8P6+joWFhawuLio9B1KfKjjI+lAJ9M/LDCjiQ/S3n1tQHMi5LtPFLZCh/2tjBbugXU4HPB6vaiqqlKJZILBIK5evYrZ2VmVeIwzDm40cUX8g46LIB1TMhN+HDeZKOf30rd7BYkn3aKRcyaZBl/IKysrWFpaQklJCaqrq/H000+jpqZGCWDpQSTgUQkS55RxkoQdv9qB18ENDrmzwf/rGCD/Lg0dLsyoD2a44Tjkyinds/2Zz3wG8/PzmJiYwDe/+U0EAgGVKZMbjvsJN+ZtZ/pcBzrlRM4Rx29vby9GR0dx8eJF/MZv/Aaam5tRUlJiSCrHFWxpQMhQIt6mVOCBuzttcpeFG2K0M11SUoJf/uVfxquvvore3l5cuHBBZXHVGeZyrARW+NPhJplMYmtrC9euXUMoFILf78dv/dZvwe12awWyxAU/+sJ3nLiyRzRFBupnPvMZuN1uLC4uqrtGCSeZhnLy9b+zs4ONjQ3Mz8/j4sWLOHv2rLpjWILVbicPTevq6kIwGITb7VZJj8wUYlkf4WZ7extzc3N4/fXX0dTUBJvNZjAYZUQLGbF09CQ7Oxutra1YXl7G6OiouhYoHdC8bG5uYnl5GW63G3a7PYWOdLtu+fn5qK6uNuye6PiPnJvd3V3FG2hOKFHb7u5uyhV/RH86B186yMrKUrjk7RNO5U0C5FCQO9A62SDbsdvtOHDgABwOh+qvjCQxC9kdHx9X4fcEZmtWGoOlpaU4evSoCgHlwNcVOQeobjpCcO3aNVy9ejWja5R0Rld29l4m/draWpw+fdoQsQPcVY55eDDhQ/JjwpHf78fw8DDeffddtcuUzimlW2f8P0UxuFwunDx5EkeOHEFpaanhXl0rA5r/Tr/RmPjcch4fCoXw1ltvoa+vT91bbeUAtxqfFcixE74pCegjjzyCzs5OVFdXK4cSH4fUUbmMknXzP51xJHHE2yK+xWUB8b/e3l4MDQ3h9u3bhmOOVOZe9V3JM+5FdzbTcXV1cycDHdurq6vDwYMH0d3dbYhM5TiSa1+nq5COKOWBrr9mVz1xHEhjGoB2XcqxZWUZz1vz/ps5U3U4l/oNPSO7aHFxUV0/G41GFd3oeFS6OZXjNONtuvf4uK10KSve9EHstfvagKaBE7OknQeXy6U89nLnme/SceMBgPJ2knB1Op3w+Xyoq6tTdxYHg0EMDAxgdnYW09PTKYKH+sV39mR/CfYzebysTmHQ1ZWJ8krvZlouUwGj66N814wZmPWNL3ZSNGhOKTvx0tISJiYm4PF4UFFRgSNHjuDo0aNwuVym9yjqDCqiBVIkudEB3D1rJOvh50/NBDIvRwyP3pF0aqWY8jIcfzxEC9jLdtvQ0ICqqip0dXVheHgYt2/fxptvvom1tTU1Pu6EypT5WZWR/dbNKxcYXEmQeOOGIp1P/bM/+zN0dnaiq6sLH//4x9VZQ44HHe4ovI3+uINCFz7O+5tM7u2W8jY4eL1enDt3DkeOHEFPT49yWJCRKQWW1bqVzN9sLXFFkbJkb29v42Mf+xgOHjyoDC8dn+NKlLzjU3rheYhffX09nn/+ebS0tOBLX/qSSlZHc6hbz2bjIF5JIcRf+cpX4PP5cPDgQVRWVqbghsrzkGbdOnE4HGhqasIv/uIv4pvf/Ka6b1KHd943qj+R2Dsy4vf78fOf/xzPPfecysFgZrABUI4pMpwOHTqE3d1dvPbaawrH0ujgfeH4CIfDeO+99+ByuVBYWKj4Ho1Zp8DSeUq3260S8JkpF3wd7O7uYmFhQV1/xa9l4XjhvJ0bQFZyhOqg/6TEyl1uml/uzCNeurGxgenpaRWRYmX48jbsdju6uroMuROoDP2RUUDnvCORiDr/LHdZOXA6IFzk5eWhtbUVra2tyonFx8n7LpVpWocTExOYnJzE/Py8NoO7XGMSt2TEnzt3DqdPnzacN+e8gOad1yOdGtSveDyOl156CYODg2pXXPJJHZitlaysu+d/PR4PvvCFL6jzvzx6UFcXNwqoD7wN6UQlmorFYggGg/iv//W/Ynl5WckTuftKbcm2qU75uxwfnw+OV0r8eeTIETzxxBOora01jFU3B2b1SxqSMpTnbCAa19UncbWzs4OlpSVMTk7ipz/9KVZWVhCJRAyJI83W3X6NEbPy6Z6nM4x4Gb4mKOK0rq4OZ86cQUlJicpTwNvQ6SG8Lo5/iXfdu9xJJQ1tWn9mmyj0nes2ZNtY8STJ37ns5PjTHQ2RcoF2mIeHh9V1qfyaSJ29Ix09mdKGbl2Z8b796KfyPTN5tR8avq8NaA50lo/ug5ZeO0KWjO0HUkMbiOHyc15EfGSINTY2orOzE7u7u9jc3MTa2hru3Lmj7t6Tux1mE56OuKSRrPts9Y4O9kMg6epK14ZUqHVldIZBuj7KRUELne5AXF9fV9mCZ2dn4XK5lEJdVVWFwsLClHFKxqUzwKSizhUSrljKcd3LPPLfrZQQKazpM60BEtw8eURRURF8Ph9WVlYwOzurlDVdZIVV+1ZgpWBYGZE6hgfcve6K/i8vL+P27dtYXV3F1tYWamtrUVNTY7g3k9OHTrDpzjfx9jhPoN8kD+GGBl2/kpWVhSNHjmB3dxfj4+MYGRnBxMSE4X5MHW6scK77zoGcSIlEAjdv3kR2djYmJibwyCOPGK5+0/EgGofEvxnObDYbysrKkEgkcPbsWfT29qqsz5lG5fDxED6i0SiWlpbw6quvYmVlBWfPnkVRUVEKj5a8myvWXKEuKSnB6dOn0dvbi/HxcQQCgZTzrFZ9okRntGO1vb2NEydOpPAB+T5XmAsKClBZWYmWlha1i2MFnJ9Fo1H09/fj2LFjhnPcsh1O46QolpSUYGlpCRsbGyn169rc3d3F+vo6YrGYoX7Cu9yJkc5ps7p17VIfyYg2cz5znhyJRLQ0ZgZZWXtRE3a7HYWFhYadJV6Gj4HwEAwGce3atX0lDyPc22w29PT0oLu7W7sLRePn64KMO4rEeOONNzA3N6ecH3w9WekKfHeturpahaXKcFRJv3wdSYU7kUggHA7j8uXLmJ6e1u7YZqJTyPYp0VVLSwsOHjyIAwcOoLi42BDGzEHqC1xXo3mTRjcfBx1hGh4extLSEiKRiFZP249SbjZGPk6aEwrpb25uRn19PWpra9U962ayUsov2bZOP5FrV75PZaRDJR6Pq8SJoVAIy8vLhlxAulB9K+NEtivL676nG186nHO8E+7tdrs64+z1euFyueDz+VBZWamO+kknhOyHzjCUBqwugk9+z1SH0s25XLNyfnW4zcQGke3u7OxgdXUVoVAIwWBQHZ0Jh8NYXl42ZNPmeOB1W+kpujbTGbNm9G/Vhpleqatb9jlT+CdlQFPyMEqawHf6AOOOi1kYDP2XyaXoMwljUq52d3cRCoWwuLgIAAgEAtjc3MT29rZKSGGWtET3/V7hXojgXgwiq3fSGcpmZTNZYGZtS4WSh0+Gw2H4/X4MDAzAbrfD7Xbj1KlTSoEmeuGhl7xevttMfeb/uXA2EyhSCeV16+iLv6sTRFa4MhMk/DOFd1ZUVKC9vR3r6+vo6+uD3W5HJBJRHnnyLEoDh49R1+690LJkclJo6BQAWlczMzNYWFjA8PAwDh48iJ6eHrjdblRXV6cYF7r2uOJotSsod8SoX3y3jPpGRhOdy7916xYcDgdWV1exvr6u7p+3wqXZ72aChJ7TNRITExPw+/0YGRlBeXk52tvbU5IoSScjD2uV/aE26Dc6P5aXl4enn34a4XAYm5ubWF1dBZDqPbeiXXrOQ8TeeustbG1tobm5GW63W4VzSuWf/sss7vRbQUGBSjpHZ4qlx92sj0T/vE8ejwdHjx5VThPJewivVC9FRZWWlqKzsxPT09MqJNcMD/SZdsDpjKau31wJpn6Q4V5eXo75+XksLi5q8S/XFxlKtCPHldDs7GxDmDH/k3Mhx6JrkwxoOZdcoef1813heDyeEZ/Jzt47A+zxeOB2u1OOwegMSmqXDGieVCod76U15HA40N3drfIQWPWP7/4mEnuJrQKBAM6fP284j26FU1kn7bq3tbWhsrLScAWb7K+cO04PNBeUvO3tt99WhqfMam0FVkalz+fDoUOHcPbsWRQXF6fkrJGgk6lmhiIAJSdisRjGxsZw6dIlXL9+XZv8MJM55uM142lUjuQEOVWrq6tVyDbdDMPpXBoLfBwy+kPiROJZ9pfelw5H+m1rawtra2uYn5/HK6+8gs3NTbUZIde7bFeHO6uy9wI6nPBxchwQv6JjAV6vFz6fD8ePH0dZWRmcTqcymnXrwIz26Hcrh5rki8nk3R1nqWNmMmZqU37nn2UkjuRzsv8SiA/RfFNyPbqhiHig1HOl/DDTTfYzVv49k7p049tP22a6Z6bwT8KAJkWFzj2TUsvDtaWSy0MqEomEIayTQrl4qAa9R/Ulk0nF7CsqKpSSur29jfX1dYyOjuLGjRsIBoNYWVkxnC3k/wn2Y3xalZdlzNrKtA6rfmRKbGYKv1XZ/YKsj+9U7uzsKAHxox/9CG+99RbKyspw8uRJnDx5EiUlJSnn1KQQ5kY0D40yO/Miw/N4nUSv9FkKOr4rQ+HVRIfcASTb1wHROf9OindeXp46pnDq1ClcvHgRb775JoaGhrC+vm4I0ZO7XBLn3JAwg0zpzaoebtTTdzrfevXqVdy6dQuvv/46vvSlL6GmpkaFbXLmLxUu3iZX8KVwkKFbgH7nhuon4+nIkSNobW1FS0sLfvazn2FgYMCghOoUN44rM0EqgQR1MplUQu/27dv4f/6f/we/+Zu/iYMHD6KxsRE2my1FSeYGtE45ldl46Txsfn4+Tp8+DQCoqanBSy+9ZEjYJZ0hurmWY97d3cXa2hquXLmC5eVl/MVf/AXKysrUzhSfD07b3DFA7efm5qKgoAC/8iu/ApfLhTt37ihjVEYCSBxz3r+zs4PJyUksLi5ie3tbnaclHsPzJdCVMfzamaqqKjz//PO4cuUKNjY2TJUwqdju7u5iY2ND5Szgco3GSnVR9lTadaEz4CMjI4bxyXXIx7y9va0caLQOksmkalsqcZxnSUOJl+VrShra8ty9NIpobmOxGNbW1kwVet42KdB0ry53NEinmqTLWCymbuOgiA6rtqTxfOjQIZSVlcHlchn4b1bW3TBaGeVGfRsaGsLly5cNicM4HmTbHI80ZofDgbKyMvzar/0aCgoKUnAuebU8A837E4vFcPPmTfT29qKvr08ZnrxdOd9mOKJxUySU3W7HF7/4RdTW1qbcnsGNDUl38hgG581cXtL6XV5eRn9/P15++WUVjqwbg44XyTFKvOscEJweyNH41FNP4eDBg+jo6DCcdSYjWkdjvB3izfScy3+pF5AuS3oKX6eEKwDqiqFoNIpXXnkFw8PDmJqaUveNc8eNFR2agZmxa/ad06VufXL+IN/nvCU7e++KvOLiYnzkIx9RdzhTFJ5uHvmZeTlmHd+idnZ2dhRNcycHHfOiugn4fGVlZRnOnEvg7XLewXk4zacuNJu3J+U6n0eKerl16xYWFhbUnc0y6oADfZfy816MUAlm9ooVcJzsp30reswE7msDmnuaCHmU+ATQMzwOOqavM0p0Cgt/j+9GkGerqakJZWVl2NzcVGe3lpaW1JkqzjC5gW7GRPfDuAjSvWO2KNIRUablMu2HWdl7qV8KdP6fhAJd/7O9vY2RkREUFxejsrISJ0+eVDuHQGootzSwqD2dkUCCnpezYsScGfIxcNrT0Qe1Ka/X4SD7JBUaOod25MgRlJWVYX5+Hv39/bh+/bohcR5X7CWO+Xc5J/K3/YCORvl8cuFC/dzZ2cHf/d3fobu7Gx0dHXjggQcMglMqIrq+6sKsOe4lvs3WKRmabrcbDzzwALxeL9rb2/Gtb33LkPU13S6TzvDhOOHtS/pYWVnBD3/4QwQCAZSWlhp2pPg5VC5oJZ1K4DTgcDjQ1dUFm80Gv9+Py5cvq7P1mYS+8jqpH3T+d35+Hj/4wQ9w+vRpHDp0KO1ZWzMHE4VPPvXUU/j+97+vPRdspUDTTtzMzAz6+vpw4sQJ9RtXUrghk5eXp9rJz89HeXk5KisrsbKyAr/fb+BPun5QuxRCt7KygpKSEjUuwhWNmx81SiaTqK6uhs/nS6F9HY3Q387OjtqJ2NnZMTj65DtcDkrD3gyHVI7WhW5nRiqOxLNjsZhK5mcG0oApLS1FY2Oj4TfOY4lWeD+Xl5cRCAQMybvStUVjKigowGOPPYbi4mKDo53KUQQI4YInY9re3sbU1BR6e3u1O986OuHt8/PXx48fh9PpNHXi8pBuqYeQ4hyPxzEzM4Pr16/jxo0bWqfffnQBjqeSkhIcOnQIlZWVKjpAyiY5TgKZ24b3gX6jv1u3bmFkZATXrl3DyspKSjJI3ob8LNemmW7C6YDTntvtRklJCZ599lmV7JJHXUg6522YtcX1D4krqedIWU1AjpGFhQXcuXMHfX19GB8fx+rqKjY3N1N2NPeza8rBSpfT/SblrQQdf6H/hHObzYaWlhZUV1ejublZ3eZA2ecl3RPonK9yjnk/iH50Wc51fTUD7hjhc8X1DS4naG447+TzLumH+iH14Hg8rqKTgsEgVldXsbq6qqIQzSIj0smsTPS8dDq+FS8xq5v37V7hXt69rw1oyXzMPMU6piSFjzSQeBu6SePKGZXnIeIlJSUoLy9XmaJdLheKiooQCAQQDocRDoexvb2tzkzT4qGFq+urrg/7FWISMn033e/3YhxlAlYL04op82ecTogJ0X3Sfr9fZV73eDzw+XwoKChAcXGxuqdU0pnOYDTrV7pFbaUs6IwmXR/4f11/5M64TvhnZ2ejrKxM4SI/P18ldSKF0iwTrBQgZkxWN24rhijxY2XwkJJN/69fv66uoXO73aisrFQhx2YGp5wrq7nThcLp+st3JelqIZfLhd7eXpUzgWdDN6vLDFf8HZ3BAgCRSATDw8NwuVzo7u5GT0+PIeGaxIOubV43V8qJ55WWliKZTOL48eOYnZ1FIpFQu4VW/df9Rv2mu0evX7+OsrIy1NXVoaSkJIXvSpBrAtg7elNXV4ejR4/ijTfeUIpIJnTIeQYdCTl69KjljipX1AhPHo8HdXV1hvWk6zfVQzjf2dlRZxJLSkq09EH94AZOUVERvF5vipJnNc5kMqkMVf6M79xyfJnJUCuQjm/5G5et3OlJRn2mylp29t4d7RUVFYa+8jHz/9Te0tIS/H5/Sqi4jhfz8dtsNng8HrS1tak8CMQDMsH//Pw8Zmdnsbi4mFGCLt424ZNojBxaZoq8NKjkXMfjcUQiEdy+fRtjY2Mpycwk3zQDiaOcnBwUFBSgtrYWBw8eNPBkHY4zAR2fjEaj6r7qkZERTE1NKYeIzihIV7/VHPBx0hgLCwtRWVmJ+vp6HD58GF6v1/IYio5npeuTjpalIcV/A+5ej7e4uIixsTGMjY3hxo0bKqM6l/H/p3Q6s/FY6Xd8vFKny87eu8eZouna2tpQU1ODhoYGg6NOJu/iIGW9Ga/j/2ltS15oVV5+ltFxcuySTunPTAZaOf0TiYRKBkebenNzcwgEAoaoKN2ustX3/7eDmT51L7xGwn1tQAOpDIMLK76jARgvH+dI1XnP6Rm9zxeHrIN7g2KxmPKy8rC+qqoqFdYXjUYxMjKC6elp9Pf3q4P6FLJnJZz2I2jSKYdm5f9PldkPsaargxsNmZTjTJfmk7zslJZ/eHgYXq8XZWVlePbZZ9Ha2oqioiKDQqczbjkdyDFwxs89l1IgSObI+8rblQmsiOHJkDTeBt/1kEaWDC+iJHyPPPIIjh8/junpaVy8eBGvvvoqNjY2VGiSNMQzmZsPg2FxXPA2ufJHxtuNGzcwPDyMK1eu4BOf+AQOHz6M8vJyVYecQ35WKSvLeLWYGa1ROZoDnUDj/KC0tBQulwu/93u/hy9/+csYGRlRygtvh9NVOuWC44LTFOeL6+vruHbtGpaWlvCnf/qnqKyshNPpBABDWKn00HO6M4s8SCaTsNvtqKysxPPPP49AIICrV6/i5s2bAO5m8s10/mnsdPTi2rVrKCwshNfrxdmzZw3X2/BwTrmTyfFks9nQ2NgIl8uF73znOxgbG1MGku48snyfytF7L774IoqKipTyL51U3Nijsefn5+PMmTOIxWIYHR21PFvL+QFlZa6srER7e7shWoF2tKhdvqtZWFioMnHT1VRmyh29n0zuZboPh8OoqKhQz3TKJ+1O0/VmZvyAzw/9p3c4H8nKyjIk9KE+xWIxbG5uqoReZvMkFW5y7DQ0NJjKCZ0TZWBgALdv31bJ1NIB8QAymioqKkyvYIpGo8jJyTFcCUYOgtdeew23b99OcV7wduR4uRGRl5eH+vp6dHR0oLOz0xA9wHUfyT/5+MlIjsfjWFlZwbe//W2EQqGU3Wf+vg4fsp8Uzmyz2XD48GEcOnQIDz30kJKJicTdcHa5jrmxAdzNcq8zUChSIRgM4ic/+Ql6e3sRDAZNo32s+i9xr5NnBETblIunp6cHJ0+exOHDhw1J0bh85/VIA89MTtOa4boEl3u6CDa+oxyJRLC4uIiXX35Z3TF+r46FdGClK+rWhll5qXPxzzk5OcjPz0drayuam5tx/PhxOBwO5ZzjurvMgSTxpDO0pHEr9TkCqR8kEgnFm+Uak+/o6IrbMGa2AC/D29W9T7bH6OgopqenMTIyotYEj4LhsB/DORO7YD+2i1m5dDJmvyDX2X7hvjegpWLGGYrO0NUJJU5w9Iy/x+uV4dxyh5LOYUsByJUdj8cDp9OJ9vZ2nDlzBtFoFNPT0xgdHcXw8LA67ya9gXKsOubzYRgoVmCm7Mnv+zGWMilr9vt+Fph8TnTCBc3W1haCwSCWl5dRUVGB6upqnDhxAm1tbepMm86Ao88yZJs+81Ads3clIwdgEIDcmCGBqwuvys3NNSjvOq8kr1sKJspon5ubi9bWVlRWVuLMmTPo6+vDjRs3cO3aNcP1BXI8mRpJmYCZUOPPpICiP3JWxeNx/P3f/z1qa2tx6tQpPPzwwygoKDAo61lZd+855njiNELt6q6eoef8OymwXODSlSUHDhzA7/7u7+LmzZv4/ve/j5mZmZTsllbrwkzx0ym39D8cDmNmZgZ/+qd/iqeffhqPPvooysrKDGHcHN9yLVmF0BF/czqdePHFF1FdXQ0A6O/vN9wTnSlf4IoDXeXk9/tVWJ7L5TJVemgs/HqQRCIBm82G4uJi/MZv/Ab+/u//HpcvX8bm5qZBiSd80frl87m7u4utrS34/X6cP38ex48fR319vQFfRCecdmj9OxwOdHZ24s6dO/B4PIYEUTrgivHExAQKCwvx8Y9/3ODw5eeepUJos9ngcrng8XjUuUZetwTC2crKCkKhkJKhFBrMr4/a2dkxnKWXd0RzupBARgYfI61hUjzJ6UfzsLKyonKJyBBTPibufLTb7fB6vSgsLNSuWZ2RQFnzZ2ZmtLutsj1qKy8vDwcPHsRDDz2kzlPSPMhIBaqPnO2U6f3mzZuYn59PSdyUDsiI8Hg8+MVf/EU0NTUZ8hlw45P4opRH3MEajUZx9epVvP766wiFQin3UFvpADpjhxyILpcLR48exdmzZ9HQ0KDmmIei0h9Pdkh16/gvx2cisRcGf+HCBfT392NgYEBllTfLOaCjUakfWukYhFvKKN7Q0IDTp0/jyJEjKCgogN1uN9ABf0c3Bk4rkpfo/mQ+Fq4nEL5IDtJZ9snJSXWFF+mZcl51nzPl3enK7McI0hnNtLYrKipQW1uLI0eOwOv1wuFwpOTJoM/8CBq1KXU1voEl16pu/eqey//UNnd0mpXlv+k2KDge+M41P0rDz3InEgmsrq6qhKJLS0vY2tpSxxfT8TezOTL7XeoPOl3Caq1ZtWO1Bq3e5TjLpF6rPujgn4QBbfWbVCroOXk8dROrWyw6YpbMjp7Tf6lcc0bqdrvhcDjg8XiQSCSQn58Pp9OJoqIildHW7/ercztW2RB5uzqwIrZ78dro6uFjTgf7Ma7vpT9WQk8ucF4+mbx7BnBxcRFbW1tYXV1FMpmE3+9HSUkJfD4fampqlCEk69UZP5JxyvkzC7E2Y7I847CuDpn1PR0edL/x3SKizWRyb6cxNzcXExMTKiELrScuwHXzYDbnmTpQ0tEqr4MbQ5ubm5ifn0ckElFGbUNDAxobGw3XmekUG3ou+2jmROHfJW4JN2RM1dXVYXd378qcK1euYHFxESsrK8o5YTX2/awfmh/a0R0fH8fVq1eRk5ODxx9/HAUFBeqMmK5+HW8zc2Lk5uairKwMHR0dWFlZUWeszO6J1vVVzuPOzg7W1tYwOTmJd955B48++ijq6+sNOzvSwaILT8/K2tsFbm5uRktLCxYXFzEyMpKyQ27GL4k/bG1t4fr166itrUVVVVXK9V9mY8nOzlYRLjU1NeqcuBkeOG7X19cRCoUQjUYNjhluTPJ3iJYdDgdKSkqwsLCgnss1yfkfrZdwOKydXwLZDt/d4aDjP3IHlpeT4yHaXVtbw/r6esbyJTs7Gx6PBw6Hw+AY0+GZ44XCHOkcIC+j0xE4j6ysrERDQ0NK/VYGAjllFhcXVYb+/YTQknHq9Xpx4MAB1NTUwO12q9+4bsL7zfsn187Y2JiKkJNnsa36pMMx9Y+ucjt69Ciqq6sNfaR3udzhRkI6oHmLxWK4ceMGbt++jcnJSWU8S3zuV/cwo3vqY25uLjweD7q7u9HS0oKOjg6UlpZqnUq6NSINDS5vpDEm6yDHg04+JJN7TpqVlRUsLCzgxo0bGB0dxdLSkuGmjUxpbb9gZTTpaEXSJn/G5WZxcTHq6upQVlameCklZpO7+xKsjCz6rKMTruOY1WfmINb1SVeXFZgZepJ/kwN0bW0NGxsbWF1dxfz8PFZWVrC6upr2GIaVrWBWZr+0YyX7zcBMZzCz38z0l0z00f3AfW1AZ8IQZYZUKs+JhytO0tDmbUmlQbfgqV7O2GT9/H3qW11dHaqqqnD48GFsbm4iFAqhr68PQ0ND6p5bCgvkAk0ueDPikWXMQEeomRgvZkSqg0z6LfHNx5CuT+kWqJUSSUophXfT1Q50DUVnZyfOnj0Lj8cDu92ulHh6T7bN518KK04/VIa8ldQv3e5xVlZWiuIt2+HPsrKMmUt5OU7rkk4BqNC77OxstLe3o76+HnV1dfjpT3+KkZERbbIdqfzrwGzu0hlXZu/LueW0RUp5LBbD+vo6Jicn8cADD+DcuXNKwSY88BAvakMX+si/m9GnjCbgeCGlq7W1VSUc6uvrQywWQzgcNhipVuO0+o33i9Pe2toaLl26hJmZGTQ3N6OhoUFl69WFrdNYqG7iXzpap2MAra2tKCsrQ29vr1LkeD8ynWdaE9vb2wgGg3jppZdQVVWlMufrQh5p/vj79JnC6A8ePKhoQTp9zICM+c3NTbz33nvo6elBW1sbCgoKVNvkmOUyhq8nu92O8vJydHd3qzA6K1wQHdAVYWtra8jPzzdNGsgNj6ysLLjdblRVVWFwcNBUUZRjDIfDWF9fN/SbO5x55lnaQTQzoHXAQ7j5MwJKBEh8eHd376rI1dVVy+gMvh5zcnJQVFQEp9OpaFUeT+DRRzRXlJU4k3uO6d2cnBx4vV5UVlaipqbGgCvejuxnTk4OotEoVlZWVOSZdJ7pxkefqX26suzUqVMoKipCfn6+YbySpiV98vUYi8Vw6dIlDAwMIBQKmSYC1OkZ0rik/tlsNlRWVqKjowNnzpxR4e2crxAN8Ig+XrdMkMd/p3nb2NjAK6+8grm5OcN1gTpDwQokXzfDP/XX4XCgpqYGTz/9NOrr67WZzzme+TMpi6UzXaerysgxuf6pbpIlExMTuHbtGq5cuWKgMao3XRSMDhe6Z2ZlrWQ9/6+TsxzP+fn5KC0tVXREV4HxaApprMqs7LxeiXNqCzAmkOX6tnTM8s8ymk/q/PIdiXfi6fw2DYkvPmcc36Svbm9v486dO5iamsLs7KzK5s+jBdOtBysdQwdyvPK5WTtm9fB3dPwrk3f3q19m0oYO7msDmoifvIA8FJH/xomep4LnBoTZ4gVSd/R0ioicFAqt48xBMhiqizyVdEbI6XSipKQE9fX1OHfunLoa69q1axgbG8PMzIxBOJiFnRDoFG2dkp3pgpGw34Vi1gez9q0U7XtZXDpGzxVg4G54MylUW1tbWFlZwejoKN58801UVVWp+amoqFChWvK6CRkay+dLp3SmU6bNxhuLxQz0z2lXx9gkDQKpV2pIBTovLw+5ubno6elBc3MzgsEgbt26he9///vw+/3Y3Nw0hI5zIzIT+toPEzObex3zJwUrkUgoIRMIBHDlyhX8xm/8Btrb21WCL/m+TjBS1n25Q8WVRv4efZb8IJFIwOVyIT8/H5/73Odw/Phx9Pf34xvf+Ia6j1eGMcpxWuGG44gr8XQf8vb2Nr70pS/h85//PI4cOYL6+nqlcMgQT+6E1AlfbhQQDnJzc/FHf/RHePnll/HKK69gdnZWvWfmrSccchriIWozMzP4zne+g4WFBXzxi19M4b+Z8DqHw4GHH34YRUVFuHjxIvx+v2l2Z0kPxBNCoRCuX78Oj8eDc+fOGWiR5AodpeBrPDc3F42NjXjmmWfw+uuvIx6PGzIDy7YJT5SJu7e3F4888ghsNpvqL72bl5en5BvdRFFdXY0jR47grbfeUqH0Eu+c9yUSCQQCASwtLaXwCVrP+fn5KfQkeZnVWicZB9ylF3J0A3d5FhnPiURChSBKPEk+xvWBnp4eVFVVGZJU0XglnSeTSXWUiviYGfC26Dqmxx57DPX19YYjIdzYoWfyHC7dBPGP//iPKpGPTp+QQG3n5eWhpqYG3d3dePzxx+FwOAxGBDeyZAQetUNO+WAwiBs3buDixYtYXl42PYstccHxyvkA9a+trQ0f+chHcOzYMcNcSGOHXyVKdZMBI6+rk46zkZERnD9/HuPj49ja2jIkm+P92w9I3YT3ifBfUlKClpYW/PZv/zbcbrc2MR7hn2haHicgOjQzAnRyn/MjGf4ej8eVc/D73/8+lpeXVVQjXz/pHERmuPgwwMzQorY4ju12O6qqqnDmzBnU1NSkOE/lu/w/1U9rj4Boj3iePH7Fccrr4eHR5OCjiBouM4n3A3cdVpxn6HI56CIHdQ4jGh+1H4lEMDY2hjt37mB0dBSxWExttlmFaafTtXWy2UoXp/9mdHIvtoWsm/rxQeBe7Rwd3NcGNIE0GqRCyxHOPZlyp1kyS3rOhaJcWNLDxQWI9HjrmCAxTr7zQ5/tdrvyxrtcLpw8eRJtbW1YX19HNBpFOBzG6uoq7ty5g8XFRRVudS8hVzqivBfj1KqM2QKW85UpU5dlzMZgVsaqfl0oMr9KZWtrC4FAAKFQCD6fT2V77erqUkYRN6TkXGRiJOvwJemIK9m6MUrHDRcQsqw0IHh7XBGkHTCbzabOWa6trWFtbQ0XLlzA8vJyyj3SVgzcyjFgBVYMVUdDfC7IY/vDH/4Qly5dQmVlJR566CHU1tbC6XQaBK6kSwL+TBoahDNZVholtEPj8XjQ0NCgdsQHBgYwPT2N8fFxbYIXMxrR4UGW50b5wsICXnvtNUxMTODQoUM4deoUXC5XioAnBwofi6Ql/p/+ysvL8dhjj8Hr9eLv/u7vDMaJbo3p6Jv+040GIyMjcDgcGB4eVqHcfJ4kjqQ3PytrLw9FU1MTPv/5z+PrX/865ubmUrz0Eo/UR9oRHxgYQG5uLk6dOgWPx5OS4I/zdHqWm5urollaW1sxMjKijFXZrhz76uoq3nvvPRw6dAgej0erVHE8Zmdno6ioSN39zcODzYDCpVdWVgz1AKkJDPm4yLmWCV3m5uYakmxRHbIf/DOFJZrND6+HdmXb29vh8/kM9ehkPD8m8O6776qdbmnM8fVL7eTn58Pr9eL48eOoqqpKcWJy3iENl0Qioa6ICgaDKc5HCZyv8NDoxx9/HD09PSovgJwfHd+i50TPExMTGB0dxTvvvINgMJj2Ci+zOjn+y8rK0NTUhEcffRSNjY0qGoDK8cSEXL6QbqY7msDLxmIxbGxs4J133sHk5CQmJydTdvEz0SXMaFZnwJLcc7vdOHPmDKqrq1FVVaWy3fN6JK+nvvP65fjkDqiur1Km0hxGo1GMjY1heHgYS0tLCAaDmJ2dTTnrnA4f+4X91qVzShDdEI90OBxob29HWVkZCgoK4PV6UVtbC4/Ho47P0RoCUvFGuOWOCZ1sNjPOOK/XzZPU82VdRN+Sn5vpgDodRjo76DghAExPT2NtbU2daQ6FQtjY2MDGxobBwDdr+16N0HTvfVDjNhPQ2VLpQGd7UV0fBP5JGNBmwBmYWRgmgVwcusWie4eHgUiGIBUEKqPb0dYxWr7TZbPZ4PV6Vd/i8ThCoRCWlpbgcrlgt9uxubmJ7e1tbGxsZByGZiY05DPJYKwUGDPIxHjVPb9XI1j3u9XiM6uLmFFW1l74It05vLKygpmZGbjdbhQVFeHAgQOw2+0oKSkxJK8hoSf7n6lRrfudM9ZEIqHCvmUYtVTepBEnx2kGvC4y+vLy8pQxEIlEsLa2hs3NTUxOTqqzr1IRs1LsdG1mipd0ZfkuMleaL126BIfDAZ/PB6fTiUQigfLychQWFqYoQhKH6daOXNMyUzqv22azwefzwe12w+fzweVyweFwwO/3IxwOWyqzVjjR0T8fRzgcRm9vL2ZnZ7GxsYH6+np1N6uuTqngc5qQfCwray+EuLu7GwUFBXjttdcwMzODjY0NQ/90hqD8TmOn+0vtdjt6e3tRXFysdgDMcK9rIz8/H2VlZXjqqafw3nvvqR1/rijpeB79xWIxTE9PIzc3F7Ozs2hqaoLL5UrBmdxtoBD3oqIitLW1IRAIYHl52dJoIkVuc3MTg4ODyjlFDg2JN953l8ulskLn5OQoh6+OHwFQ4eLr6+uG3TKuENJ88zUlHcZWQPxDGkU644HGvr6+jnA4bIonPhaqv66uDgUFBSn4kWNOJvccFOFwGDdv3lRKqK5u2Q7xjpaWFni9Xi0OdPyODMDBwUGMjo6m7A6ajY3apZ25mpoaHD16FK2trSlrwEr2ER5pF2t8fBw3b95Ef38/tra29pV0SzoL+HVax44dw/Hjxw3ON+DufMvdeY4fSQd8TdMVd1NTU3j77bfh9/tV8lWp8+jWhVzbZrimvtJ3Wrt8R5QSUkq8S3rR1UnrUbZt9ZnmjcZGtBsKhTAwMIDLly9jcXER29vbBnxIfO4XdPSUDnR8VPef9F2XywWXy4Xi4mIcOnQItbW16upCmdneLDKU05QOt7rn/AYNnT6uGy8vp6Mr3W+yDu4AMKPF3d1dxGIxLC0tIR6PAwAGBwexvLyMjY0Ng3MkU8eRmX7wYUM6PV83P5n8lg4yLbsfW0IH97UBLYlOp8ARQ5dKMD+/pTM0uFHMPcNSUeQhiwAM70sg4uaZE+ld+syzqsrdQz6WvLw85Ofno7y8HB0dHUgm95K/rKys4N1338Xw8DAWFxe1nke+0MwIKJ23ykyQWhnWsk4rhmwlVMyepxOK9wI6RsSjDihCYGNjA/Pz87h8+TJKSkpQXV2Nj3/84+p+aRn6St9lRlQdnsyYNNEvKSe68fO6SdhyxZucNDK7rUyAwndB+boh4yU/Px9utxv/4l/8C+VY+Md//EeMjY2lhCbytSTxrIN7ZfTScJLGUSKxl3Wdojm+/OUvo7W1FUeOHMEnPvGJlHnjCj6tURneTcYJtcN5FOcRNBc0B3wOi4uL8cQTT6C5uRnb29u4fv26YUc/naKtW2c6wU3PNjY2lBc7HA7j8ccfx0c/+tGUsEIypqSCwsfJaZBo0+Vyoa6uDn/0R3+Ev/7rv0Z/fz82NzdVX614kXyWSCRUqO3/+B//AzU1NThw4IA6Ry75LhkIcg1lZe05LSoqKvCRj3wETqcTr7zyikE51fERvga2t7exuLiIr3/96/jN3/xN5XSgNnVzRDhxOp346Ec/Cr/fj7GxMUO0g65NMrgo6mVzcxNFRUWqTt5vPlfkeC0oKMDm5qa6hs6KR0YiERUpQIYBN6SpT2TIZWVlqaiUdOuU8E5RA9T/7OxstR4k7hOJu/eXpqubZKPdbkdxcTHsdruW1/DvhL9IJKJ2MTMZB4VPP/rooyp0mta1vF6M+ka6xO7uLlZXVzEwMIDx8XHLzNs6nYZ2eL/4xS+ivr4eeXl5ii/xcck6JNC4L1y4gOvXr6urwswMTStjiOYxLy8Px48fx7Fjx/Dggw8a5A2XLZxvUKi25B/8PfptZ2cHd+7cwa1bt/Dd737XcIexxKHUadLpKPyz7B9dE3bmzBk8/v9Nvqg7hiUjXpLJu1GFJO+pfnkciPeB66ASN/TO7u4u/H4/3nnnHVy5cgULCwuIRqMp0Qw6fPA5lfRhxn+t8KarW+rdnIY5zVBkzkMPPYTW1laVSZ7LXDP9UB7d5BEIpOcTDnSJX2nNch2bfsvNzTW8z50QUp7TMxovnyc+n/QON3Z5GDnHN+mWU1NTuHLlCtbW1rC9vW24EcFMb0/HwzLVqTLRv3R6qlm5/bRt9v5+2rL6/V77QXBfG9CA3uOj82TL0CYZwm1l8MpnPFRRtxglE5Tvc0++3JXi4Y+6cxj82gdSbqgNUlY/8pGP4NSpU1hfX8fc3Bxu3bqFQCCAlZUV5ZGUijXvtySqTInMTPDvp45M69a1cS/1SeZuVYYzRU5vJMjo3AklPFpdXUVRURFKS0tx7NgxtLS0GMLYeDs6BYXa4tfxSCGiG7/OACCa5/2nsgScFnd2drRndmV4InDXCOdKgdvtxr/8l/8S165dw/DwMK5fv652UqUgMpvb/dCMVR1yjvlcctxsbGxgdHQUoVAIExMT+IVf+AU0NjaisrLSEG5IRjJvVwpQjlOJL6pDKvGUzGx3dxd5eXloaWnB5z//eTQ0NGBgYAA3btzA9va2oc9SCOgURit80ZzH43FsbW2hv78fdrsdhYWFOH36tPL665wCHI+cNjjfIn7ndDrR2tqKF154AdXV1fjxj3+sohOshKFubBSuGAqF8I1vfAOPPfYYPvrRjxqMMo5nqcRRXbSDeObMGWxubuLtt982ZAvnberWEik3vb29mJ+fR0lJiTKipUIhaS43NxeVlZUoLCyEzWYzJBPT8VFqMxaLYWxsDEVFRfD5fAZ5xA13fo0SGVsUIWJGD/RHx1RisZg6iqJTNqgdipCSO6A6IGObwo05nmRYJn3e3t7WGgVUhtdB9ZeXl6tddy6vCU98Xnd3dzE/P4/x8XFt1mbZf/qz2Wyorq7Ggw8+qBwIOsOP8/FEYi8PQyAQwI9//GMsLS0Zzhqnwx0Zz/X19ejq6kJzczMcDocaP+c33NFJ71OfiJ9vbGzgpZdewtTUFCKRiHbsknZ1/SJnis1mQ2FhIR555BHU19enGJM0x8R3+FzzPylr6Hk0GsXAwADOnz+PiYkJhMPhlF1WuXZ5P9PJGsmj6Rx3cXExOjs78fDDD6Oqqgput9tA7/JqLX5OGzBmy5ayl+NAd3RGhx860jE3N4cf/vCHWFhYSLmv2yyEN51+x3HAjz2YQSZyhurlRjPpsFVVVairq8OJEydQXFwMp9OpZKHUMag+biRLZ6UOn6SXyD7r5CifO45LHU6lbDFbKzyigvMj2W/q89bWFqanpzE1NYVQKIS1tTWEQiFF69x41sk2M7nF50J+t5o7M15o9pvu3UwM1kx1wXT8SNe2Vb/uFe57AxpIVWJ1yNIRLwEXMGaCI90CMQMuCDIxCHShHMTIJXDmAkAxewpPjEajKC4uRl5eHpaXlw3nJDY2NgwGjZUA1403k7FkCpkuRLO+UR1y4WTC1DNhEroy9F8yXxJudNeey+VCUVERsrOzEYlEUFJSguLiYvh8PqXcyfrTtWlmOFMZSaM6JwH9bhYmp8ODVC5kXUSjpEjRWVo6Hzo1NaXOMppld5Vj4e3JZ2aQqaLElTUyHCh769raGkpLS7G6uor19XV0dHRoPc5SKdLVzZVqXlbOPeGQFIvc3Fy0tLRgY2MDNpsN8Xgct2/fNhgTOlzJ8ZoJFE7DANSxELrmqrq6GhUVFfB6vdr3dW1J/sUVR1JCY7EYhoaGMD4+rpIhphsH/52M10gkgqGhIZSVlaGzsxMtLS3aK4t064nPQXl5OWpqalBVVYWpqSmtY0L2j/oRi8WwvLyM8fFxFBcX48CBA+p3WZZkAf1GdzR7PB4VNmuFZxr39PQ0ampq0NPTk0JPXNHjUSLl5eWYm5tLcSjo6IFCBimkXdcniR9KGpWJXMzNzYXdbk95LumUxrG9vW3YYTTDEa0zl8uFsrIyw3o145mEL7/fjzt37miTT8n+UV0ejwc+nw/l5eWGXcV0sj4Wi2F1dRWDg4OG6Bw+JrO2s7P3zl03NDSofBvplF8514TXtbU1zMzM4NatW+qKG1nOCvh4KcS2sLAQBw8eVKHNhGM+Bp3zVN7iIGVYMrl3lVsgEEBfXx/GxsZUSCs3+mXf+dynMxj4eGhMeXl5qKurQ21tLXp6etDS0gKXy2XgMzq5KNeKjgfLDZp0OgvxkHg8junpaSwsLGBqakodAeBrxGxnMpO5vRcZa4ZbKsdxSpnLXS4XampqUF1djZqaGjQ3NxucUFJHl05rDjpcmuFT2gVWeOJ1menIVjzJrE25oUfJakOhELa2thAOhzE9PY07d+6onEcUpcL7JD+bgfw9kzlOBx+kzkycMmblrPirlfGcrvx+dEyCfxIGtPTGSCZIwBULCvWg7Hm0QLmw0RGmDuHyu3xPhlbxstK41oUtZWXd9Z6ZMV+dMHM4HCgsLERDQ4NirtPT0xgZGcHo6CjGx8cN54Z4nZxZ6QjrwzCozfCX6XtmSrHVM1mPXGT7HYdO0NMckJK/srKC+fl5vP/++2hqasKJEyfwwAMPqIRRFH5H/aB+ce8vfQfuhgJxGuXKMzfM+BlMMwWVrxPqv9l1Ijq88qgIKkcKdXd3Nw4cOIBHH30Ur732Gm7cuIGBgQEVdieVH6o7U8UnEyXPCnh4JeEjHo8jFovhxz/+McrKytDc3Ix/9+/+nYoekOeR+bqTu/g0X7Isb5Pqk8YnzcHx48fR2NiIjo4O/Pmf/7m6V5n6L4Hj0ApXXKEl3FNGz0AgAIfDgcceewwdHR2m1ybx9uR3Wb/L5UJLSwvsdjsikQi+8pWvGMLSzehLN2fAnsE/NzeH69evw+Vy4Z//83+uMuFSPVYKI/XR7XajtrYWDz74IBYXFw1J1nT45b/F43Fsbm7inXfeAQC0tLRo8U9lKZKBQjmLi4tRWVmJ5eVlU4cSX6fxeByDg4MqORvffeRjojap/62trZicnMTMzExa3NKxFJ50jK8TwOgYIXnD76eWOOfvknNNzrdO3iYSCcN9vmbAlXM6X85lujzKQr9R0s3JyUn09/ebnv2V48jOzkZDQwOqq6sN4dscJ9KQoT5sbW3B7/djZGQkJWTaqk36KygowLFjx/Doo4+m8C4eEixDRgmSyaSKZLh+/XrKGWy5ZqQckH3iIbgtLS347Gc/q3ITkNOHyknjWUYb8Dp5m/F4HJOTk+jr68Prr7+u9BYz54PUxcxoXuph9JnG5PV68fjjj6OjowO1tbWw2+0pYcCcnmRd9J3LNzM61sk2/g5Fua2treGVV17BxMQElpaWEA6HDXR2L45p+Zz3XfcOpwlOMzqdgUcSkHO9vLwcjY2N+OhHPwqXy2WIdJK6u+wj11m4Y5LGruO9co4kjs1wxOuS5eS8mtXLdTCd/k7RX6FQSN0KQZsMumNbci3rwEq3ttKnzN7R6ROZQiZ6fbr6zWScWTmpg+ja0W2I0Du6LOk6uO8NaB1zlMKeGB5XVrOysgzhaTKsi0AyCh3jkAyF/0ZCHUg9A0EMhbdltTj4gpXnQyQ++Ljy8/Nhs9mQTCbR1taG+vp6PPzww9je3sbExASmp6fR19eHYDCors7h13iYMQje33SMmJe514WYDtIp3vsFXV1mfedtcyZPCgRdVxMMBnH79m384Ac/QH19PVpaWvDoo48qIaITGlwA0HdehtMEfZe7QTJ8kQsemkcZZqajZ8AYribPgPGdKE7/NpsN586dw8MPP4xgMIif/OQn6O/vN2SPNxNGZnNgNtdyDVnNI1fc+WfCTyQSwfLyMv74j/8YzzzzDA4ePIiKigp1jk8qypKX8Pp4CJn0QnPnBx8bKcSlpaXweDz4kz/5E7z66qu4cOGC2jGTzi+r9SfxIelqZ2dHXQPz8ssvY2ZmBseOHcPHP/5xw46mmaLL6ZDa5HTpdrvR0NCA5557DsFgEFevXkVfX59y4pmNQWdYUV/pnP2RI0fQ1taGioqKFN7EQwDlTkZ2djaam5vxuc99DpcvX8b8/LwybHQglaBoNIqbN28qZZt2JLlTi77zsNrd3V0cOnQI8XgcQ0NDql4e1i7bpXDjxcVFbG1tGa5z4ePlTuH8/Hy0t7fj6tWrGUdeUYhoWVmZQZnl/SCnbCKRMNylboYzojW73W7IL0D0K53MZOjNzc0pA4+D7DfNs8/nQ3d3t+H6GIkbzkNjsRgWFxcNO9Bma4jzs4985CPo6upSfeX45H2icRLO3n33XVy4cMFgPKeTmdSu0+nE5z//eXR3d8Nms6WMnesVUjHkRhhd+3ThwgUV/cDLm8l7qosbRJQN/MUXX8Thw4fh8/nUNWtkiOrGx41/nWwjvO3s7OBHP/oR+vr6VNi2bsea91vOBac/iVvdmBwOByorK/Hbv/3bKC0thcPhUOdhaT44XpLJpOHcO9EYb5NwYcZX+CYJrQmqY3t7WyWce//99xEIBNRZ2EzmTuL9XnUlMx3OjPaJLvPy8lBQUICamhqcPXsWJSUl8Hg8KdFNfK1yY5jrI9IRo3NQczxKOpPrzYoPUh1Eb9KRzMfLaYPLdHqPO3t2d3cRDocxPj6OgYEBrK+vq51ncurpIit43yTerICvC7P5N5tT+dsHMabT9S9dG7p1LMFsXFbj5TJuP2O77w1oDrrFKwlNB7RApPEgmS+vl5RnaaxTGWlQWV1xQN8lw5Vjk2PiDIXqlgyHhwnTQqZrAkjAFRUVoaioCBsbG1hfX0coFML09DQikYg2WQH/ryPKdAxajiETgk0nCO9lQVvRRiZ91zFhnaJP78RiMbWzQxnTV1ZWEA6H4fP54PP50NTUhKKiopTrF3TtmI1bMj5+vzMvY+Yp141fNz4ZPSFpmitzWVlZ8Hq9cDqdcLvdOH36NGpqajA7O4v+/n6V/ERnDJoxcl0/zehAN1f8uU5wk1FH17y8++67WFhYQGdnJzo7O+F2u5USyxVAM2ecWR/4Z1qTOmMoKysLtbW1OHnyJFwuF86fP4/Z2VmEw2GD4q+jG6uxc+BjD4VCGBoawu7uLiorK9HV1YXCwsKUuiTf5PVLBRLYu57P5/Ph9OnTSCQSSpHQXT8jQfJVOi8WCATw85//HNnZ2fB4PHC73abyQLdDY7fbUVZWhpMnT+LatWsYHR01zIWVMKcxzM7O4urVq3jyyScNBgwfP28/JycHZWVlaGhogNPpVOPXtckVKTpqsLCwoG5mkPJByoCSkhK4XC7k5uYiGo2m8DHJX2mni++ccDkjnXh05CATyMvLg8PhSJEVuvWxs7MDv9+fkl1ZzitX1h0Oh0oqp6MBDonE3h3TtMttJUe47M/Ly0Npaani1bKMGb0EAgHMzs5ibm5O6zTU8VPSNWjnvrm5GYWFhSlHQDjeqD36T/pFPB5HOBzGhQsXMDo6qrKtW/XDDN90ZMztduPhhx9GW1sbSktLDUlQeXImHZitR/ptc3MTi4uLGBgYwNzcnOqv2Y6cjv7NcMT7Rf3NyclBYWEhWltb0d7ejsrKSrXrTOV0Moefm5VyVmaL5iAdU/x9cuCur6+jt7cXExMTynlGTmcrI0viRuIgHa1bfbcqJ9cJZakvLS1FWVkZampq4HQ6DVm1zejPSh+msjJ3Au8Xr1PWz/EjcaHTDXX0JA156fiQERaUeHJlZQUrKytYWFjAwsKCiqjgR0h085qJzpkJmM1nJpBOJ/uwwExHsnq23990PCArK0sl20wH/2QMaB1TlKALnaHJ52GuOi89/42HpMj2dAyFPPR8QUgl18wI4eX4DiF/Rz7noNsh48ZTVVUVysvL0draing8jmAwiMnJSSSTSaysrChDjzNsrjxJBsT7m+nCsiqb6UI3W9BmRksmYKXU7EdYSUWGdm4ikQjm5+cxNDSEyspKNDQ0IJlMoqWlBQ6Hw5CYRjdWKRzMxmcm2CUNWq0dXo52U/lOmk6B533iZ3ttNhsefPBBHDp0CHNzcwD2wphWVlZMM+BmOo+ZCBWdQsWVeP6ZDOhAIIALFy5geHgYwWAQXq8XVVVVKhMrtcuVUYlfvuOvG4M0KAi4AU3hm3V1dWqneGFhQV29YzZ+uT5lexyITra3tzE9PY319XU4HA4UFRWpBFBmBo/uCAr9TmXoupITJ05gd3dXKRJ0X6lZv+RYaH7i8Tg2NjbwxhtvoLKyEjU1NYY7calNUnR1yllubi48Hg8ef/xxrK+vY2ZmBvF43FJRoPYTib3M4AsLC3j33Xdx6tQp5OfnG+aS+sKNUArhrqmpgdfrVXfYWo2ddt5XV1cxNTWF5uZmw86XjtbIKHA6nYayZpBI7J3tDoVCSqGTMknKkry8PG2eDv4O/dlsNsMZaN5nid+dnR1Doi2rerOy7mbg5ldKmclTYG+9zszMaM8AUx9kGzk5OcjPz0dhYWFKMjQz+UBjmZmZwdzcHAKBgNb40fWX2nQ6nfD5fOpmB9ItzPQJORYyyPx+P959910EAgHTbL68LrP5zMnJUdekPfnkkygrK4PT6QRwl86taIL3U0bkkBIbCAQwODiIkZGRlIRhunmSdZspy7o5JecLHec4evSo4To/Kkd1c5xxvUjuRMrvEo9ELzIHQiQSUXc5v/LKK0o+8ogtKmuFB/7bfiCdDqeLOOHrMD8/Hx6PB83NzXjkkUdQXl4Ot9ttwIPOGJM6ZDJpPKLG1wrfyJJHqPj7VDfXmSVedDJSjovvfksa5L9LIzoajarbDYaGhjA5OYmVlRWV30G3Bs0+68CMN+o+m4HZnNBv+9F59wNWNMv7JT/rvlu9b7b2aN7oGFJubi7C4XBGff8nYUBzxEgi5AjSXV3FkcvDKM0MAN2unQ6kcsYXLt+5zsnJMZyVpN1CnQDk/ZWLnivZumQrfDzUDi9LOwIFBQWora3FAw88oK5qGRgYwHvvvYeFhQVD+BT3lKZT3K3mTH63WpTpmMKHsaDTtasDMwOPP+eGJmfW29vbCIfD6qqCxsZGdHV14fjx42hubjaEdhPOZRgTN2BoXnXeNJ2w0jEYEkh8rXADhP/l5+cr+iKjg9Ybpzvupbfb7bDb7SgoKEBDQwN6e3tx7do1vPnmm1hZWVFOBj5mM3zrQDL8dIaQFS2R55jOKgUCAVy9ehWHDh3Cc889h87OzpSQSSD1CjEzhYPC/XTh0DxqBLh73jw/Px+/9mu/hqNHj+Lq1av49re/reaZRz1YjVn3nSu0ALC1tYVYLIbXXnsNoVAIJ06cwC/+4i8qA4WPQ2c8Uz+4gkzgcrnw4IMPoqGhQR1tWF5eVnddmvWV1895USAQwPe+9z1MTk7iP/7H/wiHw6EUXn4kRfJRmpv8/HwcOXIEMzMzWFxcxLVr17QGvZwjovvFxUW89957+MxnPoP8/HwUFRWl7KhzpS8WiyE3NxeFhYV46KGH8NZbb2FhYcFUkaO2KKz5zTffxEMPPaSO59C809qjdxKJhEra43a7DWcmzYy97e1tzM3NIRKJKCcR/52UVapDZuG2UkL5DrQuggu46yiIRCK4c+eOyj5vBdnZ2SgsLFSZza1kEo07Go3ijTfewPT0tOEecLO+k9F44MABeDwelUzKTAfJyspSCnI4HMZXv/pVTE1NqfPlZkoz8QKaS7vdju7ubpw7d05dzWWGO45/LvsjkQj6+vrw8ssvw+/3q2SEOuNZZ0xz2s3O3kvW9sgjj+Dxxx9HQ0ODwTlEvJvO+nOeQuOj4z4Usiqzhl++fBl9fX24dOkSVldXTY/5cN6lWzNWkJV1N8SYEvO9+OKL8Hq9KgzdjP/IK0d5Ai9+TAAwhmfr6uJjIgfWd77zHQwPD2NqaiolykgnE3l96fSVTAwPM/lJ33XOCdItS0pK8MADD6CtrQ1tbW3qiIduQ4DzLT4+bgDzMfENIys5T2V1cygjfSS/5DjQjVMec6T3iUfQ7+FwGMvLy7h8+TJCoZAhIZjcpZY45890MsGKBjKZXx1YraX9ri2rfqUz+M3qlniwqses/1x3JYdrUVERDh48qO50/5u/+ZuMxnPfG9ASKYDRqCTgTJ3K6wxLqQjKeqWiy9uQd/UBxvMQ9JwvaHneTQo+/gxIvfqAxsHf42Pj9RKj58+kh5jK8GQkR44cQVVVFTY3NxGNRlUSlIWFBZWIjJQPuQOnY4B8TvYLVsplJu9aMRbOjM0Y2X5Ap4To5oXwvLOzo840kUHh8/lQUFCAoqIiHDlyBBUVFXA4HACsk5NwWuVCRCp3ZgoYN9h1Z0OoLnm2lBsMcm1SsjS+DnNycuB2u9Hd3Y2KigocOnQIfr8fw8PDGB0dxfT0tMFDm07YZDoX+ynDaYL6sLi4qHZIampqcPDgQbS3t6OmpsagbOvoX9KYlRLMjRK5Q1NQUIDu7m4UFxejrKwM3/3udxEIBFLOVmZC97rxc5rZ2NjAwMCA2hH57Gc/i/Lycng8HlWHjvdIepf8x+12o7KyEr/6q7+KCxcu4ObNm7h06ZI2mZNu3ZAxR17+xcVFAMCXv/xlvPDCC6itrTWcyef94PRPfXe73Th16hTcbjdmZ2cRDAaVsSP5A71LNB2LxbC2toZvfetbOHfuHB599FFLZR+ASlR09uxZDA0NqV1fPj7eLrW1traGsbExrK2tIT8/P+UKL7m28/LyUFFRgbq6OiwtLRn6rnPaRKNRzM3NKUWP+qSbi2QyqRIimo2Tj4FCkaU84vRK/YjFYsrYMzNmqP7s7Gy0traivr5eRe8QcGOV103HB9bW1kx3Yfl6ttlsqKysxPPPP4+CggKDnOd0IZ3gd+7cweDgoDq7bhY2rRtTXl4eTpw4gaNHj6K1tVUZbbwdScccpyRXfvKTn2BgYAB37twxnJ2VoDNIOA7y8/PhdrvxiU98AgcOHEB1dbVp1J7OeObtcCdMTk4OotEo/H4/fv7zn2N8fBx+v9/gtJd0peNZUoGW+KW26KxzRUUFzpw5o6Lx6KiD5OEcaF64k4Mfd9DNA2C8KpKeE27i8TiGh4cxMzOD0dFRDA0NqSNe5FSUa8QM0vF8HZ2bgU4/lfqyzWZDc3MzqqurUVtbqzLUe71ew1qU9MRxJvVnaSDzMfHjCzr9R/ZfR9PyM68nnUyUeKS+B4NBBINBdcNEJBJBOBxGMBhUhrMuTFt+NoN08/phwX5o5//XYGXo8ygsm82G4uJi5WQlGUS3QpDjNdMEYsB9bkCbeRrkBJsJReDuguDMgO8Qc4N6P4QjF6nOsNAxdskgdWO0+k2Gl3BGo1PUzXbQ+Y623W5HeXm58qptbW1hcXERU1NTyMvLw8bGBra2trC+vo719XVtVm/dGMwUsg8CkllKMGNAVu9lIozMxmL2nCvk9J/wGwqFsLq6iunpaTidThQWFqKsrAy5ubnY2NhAUVERvF4vioqKtMqvVLhJeFnNh9U4dR51Xq+ZQJf10VqS5eiaHZ/Ph+bmZgQCARQXF6szxn6/H5ubmyrzdDqlbz+/6crp6FR6xMPhMLa3txEIBDA+Pq6UYrfbrfotxy7Xdyb944mQCHg4cHl5ObxeL4qLi9WVJjMzM1hfX9euQT4m+Vn2h485FothaWkJ6+vrWF5eRkdHBzo7O9HY2Kh2E3VKrQ6n9Jnox+124/jx46q9mzdvpoTyS0NSPiMjj64Feuutt9Dd3Q2Hw4GysjKtDOB4JDzl5+ejvr4eNpsN7e3t6O/vN1wfolsfNHbaMb127Ro6Ozuxs7OTIjukMpidnQ273Y7W1laUl5djZmYGW1tbpvyIxkq0FwqFlJKqGxvJgJycHBX+m04BSyaTKuEhKXvS0OZtAdDeA20297TjZ9YPjiNyFvA5kG3T55ycHNTW1qKiosKQ3FDSMwB1hCYUCiEUCqnr1MyMR2CPThwOB3w+H3p6etROsBUeiS4XFxfR19eHtbU1w0632ZhoDnNzc+F0OnHw4EEcOHAAPp9PG0GnwznxLTpecP36dYyPj2N9fV17A4IE2UZW1p4TtLCwEE1NTXjggQdQWFiIvLw8w+6x1CnMDBvZJuFpbGwMFy9exMrKijI6ZBZj+mwlz3U4pf+Urd3n86GtrQ3Hjx+Hz+dTUSs8+srs2Acfr9U8EB3rdK1EYu8ISiQSwcLCAvr7+1ViKRntx3m2jtda4TedbNaBGQ7pj2iTrurs6upCU1MTGhoaYLfbDXyeyz8z41S2TWWl/OX9SWc86+qTONHp3fx3He54u3RrRzgcxvz8PBYWFjA0NKSit3huD0B/VMWqPR1kYmjT2ORzK/yblc+0PV0d6fpt1p9065q+62waWpd05IyODZWVlaG0tBTFxcUG5z93tsoIOCu4rw1oINX45Attd3c35QJ2vhshBQT9lp19N/kFeSoJJAFKbwWvi+8uy3Iy1JY/1xG/3Emk36kevqA5Q8nLy1NKkE6wcXzwXW1ZN/XBZrPB7XajpKQEbW1teOKJJ7C5uYlQKISrV68qwReLxZTSwxUYDpksYF5OMnTdok3HlM3AShhb1ctxr2vDrE7enk7poc87OzvY3NzE0tISxsbG4PF4UFNTg2PHjuGZZ55R19hw2pehw8Ddezatsr5b4YcrMCQ8qa98Z5Qr0Tpjh5QwrrxxZTE/P18xujNnzmB+fh7f/e53cevWLUxNTZlmHaW+6MaVCWSiiEiDjRwesVgMP/vZz3Dz5k1sb2/jxIkTKC8vV33hPIC+y3XP6ZfPA/EwCdnZ2YjH48jOzobT6URtbS1+7/d+D++99x5eeeUVXLlyRZ0bNROaOsPCDB+E893dXUSjUfzVX/0Vzp07h4997GPo7OzUzoeOl+kUHTp7eOLECRQWFuKnP/2pSpRjFtWg6ydlGN7a2sL4+Dh++tOfYnV1FS+88AKSyaTi5XK8xOd2dnbUrlR5eTm++MUv4i//8i+VwSHpio+N+khGAF01RkKa+kcg+bjL5UJrayuCwSACgYBW2aMxkFEWjUYxOjoKj8ejkkpxZZ6vk+zsbNTW1qK9vR0//vGPDTt/urZ2dnYQDAYNxotODtKalwa0Thniig1lI9bdFkDyl/AUiUQsI094P5qamlBVVaWlR44LCrnv6+vD9vZ2RtmwyWFVW1urkrfRO3yHnsti4t/j4+N47733lKON7xybtUUGSlVVFU6fPo3KykrTnTzClZyfRGIvSdrLL7+MsbExZZSaRfOY9YfkisfjwcGDB/HZz34WbrcbkUgEa2trcDgcsNvtsNlsyqDWrXXudOUyZWdnB8vLy/jhD3+I3t5epUPwyIFMwEyGcRlFivXRo0fR09OD06dPG9aOdFDw/AnUX5KlnH75xouUv5xHSFm6vLyMyclJ/K//9b/UuVg650zldLS5H0NLZzha4UsHXC+kM/ldXV1obW3F8ePHleM4NzfX9GgAyQTuFOA6M19HsVhMhX7zergeQ/0hXFHbvKwsp+MfXHfm7dEa5jTB1048HsfS0hImJydx7do1hMNhZTTLeePfM9FXzcBK38z0/Q+z3P8N0DlPpP1Gz2h9U3RJV1cXCgoKVMJXfgyFgNau3ChKB/e9Ac2BmDwhh++8JZN7uyjkqefeaa7wAXfPGXKmKT3aOs8HlUsmk0rxoMmQoUx8kvhE0hlSIhhu1MtFJ4UnF9wEpETzOjkBSqLkxjJnbBzHHM+kPLndbhQVFeHEiRMIh8NYW1vDtWvXMDc3h+XlZWxtbRkYp2Qusi+SyX8Yi/mDMJ10dVq1Y8aw+XcqJ5krN9boTPrGxgbm5+dx/fp1NDU1obW1FceOHYPdbk9RYqkt7oDhigKfC/6ONOR5XylUkxvnOvqi9cMNa0mfurGSoyYnJwd1dXX43Oc+h1AohJmZGfzDP/wDlpeXldIrjatM6ERH93w8uvnifeTh7VJZ/uY3v4krV66gra0NH/3oR1FYWKicDTqDmStf6UD2S15bU1xcjDNnzqChoQH19fW4fPlyitNBhwcdX5H4kM8CgQBeffVVTE1N4T/9p/8Er9ernHXcKSfHxRVOuueSnBA03//+3/97/NVf/RXGx8cRDodT5kXXT+KVxK+3trbw/vvvIycnB2fPnlVZuQlXuv5wgex2u9He3o4HHngA8XgcN27cSMn9wHHD6SASiWBwcBA/+9nP8Pzzzxsy+HLccyPKbrfj1KlTAICbN2+a7g5yfhCNRnHp0iWUlZWhqakpZQxSGSwtLUVNTY32HKJU8nZ3d7G5uWkIN5RGP+fn+fn5StnlO3a8fhorJRjivIpwxB190WhUnf3k61wCzWlubi7KyspQVFRkSJbGDVwaWyKRwPz8PN5///2UpEwSSJfIz8/H8ePHcfLkSfWcO8Kpj3JH8q233sLAwIByBGTCoyjksK6uDl/4whdQUlKidaTR2HXydGdnByMjI+jv78eNGzewurqa4tTm9cjv/I/G//GPfxxdXV0oKipCOBzGxsYGIpGIcn6a6UUcX5Iu1tfXMT8/j6997WuYn59Xu/TSeJYyM50c52W4U8LlcuG5555DV1cXqqqq1I0k1Ecqy40mAqJt7gjgslTiTvabvlMExOuvv47R0VGVXZvrjToDjOrfrz6km28z/OlkE42ZEhJWVFQo+eZ2u1U+ACD1mk1dklEC7oBPJpMGZwUZPFJ/5eOR+oQEGYWii5rTzY8sT893dnZUFNbg4CCWlpawubmJSCSiop/MjhqYzRmXHx8G6Ogu07q5rE9Xp+73DwpS1+Sfdd+5M6ewsBA+nw+VlZVKHlHuD90xLr52pY6aKfyTMaA5c5GeeAKzHR+uIMgdXV63bI8vbKqfG7Q8+yIPF6TfZd9lfdRP3TP+X45DljFTPkjB4uPVKctUD+8f1UtMlZSigoICFc4CALW1tQgGg1hdXUUwGMTGxgZWVlZSsmlaGUC6RZ2poWQ2Dok/3fdM4cNgHmZ9BO6e3yMjjUK+wuEwwuEwVldXEYlEUFJSgqKiItTU1CgDlHvezforjV8zZq5bU5y+Mh0fN6wk7XGDkNaNzWZDSUkJSkpKMD09jampKSwsLGB6etqgcJiFeck+WAkJHYOV5c0My0Qigbm5OXVNGZ3tputuJP7M+mmGOyt6JcOkuLgYNpsNJ06cQFbW3tVht27dSnE4WOHBrG3OJ6PRKAKBAADg/PnzOHz4MKqqqgx308q+6ngmAeHG5XKho6MDDz74IPLy8tDX16d2zNIpjrx/dBRienoaV69exalTp1IMEOlE5Tih3bauri5sbGxgeHhYOQElPuS62d3dxdzcHPr7+1XSJ0nvkofn5OSgoqIClZWVcLlcyoCw4om7u7uYnZ3FysqKIVmTxAe143A4lKMjFotp557GQHPMd6rpdx65RJCbm5s24zL1gyfF489pTqg9MqClk0++R3W6XC51e4F03Oh2ldbX17G4uKjNnK+rn+4Grqqq0jq8pLwhnjQ8PIzZ2VltGLp8lxt6FRUVaGxsRHNzc4rjn+qX/eB42tnZwcTEBAYHB5XxrDPgdXoD/05JzOrq6tDU1ITKykpDYlSpG/Bx6KLOuDxbWVnB5OQkBgcHMTk5qa7zyXTn2Yzfcz2F+kJH0WpqatDQ0ICSkhI4nc6UnSiJS6JVaUxxvUo6hWVfOK8IhUJYXl7G7Ows+vr6MD8/b4gM0Bl3Vus6U6PGSo5I/ZnPJzlznE4nGhoaUFpaioqKChWqTTqg3GDS8UqzdmXbZrq31FMIpKFMwCNBZVucxqz4bDKZVM6i5eVlrK2tIRQKYWJiQq0r2uDQ6dGyX5nqsmZGa7r5MyuX7rlZO5noCfcCZjqY2Wf+Z7PZ4PV6lYHsdDrh8XhQUFCAkpISdSsE3RbDN0fNwMreM4N/MgY0Z7Z8MQN3FwF5yGjBc0EHpHrv6Xczw5sUHJ2nktfLd/7keRC5i8X7JRegFAj8uVy0XBCTMiYNF77DaBbSJb8TQ+VhkPw/TzJC56aj0SiWlpbQ19eHqakpDA8PY2Njw7ADxYlXZ8To+qKbk3SLMpPFoVNw5btWdUr6Sdd/+V2GmHLc8NBh2iWamJjA5cuX0dTUhJaWFpw9exY+n0954aSyw9sBjGGTfE3odqoks+Z0Lw0k3m9S8Al0zia+3qgO2tlwOp3wer34/Oc/j+HhYVy7dg3r6+sIh8PqnBy1JdvW4Vg+0823rj45TuBuqGwikcDm5qa6Amh8fBwvvvgienp60N3drQwpXX00biA1WkVmp5XzQUCKntfrxenTp1FVVYXW1lYVUkznPCV96uqywlUikVDGgN/vx1e+8hV88YtfhMvlgs/nM12/nN/IkErizdnZ2fD5fHjuuedQVFSEyclJRe9WChl/RgZSJBLB5OQkXn75ZQP+iQ/ykC2Ja+rTiRMnkJOTg7feekvxUbmLxvFDtD4zM4OcnBysrq6ipKQkJcmXVLhpZ6e0tBTl5eVqN8NsfpLJvd2Qubk5pXy7XC7DvMqdIFpHdrsdkUjEFJdUfzweN4Rw87Uu1zPJXDNlVMouHU+SRtjW1pYhuZeZEk5zRWF6tPssjQKuI2xvb2N9fT3lOildn0luFxQUoLy8HKWlpSnKrcQNzU8sFsPQ0BAWFhZSEkGZjYUMlvb2dvT09MDn8xkSh5G8NtvR5bzo1q1b6O3tVbvf0ig1k2l87HTu+dixY6iurjZc7UTrlved6FkmheLtE88fHx/H+++/jwsXLqir+Mx2njNR4jkf5wYgORd7enpw/PhxlWWb6peOCM4TZMgn4Vg6JGmOzBzKpAtNTk7ixo0buHDhgsoZo9t1vheFnoOcWyujVuqNtBZJ/no8HpSVleGjH/0oysrK4PF4lNNM6r667xyI5+r0VepXVtbds+d8LJKn8TZoTmRbgDFsnspzWtPZC7SG4/E45ufn1bzRdYs8mkM3Zzp9VKebmIHUpazkv+43Mz3WDMzq0PVVzouuLjMeZ/VMhy+iDeIvdPd8c3MzSktLUVpaqnWaAnejh6zaJz1Al2chHdzXBjQNlLwMBETYPMSRgIQrPaNFS+cmOOFLzwUtNJ1CQWWoL/wcSDQaVfde8nPZxAwovIzuIONChvooFQCuwEiDi5gDCQZicpxZUHscjzoGqzOKzK6E4YoxtZ1MJtV5hMrKSpWFcHx8HBMTE7h9+zYmJyfVlRrSi6czhHQM5V6FTDowq9eqPZ1ybcbAzBQYq3b5XMZiMWRnZ2NrawsbGxsYGhrCO++8g7KyMrS2tuKBBx7A4cOHVXjlzs5OSgIfojNuuEnDmK8bbkTQVR4Esg6586ajZW5AUv1UJ/cgU+KXI0eO4MCBA3jyySdx+fJl9Pf34+LFi4ZdVp2nMZ0ws5qjdL/J3YidnR1sb2/j29/+Nt58803U1dXht37rt1BaWgqn05myXjn/klnKdaHD3OlBQOHTpMg1NzejsrISHR0d+PKXv4zbt29jbm4uZbfebP3LcXK+SO0lk0mMj4/jr/7qr3D+/Hn8q3/1r1BWVqbojTtiOD1xIxa4u5tG10q0tLSo6yX+/M//XJ2JlGd3ZR8JiAZCoRCuXLmC73znOzh58iR6enoMidmkwssjhLKy9nbw29vb8Su/8iv4n//zf8Lv96skUJw/83GR8TI/P4/vfe97eOqpp9DY2GhYC3Tej+PVbrejvr4eL7zwAv72b/9WyQ/JF+gZhYFSNEZHR4cBH5wm6S8vLw/V1dUqwY0OSBGlGxei0SicTqdBqeYGxM7OjkGZTscz5dlR/hvVT3ddLy4uGpRmnSKXnZ0Nt9uNQ4cOqTvKpYzgBlVWVhaGhoZUNmqdAc31A9rdfuaZZ1BdXa2OLfGy3OgjGbm6uorJyUl1dY0sI8dBdGGz2VBeXo7HH38cR44cUcnKuIHA8cf5BbW9sbGBr33taynJqKwUXokrWo9tbW3o6urCCy+8ALfbrea/oKBA0TBFoJFc4E5RWuu8v5QE7+tf/3rK9ZhS9lvRkpwv3n/SpwoKCtRRIJ/PB5vNhmAwqGg3kUgoBxfxUHnunxtbnB7luMz6Go1GMT09jZdffhnj4+PY2NhQtyXo1ukH1WckLUsdTuJMjof4cGlpKc6dO4fq6mr4fD7D+pIRLxw4T+T6ss7g1vWVdnRlOa7/mtE/HyPncVzWc74qn5PsDgQCGBsbw61bt1TSUEpuqZsn3bzpvu9nbmX9ut91c/ph6MMftk5tZcTr+A8AFflTUFCAlpYWlJSUwOv1Kmc4t28IrCJKuLznkcpcBzBzgOngvjagCXTMgSs4wN3JkzsIfKJ0TFjWyQlWKlH8d2LeOuVbtygo3IAzbA7cKDZT+nX9J4KRTEu+z/vOlQfZFzMmTG3x5/KPG1dNTU0oKChAdXW1yjq9srKCsbExrK6uGowhzqy4d1SHz0wZiNVi/r8J0njROTE4mBk93KAmRk/J3aanp9HQ0ICqqiqUlpZqmY4UVtzRIvsh1xb1g4+HMyZJK9Io4Aa1zmnEywFQilpeXh6OHTuGyspKNDQ04ObNm1hYWMDS0pIhgZaVUEtniOme6/DBx893pFdXVxGLxRCJRPDtb38b7e3taGhoQHd3d0rdOiGg6wtX2nh0i1zj5Kmtrq7GL/zCL6C8vFzd52yW1ZjzFnomgTtHEom9jNB+vx8DAwP4+te/jo997GOoqqoyJNDiY5LPdHke8vPz4fP5cPDgQTz22GO4efMmxsfHDcqmrk/8Oe2Uh8NhvP/++yojd01NjaGMBE4ztPPY09OD2tpaxGIxLC8vq76brcXd3V1sbW3hypUrOHjwoDprqePB1Hdqq6urC16vFxsbG4ZdSzlPyeSeA2thYQHDw8M4cOCAgQ51jlWbzYaqqirMzMwYzpfrcJBIJEwNbZovAr5DysvId+g9knWk/HIlmOpNt0PM++FwONDW1qbupJd0wuU17QrPzMxYnn2m+mkdHTx4UB3FkOMjXkd8dHd37yrCt99+O+VaOV0bNG661uypp55CdXU17Ha7ll/y8fD/lIxramoKt2/fTrk/OR1wWZ2Xl4eGhgYcOXIEXV1dcLvdhvP8FOEE3N2JBpASzgoY80Wsrq5iZmYG77//PpaWlgyJ1TLZIbcaB9Fgdvbe0Z+2tjbU19ejo6MDFRUVKjs0OZF1tMU/y80SM+Xa6v2lpSWVXXt8fByhUEibaEry3kxxoNMx0xkrsgzhjSJhWlpaUFFRgerqarS0tMDr9aaEu/N2payWeOW7y2Zj1clrsx1nuSbM3pe/83Ic6M7mtbU1TE9PY3V1Faurqyrcnpy30lg3q5+DTscwq8MKdPN8L/VJ2X4v+vN++q3rs6RBWrPZ2Xv3y7vdbnUNmt1uh8PhQHFxsUpUqEtYSboE1524w0uuXRl5QJ91eooZ3PcGtFRgOFh576m8XODcYNAREzdGuRCj33gYJjeg5VkynQGi64PZn1yUZkTK/3g5WYeuLtkP+bvEuzT+dIuExu7z+VBUVISGhgalbCwuLiIvL08pd5FIJOUqANlnK0VfB5mU0wmjTJUPKwXJCnRzalaOQDpGiFlQ6OD6+jrm5uYwNTWFw4cPo6OjA4lEAm63G3a7XXmTZWSCFERUxsq5w/vAFUxOK1zx444QvmshmRoXoFxpz8rac1I1Nzejrq5OKc/Dw8MAAL/fn5LIzwzP9+pMkTxCt2YpsiISieCVV16B3+/H6uoqqqurDfeN6hxDOlxLvAJG3sXLkDDxeDw4ffo08vPzMTk5idu3byuPum4udcqZDm80Z2SkzszM4Mc//rFKaNXQ0GAIXeY7vxyk8UVh1B6PB3V1dXj44YfVmetgMJiixJgpMrQWotEoBgYGUFpaqhxJVud1uZzIzt7Lct7Y2IjW1lasra0hEAikyBXZLu3g0q5/c3OzikKSuOb9dzqdqK+vR1FRkbpeyayPyWRSZZMeHR1Vu2e8L7wtMipqamrQ29urpXup3FJGYDlvfL3TWqS2JY+W8kQ6TaSTjfhAOBxGKBTSGla8D9nZ2Wr33mazpch5Pi6iibGxMSwtLVmG7VH/KLdHU1MT3G53ylrl8p8+b29vY2lpCVevXjXsWpkBdwT4fD6cOXMGZWVlKuKNK4yEX24809/29jbm5+cxMDCAmZkZbG5uWq4RHQ0QnXg8HnR2dqK7uxutra0p59Z5+DZFVJCRIeeL1sT29jZmZ2cxODiI8+fPY3193dR4zgQkTRItUt6M7u5utLe3o7Oz05DRmSfCpHa5fOFA/EiegeZtSz5K6z8cDmN0dBQXLlzAxMSEupJNtxliNkfymdRPdf0hfKTDJ71DR++I/xw7dgyNjY0q87vO6LYyCqX+wHVJM+e7rk6uL/By8lgTb88sYkXqAcBetOr29ja2trYQDAaxtLSEmzdvIhAIqBwQVtEbmeqfVkbrfkA3z2a6YyZ9ulfdxwrS1cnpgYdl03GB4uJiFBcXqzwFdJ5Z0g+PDqbv8vgurTUdUF06h2imcN8b0By4kOTb83zxcmYgDVKaUC7Uk8nUcxU6hZXqJiFis9mQn5+P3d1ddd2MmRDldZHAJOWICy0zQrDy7lFWbz5O/h6Vk8aOjtHx/vI+8falwc7xw5k1edspcycpy4cPH0Y8HsfGxgZmZ2fxzjvvYHp6GgsLC8qIlruVZn3MRCBZvS+NN10d6YRUJszkXt4j0Bk0RENcOMzMzOC1116D1+vFyZMn0dHRgZMnT6rsxARcmeD164we4O55P+Au7VJZTvd0TIGEkVQIad2RsOQ0RcDXHbVFuyButxuf+9znEA6Hsbi4iD/90z9VoYFmV2rocCjHamZoZyKcaNx0hndnZwfvvvsuBgcHMTMzg0984hOora2FzWZLOVPKdz74euY7PVKBl8ANGo/HgwcffBBtbW34m7/5G/T19WFiYkI5GaTCI+mK/+eCjPpAHvp4PI6/+Iu/wJkzZ/CZz3wG3d3dip/yeafQf9oJ0t2VSd7oxx9/HE6nE0VFRfjGN76hFBur9c/5AyWMevvtt3Hnzh10dHSgpKREJcDh9Et0KvmY1+vFZz/7WbhcLoyPj5vOEbW9u7urkim+//77yM7Oxsc//nHDGWuulPNdXqfTiUOHDik+yPm6VBR3dnYwMzOD/Px8Qwi/nCe6ioUS273zzjtYWlqyNKKTySSCwSDW19dVfRIvNA4yTgis+C+tX8lXpUK0urqK5eXltIo6hfnV1taq67FoPUlZlEjsZUmfn59XzhgzZwONq6amBocPH1b3iRK9Sv2A6tnd3cXIyAhu3bqFpaUlrcEk5TCFbtOVQPX19QYeyY9qcH2E4y8ej2NmZgYXLlzA66+/bgiLtgJuHFE/Kisr0dbWhl/6pV9Sjj7qq5wDvvNuxRe3t7dx69YtfO9738P09LTK8m7Fm3W8WBpznCbpRpDq6mp84QtfQE1NDZxOZwot2Gw25ZiPRqPK6CZezHfRuVNH6ko6XCSTSWxsbODy5cu4cuUKbt26pc7N6kK2+dgyhXTyWYc/+ZnzIZfLhfb2dnR3d+P06dPqRg9+zI/ojh+ZpPkjfFF9fHy6XCqch+mOcxA/oHL83LSUyfyYF9XJ9V3Oz/ha2N3dxZ07dzA4OIi+vj5EIhHEYjHDPe28r5kC0YeMnjPT/c3ayHSOqUwmDhNdPR+WEa1bl7J+zvuJv5aXl6vkjNXV1SlJ6Uh/ougiKYPoM71D5eg9HqXH54RkBdEg0Xc6fsnhvjag5dle6cnmu8FA+rAPTvRS2HFilko8L8MZCxd6sh4CLiR58hHJWCQD0O3aUBvSU8qVBO5xkQzCzDHACZYMXxkawQ0f/h4B3f1LwI1T6hMp1IlEAg6HAx6PB6WlpSrbNHnXFxcXMTQ0lJIBUTcmyWx1xqEZmDF9q88SzIzRdExR97uVIikNLZovbshFo1FEIhG8++67uHnzJt58802V7K2+vh5nzpxRirCO4XPFjYQlgZUinpV1995oolt+tyJXnnm/ecQBpzGuvBNNJpNJOBwOdXXBH/zBH6hsma+//jomJye1mWg5T0hHD3JOdLTF51sqlWRkkiE9NzeHyspKNDU14ZlnnjEkZqH6+c6/DqTDg0CeR83K2jtj6/P58JnPfAaPPfYYpqam8I//+I9qp1NecZMJPnR/wWAQFy9exPLyMh577DGcOHEC7e3tim/ocMrD3slAJgFLBmVZWRncbjdef/11TExMqHOlVn3lxuza2homJibwX/7Lf8EnP/lJHD161HCmjytjkofm5OSgqqoKbW1tOHz4MG7evGl5JpvGsr29jRs3biCZTOL48eOGTOU6nkn0ePbsWcRiMUxOTmoTisk2VldXMTU1hbq6Ong8HgNN0I4iOXbr6+vh8XiUEaEz7MjoXlhYQDAYVM9k+DD1l3YQrOaCK0+yHPEoAnJ60J3Ycq3R/5ycHHi9XpWojd9PL2UZRTpdvXpV7QRyuuX1U90OhwMHDx7EuXPnVEQZXx9kPBAkEglsbGzgzTffRG9vr4ryMMMJzX9ubi7a2trw0EMP4fTp0waDleNLp9wlk0lsbm5idnYW3/jGNzAxMWE4XyvHqFNsSWm12Ww4c+YMOjs70dnZCafTqcbFcWPmINHRUTQaRW9vLwYHBzEyMoKZmZmU+7Dv1YCkeaId1CeffBLNzc2orq5GXV0dHA6HcpLxNe12uxEOhxGPx5UBLdexVLjlxgr/PZHYy3swNTWFy5cvq+s7A4GAdpc9E95qJpfkd53s1c0xl5e5ubmoqqpCXV0duru7UVxcDI/HA4/HA4fDoXgSl498/Fzn5jKI8zCuH+hoQ+JB6t68vNxV5v0z29GW/dza2sKdO3fg9/sxOzuLaDSKjY0NrK2tpcwRx7MZ/q10M51+uB+dLt1vZuWtjGjd83s1ns1oThrL9EcRIcXFxaioqFBOrZycHJXYksKzqa+0gUjRvLxdnb5F3+nYE7d16DsHqcPyvDuZwn1tQHPlIxOwMp4Bc+NSho/w960MIB0jMQNuJJBQlkkadIJYZ9jLZ2b95u/I+qSxKduUTEAnOHXM24opkDAkYUfZH/nVTZR1Ly8vD6FQCJubm+oqp+3tbcMuNR+HWXvUf7PfzYRdurHcC1jNrXyWST1SqNEOYTQahd/vx8zMDBwOB6qqqhAMBuHxeFBUVASPxwOfz2dYX9IYo+dybcj1w/vNFS/uFeRlJE3ydrkCr8MRVwJ7enqwvb2NtbU1bGxsoLCwEAsLC5idnVUZ4HVzm4lyopv3dLTAhXIikVD3nU5PT2N5eRkVFRWora1V99jyObTiMxysHBp8Hpubm5XXd2xsDLdv34bf7zeEy1qNSdcfrtxHIhEsLi5iY2MDdrsd+fn5yM/PR0tLi6FvUuBzOuWRLbm5ufD5fHA6nTh9+jRmZ2exvb2N6enptLvQBBRSuba2hkuXLqG9vR0FBQVoa2tLuYKJK8bcQeN2u1FXV4ejR49ieHjYYPSb4SQej8Pv96szqUVFRYbQV3qHdljoWV1dHaqrq1FQUIDNzU1TI4zaIOXd5/PB4/GkKNCEZ0qqRM4mK7pKJPauGaIrCeWc8XmToXMEVsq9lWJKjgHKHK+rg/48Hg+Ki4sNO2M6vpJI7IWF3759G5FIxHT3mf6ys7NRXFyMmpoa1NfXm+4i8f7HYjHcuXMHk5OTKVdkmbVFBk1XVxdaW1tRWVmZUk4q5ByH8XgcoVAI/f39uH37tuk1kbo54M4Cp9Op8g60tbWhoaHB4MzLhAfReGgdx2IxjI6O4tatWxgYGFCGixle0ukHvM/0R+fGy8vL0dPTg6amJvh8PgM9cKOYFHpylpFTU+5kcpByjtN+PB5HMBjEzMwMRkdH0dvbi8XFRXU7hJwH3XjT6SLpcGKGJ44vcgi5XC5UVFSgvr4e9fX1OHjwIAoKCgxzZ9UWl8dS19CV5QYw/WY2bjN9iwNv36oMRZtQwjZyMi4tLWFmZkYdr9LpAmafJQ3odO10+oHV7/dq0HKQ/NmqTjlv+zGy5XPOz4jW8vPzlXFcWlqKkpISVFRUwOVyGZyHHHc8mTBtIJB8lGOUY+FlMqElPo57wf19bUADqeEBXOEhI5QrJlIBkEgHjHdRmhm/fCeY6pa7WdJo4M8JePy+DPPmOyF8PNLjIkNbKQyRCJnGqOsfN2ylksaNYQJZTho7/F0dgyEGzTO58nFL5srPymVnZ6OlpQVNTU04fvw4tre3EQwGcefOHVy4cAGLi4tYWVlJMaJlf6Vx/UGFl46RWJW3KqMrz/ueqSJjJaS5Mb29vY2NjQ1MTEzg2rVr6OrqwoEDB/D444/D6/Uq44LjjNO8ZFK69Uh94MoMjwqRyrhul4r6rBPUHC/0R6HdTqcTn/rUp9S1Ut/+9rcxNDSkdh+oDYljHS7lb2aCh/dF/sbHu7GxoWh4fHwcDz/8MB5//HEcPXo0JXSO6uM8QYYlSSWP747x52REuVwu/P7v/z6+/e1v4+rVq7h27VqK91a3bvgY5fipDCknFy5cQCgUwp07d/AHf/AHhrOHVC/1m9YsD2+Wf4cPH0Y4HEZRURG++tWvpjX4Zb9I2f3JT36CxcVF/Pqv/zrKyspS3uNAfaSrhVwuF1555RUl6HU0Q0DnPufm5vC9730PHR0dKhkTly0SB263GxUVFWhtbTWc1dUpppQA59q1ayr5j5kRQBEaLpdLJVTi9XK8JRIJBINBrK2tqffpOe8rKTl8h0u3K8TXBOFGN35qg3I5pIPKykrU1taqeSDa4SGlVO/6+jquX7+Ora0tU6cEN2q7u7tRU1Ojwv35rilXAEnxC4fDeOWVV7CwsKDOjuvkKpfXubm5cDgcePbZZ1FaWmqQhXLOdfxgY2MDIyMj+Na3vqUSBJoZqDreSZFfPp8PDz30EE6dOqV4P+fHFHHHNwZ4G1SO5EU8Hsfq6iq+8Y1vYGFhAWtrayo5KKez/YDEHSnqBw4cwJkzZ3DkyBGVZFKOletOdHwsmUwqxztFyPBwTgn8N9IzVlZW8N577+HNN9+E3+9HJBIxGGVWzi8rkJsQfCxmwB2l9J/olELzm5qa8Nxzz6GwsFAlZCIHAl8rfC6pLq4vEy4kvfKy1CczA5nCaHV6jdQxzfR1CbRGKGJxaGgIExMTmJ+fNxypMotalJ+tIJONmv2AmVzV6Y6ZGt26ch+kr5KP0zOiM9K7amtrUVFRgaqqKsVPJH3y+mjsdEUY76fcgNONWWfnSP3A6j2zjVIruK8NaFoogBFRhEC+2CQzkLu7vCwZoPS7NJK5QU7AiYA/IyYv25CEoCNKDjrDhUNeXp6q3+wspXQMSOeAVHLkzgr/jd6nM9ZWxgX1Q+5acmVLp0xxRYErKjQnTqcTBQUFqKmpQU9PD9bX1xEKhXDr1i0MDQ0hEAgYzlnRmDgz1jFtM0Gg+54J6PAi599KwGayqM2MPh1wGubGdDweV9dCvfnmm6ivr0dLSwseeOAB1NbWaumKA82RDGulOZS0wpVbGmdWVhai0WjK2iH657TDBSlnfnxnm97LyclR5+xnZmbQ19enztfLs/Xp5sPsuxlzlt85DZGiGY/H8frrr6O3txcPPPAAnnzySbS2tipPLQcd7jlvIEWXxs6dVIQr+l9cXIxPfOITOHXqFM6fP4/vfve7CAaD2vBoabyZjZE7CcLhMIaHhxEOh9HT04MTJ06oTPByV57zKH4OimggO3vvrN6JEydgt9tx4cIFTE9Pp2TsNwOuWE1OTgIAzp8/j4985CMoLCxUY+R8jxsZZNjW1tbil37pl/DTn/4UfX19hjwTvC2qg4ycW7duYWRkBPn5+aiurgZwVwmX8+N0OtHZ2Yl4PI7r168bPPISaLe2t7cXTz/9tIH+qR9kHNBYKisrUV5ers5Bc8WW/6cQVLn7yrO487Uq6+JA5XQg5QEZ0PJsvHwnJycHTU1N6OzsTHEukxOKG8/BYBDLy8umWegJ/6QEfuQjH0Fzc7Mqwx0f/G5yYO/e6qWlJVy5cgWhUCjld94G1UX3E7e2tqKgoEAZ6gTcoUTv8lDTaDSKb3/727hx4wbW19e1+JJ8mPBD+M7Ly0NXVxe6urrwC7/wC/B6vcoRT/jg60A6pficE40GAgHcuHEDP/vZzzA5OYnt7W11ZRi1T2Am5+R32Q+73Y7i4mJ85jOfQV1dnboPlusrHHZ3dw3RJpQVn3BGOTt4ZAbJKd3OVjgcxuXLlzE4OIje3l6sra2pYx06WWIlW3TAx2GlC5jporQmnU4nSkpK8OlPfxqlpaXweDwoLCw00BTXUWWyOBnNQd/l5o/ED5WXOTaIhuQfYH4rAum1On2J6/qJRAIzMzMYGxvDzZs3EQ6H1VV88so6yac+iL71QYGPS6eD6trOpJ9mZThNSR1ftqVbhwS5ublwOp3wer1obGxU9EWOGVpvFPHBeRG1x+snWQoY8z5w/Z/rjjqbShrbfMw6PpoOV1ZwXxvQ6+vrKnkKGZBywqU3QiKJG968jI6AOeHyMlZGEC8vd4zMgDMpTjCyP/S7NBh4X8zC6mTfzQhOx2Qk88rUqJSKnRRSuvFxfPD544zfZrPBbrcrwUAhn+vr69jY2MDCwoK6JouH7kmhKNuU/dT9lglIZsUhncGug/0wb4lnCXzHhwyMra0tlQWdQqBrampQXl6OsrIyVFVVmdZpRivcaNbRtwQzQcnf5biS9CPxSme7KdMo3U1+6dIlzM7OqqtFdAKW12e1xnW4l995HXz3MhaLYWVlBdvb20roLC0t4fTp03C5XAZHgln7Zuual+GKErAnAEtKSpCbm4toNIrV1VXcunULt27dMj0OIfFgRgtkBG1ubmJpaQlvv/02bDYbDhw4gIaGhpQ1SP3ngleeRyJHSH19Pc6dO4fvfe978Pv92Nraslxj/DPR+MLCAi5evIiuri7k5OSo89ByvrhhRQrDoUOHMDg4iDt37iAYDFq2Tcr5xsYG+vr64HQ6UV5enrKDJ8Hr9aKmpgYulytl547qpvrp3mGiYTNPP42jrKwMPp/PlJ6o7kgkos3CbWY8m+FPJ3fTnTWzwg3nBUVFRerICYHkL4lEAn6/H4uLi9p1zuvNzs5W+QJKS0vhcrlUn6leuSYoIdHNmzexvr6uDHSdMUv9o13BqqoqnDp1ymD8URkuXzmN0boaHBzE6OhoRuPS4Y7ouaOjAwcPHkRhYaHBYcXnTmdEyn4RLV69ehX9/f2YnZ1VO7K8b1Rezne6/hIP8/l8qKiowMGDB9Hc3Izi4mI4nc4UGSGB+sjHT84xnRNVGivJZFKdzb916xZu376N6elpy7D5dPI6nbGk00EkbvjvdGbUbrejpaUFpaWlKC8vR0NDA9xutzJmZB38O/WZ0zzVnQ6kMUif+W9WOrkEGr+ZU4KiilZXV1Um7fn5eSwsLBgcGmZzy+uTdcsxZQI6mrlXsNLP/0+Bbu3xPwrLdrvdKCkpgdPphMvlQnl5Obxer8pFwYHLByt65/KEO16kU9tKJkj7T4LuXTN+kQ7uawM6EAgoRkECSXfdESGUh3TTZMiQJN3k6uqSTDqdcp2OcHgdXLGSoXs6JYXK0W9c6ZWJe/j7VgKM71brHAyy37IOaRTzusyMU53hYzZ2KVhIEDocDhQWFqK7u1uF1NEdspOTkwgEAojFYmrXT6fEyz7r8MPLZsIwrejDSkB+GGA2DqngcjqiM+cLCwu4ffu2OhvX09OjmCRP4ieVLFpbEogmuBdalpM7LgS05nj0A8c9/yzxzcOLHA4HSkpK0N7eDqfTiStXrmBkZAQrKyuG83npHF3pcM77rRPK3Bjlyufw8DAWFhYwMjKizsLSmVUzWjHjMcmkMXkON6BpjdJOGN2/WFBQgNnZWaytrSkvsFxvVrTMgXbhVlZW8LOf/Qw2mw3b29soKytTIV2cV2Rl3U1IRbt9hBtS5mgH91Of+hQGBgbUuX4rhxjHP52HDgaDOH/+PB566CHk5+ejoaEhxWiQOKbcDHTUYXJyEisrKwaZImmS5jUSieDSpUvwer04duyYCqGWfI/eIUO7uLhYJVGUO8F8DVEZeXuDpAnagS4rKzMdKwE/h2zljLUKf5NGoW5++Fi4smslU4l2CwoKUFxcbMAjV7jpb2ZmBtPT0ynJ8nT1ulwu1NTUoKCgQBm2/B0KeeV6xPDwMN5//31DlngpGyTO3G43mpqa8Pjjj6sr33S7ztzRSVEUgUAAb731Fqanp9Xus5XRJo0souXS0lIcPnwYXV1d6jwijUv2QcpfGW1EV9q9+eabmJ6eVtmnM5lTs74Cd/k37ag2Njaiq6sLTz/9tEoUxiNvCHSyWRrQ9B7ncZwWeV2RSASzs7MYGhrCj3/8Y2xsbKjdTV5/psbzfkHKOK6H0me6N7eoqAgPPfQQ6uvrUVlZaeCpfKNIburw+ZaJMPmRwEyBvy/XKJB6NERnzNJ65lm/KTcORTlNTU1hZGREnT2X61wX/aD7bgW69Zyu7H7Aql4r/mqmm+qe6WwZ2V/pNKG/vLw8eL1eFBYWquMApJtw2cQjVUjm6HQ1DlwfIQerNKD57rLZOMzWL3/XzLEp8ZAO7msDur+/H0NDQ3A4HPB6vSgqKkJNTQ2amppQWFgIj8ejjGsSctKjRkIgEomoc5ME5MnjDIrqkQueFFVCPhc8sVhMCaasrL0EFjzTttyV0xkeu7u7KkM1feZtSUZBdXJGyctIhSidJ1AqWtxhwQmXcMDPl8i2ZJZbXXZT+Vz2T84h7yOdgUomkygsLERJSQkeeughlXWxr68Po6OjGBwcVCHeMiEQ4URCOsXE7DczBieNWat6pIL+YQBXGjgDTCaT6gwinZOen5/H+fPn8Z3vfAePPvoo2tra0N7ebgh547RLVxWRoiLPhUllmitJEjdA6n2rHGdE67y8zoCURuPHPvYxPPHEE/D7/XjllVdw8eJFdY6NM1sd3q3mQRpFZnTAFXwaF4XU9/b24g//8A9x7tw5HDlyBCdOnDBc5cCBZ6yUu2+EA44jqcBkZWXB5XKpM7rNzc348z//c6ytranzzLw+2b7EOeGZvxMKhfCDH/wAt27dwuLiIl588UUUFBSk7BzyJFv0jM9/dvZeiHNVVRX+zb/5N3j11VfxD//wDwgGgykhrGZzRgmOVlZW8Nd//dd4+umn8fu///sGfiyVas7fPR4PnnvuOdTW1uLf/tt/i62trZRzdYQDop/d3V1MTExgaGgIw8PDhrBjqRCQMeXxeHDu3Dn89Kc/VVeySSDaicViCIVCWFlZUe/TGvZ6vQp3drsdTU1NmJmZSTHIJd3wTOME3EAlXHNnh3TmSMVMJm2TZRKJhEoKSTg0c8bl5eUhPz9f3f9M9fJ5IMW7r68PN27csDRuqc7GxkZ86lOfQkFBgeEGAeofzSvxSUogNTIyYghVluuEG252ux3PPvssDh8+rM7FU/1UL/EqrvQlEglMTEygv78f77//vsrnYGXYSIOLIi6qqqrwB3/wBygvL1dKsE5x1dEG11eSyb1M4BMTE/ja176GyclJFe2lS9ZGfdLxEmlwZWXdvdu5sLAQzz//PA4fPoyysjLD3eqS50j9xmyXiaIYZfscB3RP8De/+U3Mzc0hFAqpzM0cJxJXVpCJwykdXvh85uXloaCgAA8//LBBNkunIJcHhBs+57S2ufyl5yTTJVjpL2Z44MY71wm4nOK6ANUfj8dx584dDA8PY3R0FEtLS+pKMh6FwduWc5Oub9S/ewEzuk7XXiYgeZYZn820X/xd6YjJzc1VuRHoiERVVZW6l1nuKkv9Qq432a6UefQ7D//WRZbxPksdS+I8NzfXkNeF+iydRsBdmbEf59B9bUBTsgy6omdjYwMrKyuYnZ2Fw+FQYQZFRUXKY0J3GnLmT4oPnRXkoYNS2eeTpFPUpPJAz6ThwJV9Hs7GmbfOYOTKsWxHt7h0ChIvb+WVk4uC90kaMZyoubErFzf1ieNJKmdSGPH2dQvGDOf0Rx4yCj3p6elBbW0tDh06hLW1NayurmJubk4JfVIa5SI3w2GmsF+GrJvPe4VMBIXZTjK9n0gk1Jp7++23MTg4iIqKCrS1taGmpga1tbUGhUYCVwT5vMvdKx39UDmpaEulQjJbapMrVnwnhM4c5uXl4YknnkBzczOmp6fR39+vvNnpjDKJS51inu49Seu0YxkIBHDx4kXMzMzg9u3beOaZZ1TYlLwCj+qR60c62OTa4/iz2WwoKytDT08PvvjFL+K9997D4OAglpeXU84MpaN9OVcUETI9PY3XX38dbrcbBw8eRHt7e0q/JE7JgOG3E+Tl5aGyshInT55ELBbDV7/6VWVM6M7hU5/oGfUpEAjgzp07uHXrFg4ePJgSWaTDcXb23vnxxsZGnDhxAr29vVhZWUEymTTwDo4LCh2fmJjAG2+8gebmZkPYqRxvXl4e7HY7Dh06hEuXLhnWieSF1L/Z2VncuXPHcMxCxzfcbrchE6qcV/4ndw6TybtnqqUBrVPoeD+47DWDZHLvfCkpw9KI43TCz9bxuZZyhK7FWltbM0R1yTVBu88lJSUq8zbfsZTyIJHYO4f81ltvYXx8XEVC6AwqbuzY7XbU1taio6MDdXV1BqNE59gmPOzs7MDv9+PmzZu4cuWKIceHxJMOX9x4Pnr0KI4dO4aysjK1iyvf42OW+OLjXFtbw4ULFzA4OIiFhQVDXgI+r3KedX2V7WdnZ6OwsBCdnZ3o6OhAT08PfD6fcpTrwIwHcyONj487aHhIdywWw/DwsHKQjI6OqkgP7oiRcscK9iPHzXgh77/b7UZ9fT1qa2vR2tqK2tpaFBUVqSvIdHXy3Tjqt1xDvAz1Q5dgjcsus/UvHRucrxDQXOvk9c7ODpaWlrCwsIDR0VGEQiHlLOS3FEhnjdlnM0hHk5mAxOmHCVLXsdJPzfQPM4OTDGan04nKykoUFhaioKAATqcTbrdbhWqbRWnxZ8Q35fq0skX4uEj+0eaMTrZwPMvNGMl3qU/8mdzUkzZWJnBfG9DEwGjHhs5sLi0tKQ+G2+1WZ5ni8TgKCgpgs9mUQUUTQYY0KWq0+6kLbaHnkkA4c5bAjUAuwKX3j54TIUnDXSqCkpD5Oxx0hKtbfFKA0X9pKPM6pPGjA6ux8P5xxiDr4gxDLigd46bnpLSRoZSfn4/KykqV3Gd5eRnj4+PIycnBxsYGtra2sL6+rsLPdMaJFX51Sq6ubxLfuvd19WcKZkqEVVkqz7/z3XlK7LO1tYWpqSm4XC51vjwej6OoqAgul0uFeFu1ZUXDOpAC30xA6XZZOR74PJLynZubi46ODnVlDUV7BAIBrK2tIRwOpyiDEk9ybLJNWc5szFwp29rawtjYGJaWljA9PY3a2lo0NjaivLxcnfuUdKJTpHWKCvEfyW/cbjfy8/PxxBNPIB6Pq1C5jY2NFA+/xK1Zm8T3aNeXnC9ZWVnqbkhuhMk65VySgPZ4PGhpaUFubi7effdddR7RyovMFb7d3V1sbm5ibm4ON27cQHNzM9xut8HQ445Czn/o3NexY8cwNTWlaESnmNK8xONxLC4u4saNGwiHw7DZbOruS4lL2g2tr69XZ1NlYipOy4lEAnNzc5idnVV95DtN/D85E+XZZV3d5FzWGXn7VTrklSU6eZJMJlVorM4I5X8Oh0PNlaQXPs+xWAxbW1vqXmYJ3FgrLi5GWVmZSiynW+u0dmKxGDY2NnDjxg0sLi5q50fiPjc3Fy6XCwcOHFDGjtX6If5L62d8fFxlFpb32uvGxfFGNFVTU4Pu7m51F7rOeJbzo5MLicReArupqSn09vZiaGjIkMzMSsG36isARb/5+flobGzEoUOHcPjwYfh8PthstpTIlaysLINupatb4pZ+0+ly0WgUMzMzGBgYwNjYGIaHh1WkiXSSmPH9dCB1Piu88HKky1C2446ODhw4cACdnZ1qh9BMvnBa4Poo/WYmm+QzSQ9Sh9ONQSeXpCyn94k3RyIRdU3f1NQU+vr6lGNbRjjodEbZZwlmz9P9rhun2fP96m/p6MeqPp3OQ+9w3sl3memqKcol1NjYCJ/PZ8iJII1Os7Zl33iUQaZAbfF8DBykfOXAN2BIx6PPmejj/39jQOuYeVZWlgp9ysrKQjgcxtLSErKzs3Hp0iUVCkRnjyorK1FcXAyv16sMBEK07l5JMpxpEvj5azNjgJgz9VdOEN8NJ+ZIHn7pAQaMAobak0yEhILcJeb9kAYp9zhyocC9jrzvVoyH3pGhtjROPi7+uzQkuPJJz4i5UpiixIf0kMqEGXwu6bqYzs5OPPPMM9jc3FTXUty8eROLi4tK6bISmjoBnalxnA6k8EsHVoLNqn7+HqcDbmgBd3cTI5EIwuEw3njjDbz77rsqBPjBBx9EZ2cnqqqqDDuqBFJRkQ4lnhCQ1iGncbkOuKLJ1ydfu/wduSbkGZ+CggIcOHAAzzzzDC5duoS3334bN2/eNCirZjt2Otxa4d1MyeF1UhbR1dVV/Of//J9x5MgRHDt2DJ/85CcNCWF0fdAJUG7EJBIJw0428YHs7GxUVlbiU5/6FB5++GH87d/+La5cuYJgMKi9/kv2XzdWjrtEIoGf/exnmJ6exvj4OP71v/7XBmcGAX9H11Zubq5KIPTbv/3beOmll3D+/Hlsbm6mZH+V/aH6o9EoBgcHEQgEcPjwYTQ0NKC4uFjRTXb23fP2nL/Tbv2nP/1p9PX1qeRCZn0lvrW6uoqxsTGMjIygo6MD5eXlWqOOEiQWFhbC7XbD4XAYrnXi9E+K5NDQEAoKCvDss8/C4XAY+sD5I93NLZO96JQRWu/8GBLVl0wmVVgnPz8r6+LzpQvLBO6el9/d3cXc3Bw2NjYsDcPc3FxUV1er5G9mRgjhPBKJpFyPwvkc4fzkyZM4dOiQ0iV0OKLfVldXMT4+junpaayurhpyBgDGXCLkIKIz/F/4whdQUFCg8Cxlq+RrlDjsa1/7GhYXF9VVXJzeJP653Cd68nq9+JVf+RXU1tYqOif64zlTJC55OfqN7rL/7//9vxuOe+xHYZbzxpV7p9OJsrIy/Pqv/zpKSkqUzOfKNeGHH7EgkLKfcMvDNQkvhP94PI6trS3Mzc0ZjrHwyBYd/6fP6cCKpq2eE57oCq7y8nK0t7fjxRdfVE4QGVor2+N6Ho+ukHoaf5/rmTyEWx6TIFzS+1Q/bUzx/vD1QbyV66aJRAKhUEg5L27fvm24t1mGzstxZmJg6nS4dPqVldGcSduZ1Jep8Sx5nk5P1P2nuaEs9j6fDx0dHSgpKTE4JAHjsSmqQ3ecRgLnZ2ZOLV6WgGwDepffvKPTSXkd0lYgnPB2ZQQKt884fjKF+9qAJiAkceRKJJPAI+JZW1tDKBRS8fZ0/pl2BIqLixVx0VkbOptHSiddg8ATWPDJ5pOiIxICuj5BhiFwgUXj4TtHnMjlu9SuNE75d7lTJ734VN4sNIfe5cAXDR+TVBDJWcDDdkgZ4+EfJOxIkaFnuqyv9A4Z71Q3ZwLcG8a9tHQmzeFwqKQ0Dz30kArpDgQCmJ+fx/j4OCYmJtSZG3mejuNUMsb9MFazOjIBnTIl27diEukEEjeoSaBFo1Fsbm5ia2sL4+Pj8Hg88Hg8aG9vR3NzszrnR+uEM1UuyElIU/94oh5+XpQMb6kQ6JR3HjrOBSVnokQPwF1aIEfb0aNHMTMzg+vXr2N4eBi3b982JMbRMW+59tLhmn+X/IwbSKFQCFevXsXo6CguXryoQqAffvhhNVbOe/ic0R9PDCPzNkgBk5ubi8bGRvzO7/yOCm3//ve/j4WFBQMOzMYjx0T4oOQvo6OjWF5exvz8PF544QUcP34c5eXlBmNaKrs0HhKuNI7jx4+jsLAQJ0+exH/7b/8NGxsbhvNPuj6Sgre1tQW/348/+7M/w7PPPosnnngClZWVKTiUkJeXh6KiIvzqr/4qWlpa8NWvfhUbGxuG89DUJtFsLBbD2toavvKVr+Bzn/scnnzyyRQDgt6lpElHjhzB2toaXn/9da1DgcYSCoWwuLiIYDCIqqoqQ/QNlcnO3sv+TNePkCHGcUP0R+s7Ho+rcHPJH7jSzscgZWFWVpaSt3z+aP1QnoR4PK6S+unoicbjcDhw6tQpRS98jqhOSq729ttvw+/3G8KddQZmfn4+Dh06pI4VmDmnksm9hFL9/f146aWXDBnQZZ+JR9FcPv300zhx4gR8Pp92d4TLXfocjUYxPDyMCxcuKOPZzFA1M0YLCwtx+PBhnDt3Di0tLYYoIZ3+wN/nvI2cTj//+c8xMjKCiYkJ5VjLNKxZ9pHPK83tU089hcbGRtTX16OsrMyQawO4m0uF6y08/JrXz+Uz8RGSH7QLF4lEEAwG8eqrryIYDGJlZQVLS0sGmpFKu9lYOJ2Y/UbPrJ5z2iwoKEBlZSVOnz6tjiO6XC7DHbucHvja4n0hWUf6MDm1pHEiDVTCrzRSuGymd80MlWQyacgzRM/ouNK1a9cQCoVU1BeFy/MwbZ2D0kpPykQPy9RoSmekp2tLp59k2g+pU0ja4euIgJxDdrtdHUvxer3weDwqRJrnkeA5VKR+QHoIr1s6MqQNsZ9xUd95Wb6ZQn3g/+mzla7L7QsroDoycRAQ3NcGtDQOAeNk6LwPBFlZe/fN0mfyoNMOdSgUgtfrRUlJCZaXl+FwOJRx7XA44PF4DEmu9mss6ZQfzmwkwe3nuxnxEPPhO81mxjOvUyq/6Qw7aZjzZ7yMVHqkEcrrkItMKmyyXrnLKcelYz5ULzlHioqKlAK5urqKsrIyFBcX/3/I++/oRrPjTBh/wEwEEgRBEsw5dLPZOcz0tHpiT5ZmJI0clGxZsrWWvbZW8vGu17vns5xXXoc9kvfsjqy1ZKVRHoXRaJJmpqdzYjfJZpNs5giAAAkCIAFG/P7or+7UW7gvAPaM9nzS757DQxJ43xvrVtVTt24VysrKFHP3er0G11Y5/+lKJpv6rZTtgHAz4G32nGSsZE2ORCJKGY3FYlhYWEAsFkN5eTlKSkpQUlICu92eBPR0//M2JaiU49TVIZ9JpewARpdUSnflcrlQUlKCrKwsFU9hbGwMoVAIkUjEcNePg/i3Uvh45en/wsICIpGICrQUjUbVqTm/Gy33rxyzWT+lgSEvLw9NTU3qXl0oFMLZs2eVeztXvFLVK/f3xsaGctW9ePEi3G43AODEiRMG92LeJ11fiY+UlJSgpaUFubm5uOOOO3D58mUEg8Gk/S8FLoHoeDyOGzduoKqqCk6nEw8++GDS6SMVbhjMzc1Fc3MzgsEgWlpacP369SRFln4TiF5dXcXIyIhKwUWnxTqem52djfr6erS3t+O1115LOlnnv+PxOMLhMGZmZhToMFvj/Px8lJaWwu/3a9eK+ktRznWF9zMdryJaMuPN9P7m5iYCgYAhgAx/hoPChoYGlWaKzx1f23g8jsHBQYTDYS0tEMClK19OpxM2m02NjRt5qdB987GxMRXZWwJH2V+6s9/a2orW1lblui9pRcrrra0teL1ejI6Oor+/3xDZmo+DzwH9TeMqLCzE7t27sW/fPnR0dJjGqtCdOPG5JCPe5OQkenp6MDo6Cq/Xm/Lut1mRe5uAc1FRkUqrRekTOU/TKcpcN+Df6RRuzuNpfn0+H/x+P2ZmZtDX16c8Fvg1ArNxpfoslSyVOhX/nGiOskbU1dXB4/GgsrISnZ2dcLvdhgBhUqeTfdGBaHkwotPxdPuP7wtOg2ayjwNu/jd5hszPzyMUCsHr9eLGjRtKrnKDlNStUgHZVPMtv9fJyHQl3dpmKv9T6fCZAGxJO1xekzt2cXExCgsLYbVa4XQ6UV1dreJfcKMH6W9mfZBjkl4MZjqGrh4+b3IOOQ3KA8R08ye/k2tqhnPk6bqUEanKLzSApqIj5EyYGldM6R41LWA4HDaAajqddrlcqK2tRVVVlbLakFLAFQmpxEsLH+8L74M8sZUAkvosgbFuPhKJW9Y+Hs6fCxr+dzrQoQMffP6o6MCvWclU0JKCvLq6arjvlgmT0UWt5d9zi6o8waa78pubm7Db7aiursaePXsQj8cxPz+Pubk5nDp1Cjdv3lRuXly51Z0OyPHrxpCp8pEJ+Jb0lknRCZhUz/Bx8NOd1dVV9PX1YWhoCKdPnzbcY6N7q/JkTNKhbl/LvaNjktyKyD00OMOX4+RGHQJG1Ce3261cO5eWlvCd73wHAwMDGBkZQSwWM5xQyH3+VgG1TrkmZbanpwezs7Pw+/34nd/5HXg8HnXSz+eD/ua/aZxmihwHsFlZWSgtLcW+ffvQ1NQEAOjp6cHQ0BCWl5cN/UxFb3wstEZra2uYn5/Hj370I4yOjuLw4cOGExUqcq0l/6FTmubmZnz0ox9FOBxWbrs6BVKuDwWaOnPmDBYWFnDXXXepoJP8HenZsrW1haKiIpWOaHx83ACodH3e3NxEOBxGKBRCKBQy3IMm3szpu6mpCcvLy7BarYa4DHxeCewuLi6it7fXAJSkUpCVlYXCwkJUV1djeHgYa2trWn60tXXrnu/y8rIBSMn5lMqJGYjkmS6kxxatBQHoWCxmun+orvr6egPYlSCXYqP09/cjEoloDV3Ut7y8PJSVlSk3YZIBdCq6tram+MT6+jouX76MGzduqGjTZkqePN1uampCWVmZYW+Z7XEy7ly/fh09PT0YGRlJee+ZryHRaV5eHkpLS/HEE0+gqakJdrs9ST7p1pYDTOrTysoKxsbG8Nxzz+H69etYXl5WtKMDrKmUaUk3ubm5cLlcaG1txQc/+EEUFxcbTp3N+BcfO61VVtabKU15oe9oXOShcPnyZfT39yt+xu/Wms010YJuXLxIYGnGbyXPJnf7iooKPPnkk6itrUVRUZEhZVAiYTz1kx4N/Dmpa9J+oZRs9D3XMeX9aDl+OkTiXk2SP8gI5+SdE4/HMTQ0hEuXLmFmZkZ5MdC6SFpKBZrfrpIKNKYqZnqW1MG2C/rkd0ByMCwuk7Kzs1FUVITy8nJUVlaipaVFnTbzNTY7KdaNi7fP+QTfS+l0fV4Xp0c5RqnLyff5M3w+dKDXTBbJd+l/fiUh0/JLAaAz3Vi6CdUBWcDot0/EmZWVhWAwiImJCeTl5SE/Px82mw0OhwMulwvt7e2orKxEcXEx7Ha7IYUWZ0qybc5w6I4JPUvfSVcKKWilFYXK6uqqFtADxvuO9D/1h35z8EFtc+ZP7fM6eX+525NUhul/7kYmU1fRsxSOniuVZmPmAkEXyIrqNjvFBqDcCakOeo4MKZQndOfOnYjFYgiFQhgfH8epU6fg9/tVUC3p4iIBoE5B3C7gNSs6wSO/k+3y9nX7hT8nP+frzIUpT4U1PDyMF154AWVlZdizZw/a2tqwf/9+WK1WJewlU+PWddl/3g6fX35iwb+n9ZCBAjk9EL3xO9cUubagoAA2mw0f/vCHEQ6H4fP58LWvfQ1TU1MIBoNJngjbEcjpvpexA0jRWFtbQzgcxujoKPbv34/jx4/j6NGjSad9AJTrHs0NKZxUP19fTp+JRELlZy4sLMQnPvEJ9Pf34+LFi/jyl79sCOrC3zUbJ33H760vLi6ir68Pn/70p/Ef/sN/QGtrK+x2e9K7qYQ/AZ6Ojg587GMfw5kzZ/ClL30pKU+0rk+03wOBAG7cuIHPf/7zeN/73oeWlhYDjyIlkMZAbnK1tbV4/PHH8dr/G5E5GAxqlWxaO8oLnZ2djY985COGeZOGAbvdjvLycnR1daG7u9vg1s7rpqjir7/+Oh566CGlcPNniLZLSkrQ1dWFc+fOIR6PG+rj6xSLxeDz+VBTU6O9X8l5LwcBuvWnq1BEdzydI80p0QKlsaLC+T5dr3C5XIYI0tQuKf8UA2VpaUm58+vqo7v073vf+1RKJ76PCSBw4HXhwgUMDAwYTl9l/Xz9qqqq8MEPflBFkOb94XuNt8sB6/T0tHK314FVOSZSppubm/Gxj30MDQ0NKCwsVN9RW/yOKr8ywd2x6bmvf/3ruHHjBiYnJw0RwDm9yPHr/qf2uMfXkSNHcOzYMbS0tMDpdBrkgKQ7bgjR5b/mMkCCeTKATE9PY3h4GD/60Y+UwSYWiyWlW5RzLMeQSeH7Rb7HDwTo1NlqteKd73wn6uvr4fF4UFZWZjg84PVwLxMJAvje5PdJuZzlhYM9+iFXeTMdmR860P+cpmhvkyHuwoULGB8fh8/nQzQaVUYYfvqXCjxnOueZ6FA6Ga2Tf9tpl/dTp9/JogPEvC/0I/+nvUO6qMfjQUNDgzJSkq7K66bffG8RLfB+crnCdQ2uD9N3XH+QuoScDz4u+lvqe1S3vAIl55H/Lw1KOv5oBqilDNvOOv9SAOhUJRMgQN/JZ6VQo4Uld7+cnBzlShkIBBAOh+F0OlFYWAibzQa73Y7i4mK43W64XC51/0ueMMj+ckWZ+skJFnjTgkjv6E6D6V0JcOV4+XscBJkBMAkAJcMl4peGAPketaNzA9Ipu8Qw5IkabRp5uqBrj/7n92mBN4OnmM0h1cuVIhJ2xcXFKC4uVgBraWkJkUgEfr8fs7OzWFhYUAFmJNDTbXQzmuX91dGy2Xj5GHTvyiKFiu77dIWvLxfEFHxsZWVFBQsaGxtDZ2cnPB4PPB6Pii1A71P/5R6QhdMOf0bSpm7f6WhER1P0LkUbt9vteOihhzA3N4eZmRmcPHlSeSLw03izddPNqW7u+T7jhRh/NBrFzMwMsrOzEY/Hsbi4iK6uLtTW1hqCSen6k8p6q/ucTqNbW1uRlZWFgYEBDAwMYH5+XvGb7YyX+kVproaGhvDjH/8YBw8exLFjx9TdW/kuXyMOCLKybkXIbm5uxsLCAurr6zExMaGUtFT9IoPP0tISuru7sXPnTuTl5aGxsVF9L8dB/SgoKEBJSYm6j04pkzh/5H9vbGxgenoaAwMDKiK3zJHMvWKKi4tx8OBBjIyMJEWFp74kEgl1ok8pveQJOvFLq9WK6upqZWjRKT2JRELRE9/TNP9yn5sV2jc0RrkGXM6SUcgs+AzNNYEsvu58Tij1zfDwcNKprVSU6bSvpaVF8R8OVvjP6uoq/H4/lpaWkqJ66/guRVI/dOiQyisNGE8LdbJnbW0NPp9P3d/WgWfdHJNRPDc3F3v27MHu3bvh8XgU0NLJHh1w4Tw4Go2qE3CzO9ipFFzZR+oneUG0tLTg8OHDaGhoQFFRURK4M/NukHtAziH/ngyi8Xgc58+fx+TkJKampjA7O4t4PK6ua8m52W5JJT+57iLngoxwpaWlKC8vR3NzM8rKylBSUmIImKqTVXJeuM5i9qxcawkc6W+pK/F3uT7Jx0/yfn19HYFAQF15IkMv5dGmLA9SL5Lzqfuf91H3XKr5yaR+s8LXNhM9ic8rfS4/M9M7pWcrHdxVVFSoFFOFhYVwuVzqII90U8m/+AGFDnekmxczL1V6ltfLebHcDxyTyM/N9DNd0c0n/c/lrdl4tgOUzcovLYBOpWgD6TeTnHj+Pz+FsFgsWFlZgcVigd/vN7h8OxwO1NTUoLW1FXV1dbBarSo4EYFBmcuQCIsDZGpPAkP5Hn9GgmLdpqW/JVih9nXzSMSfishTgTvdM3wzSXDMC2cMvK86dxIZ7IC3w+9IS8+A7QhNi+XNAByUc7yqqgrr6+uIx+MYHR3F9evXlaBeXl7G6uqqwdoqN3smzNsMbOn+1glz+V2moE63N+RzZvVwBZfuVEYiEYyMjKC7uxvhcBgdHR2wWCwq2ioFkOD0ZmY1B4xMW7qR6foulVYdo6c6ed10ekbC7N5771X3Akk5ICMBF2CpFG3eZrq5lP3lwGN4eBizs7Pwer0AbhmGKioq1J1iPpf0nhlvMGvfYrGoVHA2mw3Hjx9XilAoFEq6n5mu78Cb9yvj8Th8Ph9eeOEFhMNh1NfXo6GhwXDfj68lpwnOR/Ly8lBZWYmmpiZ0dnYiGAyqqM7Ssi1pYn19HcvLyxgaGsLVq1dhtVpRU1OT8j4xnWJarVbcddddmJ2dRV9fH+LxuFaBo34EAgGMjo7C7/fD7XYbAnXxuaHTxP379+P5559XAbHk/BIwD4fDiEajiMViKCgoSALvFsutFFAej0fRhu66CwFGHYDmcyZdmHVADLh1Ak0AkhuneD1ES2Z7JCsrS50+cwDNZRNwS4ZR3lidOy9fO6vVCpfLhZqaGuTl5SXJBGqDPAfGx8cNIFKuL1cECwsL0dzcjLvuukudCHGFVjfniUTC4NVEJ+gSQEvgw2nRbrdj7969OHz4sIpULo1NkjfRenFdY2VlBV6vF6dOncLk5KRpX8zkg07foD6WlZWhs7MTR44cUSmY0rlkyjWm73R7mddD7vzBYBBvvPEGJicnsbi4aDBMSIOATgmX+znduHU8i/4m1/78/HwUFxdjx44dqK2tRX19vYo5oUvZlcqbRs61mbw3+y3b0oFjSbfSW2N1dVXJ+PHxcZw/fx7z8/PK6MRd5OVPqpIJ0MtkXjLVt+j57dad6l0z8MzlMhXSNei6aGFhIex2O9rb2+HxeNQ1B7rqoKuLxpoKnOrWmPdXXgXg73D9To5Rt4foc10/zEA6N/Cmw3VmelYqXMI9KLZTfqEBdKaELRmcmXDXfadjfjpXR4vFGD04KysLoVAIs7OzuHLliiLygoICuN1ulUKrvr5euYxZLBYDaKB+kCCg01ciJu5SwfvP+8vTcPATMR1oloyWFBoSuNQWVywkQCDFgEe55PNKf/Mo3NJN18xlXAJh7orK3YfkaQrVz6MGcqBFz8ugcFxQ8dQ/si3qAxlGKMhcSUkJ9uzZowTK+fPnMTQ0hOvXr2N+ft4QtZQDGbmGOoYmi05JT1Wk0ORznY7BmtWX7j0aK9EWGRqi0Sh++MMf4oUXXoDNZsOBAwdw6NAh7N69W1lU6X1SJohe+PrwuaQ5kUo1n0+pMEnjk5kw4mtOf1utVlRVVWHnzp147bXX0Nvbi9OnT6v7dNLNUbfO2ym69SN6isfjKlJ3bW0tnnrqKRw/fhwul8sQuVoqV/KUhz7LyspS0fH5nJAx8L3vfS/27t2La9eu4Z//+Z8NCnYqF0gpjAmMrKysYHJyEqFQCNeuXcPf/u3fqlzIfD2oUB8pRgLx4sLCQuzatQt//Md/jEgkgoGBAczOzmoVZdkfOg1/7rnnMDc3p3L2chDN+0F0UFBQgLa2NtVfCtClOzlMJG6dhnm9XnzrW9/Cr//6r8PpdCYFdCG+a7Va0dLSgsrKSgQCAfh8viS6IQC6srKCgYEBFaVXx1Pz8/NRVlamQC3d8ZVrRd4NtI/oegufB3mqwRUu4rEWiwV2u13JON076+vrSd46sp2srCxUVFSgq6tLy5ep3c3NTUxMTKC7u1vFAZFrR3x7586dOHToEAoKCgwgTwKr9fV1zM7O4itf+Qrm5+e1Rgdu8M7NzcXevXuxZ88eFThMgk6uxFFbKysrePbZZ1VU4kzyPROdEHg+ceIEdu3aZUiTxsfF+Rrfh1xPiMfjePHFF5W7OrltZwp4JA/lnlt2ux2///u/j9raWjgcDtV3wBi7ROooMtI27wOfI04Pm5ubGBsbw7lz53D+/HnMzs4qQ7YZiNPxWPqf063cgxIE6IAN6SM2mw27du3Czp07ceedd6orQJubm7DZbCp4LXeJ1tEx74eUb/w5Tms0h9yQlZX1pvs1Hw/VJ69ByEMAyrfe19eHnp4eZaSgudYdHMi51c2p2Vyb0V8q4GS2rpkUiQe203/5mY4ugDcPeCwWCxwOh7ruRnGXsrOzDYBZJ8+pSDkiDU46nkLP8dNv3TM0XnloIfUlXZEYgheOI+TnvP5wOAzgVvBQScvp+irXQNJ7puUXGkCbKe30nVmRQiNdG/TbDNzpGBotJqXlWF1dRVZWFpaXlxGNRhEIBJRyY7fblbt3fX09SktL4XA41P0/Dhj55uKKgi4YlsXyJiDnxMwZJgc1khHLeaAfGeWaAwn5Pm+LE2861x/JiGiu5abmChq1JzcJd5XjRZ5o8fZoTuRd6kQioQKL8bHzflBfyWgCAIWFhThw4ABaWlpw5513YmlpCXNzc5idncWNGzdUNGIJqHm/0iksuu90zM+s8LlOVVIJLdmeTqBwEElzRrmOY7EYLl++jKmpKZw+fRqVlZXYu3cvqqqq4Ha7tQGduGAA3qQt6ZWgmz/JyHVCiD/HLfK05uRel0jcund39OhRtLa24tChQzh16hQmJiYwNTWllCO5tpmuj45OqfAx0t9LS0vY2NjA97//fdy8eRO7d+/Gfffdh8LCQsO68B9u2OJzo3P7oufsdjuam5tV7IdnnnkGExMTKg5AKkVUN0Z+r3trawtPP/007rvvPhw7dgwVFRWGe1K8cDBFVzIKCgpQVlaGD3zgA3jllVfw0ksvwe/3myrJfA4povzQ0BC++MUv4hOf+AQqKiqQn5+vtVZzY8ru3bvx+OOP42tf+5qK5KtT/iiF1uXLl3HvvfeivLwcDofDwIu5cS0vL08FMtTlnKZ619fX0dPTA5fLhba2NkN9fE+Qp1RBQYE6GeL1JBIJQ1tcyaNnJMChPvP/6T2KEq/LrwwA8XgcCwsLpkG5qO2ysjIViFDHWxKJBILBIJaWlgwpcCTdZ2XdCkbW3t6O/fv3J9EB/1lfX4fP58PExATm5uYM+5ne4bRAJ0f33XcfOjo6lLyVMobkC/H+5eVlvPzyyxgcHDQYWlMpo1QPRfpuamrCiRMn4PF4DAZwapd+037jRkEKiri2toYf/vCH6Ovrw+zsrCFYWipZZMZbLBaLSqfV0NCAY8eOobq6WntlR96plYCf6pen6RJ405r19PSgp6cHMzMz8Pv9SQE/twOqMgV3/H/OU4kn1dfX4/DhwygvL0dRUREKCgqUcYLur+oCP/H9JQ8LZNtSXtFvaQDjcyE9HaXeyMvW1q2UZuFwGL29vfD7/QgEAggGg1hYWFBedxzgZAJouY5gNqeZgGezeTEDhOlKOvpIBTb5//yH6CI3NxdOpxNut1u58efn56OwsBBOpzPp8MBMf+Wf6ebabJ753OhiB+nq4UYqOU4y0qSaN4nFdHoYfcbjQAEwBMiUPIfa5feyJUbhe5/Pp84oalZ+oQE0kBpEp3p2O8DCTNk1q0N+xpk/uRFFIhG1aSggitPpRDQaRVlZGZxOp7rjxQNXkWurBPIcTOqEgu6HCE0y6FSKuhlTS7UOnEB522Zzl0o4U3ucUUimKPvClWKz+mT7sh3pysSBsmRavF6aU3Kldbvd2NzcxPLyMmZmZlSKjlAohOXlZYTDYQQCAa11nI+Fjzdd0QkN3VrxNuT7mbSVKUDifxMNkpK4vr6Oubk5LCwsYGJiAuXl5dja2kIwGER1dbW6CpGfn69VEqi/8ke2KeeB05KZkDb7nAubnJwcVFdXo6ysDHV1dYjH4yptF7nx071JM3rMhMfw5yRNkBAgA97AwAAikQhisRg8Ho+65ynv1ck6+QmcPJ3n/aNcyHQnfHR0FFarFUNDQwgEAqovUvk1ow/qN/194cIFOBwOdeeLAlHJueIgnyubFosF+/btw+LiIubm5nDmzBkV9Ez2g/9NymEgEMCFCxdw4sQJtb46KzUZg/Ly8lBXV4f9+/fjJz/5CRYWFpQrt2yL2pibm8Pk5CQ8Hg8cDoeaI1koZdbs7CwuXryYdKJD/djY2MDU1BT8fr8KTMnniZ6lu9WkjOjWZX193ZACSsfv5L7hc8nXgdzFdfw4kXjzvrUOMHKw6XA4UFFRoXWDJoDg9XrVlQIdrVFdRUVFKkUQr0MqWTSno6OjiEajpm7mtHfILZfussrCDb9UVlZWEAgEcPXqVczOzmrBv25OSMYUFRWhrq4Ou3fvRmNjo5praXiWY+Ofra2tqRzIly5dwvz8vMptrtMtqB9m/aL5oCjbzc3NaG9vx549e1SUe3qGv8uN7ltbxrSXZu3yPRCJROD1ejE+Po7u7m7cuHEDKysrWFtbSwo8JvmnmSzLVNfk+4FAT15eHpxOJzweD6qrq9Hc3Iz9+/erwG6xWEy9SwEbueFWyjP6LQ04fB7p+0zGk0rvkp+TDrOwsIBoNIqFhQX09PTA5/OpaNoUVFLSma7eTHWZdEXHM9LVfbv6DrWn0yF4vVLfINomb0WSaZSruby8HOXl5fB4PAYa4Ic28kfyWj4XmepuOr3I7NlM682kfs5/dN9RkYdwOh3ArJ+6ugH9tc5M9zjwSwCgt1u2u+jbfYYr4WbuAgCU8kaRCelEcnh4WN2jLigoUHmH6+rq0NbWBpfLhaKiInX3VgJT6g+BEW5dJhcaKtIVlW9I6TLECZC7UvPoqXKMXPBnZWUZXMn5SRdX7rj1x0xh1/Wfu8mm2wC6dZGW3M3NTUO6CHqOxiNT/PB6de2T6ywpEqQEtre34+6771YnLwMDA/jxj3+MYDCoUvBIdzUpiNKB4duhY1kkU5bt6phVpn3iSg/tG3JDDYVCmJ6eVkGDfuu3fgvNzc2orKzUXnegtlPdV+XtctqXlnzp5ks/ci2oXq7I0p34J598EsvLy5ifn8eXv/xlDAwMqLypcuypFBizuZR/09xyT4atrS0MDw/D5/Ohr68Pn/zkJ9HW1gaPx5MkvEjZ0wkTqcDxOaS4D/n5+fj93/99XL58Gd///vfxyiuvqLy1co5T0S2fj/n5efzkJz9BT08P/vzP/xxNTU1wOp1JVnKd8kRrW15ejgceeAANDQ0YHh7G/Py8UljlOlMhOoxGo5idncU3v/lNPPLII3jve9+rgAl/nveH7kx3dnait7cX8/Pz2vUlsLuysoJTp05ha2tL3fnm9RK/zM3Nxa5du+Dz+VBQUIC1tbWkeaPfU1NT8Hq9iMfjylhCz3LFoba2Fn6/Hz6fT7seq6urCIVCShnmvIB7PNGPGR1nZWUpw43OILO5uYmlpSVMT0+bnrhyoOh2uw2uqLxfq6uruHLlCmZmZgwAWtJzXl6euk9IuVHN9vza2hrOnj2Ls2fPGqLtSwWWZJ3T6URXV5c6PaI5oD5weUx7Y3p6GteuXcOlS5ewvLxsSEEp54H/UEyGjo4OHD9+HMePHzdEXeaeOzp5Rt+R90d3dzd+8pOfwOv1Goy5qe4J6hR5Dp6Liopw+PBhnDhxAlVVVUkBQWUqJc6Xua5DhZ8y8fY3N29FXx8YGMAPfvADTE9PKw8vWkudHM0EGKTTSSRwpnHl5OTA7Xbj8OHDeOCBB1BSUqJSoHJewsE2d2fnnhakf5AexfvNjQx8PeRvnSclFZpv7lnHn6X57enpUe7w0WjUcLeZ1ofq5vOt0yXkHMu+6WRFJuBfp5/Ld3V1Sh1F9z8vOrd9+i3pgXiY3W5HfX09Ojs7UVpaqg7M+KEL9XljY8NgTJHymevTUr/lvF5X5Li4nDYDs/Qdl03S01PncSr/l55zUt/Wtcvbl32TsonPB+e9kq5vt/z/HYCmIpm92WYxU/b536kUQVmnToGi77Oy3rx/kpWVhWg0ilAohKmpKVy/fh1vvPGGwVJVU1ODsrIy1NbWqvuN/H4agVMiFtoUXFBxocPT+ujGw4ExbWK6E0NCz2yTcncsPmdSKEt3QM5A6VkaF3+Wb2Ip5KWSQHXzeqVLE7mAbm1tGdzgJVjjjEFuUDlvtJnJ7ZfqLCgoQGFhoToJ6ezsRDQaxdLSEi5evIjR0VGV8oGfOEkgx9s2EzipmFGm4O12ik4o8s95+/xaAQnklZUVRCIRPP3003A6nSra8Y4dO9TdIACGNdMxYLn+nDak8s+BFY9EKhVsulpBIJIzbLvdjsLCQhQXF+N3f/d34fP5MDIygi996UtYWlpKSntlptTdzjzTGMgIQ7nK//7v/x7t7e3YuXMnnnrqKdhsNqWw8f1A/6fbV9wVl+717d27Fx6PB83NzTh16hR6enqwvLyc5IUi+0xrTnuLFHq6V/1Xf/VX+NVf/VXs378fLS0tBr7CwQ+nf+JrTqcT7e3t+C//5b/g61//Oi5duoRIJKL6oDOM0O/l5WV0d3ejoaEBwWAQpaWlih9J1zLgVjott9uN3/qt38IXvvAFXLhwAZFIxEBDXHGgnOk2mw0PP/wwSktLDS70nEaLiopQU1ODrq4uXLx40fR0m4xyU1NTKCoqUnNCvI2CH7a1tamUPjyOBxUC+HSqxIEZ9UkaY4n2+LpaLBbYbDbFT/l31GfyzJEnhNRGdnY23G63ukstTxCIj29ubuLatWuYnZ3Vgj66R2iz2fCud70LDQ0Nai24TCZetLq6iqtXr6q7+bpAeTR2fl/9Qx/6kPIooDnRKf6bm5vw+Xw4ffo0XnnllaS7xpwWdeC0uLgYjY2N+PVf/3VUVVUhLy8v6U447x//jPY20cuXv/xljI2NYX5+XqUSMwMosnCQQG3ZbDYcPHgQu3fvxt69e1Pmd+ayUhpR5FoTzRM9b25uYmFhAefPn8f169cxOjqKQCCAeDxuMEToQCFfQznfco11f1O/6HMeaLKmpgZHjhxBc3Mz6urqUFxcbDAgkZyh9FUAlMGF6pKGA3kaKdeIy1IJaNKBUeoTFR5Xobe3F8PDw5iamlKZZ+hEP5WLtk6uZaKnmIEkM/3851HS6U06AwrfA9yA5Ha70d7eDqfTqbK2FBYWqkMVXji45LyNe41yuQDodT8un3Tyl9OgHBP/ju8bbiyl+s2Ma2YHFPSdLqYUnwNdXdQXbjSQdLa1des6DHl4cI8fWS939d4OPf3SAGjdhsvkefo7nYWJFx1I0n2+naIjagKo8XgcKysrCIfDyMnJQV5enrpn4nQ6MTExgeLiYmXNzM6+lXfSZrOhrKxMBR6genWbTHfKyZkAH7sUQPSOzuJoNkZ5am5m6ZJt8/5K5sXnTQoA3TM6axdnfvw0h681X2fZ90zoiIQiZ2r0f15enjpZWllZQVZWFmpraw33iZaXlxEIBDAzM5MU0ZvPXyohpZvrdHtHt5464WK2nmZrbFYnpzVKMTI7O4tgMKjyRs/OzqKsrAxWqxWVlZUoKSlBaWkpCgoKDCDcrJ10wlH3mRQqXHjxO46cznJyclBVVYWioiIUFxerXOGBQEDlxOTeBpI/8f6kmjveT7n+pHhNTEwgHo8jFAohPz8fVVVV8Hg86OjoMD25B5JTU5jNUU5ODhwOB3JycnDHHXfAarXC4/HgZz/7mempmo6GSOCR4rC8vIzh4WGcOnUKy8vLKp1HXl6ewXrNeQxfL1Jidu3ahXvuuQc2mw2nTp1CJBIxAEe5j8gIsbi4iOvXr+OFF17AO9/5ThQUFJgKZIvl1ulmU1MTDhw4oIII6lL/EN0sLS1hcnISp0+fxokTJ1TkZKIx+l1QUIDKykocPnwYfX19Whdl6rPf78f169fR3t5uiADN56eyslKd6OsAPgVBpLuMnMfyvcoNiDraoL5zAC55Orkwyz1A60gn5qWlpVpZlki8GTU8GAyqCMtybUhGVlZWoqamBjabDYARcFCbdOJ24cIF+Hw+dZIp6+Snh7t378b+/ftRUVGR0lMikbhlrFpdXcXp06dVgEmZ2kfXlsXyZoqs+vp6dHV1obq6Gna7PUkGS3rj7W9ubmJychJerxejo6O4efOmysOdzjNGB4KJ3xUXF6O8vBytra3YsWMHGhsbDWl2eOH0pKMhs/4TnQeDQUxPT2N0dBT9/f2YmJjA/Px8Un5hOf+ZFDOaljoDB81NTU1wuVxwOp0oKytDR0cHysvLUVJSknRvm97ngaG4UTKd/JZzJtecz5usS+py9A7pH3SnmXTQ0dFRzMzMqL3Fr9pkog9L/SnVnKeSD2ZjNZPn6drUyUsz+c+L9Nwk/by4uFjda6crRxTziPYoXUPjdWTSb94ekGyUMxtfKl1H1wYVrgfLwnVo3Xe8bV44EE9XuJ6Vjn5l+5L30vu6k3o6nNsOf/ilAdBvtZgprNuZTJ2gM/uO168DIhzAWSxvXmynDRcKhTAzM6OIk06QyIpZU1ODqqoqdHR0qEirFISATqp5knUCKfx/Egg6IudzRAKKu1qlA9B8fqgtakfnvseVNHpGnqRLxiL7Sf/TaSFZv3TvcobDXQTlXEihz9vjbmhUdCc13KpmsVhgtVphtVpRXFyMiooKFYiO3El9Ph/6+/vxyiuvIBKJIB6Pm6bGSgWmt6tIbKeYgWYzRp9OyNJ80mnY0tIS/H6/SgHicDhw1113YceOHdi3b5/hRFV3EiaBCQAtAOD94OvE3VkJENBpOaXB4fWQ+ypdy6irq0MkEsHg4CCef/55XLlyRbkZ8oi7kg/o5sYMjPD/ic63tm7dDVxZWcHU1BSuXbuGzs5O7N27F6WlpSpfvTQu6U6faX6kMOIuiJSe5s4778Tw8DCmp6dVfuJ0LlSchglQLC4u4qWXXsLY2BhKS0tx7NgxdaWFK3PEE/keo6B+tbW1ePe73422tjaVeozaMAPywC0Af/HiRczNzeHAgQOoqqpSgR5lIYW6vLwc9957L+x2O/r6+hCNRtX6yDYoPdK3v/1tHDp0CIWFhYarHzTXBQUFqK+vxwMPPIDvfOc7KriTnLe1tTVMT0/j3LlzeOyxx9S1H05PFosFVVVVKC0tTQrIxWknHo+rdggoEo3wz8z2N/Wdn0BL3rCxsYHl5WX4/X7tniWFaOfOnaisrDTsYaJRArvT09MIhUIGEMjry8nJUbnMXS6X8giSAWRycnIQj8fh9/vx+uuvK68RnUJLNGa323H//fdjz5496m45Fe6FRHNLLvLPPvusOvXVAVeu/JEcp6wFe/bsweHDh00VZS5rSQYS3dHp+rVr13Dt2jVD5oBUCqqufuqb3W5XcQDIGESgkJ6Vyi0PLMd5D8/oweXt1tabOdsHBwdx5swZXL58WXlLmAU8ux0QYQacacwUMI68je677z60traiurraoKdwLx8Ahr3Do5BLjx/J9zkd8f3IactsTJIWuKcCn1Ov14uLFy+iv79fGT5lQDBZf6agl8uu7egkcu4zActm65iuDV2R+h/RJ62dzWaDw+FAfX09WlpaVH5mTgNmbXC6SMVHdYCU68eSbuRz8m+p13I8oqMn2Z9U3+n6yb83A+XEz/n+lfoN/5z3l+omDyv5Pjd6SwN4uvHK8pYA9N/8zd/gP//n/4w//MM/xD/90z8BuDVBn/nMZ/D0009jcXERR44cwT//8z+js7NTvbe6uoo/+qM/wje+8Q3EYjHcf//9+J//83+ipqbmrXTnbS9yk3MCN2MA8v1UBCaZomQkOmZutsnoBCUrKwtLS0uYn59Hb28vXnvtNXXXprCwENXV1aiurkZNTQ2am5tVVFRy4eaKCu+HBPrEsDnYlREj+QbkG5RHHOUgRrpRWyxv3sWm97h7OvCmu6+8D0t9lwJLzqXObV2CAgmwOT3orFhS4eNrrBNmtNn5/HJmSN9TeqyKigrs3LkTDz74IEKhEAKBAE6ePInh4WGDZdjMpYoXHU1n8mymRY7JTLEze1f3GT9ZJkAdDofx4x//GC+//DIcDgceeeQR7NmzB21tbYYor0DyPUTqh+wnP9GUp8ySnklhk5GF+Xsy2JjNZkNJSQl27twJr9eLs2fP4tSpUxgYGFD1cauoGR1lMvf0P9EUGbw2Nzdx5coVDA4O4tVXX8Vv/uZvoqurC+3t7UnCSDcuDuw4aOdCubi4GO3t7fjc5z6Hr371q7h8+TL6+/sVENEpYnwMtE6cngcHB/HZz34Wfr8f+/btQ1dXV5LFm4NibuXPy8uDy+XC3r178bd/+7f48z//cwwMDGBhYUG9p1M8KHDO9PQ0/uIv/gIf/vCHcfz4cYOLGOcNBFbr6uqwtraGo0eP4ty5c4aAXHw9CfyNjo6it7dXvcvT69Ec5+fno7S0FC0tLcozg9dJxqaFhQXcvHkT0WjU4InElX4K/maz2VRqEF4P1RUOh1FaWgqr1WrYE3zO+XikspZIJFQgTJIf8v21tTVEIhED35IAtaOjwxCNnZ+EU6AvunsvjbG8nvb2djz55JMoLCxUYyV3YJqjra0tXLt2TblVm0XEJllSXFyMd77znejo6IDb7U5SuOWcrK2tKSMagWedsYr3nQxUTqcT9957Lx599FFUV1cnXTUiuc73PRXyWojFYjh//jxOnjyJ0dFRBZ4lyKH2pe7B9znRVF5eHj74wQ8qAEluydQPLhMlX6Z2OZgmvsp5FgCEw2H09/fj+9//vrrixHM6m9HidosEYJzW6SpAUVER7r77brS2tqKtrQ0Oh0MZESUd09/ycEJniKSiAx5cD9Ppjvw5yT9kLnbygPH5fPje976n8mPHYjEDaNbNaSqgTP3V8QL+f6Y6tJSDZiWT9U4FtOUzkt7pN7llUwpLu92uPJPIYKm71shBoq49PlbO/2RfdPPKP+eGcP4d0QI/FJDzxuugtSdDtfT4IlrkvJNfGeXjk2vKr2wByXenzfaw7LNuzbmnpzxUkP29nXLbAPrixYt4+umnsXv3bsPnn/3sZ/EP//AP+NKXvoS2tjb85V/+JU6cOIHBwUF1F+iTn/wkfvSjH+GZZ55BaWkpPv3pT+Pxxx/H5cuX04ZPNytS8UmlmN9u0S1UunbSPasj2Ez7IRk78CaR0N3B1dVVtYlzc3NVQJyhoSFcu3YNNpsNNpsNTqcTVVVVKtotuZdIECYJmROhmeDilh/+N21iHXiVRSpcfB648srrIIHLQbRkGGZzqquPnjMT+qnWRzIcySj53zrGzo0TiURCBTijFAf5+fk4cOAAwuEwFhYWMDIyAp/Pp4Il8dMEXi9XPrcjUFJ9lo7RZVJkH+S8SaGwtbWlIlzHYjGcPn0ao6Oj8Hg8qK+vR2trK8rKygwKfCZ9kMzXYrGou5dSwEkQzk8RuGcGPzWgfUmn1lVVVRgeHlb3LSmlj5lVNB3d6RQvSbN0YrO2toaf/OQnmJmZweLiIvbs2YP8/HxD7mheLxfkco/Q76ysWy7YeXl58Hg8eOihh1BfX4+KigqcP39eRTPmpyBm46N12NjYUKmVfvazn2FxcRGrq6vYt2+fwQWdrw+9y/tltVpRXV2Nxx57DCUlJXjppZe0rtz8XTqNHR4exoULF1BQUIA777zTMMeSHxQUFKCiogIPP/wwRkdHDenqJH2tr69jeXkZJ0+eVG7/8s4xKcBWqxX79+9HOByGz+dLMpYlEgl1d9Hn8xkir/O5oSwQLpcLXq83CSjReCKRiMoVrZM9ur8leOCpeeTakpeNWdRsDhw56OXru7GxgaWlJYyOjqr4AnLusrOzUVJSgvLyclRUVBjoV8bjoKBmQ0NDhngFvD5aD5vNBo/HgyNHjqCkpETtB5lKkurY2NjA8PAw+vv7Vf18r8t+c/5Dqare8Y53GNL7cWDH/5c8mrIdjI+P47XXXlNpqsw8mHSFG6VIFrndbhw4cABtbW3q+pgOhPAiwRiNkf7nJ6tkxOrt7cXExATGxsYwMzOD5eVldReX15lO5pjpZ7KPkscTLbrdbnWdoq6uDi6XC8XFxcrDjYMLrvtQ0dFTqn5KAK8rki/T+3wvk+dDOBzG3NwcBgcHsbS0pIJ2xuNxdW1KBipLBbbS6bi6fZ9J4X3X6QFmhQPIVHWn4mG03nTto7y8XKWbstlssFqtcDgccLvd6i6zPDTienKqYF46fcdM9kovFa5/yDr4u/SszpAl11ZHs2a6k+5EFzBeodT1KZO1lGOjfuj2OeehdC2C9qBZOxxIbweD3haAjkaj+MAHPoAvfOEL+Mu//Ev1eSKRwD/90z/hT//0T/Ge97wHAPDlL38ZFRUV+PrXv46Pf/zjWFpawhe/+EV85StfwQMPPAAA+OpXv4ra2lq8/PLLeOihh26nS4bydoLnTDZ7pkwhFZPJ9BkzpsU3G2AE0pwJRKNRzM/PIysrS7kc0V2wcDgMt9uNsrIy2O12RUwFBQXq9EIqo9JlWyqdOmYv+82LZPryOwnYzQCxfFbWLYusI1Omvx1ak4JNJ9xSvceFcCKRUJ4FDocDpaWlysUqEAjA6XRicnIS4+Pjypocj8dVUBgOAHmRwOh2hR2vz+wZHTM1K2ZMT84jCf2BgQGMjY3BZrOhvb0d8XgcDQ0NKCsrg8vlUveSdIJJKhv0Hbc8y37zz+R4pPGH6JJfkSAPg7q6OjQ3N6vTwZs3b6p8zhJkSuEqldB0c8l/k3J6+fJlRKNRbG1twel0qhylpBjoBDqNSVc/ny+Hw6HuhWZlZcHn82F2dhaLi4sGYCH3oVyjra0tQ1Cb9fV15ZrtcrkUuJJj5m2Qkl5cXIyjR48iFovhwoULWFhYMKVZen9jYwN+v18F/erq6lJ38oHk4Fk5OTlwuVw4cOAAampqsLS0pNx0Zf1kHLh27RoaGxtx5MgRQwRtqpMU+B07dmBgYAB5eXlJLuikKMfjcczMzCja14FxUgA5KOJlc3PTcFdc7g+qS6eMcvlDpzJybROJW6exHATR+1RIFvH7g7Qm9DeBAp/PlzQf1I/s7GxUVFQYcm7rXPkSiQRmZ2cxPT0Nv9+fdDLLx0Yu4fX19WhrazMY6bixmPbwxsYGYrEYhoaGMDg4CK/XmxQ4Ta43/bbZbGhoaEBXVxd27NiRZNzNZO+HQiGMjIygp6cHvb29Bq+ldEWCSVqX8vJyNDU14ejRo/B4PIYYAVIRlzqD3HPco4X0mFgshuXlZczOzuL8+fMquCZdLZCAYjvATQIJ3d/Ex3Nzc1Ug14aGBjQ1NeGee+4xGEV1QEgHbDkNyzZ50dGDzmCmWyMOuEg+xuNxlTKTjIGU6jAWiyWtjQRlujbp/1Q6Fv/7dnSLTEuqPaDTb8x4FslluirmdDrR1NSEiooKVFdXKxqnZwG9zAKMNK2bRzN9LNXYzGS+bg/I53R0qGvHDPDq+pkJ78mkmPVftkW8QfaN7ycdT8uEF2RSbgtA/97v/R4ee+wxPPDAAwYAPTY2Bq/XiwcffFB9lp+fj7vvvhtnzpzBxz/+cVy+fBnr6+uGZ6qqqrBr1y6cOXNGC6ApgAkV6WZGZTsDT1XMNlaqNsxAX7rveHmrDIUTjRnR800Tj8cRiUQwPz+PiYkJXL58Wd2NplPpkpISNDc3Y+fOnSr6KSdSzgx09zz42PnzVMhax4E/B/30Lndllu5HQLICT/Xp+kTfcVdcbs0yA5dSceDt0ns0Rq6IcoHH2+LrJsEZ1Set2NLtkeqhFEJ2ux0lJSWora1VLs4DAwPo7e3F0NAQhoaGlHWZBGoqRSaTsh1mdLs0nkqxkEKEaIjoOxgMoru7G3a7HRUVFXjiiSfQ2tqKuro6Q/RLHXCTdCtpk/pGcQV4WVtbU/TNXaC4dwQVAhYFBQVwOByoq6uD1+vFiy++qNw76YSICwVJS2ZCUM4Z/5t7JywtLeHatWsqWNcTTzyBo0ePqrkiGuSnonyOpCLBXeQpIm9LS4vKg/rSSy/hxz/+MRYXF7V5Q+Va0Njpu3A4jJ6eHoyPj2NzcxP3338/urq6DOPWGR74/mxsbMT+/ftx77334qc//akCE/IdPp6VlRVcuXIFi4uL2LVrF/bv36/SkOh4B+XKfte73gWn04nnnnsuyfuGn3LPzs5icHAQvb29uOuuuwzurNyNtaWlBbW1tSgqKlJpufh8EVA7ffo0ysvLUVNTk6Ro5efno7KyEu3t7Th37pxhDfjJn9frRTQaNewD3m9aY664Uxv0N+fdxNPo/3A4rFyIef+I51OgQApEJkHK1tYW5ubm4PP5ktzAqX8k3+677z7s2rUrqa/kKpxI3Ipi/t3vfhf9/f2GaNS8cCX7nnvuwf3336+8Nnjd/D3yMhgbG8NLL72E8fHxpNNfXj/fV/n5+ejs7MSDDz6IAwcOGLxDaG8QbctTIAKZ6+vreO6559DT06PctnVty3ECxlNnGTTr3e9+Nzo6OlBUVJRkbOPvcbBA6XmkbOP0lZ2djVgshhs3bqCnp0e555OxRUYbTwdG5bjMwIGU9zT/lZWVaG5uxlNPPaW8IXJzcw1XY3g90huA+srlPQcCkudInYi7bXOdg97hMoGfHm9sbGBxcRFzc3N47bXXMDY2prxKdF4xOhCTij4ykT30uZmhRveOmT6Zqg3eX/6+rFfWzemaYqt0dXWhtrYWZWVlaq253sjrkTwdgMEDUpexgQNsHptA8g4zXZIX6WHIY17Q87p14nVyvszpiI9F0rLub/6/nGv6LhU98T2hq5vXwevnOpaUUdL7g+ME4pEyDkaqsm0A/cwzz+DKlSu4ePFi0nderxcAUFFRYfi8oqICExMT6pm8vDyUlJQkPUPvy/I3f/M3+MxnPmPaJylwzL7PhKHK+jL5Tsc8Mm3D7F0zQuRt6r6T9XFlSvceZ8wkzMjSu7i4iJmZGYyPj+Py5csoLCxEYWEhKioq4Ha7lRXOarVqAw/JDcIJnYMIKQB0RTI6Pi6zTSqBKD8J0M2VTiEjpUv2QSqHcqzUJj/R4N/JKNy8Lj4HOoHGv9MxpqysLBWFenNzE+3t7aisrMTRo0cRjUbh9/sxOzuL69evY3x8XKX50IFpKbB4yYTm09F5uvfSPaNTSuhvDjYJSEQiETzzzDPKBeuRRx5BbW2tystJyg5fI0ljJGDMaJUzZSA5KAYHGrzf1E5ubq4KCPjYY49h165dGBkZwbVr13DhwgVlAJFAh9rifdCBOV50p/jEF0ZGRvDtb38b58+fx/33348777wTbrfbcNpJ/aWSTsmhfWiz2bBjxw5YrVa0trbiy1/+sgI+lNs41dwCb6ZXofG/+OKLCIVCGB8fxxNPPGHaD67Q5uTkoLCwEO3t7fjABz6g0ozRiSCfEz5nm5ubKhDbF7/4RdhsNnR0dKjo4/L+FxkdDh48iHA4jGvXrmFiYiIpmBrNfSwWw/Xr15GXl4f9+/erkw5aL6q3uLgYzc3N2LdvH15++eUkF9ytrVtBgYaGhhAMBrX393Nzc1W05JycnKT5pz75/X6VtoYDTW4M0rn3cQDF74Vyut3c3FRpcXSKVVbWrfuGFCme10n1bGxsoLe3Fzdv3tTeU6axWq1WdHR0oKqqCoAxzy5fW6/Xi5GREQQCgaTo6XxN8/PzceTIEXU3W84d7+PW1q2rJlNTU/jqV7+KmZkZde9Z587LlUI6AXvqqadQW1urlGMdwOD8hLc9OjqKc+fO4ezZswgGg6ptnQxLtY7kwVZXV4fW1lbcd999qKyshN1uT4ogzQEffQYkR/flLqBEE7QWX/nKVzA1NaVokGcs0Hmu6P5PV3SAiow3DocDtbW1eMc73oGKigq4XC6Ul5cb7rnS/Ek9iPeH6xIkE3TrLgs3lMgrOJRGka4gEG8mnS4ajSIYDOKVV17BwsICIpEI/H6/uj5DNK9b/1RyP5X8S6WH07tmwCuVvErVPx1Aln9zoEz/k1dBcXExnE4nGhoaUFFRAavVivz8fHWlkeScmQeNLpgi1U/zK3m9Tu+ldziQ42uvA6Cp1kSnJ/O50M2jXB95yCD1IS4LgOQ0dFzP0NEBjY2Pi+9rqSPJceqMZnwfJhIJlXJX56LN+59K/5BlWwB6amoKf/iHf4gXX3wxKbokL3Jw6ZS4dM/8yZ/8CT71qU+p/8PhMGpra03rSdcX3edvpaQTOqme3y6TN2tfKuP0d6r6pashJ3JKn5WVlYVIJIJAIKCs936/H6WlpSgvL0cgEFD57AoKClBSUqKAtmQkctx8o0jC55tbjlU3NjNmtLm5adgwOgbMQREFzrBYLMraKOtMNb+652S78hkdYOXzZUarUlmVjJGYeVFREex2u1IyFxYWUFlZCavVirKyMkSjUUQiEUxOTiowLe89yTmTfdxO0a2TrDfTIt+RDJs+o7Gvr69jdHRUuYK63W74fD6UlZXB4/HA7XYrsKJbl+32SQe0idZ0AJr6TVbu6upqFBcXq31lsVgwPT2NQCCAhYUFpUDq6EvHZ3R0JcEhlXA4jNHRUSwuLsJqtSI7OxvNzc1obGw0pFgiYwPVxU9gdAKTFFO6J1pYWIiBgQH09/djZmYmKSBWKiWOn9pMTU2hsLAQW1tb6OjoQH19vZozMzolEFRSUoLW1lZ1nzkWi2FxcTFJOee/STkdGBjA1atXkZubi927dyulmoNK+ikrK0NjYyN2794Nr9ebdOrD6w4GgxgeHobf74fb7TYE76L5zcvLQ1VVFdra2vD6668nuQHTegSDQRWxXxfp2GazobS01GDY4f3Z2tpSUa153bxwYK8rZLDg68FlwNLSkjrhljSTlXXrzjp5Quj6t7W1hampKczNzZl6HVAgTbrGIfcA78uNGzewsLBgGsmbFG+73Y7du3ejqqrK4LbM+0frsL6+jpmZGdy4cQNDQ0OGfM+6+aKf3NxclJWVobW1FY2NjYYrA/IdwHjfn0DV+Pg4bty4gd7eXvh8PmWI43zOrD7eFzp1bmlpQVtbG9rb29HU1KS8eWS/zHig5DvS4BwKhZQRv7e3FwsLC4jFYoa77WYyircjx6ErfHz0k5OTA6fTicrKSrjdbtTW1qKzsxNOpxNWq9WgG3DDgll/dG2bncTKOZI6gzSUcbm3traGeDyugDMFlb1+/brK9EAnzvL9dPNo9lk6PeCt6rlm73MAJv/XAUWuFxUUFMBms6G4uFj9Li4uRm1tLcrLyxVo5gY/M1kJQKvvyvUzu+ajG5fZ2FPJs1SyXdaRrl2z9+Vnkjfqnuc6TqZ9MatH1w+zE3ldezwwKx0cra2tqSCR5MmVSdkWgL58+TL8fj8OHDhg6MzJkyfx+c9/HoODgwBunTJXVlaqZ/x+v7LMejwerK2tYXFx0XAK7ff7cfToUW27dP/gdsp2ld9UhJcODL+VoiOuTECUrkhi5XOg29SyHcl46G4t/b+wsGBwc6HcxaWlpThw4ABqa2tRWVmJ4uJiJVDl6QlX/Dlw539LixSQnNOZ6qbTc16PjpmY/U2/Kb+y1WpFfX29Sm8iXaf5XMvTbd5/qlt3Os/7rhOknOnqmAw/LZV0zl3DEok3g45tbm7CZrOhpqYGe/bsUUBhdnYWX//61+H1etUpoO6EU0dD8m9JS9vdI9vds/JdXogW5Gn06uoqotEovvvd78Jms8HlcuHYsWM4evQoKisr4XA4DHVxl1G+FtzyKZU0Kch5nzjY4EojfycrK0t56zgcDrS0tOD48eN4/fXXce7cOVy8eFEpwfx93sbtzD3vD52GPv/88+jr68P+/fvxoQ99CE1NTUlpjwj4AVAnN7qx014iAJOfn4/f/u3fxssvv4xz584hEAgkBWzSrSufu0TiVpCr/v5++Hw+WCwWfPjDH0ZzczPy8/MN1nwyqnFwYrFY4HQ68f73vx/5+fmIRCJJ6bakwCbwsbi4qCLXtre3q/ooYin9v7m5iYKCAuzYsQO/+qu/inPnziXd+eVgKxKJYG5uDn19fdi7d6/hbjcHMg0NDVhbW0NeXp5SjOV6RiIRLC4uYnFxUeU8pu8SiYQyfhK/1ilSBGDkGgDJ+VB1tMfTB/J5pH74/X6EQiHtnTYyBNL9YtrLVAeBxLGxMczOzmrvP2dlZaG4uBgHDx5MSqvE+dzGxgamp6fx/PPPY2lpyUADvD/Z2dmwWq2oqKjAvffei6KiIsP45XpSxoDTp0/j7Nmzis/q9i3vc05OjgLp73znO+FwOLRXBUim8BNFuvMai8Xwk5/8BIODg5ienjZEqzYDz3zueF/y8/NRVFSEd7/73aivr0dZWZlhr8sMHjISLj81lu1wN8r+/n709vaq03IuJ3XgkdeTKd/j/IjWla9tW1sbHnzwQdTV1cFqtaKgoEC7R6S+IuU9d1EnBV63x/hn0juIP8fngMZLBhryMuvv78f58+eV4YvW3Ax8Z1oymd/b0VvN9NF0z6c6SKDvuMwlvllZWYnW1la0t7crGuaGEL5mvD9yDnn9vH2eela6ZtMY5T6Q1wrlQYAOQHJeyOeAnwJLXmhWp65wes3KylInubp+UJH9TuWxx/mLfE/XDv+b+q8zTADGOczLy1PvcdBMB4RjY2PqAC3Tsi0Aff/996O3t9fw2Uc+8hF0dHTgP/7H/4impiZ4PB689NJL2LdvH4Bb9wBff/11/Lf/9t8AAAcOHEBubi5eeukl/Mqv/AoAKCXhs5/97Ha6k1G5XUVcV8yUuHTvZPrcW/1eCtN075t9plN6uQLBN1E8Hlef+Xw+TE5OKoMH5UQsKSlBW1sbampq4HQ6VYJ52V++KcgiTRtAWpjkqRd9xoUK8OYda6nYkDIg3RBnZ2fR19eHAwcOqMjEFHVZzpEOMEkXNJ1Q2NraUtZrGoeOaUgwpSsSdMl+SAHMA2eRILHb7fB4PGhubkYsFsPS0hL6+/tx8eJF+Hw+BAIBlcqCM30z5qszfPAimXm6YgbWzeqUbXNlhp90kHK5vLyMhYUF+Hw+/OxnP4PL5UJ9fT0ef/xxFURLpv/h/ed9IZrSMXJ6lwSbFKZyzWjdyTiUl5eH/Px8PProo7jrrrswMzODH/3oR7hx44a6A6w7kc5EQZLPE01RfZReyefzobu7G48++igOHjyIvXv3qvt/dCJHAIjTJk9/wQUq7YPS0lI8+uij2LlzJzY2NnD16lVDzt1UY6K5JoCysbGBF154AeFwGHfeeSd+7dd+zaAccQDN+5eXl4fS0lI88cQT6OjowP/z//w/8Pl86pRQtk3trq6uYnJyEqdOnYLNZsOHP/xhBXLoeWqDTrWamppw4sQJnD17Fjdv3jQoWzReMjQ/88wzKCoqQmVlZRLPy8rKgsPhQHl5OZqbmzE8PIylpSXDHqW6BgcH4fF40NDQYBjP1taWumPsdDpVLnLOj+kUm+7L8pNGi8VicCOV+554LXd3pT3I99L09DTm5+e1cpZOequrqw3tUt9isRhmZ2cRCoW0ID8rK0vdX3344Ydhs9m0CvDW1i0354GBAYyPjytDouyPxWJBQUEB9uzZg3e/+92w2WwGgMQL9XF5eRnf+973cPHiRUxPTyelB+LP096ncX/wgx/Ejh070NjYaJhXPkZaS84HVlZWMDExgW9+85sYHh5WgaLSgWedcSQnJwf19fXo7OzEiRMnUFtbq65u8TFw+Ub0R+3x6NTUVyqbm5tYWFjA5OQkfvzjH2N6ehrhcFgFr+NGDqo7HW+TIJcXbvQhmqT9uXfvXnR2dmLPnj0oKipCXl6eoQ5aU07zvB0+H8T7eVtSXpMskLoL1cuBFckwbiAJh8OYn5/Hq6++irm5OYRCIaysrCAajSp64EYl3h71gUo6GWsmvzMBvWbrJXUpHUjXrSWXVTqDBvF1q9WKhoYGNDc3o7S0VHl00QmzNPZKfRFIToOk6xMHdPwqg5RhnC/xOCGpgKCufxKES11R0hmfM9lv3n/+fCoPTjkHuu90a0NFN6e6OnXj4H0y8+Qg3SUajaqI8+FwWGUeIZ2E5zjfjkFpWwDa4XBg165dhs/I9Ys+/+QnP4m//uu/RmtrK1pbmAwY2gABAABJREFUW/HXf/3XsFqteP/73w/g1p2tj370o/j0pz+N0tJSuFwu/NEf/RG6urpUVO63UtIp5Om+387kZVoyBdH/N4qO+ekIUsc85QYDkq2k6+vrCijk5eUhEAigsLAQwWAQLpdLhf0vLCxU9zydTqdyo6Ho31Skm5HZhqO+UDEDnHxs0oq4tbUFt9uN1tZW5YKps+zxOvhvKUhlkcBSx3xlW1SvjrHyOuQzZi4tgFEw0/85OTkoKCjAxsaGcmN2u91YXFxEOBxWAbkWFxdVUB26h6tTaFKB3p/HHuNFJxz4d9wYRP9LME05gZ1Opzr9raurQ2lpqToJ1AkYXV+k4mSmtJgpDBKwFxcXw2q1wm63Ix6PY8eOHZiamkJPTw98Pp8KyCX3zO0qOHyfkOX21KlTmJubw9DQEO655x5UVFQYAgxyAc/rpbnf3NxUigvRLkX6f+c734nW1lbcvHkTly5dQjgc1kbZ1a0pfb+wsIDe3l5sbm6qHK12uz0p8jofH801uXO/733vwxtvvIHR0VHMzc0ZPBl4u3RPc25uDmfPnlW5YOvq6hS45PuTUh7dcccdmJ2dxdTUFFZWVpJ40ebmrVSEExMTCAQCiEajhlNOqis/Px8ulwtHjx5FKBRSQTb53FN+ZMoxLnkPBbCrqalBJBJR/eFjpcBNtHa8SD4l9x0HKZxn0Zg3NzexuLiY5MJN9cr0inytNzc3EQ6H0d3djUgkYpAZnIfW1NSgqakJLpfL4MbO53NrawtXr15FT0+PyiOtG2d2djb27t2LPXv2oK6uLokH8LGT2zaljvT7/aZu4XzPU9DDI0eOoLOzE+Xl5Unu67JNPieRSETlXB8dHVUGKbN9JPtBP2RcaW5uxp49e9DU1ITKykq1Fjq3yY2NDQMPkICZ71ky2l67dg3BYBDz8/MYHh5W9+254U0nY9IVnQLP6TU3NxdVVVUqpktRURHq6+tRXV2tUoRZLKlz9gJG+S71AwK9EgjoAJDZ+PjaLi8vIxgMqgjx0WgUS0tLKh0VT0PF503+8LplyWR+dXqMrkj5kwkQ09VrBsa4zllUVKTuqFPAQboCQaksbTZb0nUVPu9y3dIZD+RnkodxkJxKJ9Lpm3IO+bsWi97bko9DB6B1bUs9WzcmM/1TziH/XJ7i68ZJn+n6IPkIf557XVAKUzKiUx2UfWZlZUXtDelhSftK9jNdue080Gblj//4jxGLxfCJT3wCi4uLOHLkCF588UWVAxoA/vEf/xE5OTn4lV/5FcRiMdx///340pe+tK38W5mWTJTG2ynbrS+TRdEp+29HG2Z9TbUBdM+ZzSXfYPzUNRaLIRwOw2KxYHJyUjE5SgNRUFCAoqIiNDc3o6amBuXl5aiqqlJ3Tyg3Lj+J1m1GXeEbVFoCdYwHuKXUV1VVwe12w+v1qjYlw9IxMTMmRc8kEokkl13dPMt6uSuRjjY4OJN16b6TQYQIEHCXfKvViqKiIuzYsUMp8fF4HF6vFxMTE1heXlYW7tXVVRWIhoOc7dCc2XN8fJmWdIoArTvwpvWX5oC7dgeDQUxNTamI9MePH8cdd9yB5uZmQ8AxDgp0xgpOs3SXSgohek72ma8fPUd7iIJf3XfffYjH41hYWMA3v/lN3LhxAyMjIwiFQuouu5yDdIqMfI7/JoF18eJFXL9+HW63G0VFRdi7dy+qqqrUXWm+L7jirLOWE0+gSPKPP/44Dh48iAsXLiAQCGBkZASxWCwp4Jaub7RPVlZWMDo6qk6wmpqaUFNTo4J8SXrg+7ywsBCVlZV4//vfr2iD7sLq9vnm5q2cqvPz81hZWUFVVRWysrLUiTG1QfNtsdw6vTx8+DCuXbuG3t7eJEBFdLK+vo5gMAiv14tAIKDSLvH5I5fae++9FxcvXsTExIRBGaH5n5qagsPhQDweN6SBotOSgoICNDQ0YHp6GsFgUPWDKyLSpV32hXg2fSbXmgNoap/Gubi4iEgkkgSes7Ky4HK51L7j/SKwtrS0hPPnzytji9zzWVlZaG5uRltbm7o/rFMwt7a2cOXKFfT29mJ1dTVJaePjPHLkCHbv3q3Sf1GRNLqysoKRkRGcPHkSN27cQCwWMwAbqpfz/Ly8PJSVlWHHjh14z3veA6fTqVX4pUyi+VhdXcXMzAxOnjyJa9euqYBRqQCoBCkELm02G8rLy3HnnXfi8OHDKCkpSTqxk4HhiO9x11XaK7z9eDwOv9+PqakpPPvss1haWkIsFjPsB05vfOypSjowRieTPNLyjh07sHv3bthsNnWfm+eR1V0tkG1wPUUHjrickN4Hcu/zehOJhMqRTt4Wo6OjuHbtGoaGhpTXiM7QmGrNdZ+lkwuSBjkd6gCp7l3OC83aMNMB5F4hXZFotb6+Hg0NDWhvb4fdblfv6Ix3VI8EU9y4ZwY4JRiWcyLlLO8316nNeIzZYZHkW3Lfyj6mWg/dd1xeSy+XVAc4UlfW6Zn0NwfHsn3pdk7rxr0oSGaQ19n8/DyWlpawuLiIYDCI1dXVbWWakePPtLxlAP3aa68Z/rdYLPizP/sz/Nmf/ZnpOwUFBfjc5z6Hz33uc2+1+ZRluwA0k5KJMm9GtKnAqhnTMgOt2ylS0eH1SiaWCvjQ96mIX57Q0HO83ng8juXlZVgsFni9XoyNjanTqPz8fBQUFKC4uBiVlZXYtWsXKisrUVFRoe4fcRdAuYk5M7RYbrn+0aYhlyt6j4NxcmkkZtzQ0JAEBGh8nIHprM40Zi5cOACmOSTlUBcxVs6nblPrhAoAA1jh7UgXMO5Wy+vgc0PKhs1mU674d955pwKZPT09OH36NPx+v7ovyIW47vTzrezLdPtAtpWqDinE+B7hJ4uRSATPPfccXnvtNRQVFaGxsRHvete7VLRObhjZ2nozvzMPYEfzQd9JF1mac6ITnQJG9dCaWCwWFX+gqKgIv/u7v4uFhQXMzMzgi1/8IkZHRxEMBg1B4XQKm64d/gynfT5f5Dr7t3/7t2hra8PevXvx0Y9+VMW2kAKL0xXwZpRdrlAQD6ipqYHL5cL+/fvxP/7H/0BfX5/BpdaMhriyura2hkAggMuXL+Mzn/kMHnvsMTzxxBMqr7Vce57yIzs7G263Gx/+8Iexe/duRCIRDA0NqZyzslB7W1tbeOWVV1BVVYV9+/YZTuXpOZpzq9WqgpZ96UtfUoBN1ru6uopXX30VsVgMn/rUpwzAk+iEcogXFxcjLy9PzS2f65WVFXVqVVNTg4KCAkWTicStOAnt7e3o6+tLuorAgVksFksaFwcl/DP6Td9Tv3X3SJeXl1UEVP55dnY2WltbVX50/h55wYTDYVy/fl25mPN2Sck+fPgw7rjjDsM6WywWxfvptH9xcdGQC5ePh4yMRUVF2LVrF+rq6pLoXCqOly5dwunTp3H+/HnVPylDqZ88KvqHPvQh7N27V52Y83Wnwtsm4xbxgM997nMIBAJawK7TSyQwycnJQVlZGe677z50dXUZrrMQX+N32rk3En1GV724bKbf8XgczzzzDG7evImpqSnlqs29VPg4eZFyRPL6VIArO/tW2rEdO3ago6MD9913HxwOh3LnlUCE068uxY0Ewrx9HQAjLz0O0kje0LxRZHiah5WVFVy/fh3Dw8O4dOkSlpaWlPGa5kzSq+5/Wcz4aKbAK10h/mIGBs10T6l36daQAn/t2rULTU1NKC0tRUFBgQLT5K2h8yTk60rzL/VJ2u9mEcqlTp2VZYxnww1enJ/yduk96hMVaTTi/aQ55f0wc7Pm9MU/l27esu+8HzxrBS/SICpLKiDKxy8NAlwfz8rKUrpSKBRCMBjEwsIC5ubm1B6gvUPzy/UDLuO328dMytt+Av3/hWJG6LrntgtMMwG0ZvWmAhE/D7Cfaf3p2k4F7nXKtwTOOnDJGQkJ1aysWym0cnJysLS0hGAwiLm5OdjtdtjtdjgcDpSWlsLpdKrUQ8QwuVIkQbxUHCQg4ModZ4Y6owF9J8Eq9Z9vWK4kJRIJQ6oU6ouur9K9MNWaEPOUTFmniPO+c6bLmStn5tybAIDhrlBhYSEcDofyIAiHwwiHw7h58yYmJiZUQCBiylzAmzG12wXXuj2Zas/z7zkN6NaC+kTK/fLysnIXKi0thdvtxh133KEid+pSGPF1lYYFTje6PnMli4+Nrz99RycnNpsNH/rQhzA9PY3x8XG8/vrr6h67Lh3PduaXA1T6bnFxEUNDQwiFQgiFQnjggQfQ3NyMhoYGQz06JZfPM31Gpz900v5rv/Zr6O7uxpUrV3Dy5ElD6h3ZR6mEUM7dkZERvPTSS1hcXMSHP/xhBTTlvJPCRJ85HA60t7fjox/9KP7X//pfmJqaUqecsm0S3uQ663A48L73vU/dE+W8ArhlrGtsbMTq6ip++tOfwufzGe6nUqGgVjdv3sT8/DxKSkqUAYCvSUFBAcrKyuB2uzE9PW3oHykl0WgUPT09cDqdhoBIwK2I3vX19QokSRohRZ5cm+WVFAJdEnwAb96DpvFTv8nDhdzupPJDfKqmpkalnaK2qf3FxUXMz88nZQ+gOsg93W63q0jm0giytXUr6vPzzz+PQCCg3SMkJ1wuF97xjncYTmJ1+5dO7d944w118iy9Hfh7WVlZ6urMr/3ar6GtrU2doPE+kPFYGji2trYwMzODnp4eXL58WZ3E6KIt8/p4P2idnE4nqqqq8MADD6C+vh6lpaUqBZmUkVLZlyCf5oLWLhwOY3Z2FpcuXcLVq1dVaiUzIGhWUslG6h/9pnE5HA6UlZXhgQceQFVVFVwulzJQ8Ofl6bcZf86kj/w9btyWp8X8Z2trC4FAANPT05iYmMDk5CQWFhYQCoXg8/kMeZvNAJ6ZLiC//3mXVCBdJxN0NElB3VwuFxoaGuDxeNRVQLoaSHF1aK1l7BodiOZ6j9T3zPrG+T1/RoJjqWtwPYMXfrAh11EapHS6k9StdJ5wun5w+uCySQJ0HjOE9gZvW3oV8fnVFTP+kEgklNdqJBJBKBRS8Uc2NjaUK/bq6qrSx3S8TWdg5P/rMMvtll8qAK0j+J9XSTf5mS5OKtDw8+z/21V0TNsMVMvPJUOxWCyGu1ORSATBYFBZ5Un4lZWVIRwOo7y8XEXGJOWIn1ID5kEKZJ/MlHtd4QqTPJVL145uQ3OGJwEmdzW6nf6n2hOc2XIGzAUXZ+DEKOmkiTwFqqurletzSUkJXC6XCgi0sLCAlZUVlSJAZ1jg43krhfc/02dl27o+8Ii2dAIXjUZRUFCgXCtDoRDq6upQWVmpgpPIkyju5iiLBCw6RYLvGw6s6Xt+9eHw4cNobGxEfX09wuEwxsfHEQgE4PP5DAF5dOA8kzmjdUwkbrlhBgIBFc2ysLAQkUgEW1tbqK6uVsqpvGbA25KeHPR8dnY29u3bpwITzszMYHp6Winc/B0dLdHJ8MLCAm7cuIGVlRUcOnQILS0tKqe1bJuvBd2dO3r0KE6fPq3uH0qAxdtbXV3F2NgYCgsLcc8996CsrCwp7SO143a70djYiJ07d6orETrlYmlpCTMzMxgeHsauXbsMPI7WnyLLVlVVYXZ2VqskxWIxDA0N4cCBAygtLTVcP8jNzYXb7UZhYaH2SgjNJT/lpf7xMZkZgrh7N73H65QpuDiAdrvdcLlc6jtOt2Rolaes1C6lKaPUQzpFa3V1FYuLi+jp6UE0GtWeKHKAe+DAAUPgMGqLvxeLxdTdZ5/Pl9J4RfNPqaoOHjyI4uLipDvPcm5pvGSEGBwcRG9vL3p7e5W3RCrwzOUEzRWlbGppacGBAwcUPZBiLWVOpnx7fX1dZbkYGRnBhQsXMDc3ZwCDfP23Kw90wIvkVUFBASoqKlBWVobq6mrceeedsNvtyvium1+ieTMZeztFGhkkaKbrUqFQCLOzsxgZGcHQ0JDKGU+pGPm70oAh23or/ZSyRxapT2RadHPKdQ+SZ4WFhYZrZRUVFWhvb0d1dTUKCgqUsZX6R8ZPadTiAFkn66W8lc+Y0bxOr+N8QEfPcm6pSDdoLt9lkTJPZ+jR7Xf+jOyTTncyG6+uP2af6fQGMnbStQTymCLgHA6HEQgEVM53eRDDr6alo/u3c1/I8ksBoG8XON8OQ0zFTKikIzaz7zJV/DN9Nl0xG8vbCdzNQLTueyCZAVLAGwLUdDf51KlTyMvLU/eYGhsbsWvXLrS1taGqqkoxVs5A+WkLjZMzFXkCyZ+TDIYrd2bjI8BEhQs9eWrMx8zXWJ58mzE6ncsPPcPb4snkudIEQAlmroBIFx2qn04HycWH7pKVlJTgrrvuwvr6OiKRCF5//XUMDg6ir6/P4OLNFQjZbz4evgbp1iWVkM/kO96GFDBUiNHT+MidqLCwEOXl5fjwhz+Mrq4ulJWVGQSqxfKmcYi3Re1J67UU/lRWV1eTAmElEm8aYXiaDofDgfr6ehw4cAD9/f04c+YMvvGNb6hAS3R6IZWATAWMFMBkJX7mmWfw6quvor29Hf/pP/0nuN1uQ9ogep7PDf98bW3NsK/sdjv27NmjDAL/9m//hqtXryoPB76Wuj7SSeD8/Dyi0Sj+6q/+Ch/72Mdw/PhxlJWVJa07LzSXbrcbn/jEJ/D9738fk5OTSSeJvL319XUFDF5//XXcfffdqK2tTTKS0D32qqoq/NZv/ZbK1SxPFoFb115mZ2fx1a9+FZ/61KdUIDuiBeINhw4dwtraGq5evZrkuri5uYloNIpLly7hkUceUcYNmrvs7GwVoI7AruRf4XAYwWAQra2tSX2Up8y8ZGXduqvN3X1JEVpfX8f8/HySCyH1iYKkOZ1OQ1+I/gYHB9Hd3W24FkFtkrvu3r17DQHYiP/R/XWfz4fR0VFMT0+rk2LeDwK4Ho8H7e3tOHLkiIGeiV7p99raGqanp/Htb39bBQ2THgi87uzsbDgcDtx99904ceJEkts27zdFpqf36fS8v78fzzzzjHLblqfUZnKde3sUFBTgxIkT2LFjB5qbm1XKMz6fNP+8cK8Afn+S5nhtbQ3BYBA//vGPcfXqVQQCARWUTuoIcu4zKZyvcuBMp841NTV43/veh8rKSjidTmUUkCd7uhNdGpuON8j+ymtkuu/l6Tat0fr6OrxeL0ZHR3H27FmMjo6q2A9mp9U0Z7K8nSCB5idV/WaA2Ox9HXjke4gCuzU1NaG2thZNTU3KiFpQUGDwICGvIaqH80PaM3wN+dzxOeXf6/QP2V+dvkDPEm3o6tL1je9Ts/nTyed0+4PGRftS9pnGz+snXUXOL32Xbp74PqLx0lwTLwiHw1haWsLc3By8Xi9WVlYUj+T0Tn3lv+X4qG6z+ZBr/nbim18KAA28vcDyrZZM+2DG5FIxv58XuM30mVRARPeMGeNNBd51TIKEkgSGxHjD4TCGh4dht9tRUFAAm82mTqzb29tVxHcKIkSCTLbHBSC1LYXn+vq6IR0HHxsHnxLc6YAab4OK7o6nFFBc2d/c3DTkuOMCBTAGeKF7XJy560CMGZ3xNklJobK1taXuVRYUFMBqteKhhx7CsWPHVG7K8fFx3Lx5E319fYaovhyMECjPlPYy/U4HvlM9y2lN5xbE3fDoXv+//Mu/wOVyoaysDDt37sTx48eVixnwpuGCg17+P/+Mzyu1y09MdYUr5IlEQp1Id3V1obKyEvv27cPzzz+PGzduYGJiIumUSmeo0M0Rnx/pRkr5k0OhEP7kT/4ER44cwcGDB3HfffcZTs45/fO55ilwqOTn56s880VFRbhy5Qo+//nPq5NLnQLCFSNutBkfH1cg/OMf/7ghByjRnjwNyMnJgcfjweHDhxEIBPC9731PRbrVtUspqL797W/DbrcjOzvbkIKJ71UK3nXHHXcgKysLFy9eTAp8QuD3+vXrGB0dhdVqRXl5ucHol52djfr6eszPz8PpdKr775xe6V740tISVlZWDECZ6MXlcsHtdqtI9JwOw+Ew/H4/EgljUET6X0efxCesVmuSi3cikcDq6irm5uZU4ChOEwTqKWuD5E2rq6sqkjlX8oA3AX1xcTEee+wxeDwe031/8eJFvPHGG4b9QP2geux2Ox588EEcOXLE4AHA7/HTu729vbh69Sq6u7tV/l05J7RmRAMf/ehHVU5a6RVBRV4d2NjYQHd3tzKQ+f1+dRdf59rL5QiXVcXFxWhsbMRDDz2E1tZWJUe5bOBXUqgOGrOsm+hic3MTQ0NDuHz5MgYGBlRqKhldm9MDryNV0RkcyRBAKcuOHz+Ouro6VFRUwOPxGAzHNDYdYKe6+LglSKO/iadxpV8HmqkOvi5ra2sYGxvDxMSESt1HEbV53mYzjxf5vxl9m7233aJrRweeZeH0zK8sWSy3ruxYrVZ4PB60tbXB7XajpKQENptNnUDzA5HNzU3DnWK+J8jQpQOcqUC+9Oji1+h4ke7SZjTL5TufLx0IlmCR7x8zwwMHsfKqHb1Lup2UsxJ08j7zfvF1kjTM6+SyivedPPWi0Sh8Pp9yyaarZGS8lOn8dLJctxb8s0z5Rboi5yBd+aUB0D/PIplSOiZFzwDbY1iZPqsDYG+VMcp+bLdOM0I2A4LbrZsr2JLBWCwWddcxGAwqAUp3ZsLhMEpKSlBcXKzu7dpsNhQVFcFut6v8pDrApAM01CfdZjNj1nI++RybbexUgJsX6ebNDQB8LLo5N1sPM3onRVkyYyq6QEwlJSXY2NhAWVkZSkpK4Ha74Xa7lbLg9/vh9XqVK59O+JmV26H9dPOd7jPASHskDDY2NjA5OQm/34/Z2VnlClpeXo7S0lK0tLTA4XAkufPytiTYl8Ke06huPFJBBqBOt+h+dCQSQUVFBcbGxtDf349gMKgCDemEaqrChTHfi1tbt6Jf9vf3A7h1gup2u9HQ0AC73a7dCzoFh7spJxIJFBUVobW1FRaLBffeey8uXLigIsLz/uiUTerT8vIyxsbGsLW1hVdffRXHjh1DWVmZIT2Z7tSgsLAQtbW1OHLkCHp6ejA1NYVQKJREp6TUrK2tYXZ2Ft3d3SgoKEB5ebkC51y5ovXp6urC8vIyrl+/rvK38jop2vTAwIAyDkoDmM1mU/cEydNA8oJYLAa/34+FhQXDqS6N0+l0wuVyJRkRtrZu5RWmNFk6PiTXiytgFPlbKnF0BYC7cHPl2u12qxRnuvWke9mSVmnNnE6ncvmU4H1zcxPz8/OYmprCzMyM6R3q/Px8tLa2orGxUQvEuZEiHA6jv78f/f39CIVCWgMVny+Hw4HKykq0t7ejoqLCkHNY7glO37FYDCMjIyoS8+zsrEEZTQWeiWYIvO/atQsdHR1oa2tDSUlJkis+V9jpf/6d3C88mFlfXx/6+/tVBgfpjsnHtR3dShoBsrKyVL50j8eD2tpa7N69WwU/ozuxfB3kmuhoWtenTJRxKpw2yBBGnhyLi4uYnp7G7Owsbt68qYxy0k1bx2PS/Z1p2S4Y5u9l+jfXo8jzhq5DUIybsrIyNDQ0KD2Ne9cQnwP0MVsy8VrgoJYMJ2bj1R2O8HZ1+z/V2HV18X7w78zku+Spcmw6XS6VPNfpG/JvalN3gED1r62tYW1tDdFoFGtra1hfX1dXEWKxmPLUo9gx8gAnHZDX9cuspAPUmazbdsovDYA2Y4j8+0xBnqwzk7Yl6NxOP7bD9MzA1M8DRN/ue7dLjGbtckDF55or7aRMUdsrKysIhULwer24efOmCipRUFCg7gl2dHSooDn8fhzvP51I8Xk3c2s2W3/qowzUYFZk3aks5bI+rlDQ8xT1k3/Hf5u1y9vmQpwrytL9SFrkyThB7oGlpaXo6OjA8ePHEQqF4Pf7cfHiRZw9exaLi4sqqiivV6d8ynnn/2cyr5kUM1rWCUOab7KqRqNRBAIB9PX1we12o66uDk899RQaGhpUnm1Oz2Z8g9ZJ1zZ9n2pc9D65subl5eHBBx/EHXfcAa/Xi69+9avo7e2Fz+dTgZx0Jx66es3mhAOGxcVFXL58GePj4wCAJ554Ao2NjcqIwF3ddPMtFdjc3FyUlJSgs7MTH//4xxGJRDA4OKjyU6cTvltbt+4oh0IhrK6u4gtf+AKcTie6urpQW1urnpGFgG9NTQ2sViv6+/tx6tQpwykRb4tcMsPhMF577TWEw2EcPnwYVqsV+fn5Bq8Qi+VWWqtDhw4hkUjgZz/7mSHaN42fgnidPXsW+fn52L9/v8ErJ5FIqPRHBw4cwOjoqCEVE/2sra1hfHwclZWVaGpqMihzWVlZcLvdKro8p8tEIoFoNIpQKKSlOwK8ukJGTen+t7GxgVgsBq/Xq66X8LXPz89HbW2tum/MgS/tNVLgdMCXsjmUlJQkGUNJ+RscHMTs7CyWlpaS6uCnz3SaSanauGGC/l5fX8f09DTOnTuHwcFBbb5nXjet1759+1BZWQmr1armWydnaL3Jw+GVV17BlStXlEu0BM66NSIeTbEsysrKcOLECezcuTPJuMcVdi6DdC7NfIzhcBg3btzAa6+9hsHBQeWKTK6hXCnXgXxZdHKK+sSvrdTU1OAd73iH2s/82gDlY08FUDhtctAmx8hljlxbydeJztfX19VVjOHhYVy7dg1jY2MqBZXcq7w93ZreLljezndSV8kUcErjBvcWpIMNj8eD3bt3o6KiAg6HQxkwda71XA5mZWUlraXUR9LJbTlGzs84zdPf/JQ41fxLXZDrYpweqPC7vLwOM7mu+4xfm+Dv0X7V8QLZT/4jZRk3KtL/9Pf6+jqWlpYQCoUwMzODYDCIaDSK5eVlwzUxnUFP9sVsTs0+N9sPqTCI/E7Hl7ezr35pADSQegLl4uk2wXYmTweazfpj9tl2waauz9ut4+dd0vUlE2Gpe8ds7DqgChijY6+urhos7oFAADdu3MDp06fVfb/8/Hx4PB5UVVWhqqoKO3fuhMPhQH5+flIqDhKu9De5+0iLOldAObCUdEMMygwo696hcZq5+lGRSsDGxoYSNmRw4IJIx3C5m5RUZKguPjYaq+wbfUZgjgKQtbW14cknn8TS0hL8fj9ef/11jI2NqbsxEkzr6ED2TX53u8VsXvmaSMWShAwFHQuHw5iamsKNGzdQXFyMuro6/MZv/AYaGxtht9sNcwckxwGQ7fExSYAp+0WfcaMJnTo5nU58+tOfhs/nw/DwMJ599ln09/crF2x5+pjpfNHzJIwJ6DzzzDN444030NXVhQ996ENoa2szCH+d4iAVR6Ihu92Ojo4O/Nmf/RkuXLiA5557DufPn1cWbt37VAg40X2rv/u7v8OJEyfw7//9v1c5gqk9PscWy63ANm63Gx/5yEdQWlqK1157DefOndO6owK39lggEMCVK1fw3//7f8cf/MEfqGjSfEwWiwV2ux2dnZ34gz/4A3z2s5/F/Py8SutEc7m+vo6bN2+ivLwcN2/eRHt7u/qO+ldZWYmHH34Yr7zyCsLhsGE+6MT30qVLsNlsOHbsmIHH5Obmor6+Hn6/Pwk8bG1tIRKJqO+48kq8RAYK40CxqKgoya0xNzcXm5ubmJ6eNtxhJt5itVpx4MABFBcXK+8WrtSOj4+rnOdyzXJzc7F//37cf//9ScYA+h2NRvGtb30LMzMzhgBu1D6dgDc2NuLee+9FUVGR4vf8DiwZAmZnZ/H3f//3mJubU7yL94v6RoBv9+7d2L9/Px566CEUFhaannhysB6JRPDqq6/iwoULKuiZLgK5bJfaJsOEx+NBc3Mz3v/+98PlcikPAZob4hv0P60lfcc9AiyWW54nKysrmJubw7/+679iZmYGkUjEEDWfg+Z0+pEcA+eJnJcVFRWhqakJe/bswd13343i4mIVTFTStqQRmlviuWRY4HqEGe/jwEgGNeKynNKjDQ8Pqz1Jp3Ocz24HZJiBjkx0qkwAMS+ZgGjd2tD+djgcaG5uRk1NDZqamtT9ftoDZACR66wzHHP5QOvCr5Hx+CC0LyUty7FR/ZzGebsSbHIexN+RHkOS1+mMMRKU8zb4Z9Jgxwsd8lCdnOZle7I/0rjHP+cu26urq1hZWUEgEMDs7CwikQjC4bAyupOBiO/zTL3Z5PxmWiTN8vf54ZruO/pMhxO3U36pAHQmzEMHxKhsd/J07W2XCN5KW7z8PNrcbtEBvFTF7Fnd5xIs8+d07/JCDMFisRhAYzweRzQaVQycrGgOhwN9fX0KXOfl5cFqtcJut6v0HmQxpbs41LYEnenAjey7NAjI3/yeiPycPiMliQsyEvLc/Vq3F+hz6otO8EgXVJ0LH33OGbqMGgy8mRqLomyWlJQgPz8fCwsLWFpaQjweRyQSweLiIsbGxjA1NWW448fnzWwu304QLWlTB844DVA/6fRlaWkJS0tL+NrXvqZcC4uLi7F3716Voo2vXypmLwWEWeHChNaBFEVyc6VrDRTpua+vDyMjI0ooSqGciZIn6YiCfhHIbWxsRGtrK3bu3Inq6moDIOP95UXeIa+srMTBgwfhcDiwe/duXLhwAQMDAwiFQmndw+i31+vFuXPnUFhYiIcffhiVlZUoLi5WY5D1EKi64447UFRUhPz8fHR3d6vx8fpJ+QiFQrh27Rqef/557N+/H/v27TPsIwKfTqcTO3fuxJ133one3l6MjIwYTu0SiVsp1YaHh/Hcc8+huroaDocjKXK42+1Ga2sr4vE4pqamkoBLIBBQbtMykFhpaalyJabrCfQuueTxoDw0DjJE6miCcsnzz2gdNzY2sLCwYGiHn1ZxjwXOa9bW1nD+/Hn4fD7D+tC75eXlqK+vR0NDQxL9bm5uYmpqClevXoXf71dgl/NnOsHes2cP7rrrLthsNgXceV8oeuyVK1dw9epVlY5M3hUk+s3JyUFRURH27duHQ4cOqWsNfN9IoEAGueXlZfzoRz/C9evXMTk5qTV2yb3IAQnlsL777rtRVVUFj8ejvA24OyxvX3dqy9uggGkDAwOYm5tDMBjExMQEIpGIoh8zcGjGRyU447RG+anLy8uxY8cOOJ1ORbMlJSUKlHH+IYN9cqMY51Fy7JxO6W+drOMgeH19HRMTE/B6vSo7QTAYRDAYxOzsrDLe6QKDcRrQreXPS88zkx8cJEpZw3kXGWWLiorgdDpRX1+v7i8XFBSo+DMUwI2fJpvJtUz0O37yrdMXdeOT8yxBtNTXdO3KPcr7ogPGQPLdXovFPLe4bIf/r9tHvKQCpJJ2ychALtjxeFylkZKRsumaZDQaVXeXpQFIzhv9n4kelop/yc91eqnZ85nMmWwz0/ILDaDNgEiq5zN9TgfY3mq96drbzvPAWwP8bzcjlmNIN3eZWJ3MGKiuLVknL7o7JgSm6YQHuGXZ58pGXl4ecnNzDRGmq6qqsGvXLrjdbhXchoJckJs4tc+t2tK1SK6hTuHRzZ+0GvITZs4kqF0pFLjAkoKDvk8n0Hn/OGiXYE/3Dg/iwvcYWaNtNhvKysqUwkipTyhvaFZWFiKRiHKTJgVNnr5kSn+6wpWGTPaJrl3OQ2he6JQqHA7D6/XCarXC4XCgvLwcANDQ0KDAG10p4MoKNwRRP3V919EWf4cbVQoKCpCfnw+n04mGhgasrKzg6tWrKCgowMbGBoLBIJaXlw2uqHJOzOaK01EikVDAORKJYGpqChUVFThy5Ai2traUkYr2nIxJQEWmnLHZbGhpaUFDQwO6urqQl5eH9fV1DA4OGlzS5RrRulB/BgYGMD8/j8rKSiQSCaX46ZStrKxb6Yx27NgBt9uN1dVV+P1+FZmdt0dgKxqNYnx8HK+++ioAoLm5GcXFxWrv0rjsdru6Zx2LxTA9PZ0U0XdtbQ0zMzN47bXX8NRTTyE3NxeFhYWGveRwONDR0aHS4XDlZmtrSxlyKOI599ApLi6Gy+XSRnunHJx0PYPvdborLOmTFEVy0eTrR+ORubWBN6OUezwe7b3g9fV1XL16FYuLiwa+Z7HcOvmqq6tDdXW12l9Eo2TUmJ6exsWLFxGJRJJcwAmokZvp0aNHk9zuSSHe2NjA3NwcLl26hDNnzii+pOOHFBW6qqoKx44dw+7du1XebR1IofbIVXJmZgY//elP1XUXXeouORfEOwoLC1FSUoLa2lqcOHECZWVlKsCdbm9zgKTjKWQMI3ftkydPYnx8PIlf6Fy10wFpPg9EWxQQ0el0oqWlBS0tLTh+/LjyTpCnx1QfzQGgP32SLrYy6jbn5/QZr2dzczMpR213dzeGh4cxMTGhgqaRTJN8UTcf6f7XzV2mRQdYzf43k/u0x0j3yc/PR3FxMcrKylBVVYU9e/agqKgoKRCdmY6ma0PnUUF1SC8h+lwHlnT6Mt/HfJ35QQTRrpm8lXJe56ot66ZDDPosHQjkfefy3wxgAsn6Lp8bokGuN5HnCB1a+P1+BAIBBZB1xh45j3J9ZNkO3siU9uUcmGGKtxvr8PILDaBTFTMikxs43YaW76crOsFgtoCZtLldxqljFrpn083HdopZP9OBmNttR9arW0OzzcS/M9uA9P/a2ppicsFgEJOTk+jr68Prr7+u7vSR22VtbS1aW1tRVVWlhAoXBIBeIaH/uXWSn0DqCgfMgDFqNf/h79PJh4xkzqNZcmAllTBi4JyJUx389Esyb6nA0OkQAMNpHR87PU+nVsXFxWhoaMDBgwcRiUTg8/kwMTGBl156CbOzs+o+qwzWw9dTWl7NaMmMPmRJRYOyD7J+EkYEHCh1icPhgNvtxmOPPYZDhw6p+7Y8qihfEz4mWhNSJHlkTr4+HIDy/+lZq9WqFPvp6Wm8+OKLOHfuHPr6+gwR06W1Od1cUf+4QJ6amkIgEMAbb7yBu+++G48++qhKNyT7r1No+Wf5+floaGjAxz72MTz44IP4x3/8R1y+fBkLCwvKY0GnsFJfKLjR3//93+Phhx/G/fffjzvvvFOd0ssTk0Ti1n3jiooKPPHEE4jH4zh37hzeeOMNw11Gvk7xeBw9PT3IysqC1WrF+973vqQIv3S94b777sPy8jKGhoYwPj5uULzpLvT8/DzOnj2LAwcOoLm52TA/2dnZuPfeexGLxZJSWpEb9/LyMpaWlgx3ky0WCwoLC+FwOOByuZLyt1MedOIXXGmkOAey0FrR3W+iR37NgQMuGofNZoPT6VRrwAEPBQ+bmprC8vKyoS0C3u9617vQ2tpqUGgpuJvf78fw8DC6u7sN0b+pfqrjAx/4AFpbW5X7rzQY0qnwv/zLv2BsbEyl6tPxGzISHjx4EPv378ddd92V5AqvA6sAEAgEcObMGTz33HPw+/1KAdbtPcmbSVbt27cP+/fvx913321I6cWL9IqQPJS7aC4uLuL8+fM4f/48RkZGFK0Qf0jFG1LJNglqyGBFaY2efPJJldlA3rnnspbTjZmRgcbF2+L9IEOBlC0k12kvTU1N4Wc/+xkmJiYwOztruPPN54PaNpuX7epjmepYOlnFP+dynv/P/+ayma4AkPdQU1OTut7AI9RLMCn1B96u1E1obRKJN6/D0T7igFSOMxXg5X/LQHn0uQTC/Bmpe/F5kV450gNFtk/j5oY5fhrNwbU8ueZyRaf7yfmjuimLwuTkJGZmZhCLxVREfE6rkl75Wsq51O2rVDSZDhNlgkHMdDZdP9LpJvRcpm3z8ksJoM020FspmQJts/68VavMWy3pGO1b6ct2gEa6d7czvzpBID9P9QxfF91z3I2WM3t+ahMOh1Xk3DNnzsBut6OwsBA2m025yJWVlaGiokLlnuSFuznztknoSEatmysJPnUu5fQ/AWHOMHjdfB7kHR7+w/toJuy5EJH3euV+4vcJCejztslFjFJelJeXo6amBtFoFJFIBLOzs+jp6YHf78f8/HxS8B5qUyeIdH3n75h9n6lyw8GaFKKkBNC9uEgkgu9+97s4ffo0ampqVAqo4uJidQrH2+Vurzz1Bndt48YROT4eNZ2MKXQinZ2djcceewwHDx7E6OgoXnrpJYyPj6vTVp3ANpsTM6FOgv3s2bPwer3o6OjAb//2b6O4uDjpNInTKc0rp5u8vDyVjud3fud38Oqrr+LatWs4deqUtr+cNsj1MhQK4dSpU/D5fACAnTt3orS01JCyifeFIpvfe++9KC4uRiQSQU9PjyHvL6e7WCyGmzdvYmNjA3v37kVtba2KhM33p81mw549e7CysoL//b//twL4VBcByJdfflmdWlOUaYvlljt4aWmpctGdmJgwrMHGxgZCoRAGBwfVWhM90JWKmpoaQ1okDiiWl5fV9Rb6jNZDt8dpniQwomit8q5wdnY2ysrKUF9fr42+vbCwgJGREcO9ZeDNwGNkdJNzS8rh66+/jp6eHsRisSTen5OTg5KSEnR0dKC5uRlut1vd1eb3LTc2NjA+Po5Lly5hampKuT3KPcCDKB48eBBHjx5FR0eHoS7pkUN9jsVi8Pl8+N73voebN2+qfNlm4JnGwIFnWVkZjh8/jj179sDj8ai4C9SG5Ou8Hj53pGQHg0EMDQ3h7NmzmJ2dVW7K3NtDApBU+pNuj3OeX1xcjHe9612oqKiAy+VCeXk5CgoK1PwRAJFgivrAT6alNwrNPY1TzgnvE31HvGJmZgYDAwOYmprC9PQ05ubmsLy8bMhoYGa4y1Tf4uB/u7pnOkBgtubyh06Y7XY72tvb4fF4UFpaipKSEhQVFSl9Rxq6aJwELLm+IGlO/s/5LK+D6jSjfQouRu8CyalJ+Xf0vewXtaN7nseskfNG/eL36iX/4tcI+Rjl6TLniTovQ6730f/ET8nVem5uDuFwWBkpKeBiJnRqJtclkJYgVBY5j1wepgPCt1MyBedmoHs75ZcKQKdjMOmYt9nnmU6sFBJmGzDTOlMtto5wJdGbgQPde5n25XYMCG8FJJvVs11Ak4kRQwqrVO47xJSJYZGSRMLGarXC6/WiuroaZWVlqKysVC5NlFolPz9f5U3Vjc1sPXXzJ0+FzVy7JZiisXIXbNmmrl1ZXyZzzJUA+awUdhwY0ffkxkcg2ul0Ym1tDbFYTJ38e71eeL1e+Hw+RCIRdV+Hn5rKMWai5N1uMaNJ3XrR6VgsFsPc3Bymp6dVHWVlZXC5XKioqFCGBF39ZmOQ6637jtNBbm4u7HY7Ghoa4PF4UFlZiUgkgtLSUkxMTGBsbEwJ5FQKjdlccJrY2trC3NwcIpEIQqEQ9u7di9bWVrhcLjidzpRrJcdBLrKdnZ1YXl5GVlYWxsbGMDc3p/qqU6JJ6aG8wnS/lty4dbl5ad5yc3NRU1ODWCyGQ4cOqWik/GSU3tvY2FAux93d3QrsSf5N0ZFbW1vVlYbl5WXDvqNo2tPT01hYWEBlZaXBJdxqtaK0tBSNjY2Ynp5Oci+MRqMYHR3F/v37De7q/MSvr6/PQC8E3ilaPjcI6lxoqZB7t5x3CqYk18RisaC0tBRVVVVaj5uFhQWMjo4aTnuJfm02G2pqalBcXKzuZPNxr6ys4ObNm5iZmUlygSbjg9vtRldXl4rJIHkkACwtLWFqagq9vb1YWlpSfEaOgzwO3G439uzZg4aGBpSWlhqekbw1kUiotIw9PT3o7e2F3+9Pytsu97MEPrW1tWhpacHevXvR2NioIojL+ZTt8z3GQePk5CSmpqZw/fp19Pb2qlNnDp4lP0il0Or6TbRSUVEBp9MJj8eDPXv2wOl0qv5L8AIYDb58HqU8NQMA8l1JN5SaKxKJYGlpCRMTE7hx4wamp6dVwD9+nUgCHTkXqfiljk+nepbPA/87lc6r+00eYvn5+eq+PIHk4uJidHR0wOPxwOVywWq1GgweEnxy3ULyXalXJBLGjB+8DppDM91BzgXXSXSA3qxkogvraIj6J/9PVQd/RkfLcu/IdvkVN4rgTt5BKysrKv8yyVW6XkDzwz2SdPs0U/1aJ5vl3+nqyLSk2hOy7bejvUzKLzSATsUcfh6gTQc4M9lwb6dCzvuSKXH8PNo3q387fXo7iXs7yruZsUGnVOtAHpCc95YLEvo9MzOj7kZT1OOysjLU1dVh3759ypJrs9kMSiDvi2TMubm5WosqH6NU9rhAkeMyE3wcaMt3qW764XWYMTLJrGVQFz6/ZvQqc+gSoKa7fe3t7Uq5P3v2LPr6+lSKGu46zAURt/qmM3y9HfTKlVMOWHh/yK2VBODLL7+MyspKdHR04Fd/9Vfh8XjUCS0vZKWXgEO60+kAtLTa0/rTHemioiL8xm/8BgKBAG7evImnn34a09PTyn2e04LcN3L8vL/0HhkPotEo/uIv/gJPPfUUDhw4gDvvvDMpwqiZYCbLvsVy62704cOHUVJSgtXVVXz7299W7rXplJNEIoG5uTk888wzWF5exh133IEHHnhAeQDwNmnMBQUFaGtrQ3l5OUZGRtDb25uUm5gUn9XVVSwuLuJf//VfkZ+fj7q6OkOOWuDN+78ulwv79u3DhQsXVH20lwiMj4yMoKenB+Xl5Ulu7U1NTbjnnntw4cIFpXTR+i4sLODixYt45JFHlDJM47Hb7di5cyfeeOMNNae0VnQCTcHL6CReF0RM0hLVQW7YoVBIBRCTfKmqqgrt7e0qvSB9R+7/Fy9eNKwnKf+VlZU4duyYClbE91w8HofX68Xw8DB8Pl/SiXFW1q0I762trXj00UdhtVpVn2XAyKGhIVy9ehVXrlzB8vJykpGO5o3uUnd1deHBBx9UkcqlkVPygbm5OfT29uLrX/+6ClDH71br+BTtfwLtjzzyCA4fPgyXy2VwfeXtUppD6cFEdVK7kUgE3//+9zE8PIyFhQVDqhq5j+Q+Mdu31GcJ3txuNx599FE0NTUZAuXJcfP6uZsv0R3/m/OaROLNYIoS+PM5oD0bj8extLSEkydPYmhoCKOjoyoWh85NOxU40f3P51v3zNuhw+n4Pv+h+S8sLERFRQUqKyuxd+9eNDU1wWazIS8vz9QtnuiX953zMu6Nw39zDyju5UN0yQuXb1z34d5tUr7l5uYaPDZ0hiIJdjkPMlsnriPRWOVBiNSrMi1Sz6T54Ncn1tbWVCRsyiMeDoextLRkoEddbBguQ1KVVIBZh4XkO+l0bDk3qWjcbB+l6q+sV/K1twOD/EIDaMA4GToLnBmQvl2gZ/Zeqs2WSRvp6ufPpVJQdW2mItDtzINZeTuBsK7OTOcw036YMQazdeDCQje3nKFygURByiwWC1ZWVhAOhzE7O6tSaBUUFKCgoAB2u125ejc1NaG1tTUpLzW1wQUB75NOEFDhyhGBSMAY0ZgLE2K8kklK5YAErjwBovpk0B3+IxVN7oZEKRvkfSC+JvQMAQ86NU0kEigsLMQ999yDw4cPq3kfHx/H1NQUrly5Aq/Xq07QZIRj+TcfN99/8m85R9vZLzrgSUoCT4U1OTmJ7u5uVFRUoKqqCo8++ihaW1tVeiDuws3vY0na1BVSBuiH5pTus9Fa06lmfX09xsfH0d/fjy996UvadGNm9Cjnjyuwm5ub8Pl8+Na3voXXX38dra2t+PjHPw6PxwOHwwGLxWLw2tBFYifQYrPZ0Nraive///1obGzE66+/jjfeeENFkTY7iSYFZGlpCS+88AKGhobg8/nwrne9S7k78zZpzkjx/+QnP4lvfOMb+Pa3v61y8/L6CUT7/X709vaisrISR44cUetDe4qMax/5yEfU3f/V1VVDXbFYDFeuXEEsFsPdd99tuC9vsVhQXl6Offv2obi4OCnV0fLyMkZHR9WpJt1fpFPc1tZW2O12BRypXoqaTYCdCt3x5TRGc0MeDRzgWywWzM/Pw+v1Jp1O5eTkoLy8HHV1deoz+h2PxxEIBDA5OWlwc7RYbt3frq2txbFjxwzRxanfMzMz+PrXv46FhYUk/kK09c53vhP79++Hw+EwfEdrvbm5iVgshh/84AcYGhpKirjNx52dnY2uri7cddddOH78uLrGI4Espw26t/7yyy9jcHAQi4uL2kjbHDTT+Gmey8rK8Ju/+ZtoampSObClrkT1ES8lI4Hcu+Pj4xgZGcHzzz+P2dlZrKysqNNWzvfkftfpY9RfTjPEu5xOJw4dOoS2tja0tbXB4XCgoKDAcHWF7w+aY043Mkq/ji9zwyPJOj4/xMPW1tZw8+ZNXLp0CdPT0/D7/VhYWFDusDqDLC/b0dFSFS5fdCBR97xu7rn8BaB4e25uropYX1dXh/b2duUdR4Ed5am/9GQDjMHYJG1L7wDAyD/53NP4iBYBI3im77jRVhqAeX/kPMh51fWDG2P4dzKehjTSyD3J+2KmR0j5wGXh6uoqIpEIvF6vuiZCXnVkGOCu2OmCfaXCBrq/dUWHQ8zoUT6bCkSnout0/dsuhjJ7Lh22kuUXGkBzN0aziZcMNJOSanFkkYxKAoZM3su0rXRFRxzp+sHfzXQDZdoPszp086sDLNspt/OO7KcONJu1k2qOJD0Sk6QTslgshuXlZUOAl0AggOLiYszOzmJ8fBxWqxUFBQUoKSlBSUkJHA6HSpnD+07tEZPPpHBhw5k+Zx5kaaYiBREfI6cxPi/yVJ3/TdEodUKdhI3MfShdxUjISRcoOkWyWq3Y2NiA2+2G3W5XaU6CwSDC4TAWFhYwMDCgwDSPlJ4pI03HdzLdz2agmr4jIB2LxRAKhTA/P4/c3FwMDg6qkzqKVsyDhul4guRPfF5TjY1HWa6trVWpx2ge5+bm4PP5lDCXCkqq+eEK+NraGoLBIOLxOFZWVvDcc8+hvb1dGZfkfXqqR7r50alneXk59uzZA4vl1sn0yy+/rE6PzE6KuMumxWLB2bNn4fF40N7ejsbGRq0iQLRbXV2NXbt2YXx8HGfPnjWAHz4X8Xgcg4ODyjXS4XAomUagk05UKysrUVpaCq/Xa+grpUabmZnB2NgYGhsb4XA4lLKZl5cHh8OB+vp6df+Nn2AvLy8jEAjA6XSqAGC0p8gFWnqL0Mk3v29ICq6MzM33qjzBB265QYdCoSR5RWvHT5FpXebn55XngwRPFG+CRzinflMAHbp+IPkTnb41NDQY0qpxsLC5uYmlpSVcv35d3S+U97dp/egu+ZEjR9Rdep27K28nGAxiZmYG586dw8jIiAL6OmOPnK+cnBxUVVWhsbERbW1taG5uNpzc8ndkkbyeMgZcv34do6Oj6p4vRbaXHgNmvFKOkffZYrll8CgvL0dlZaXqt8fjgcfjUeOS/IkDJjO9gc8pHxcvEvwQ//f5fPD5fJifn8fo6CiGh4cRCAQM0bSJX5nNwe3onenmTwcyzHi2lLc0Z7QPi4qKlFGS0ktRajCPx2OIiZCqHV7kfuKASa6ZmUzgn3NjvBkN83e4TkD94XWk08d1OpVsi35zA7NOn+VzwGWhru8ka8jLgaLYk14Si8UQDAYRCATU55wn8EMAvg66YrZfUunfur7fTtHxAt0z6XhJpnsqE5p9q+UXGkBbrVYAelc8eQpCG0ge43PC4CdrZgSV6rtMS6ZgVfecTki8laKrY7vA4e3YXGZtpFO83652ZP3pBHM68CwNKYmEMZDW2tqaQTFYWFhAdnY2rl+/bjiZbmlpQWNjI2pqalBXV6dOhEgQSkunFATSEsyfIYVQKhtc2FGRJ9JyT/A54YKDzwGfOwLQ/HSH6tIBaOqTri7AGE2c10OBaKxWK2pra9HZ2YnV1VWVq5SE08rKioqcKiNN8/7x9dUVnbDVgS1JM6naIQFMrpTxeBzBYBDT09MoKipCa2sr3vOe96jTJ35HWtcGt9onEgmDsYT3U6e0WCwWBQwoxVB1dTVeeOEFXLlyRaVyotN9vn7p9hbwJg2S8hCNRvG1r30N+/fvx5133qnSx9EYOT/m3hDUJp2at7S0oKysDO3t7RgZGcHk5GQSCKP+0NzTXPv9fpw9exY2mw2rq6uoqqoyRJsmwEnFbrejq6sLa2tr6O/vV0FcpLK9traGGzduIB6P44EHHkBjY6PhBJfm2+FwoKamBvX19SqIFNVDJxALCwu4evUqSkpKYLfb1djp+siuXbuwuLiIYDCo2ifX1JmZGZSVlcHtdhtOdTgtxeNx9d7GxobKIS09RyTdcVriKa6orqWlpaQ0VAQGKZ4ErSuBnImJCTUPcq0bGxtRXV2t5pHrBIFAANPT0+okXyr8dPe5uroapaWlBlqg8ZHnwKuvvopgMJgUxIzGR2C8vLwcd999NzwejyELgtwTFsutk/WJiQl0d3fj5MmTWFlZSfIakHyEeBzFhdixYwcOHTqEgwcPGoK2SRBhplzS+pLHw09+8hPMzMxgaWnJcNJu5kZuBvL5PHO3//LycnR2dmLfvn3Yt2+fISI8B6g6XsTliFlf+J6TV5647FldXVXxJ27cuIGenh4VtI0yPHD3eT6nvGQC1t6uoqMjaUym+SZ6zMvLg91uR2NjI3bt2gWPxwO32204ZebXHkhH2I7epTuJ5jJbylYzXVKuIZ9XfrosdRHu8kx0RPuXF76WUt+RAFryblmn2fzQexzk8rkhL0XylBsdHUUwGEQoFFLGuc3NTUOsB16HHH8q3T3dd+nWVuoy28EAunmR85pO37/dsfE+pNLbeT8zxXW/0AD6vvvug9VqRX5+vuFegNfrVZfoKXop37RyU9Jn8q4d/Q0kW1BlyZTBZGKFSffudgGuToHPBACYtZfJRttOSVf/zwM0m5V0G1VXMgFXcgzE2Olv/nksFlOfTU5OqsBZBASLiopQUVGBY8eOqZMp7h7J3a24gkuKKRcwkoFxoUvfbW1tqT2mUyCk6xIV6RrH3QPpZEnOl04pkafSJCRJQHIBRQqlnHNy9c7OzobNZkNJSQkaGxuxf/9+LC8vIxQK4cKFC7hy5Qp8Pp8hHQ0XWFyQp1IWM/2cFynEJF3ROpInA92TDgQCuH79OlwuF3bs2IH9+/fj4YcfhsPhMAAJrhzR+gPGyKXU17y8PANAIWMG0Qe/69rc3IwPfvCDePzxxzE7O4uvfOUrGBgYwOTkpDrpk1Z4s/HzMZPSOj8/jzfeeAPd3d148cUX8cEPfhAHDhxAfX19St5BtGCxWJRRyul04vOf/7yKdH7x4kXtCR9X0On3yy+/jNXVVdjtdhw7dixJXtAc5ubmoqGhAXa7HZFIBD/60Y9w8+ZNw+kv1RmNRjE2Noa//uu/xqc+9Sns3r0bNptN9WNr61Z08YcffhgejwcDAwMqzzCV9fV1BINBfOMb30BTUxM8Ho9a59zcXBQXF+Pxxx+H1+vF2NiYijxN985Pnz6tAsbR2EnhLi0thcPhQDgcVnOytraGiYkJFTyRgHphYaFhX3PaoWBpdKpOY6OTFakE031LUuB526+99hpu3Lih7kjS3Ofn5+O+++5DZ2engb/SWF988UVcuHAhKecz0bvH48G/+3f/DtXV1dorI2tra+jt7cXVq1dx9uxZlfOb10MGJgpk9xu/8RsoKytTY9Z5CZGC/P3vfx9Xr17F4OCgUp6lnsLbIb5WWFiIxsZGnDhxAocOHYLD4VDGCsnbqfDPOS0lEgm8/PLL6Ovrw/Xr19Xda3k9g9aP90nXDpcLRFcFBQVwu93YsWMH3vOe96CkpMQQVZvqloEkuReAnD/+HdUjAYesj3jpwsICTp48iZGREQwPD2NlZUUFSJQxE+RapFLIU/H8TPUMXo9OrunmnXt2URyFqqoq3HfffUpXkKnrpJcJN6hyepMynesXxONJ1+AB+nh8Cq5f0LrQZ5y+uKzip8nSCCVjgfBCfTBbC93a8lN3urIhD+RIl5IGJTrc4PKO3icDjc/nw+zsLObn5zE9Pa3kD4FpnYcD54NUrzxpNpOF6ehMp2eYPZPuM9m+jnfx9zPFQ9vVyf9vlV9oAG2z2eBwOAy5UgGgpaVFndbwkxDuprO5uYlIJILl5WWlQJMVMh6PGzYukHwymc5ikSnRvhUgnWnZjqLPGebttrfdwoWJ2WbTlbcKrLczL2bv6QCgTlGR/5vNLwkg+owHeMnJyUFOTg4CgQC8Xi8CgQBsNps6DczJyVEum1VVVSgtLUV5ebkhDQ+gt7ySkNO5zPF3SDByuudgnTNNzhxJSNL/vH4uKDnDpZMV/hnNDX+f+sA/5yCXAxwubHNyclBaWoqioiKVV7SzsxPRaBQrKysqCq7X61X5YjNN+5BJ0dGCpC2d+xcH0ySg19fXVeqKqakp9PX1wW63o7i4GC0tLejq6oLT6VSnk7JNvr68H6lOpvl9Q1LabTYb3v/+92N+fh5+vx/Xr1/HwMAAxsfHVaAlnSLKC19jrkisra1haGgIzzzzDM6fP489e/bgnnvuUZGS+fzolFzy2qioqMADDzyAtrY23HXXXfjhD3+ogrDQ85ze6P/l5WX09vZifX0dU1NTOHjwIBobGw20TbScl5eHkpIS3HXXXcjPz0dPTw+ef/55g4JEa7eysoKxsTF873vfw/T0NB5//PGkk2in04nW1lZ84AMfwLPPPqtc5Wl+1tfXEQgEMDs7C5/Ph/LycmWwysrKgtvtRn19PRobGzE4OGhw4x4eHsaePXsQj8dhtVqVEpmbm4umpibMz89jdnZWzcf6+jq8Xq86keTKHfeK4T90Es55xNbWljJ08zXPzs5GTU2NuttPz1OasZmZGYRCITWG7Oxs2O127NixA5WVlXA4HIb129zcVPs4EAgk3ZvOzc1FR0cHOjs70dTUpFJz8b0Zj8dx9epVnDx5Ejdu3FABtIheiL/k5ubC7XbjxIkTKkcu572cZ9G+nZ2dxdWrV3HmzBkVNTcVeCajhdVqxc6dO9HV1YW6ujrU19erXLySb/DxcLd7+unv78fMzAwmJydx8+ZNBAIBLC4uJt35TLVvdfyd1t5ut8PlcuHQoUNwOp0oLi5WXg90+smLNOjRWpJRjIMqLs8IiMi9D9ySpZTC59y5c1hcXFT0NzU1haWlJYTD4SQvpFQ8PpUemCnAyETnkEBDgl/K/FFTU6P2TmFhoboGYbfbVaYKHimf0wPNH/+M6yJcztK887mXBhAOIKX7NrXNx077iXsg8Od0eikZdjmfSKfb6uaVFw7QJR3oZD59T7FKotEofD6f8mijPUR4hDAHpa3k9ZodUkhdRqcv68ab6nMpJ1MV3Tyle1/nwZdJ3Zn0+60UM0PD7ZRfaACdl5enLLDknsIZBC2ctKCS0AiFQspVwu/3K8sjpQuhdyhUPIFys4v60iIkSzrQbUakurId4t9u0YHAVETGmbGZgJEWfd0zqT43U4pT9TGTDZduTdL1Vfc8Z3K6OUk1Fiko+d8UkMxisWBxcRE+n08BXqJ7OmVrbGxEVVUV6uvrleAkNz863eHBmDiIAqBVwLhQySSyM/3me1HOdyrAw5+TwksCZRLQElhLocqVS1LGtra2YLPZFEghS3AkEsHc3BzGx8cRi8UQiUSwsrKiDG/cvVL+6GguE2GnA9OplDZqi/ocjUZVoDo6fdi/fz8SiQRqampULlUeTVXSmqQFAki8f/xEiQAjnS7dcccdSpmoqKhQJx50uiM9gszGKsdJCsj58+dx8+ZNeL1elJaWoqGhQbXDQT2nG95fm82GnTt3oqGhAW1tbQrA8FNi+X4iccvNc3p6GouLi4jFYirVS3l5uWEuCIAWFhaiublZGbX6+vowPT2tXEIB413rc+fOqfzQNTU1BqMwucvfe++9uHjxIqLRKJaWllQf6TR7fHwcNTU1KCsrU3NHALO2thbNzc0YHh42AHgCltFo1JCaJjs7G7W1tRgdHTXMKclOnraJxqO750w8ilzuadxEszwwGvWXIi/TupE7fSAQwMLCgiF/c1bWraBnO3bsgMvlSkpdRSfmwWAQ0WjUcJKTlXUrWnVzczP27t2r7ilz2ltfX0c4HMbVq1fR29uLyclJQ/o2eo5yXbe1teHIkSNoaWlBYWGhdg/T+H0+H4aGhnDu3DkMDw8rI51OZnDA73Q6VYC4o0ePqlzVxM9kUDMOTqg/lP4mEAigt7cXQ0NDGBgYMETXll57sk/ybw7qyGBFuZurqqpw1113weVyqeBgZmnPdG3QvHHDEAfX3NWfxkpzEYvFsLS0hGg0ioWFBZV3nmIhSG8j3h4VOQdvRfHWycFUha8/GYLz8vJUnmybzYbi4mK0tbWhpaVFGYRlADC+7+U4zOQTN1JIwC37KMfGgXC6d8yAtZwf6g89lyoKt1yzTEC0NBoQTdEPyX2KE0CGsFgshvn5eXW9imiLZAr/oT7p5sYMKGcCmuX3mei+us90eshbfV9HZ5limEz0Q9luJv2lz293L/9CA2jgTfdOzkjlSRi5mPGSlZWl7jmRewVfBH4nhgJKUPAe2hhcEZIErnOvkAqh/J/+5u9QMQNiZsWs7lQEqwNMOgBl9o7scybt6L7T1ZPq+XR9TMU032p/zUomfcq0frN1525R8Xhc/e33+zEyMqLonoSry+VCZ2enyuVIgVoAY7oETr+0l3SpZEgx5v2SVkdeP39fJ9R1wp27eHFLNu1z+juV4YG3xa3V/DcBNK6YkKthZ2cnHnjgASwsLGBubg6nT59Gd3e3SuXCTwJ1hjXdGsq+Zlr4nPJ2uFJBQJOUxampKbz88stoaGjAHXfcgaeeekrl8eRAmgyLvC2uQPP+8vtynFYIKFFao/vvvx933nknvF4v/uEf/gH9/f0IBoPKIGnGOyTP4vNK0UlDoRBu3LiBQ4cO4bHHHsPdd9+tAIvOtY76CEDdF6+pqcGnPvUp/OxnP8M//dM/we/3J903o9/U383NTVy+fBmhUAi9vb34vd/7PWxtbSlAQKCATobq6+sVuP/c5z6ncjJTvTTnPp8P3d3d+Nd//Vf83u/9nvIcoT3gcDjQ1taGQ4cOYWtrC93d3YZ5WV1dxauvvop4PI7du3crAE6nlfv370dWVhZeeeUVgycWT+1E+YkTiYQ6gSZewsdPJ3UEBMmopktjRfPOr19sbGyoaM50Ykh7MTc3F7t370ZZWRksllsnmOvr61hcXMSFCxcMe47WtqysDI8//jhKSkoMxj0C+8888wwmJyeTIm9TDu99+/bhwIEDSe9ubW2pYFLPPfcclpaWDOCZGxscDgcaGhrwh3/4h3A4HMrFk9dJ67WxsYFoNIpvfvObGBgYwMzMjIrYLo1XHDhRO3fffTcOHz6MnTt3oqCgQO17aajmPJDv7Y2NDYTDYXi9Xnz1q1/FxMQEIpGINrp2OtknwTPJC7pq9NRTT6GmpkZ5ikhQSjTK10bWy4uZTOW6GP1PxqmRkRG88MIL8Pv9CkjLgxAd2DLj47o+pZsfMwCUDizqwHNxcTE8Hg9aW1tx/PhxZaQkmS/lIPF3XZE8H0ASf+K6tC5oXk5Ojnb9+BpyYxgVSes63Zn6wfcb/U38gctfWXTzL68zSXqXBig6PKMAl4uLi5ienlZAmeIV8AB7mXovmI31dnTgTHSKTPRZHQ/Zzvvb0a8zKZkA+lRFN550xp1Myi80gKaJ4EyGby7dqad0feGMgQierNKkUJaXlyedQpNrBk9g7vP5EAqFlFsQhZfnwXTMNpRuw0igzcecydxkCpx1c5ppSQee30p9mZZMGcLtbELOuHX91DGK7QhXs35K9yXdWkqAyoE1B4d0GkipEE6fPo3CwkJYrVY4nU6UlJSgoqICe/bsUalDyN2Sn0TLu40cOJHQ4cKexsHBLvV9fX1dgTc+NsnUpJCT1mZ6jwNtvm90CgHNiwT/ZCSgPtNpNZ2sFhYWwu12o66uDg8//DCi0SgWFxdx8eJFTExMKDdgfpKh2++ZKKWp6EPSI42fzwnNOQ9CMjg4CL/fj+7ublRWVqpxVFdXw2azpYzWyxUgXX9ovMRTac7oPmt+fj7+4A/+ANPT0xgaGsKLL76o7tHK0y6zsUplLpFIwOfz4cyZM5icnMTly5dx/PhxdHV1qZNUKvKeN61NTk4OioqKcPToUbhcLnzhC1/A2NiYCpJF7fI+0YnWxMSE8lZ673vfi4aGBuU+TO/QnDkcDhw6dAhPPvkkLly4kHQXl4wCFLCMwFFdXZ1a30QiAavVqvITj4yMGKJA02nyyMgIhoaG0NnZaQh25nK5UFNTg/LychVIixTaqakpXL58GYcOHVL7aGtrCy6XC0VFRQaDWCKRMKRO4R5f3AOAxsb3Jb/vt7i4aDjFJhrLz89He3u7MiDQO4uLi7h06ZLKh011ulwuVFZWory83HDnf2tryxChnK4Q0LoQyPvQhz6EtrY2Q35m4nexWAyXLl3Ciy++aDAa8D1BKZhOnDiBo0ePwul0GlLKSd69vLyM2dlZfOtb38KNGzewuLio0sDxOZbAiaIn/+7v/i5qa2vhcrmUkYQDCb53ubcNjS0Wi+H06dMYHBzE6OgoJicnDQCA03w6YMh1MG6wfeSRR1BbW4vKykqD67CZJxrRMI93wdvhPIafpkuXbjoVDIVCyqskFAphcXFRRTGmcW7H2Knry3aLziDA11h+R7SVm5sLl8uFpqYmVFVVqfgKJJMoTRmd+qfS+3T95oZo+q3rl+SDUhcgfUHKXhlYkOhUGmp0bci/uQ4g+yFlPe+/rj4un6WMiUajiEQiymi+sLCggkGSxwKPiG3mlSr7LksmdGSmV99ufbdbtlO3mRHEbD10n+sMA5nuVbPPM5m37YzzFxpAU0kFXswAHGcQcpH4nVPdotMmI1BNQNrlciEcDmNlZcUQ1ZcYNqUR4SHqyeIr3aVke7x/OqahmxM+vkzmJVU7/L10Ama7JVOAr1urdM8DqU+DzeZhO0YHs5Kqr5l8p/tf951cYw6oLBajixOlraE7jna7HU6nE263GysrK+rulN1uV39TqgseAIgKB+6yTxKwyGfkZ3LOt0Nrsg/S7UwCGilcdc/x33SyWFhYqFKAxONxhMNhZGdno6qqCl6vF16vV3mpRCKRJEUtlXKT6bjNinxHuiKSGyzdI52ZmUFhYaFy+a2pqVF3ElPtLx2Al259ElBlZWWhra0NbrcbLpcLq6urGBoawuzsLGZmZrQnQnwe+NjkfM7PzytwZLFYEA6HsWvXLpSWlhpORLmSx0Eb3Vvds2cPjh8/juLiYgwNDak8w0SrHJhRCqhEIoFr166hoaEBa2tr6OzsNIB3mgPKEb1v3z6srq7C5/NhfHzcEKSIgPn8/DyuXLmC/Px8FcSL02xVVRWam5vR0dGB7u5uw16KxWLw+/24evWqiupN8ozS4jU3N6uUPPTuwsICJiYmVMwF6j/do+SfJRIJg2GY7xl5lULSAc375uam4TSXCgFbl8uFwsJC1SZFd5+bmzOcPmdlZanUTfxKCq231+vFjRs31F6k+rKzs9VVl5aWFpXfm8vgra0t9Pf348aNG2pupHGPeML+/fuxa9cuNDU1KYMC3+/09/LyMoaHhzEwMIDr168rI4I88ZJz53A4UFFRgZaWFpXyjMbL+2PmQQIAKysrWFhYwOTkJHp6ejAyMoLZ2VnlhioNfmZFri2Be7fbjZKSElRXV6OrqwuVlZVwOp0qYBXfh7yPvN5UbfI1pz1MnxOgGRkZQSgUUoEVJycnta60nH9sF4hkwp/NntHJKTmX5PpeWVkJu90Oh8MBl8uFuro6VFRUoLq62hDRXqaOSzeWRCI59WMmJdVz3Eguxy+NA5xO+fxznUXSoU5307XFxyj7LdeaDsJWV1eVvk76Od1TXlhYgN/vV3eb5bUtuW91/ZXfp5Otur/fjufeTt08FeCVuih/JtO+vp0lU75yO+WXAkBzKyv/n29YnXWLg0y++aUll74nMMJP5kjIWywWVFdXJ7kacsU1HA5jaWlJKdnhcBihUMiQW1EKMWnVkgRqtpF0oEb3OS+pwOV2AF+m9WfSVibMZzvCLB0D0xUzq7lsI1WfzMCA7ntZj1l/5Zgk6CC65EBSRsNcWlrC3NwcsrKy0N3drVLHUHqk6upqNDc3o6GhQUW85xZlEoZcEaD2+HN0csADLhF981NmPpc6ASx/dPPBv+d7nM+zGfimv3Nzcw0nHdJwkJeXp8B0RUWFCk4zOjqqcrjevHlTWajpR+5jPj+86PaD/DxV4e+QAYWUR35XenBwEGVlZWhoaMBDDz2Eu+66S7la6pRW3g8Oqnj9nN7oN0UmLiwsVOmkhoeHcfr0abz00kvqNFoaHMyUI/qMQM36+jr6+vowNTWFM2fO4CMf+QiOHDkCt9ttiIDM+8nphbwufvM3fxOnTp3CyZMnEQwG1Ukrn1Pi7QR8JiYm8N3vfhczMzOorq5WAf2oLXJpt1gsOHDgAHJzc7GysgK/32+IqE3jWF5exgsvvKDSMvFcvltbW+rO7iOPPIKhoSGDMkoBvn7605/innvugd1uV4av/Px8uFwuHD16VLnsktwJBAIYGxvD+vq6ej6RSKCgoECdHlIMBuoHGYR57mp5LQJIvq5BvIDSQHEaoxO34uJiw33qaDSKUCiEpaUlg9Kak5ODnTt3Yv/+/WotSU4nEgkMDAzg9ddfV4FB6fvc3FzU1dUpepdB2xKJBOLxOJ599lmMjIyoQGecZsjLoqSkBO9///tRWVkJm82WJLeJR66trcHr9eLFF1/EpUuXknI864AGgamamhocOXIEDzzwAFwul2Ge+Z7kSiyni9XVVczOzuLatWt46aWXDKexUscwO8Hjn3GwRyf5e/fuxY4dO3DgwAEVAI7WX9YleQT/XHd6lS4Q2/LyMvx+P77zne/A5/MhHA4bvCR0BxRm4DmTkooPcy9I/rxuPmnPcNovKChAaWkp7r//fuUxQh5C3EhF/ILqJx4t95oEkOQ1QoX6yt+X79Bam7mBU3/4eLlcT2VA4evCjQEcqKbSTc2KXGdJCxTbIBAIYGRkRLn3Ly0tKR6Vin7k32btmn1v9r4sOl3/rRYz/UKW7fQv1fPbHYPkhdtpy+w9MwzzVjDNLzSAlgyZFHnObDkY1p2ecUGUyirHFUb6Tt41ycvLMyjdfMO5XC6UlZVhY2MDO3bsSFLG6L51JBJRgc18Ph+CwaCyhnF3N7NNyhmSHEsqAJcK8OnqeDtKJkxQ1/dUm8PMuLCdNmXZDuA1+14HAjJtx0zZSNVXCSZ5fWaCnVw6s7Ky4Pf7MTExoe4D00lUUVEROjs70dbWBo/Hg/LyclitVgMwpsIVuM3NTYNbIxfy/G6znAdSPukzcsUl107qL7+jLU+JpNLL92UqkM4NANw1jv+/ubmplB673Y7S0lJ0dHRgdXVV5XW9efMment70d/fr5Q6bizTGRHM1pX3Vfed/Jzohxs3yJBCHjCRSAQzMzPo6+vD//k//wddXV247777cMcdd6CwsDCJbwJGl0uugEklXscv6Z757t270dDQgIcffhh9fX148cUXce3aNczPzxuUJ7Mx0ve0DgTqwuEw/u7v/g4dHR04fPgwPvShDxnuXnL645Hns7Ky4HA4cOzYMXR0dGDXrl34zne+g8HBwSQABbypwEYiEUxOTiIajWJkZAR/+qd/qtziuXGXgnnt3r0bFRUVWFpaQnd3N8bHx1XfaNzBYBA/+9nPMDc3h7/6q79CUVGRonEAqK6uxr333ouf/vSnGBkZQTAYVHOwvLyMsbExXLt2DZubm6ivr1cAnu7PvvLKK/B6vao9mreZmRnU1NTAbrerNSMXfArcRcro8vKy8lqhOeWnovQZjZ0+p3vXdH+QDDxZWVnqXjo/xd3a2lL7h9+Xpj1aX1+PlpYWRde0LgMDAxgaGsLU1JTBPTonJwfV1dXYt28fHnjgAYOyTmV6ehovv/wybty4oU7KJbB0OBw4cOAAnnzySdTU1BgAP6f7tbU1dfL79NNPK8MJv0vN9wrxKfKMOHDgAB5++GGUl5fDbrcbQAbRIecjvI7l5WV4vV688sor6O3tRTAYNHgfcLDP+y4LB/W0ng6HAy0tLdi5cyeOHDmi8rNbrVYDCOM8mKf54QBQtsujK2dlZSWlbSPwMzIygpMnT6oYNRRfQXctRAI3yfvT8d5U8jfVnNHfXM+kvylXuMfjwZ49e1BbW6uuUVFKOJ6NQvad7h7LGA/UJv9feidQHRzw60Ay7UO+h/jY+BqZAV7d3NNnMj2XTsfd2NhQPIzLtUQiOUe4BLwrKyuIRqOYnp5WEfwXFhaUwZZOoblHjW5vcLlG/UqnB5qV26G/t1rM9EuzMaTTOXSgNJ3ea/a5rC8dP9KNI1XJpE+3U36hAbSc5FRAgT4zA4WSIQB6SxkXCnRHktcnwbtsiyzKXOEE3gxSEIvFUF5ejlgshsbGRkSjUXXvgty9KeJfJBJBLBZT1lZyFSehJBluJgA6U8I1e04yG7NituHStUttpGI6nMlvdyPKvmXynJmAlUDCrGxnQ+vmN9U4U82P/Ju/y4060WhUnaLRycX09DSKiorgdDphs9mUK3hlZaVy/aaATqQESGs4tZfpPiWhyPentLpT3ZJh8jrMnqG+UpvSPVLuEa4QUX15eXnKkLa+vg6r1aruTe/bt0/dxevt7UUoFEq6wqHrUzr6kc/r1l83H1xJICUiHA6rAE/Dw8OoqqpCZWUlduzYgYKCAmUokcqS5J9cQdL1jyLGU7RqmrfW1la88cYbGB8fN3jmSOWF10l94MHcfD4fAKgT1XvuuUdFpuV9Jtok3k0gLisrC3v37sXKygrq6upw6tQpLC4uJuWMpt/xeByLi4tIJBL4wQ9+gHe84x04ePBgUkYIUprLyspw7733qgwQ5A5OdfLgR2+88QYOHjyIqqoq1ee8vDw4nU7cc889sFgshrzBm5u3UmNduHABubm5qK6uNqyP3W5HZWUl5ubmMDk5qd6Jx+MYGhpCUVERbDab6ndeXh7sdruK+k19JLdHLhN1hjQOnrm88/v96mSY3i8uLkZ9fb3BAL2xsYGxsTFMTEwYgG52djaKi4sNJ/40lvX1dZw7dw5jY2PqlJvWOD8/H0ePHsXOnTtRWFiojO+JxK0TsNnZWdy8eRM9PT3KbVMC3NzcXNxxxx3Yt28famtrDXevJW3Ozc1hYGAAV69ehdfrVfeNzRRa2hOdnZ1obGzE7t274fF4DK70nO8Q7+BAioKEXblyBcPDw7h+/bpKPaY7dZZ94H/zn/z8fDidTtTW1ioPpcrKSlRUVGjTUUmlWAISM75GII7zEMp7f/PmTfj9fpWJ4ubNm4hGo4jH40mHDGZ8npfbVah1cpOPi+8Lvq5utxulpaUoKytTaRSLiopQVVWlvH/4wY+ur3xeeSDIVLqRvF5BhctPi8WSBLTNdAX+Pn+er7PZ3Jqd6PK5lHLWTDbyAF/RaBTBYBCRSARLS0vqumQ8HsfS0pLy+JRen9JgK9vQ/db1nRez73Rg1Oz9THVWqfNynppJPzLVJ836nQkeyKTId9MZFzKpO9245Gfb4Qe/0ACaik4B1zFnuSBc8eXfccZHm1xay4ghSqsvLxwgS9cYzlRJSUkkErDb7YYNQMyINjrd9aF7PqFQSAmTWCxmECLcDYWCCXHGpnPv2S4B0bu6tdiO0p/JM6n6ZrbRpFD5v1HMgMx252a7fdaBCzOhmm5OOUMmiz9wi25DoRBu3rypTqdsNpsK5LN3715UVFSoXJ+Uao7uopKSTfTGFUGzMen2MQdo0mXOTHBzmpfPyLWRHinyGSryGeBNr5etrVvpsTweD3bs2IHV1VXMz89jYmICa2tr6u5vPB5XSjWPhG1Gu7er8Onog/MlUkLIQHL58mV0dHRgx44dKs0X5Ryn9+kEngtvMwMOrTfwZnR1AoMOhwMejwednZ0qrRG5YsbjcVPXTjkWqntrawszMzMIh8OYn5+H2+1GU1MTPB6PIRc2AQ4O8ggMNTc3w263o7q6Gl6vF4ODgyp/p+TRZHRYX1/Hc889B6vVisbGRlRUVCTRFgVaOnr0KAYHBzEyMqLuW1PZ3NxUp4cnT55UIIXkBd29PXbsGObm5jA0NKSAIhm/uru7UVFRgTvvvNOgYBcUFKC+vh5er1cB6K2tLcTjcQwMDKC1tRUej0f1l0DT3NycAdhEo1EsLy8bxqbbIxTciH+/ubmJ+fl5rK2tqec4gOZgeG1tDVNTU5ienlaKLvER7gFD/aLT8YsXL2J6etrAu4jW7rjjDtTV1Rk8XAhAj42N4caNG+oKhjx5ptgRR48eRXt7u4r8zWmQ/t7Y2MDIyAguX76Ms2fPKpd9nZcYedLk5+ejoqICBw4cwM6dO9HY2GjYY9xjgtM8GZA2NjawurqKyclJnDlzBv39/VheXjbN6SzXTccL+Yl4XV0d9uzZg8OHDxuiP/M+SX1H7lFdMVOYycuD9vKZM2cwOjqKUCiEWCymTacm96euZKrrpJPbuvnjhg5Kd5efn4/i4mK0traivr4ezc3NqKysNABgboAyi4Yu+azUM/l88nckqKf1oLXSyTI5V2Zu3DrvnFQGAC7/uRxPNad8PPxaFHlSxWIxBINBTE5Owu/3q5zq3A2bG34l2Nf1M13ZLkCU72yH/qQs5XhFYhj5fqbtSJq53bpkSaeDm7W1nfrlO6l0ke3q4mbllwJAA8kTxzcoAUcSUKlctYE30wNRXZzpyA3PATXwpvLGBYrFYjEILnqe/9Cz0pVMjpHqq6mpScqnSgIkkUhgcXER4XAYCwsLmJ2dxeLiIoLBIILBINbW1gxpZPgPnz/6m8ZFfZBAWzeHcrPr1ioTYHs7wJO3aWZlejtLOsagA61mz7wdfUwFiFM9y/vBQZzFYswDTEYc4NYeWFhYwMzMDK5fv4433nhDnSZarVa0traitrYW7e3taG5uhs1mU2lXOMPmCrDZWnElXBp/uBt4KuGrM3jpgDdXSqh+njJPt4a0P7lVmxRPAOpueWNjIw4ePIjl5WUEg0GMj4/jhRdewNTUFObn59XdWtrbOsCvW8Pt7A1ODzzIHCkZBOoDgQAuXLiA73//+2hsbMSOHTvwwAMPoKOjA1arFbm5uUlXDHTpTOS8cR5KnzmdTjgcDvzRH/0RfD4frl27hmeffRbd3d2GvNtyDFJxo98EvqLRKD7zmc+go6MDBw4cwAc/+EHY7XZl3OH9ojrptKiyshIlJSXo6urC008/je7ubvT19am54u1Sm7Ozs3j22WcxPDyM//pf/yuKiorUnXIOSJxOJ5588kk0NTXhL/7iL9QYiU7JzfbVV1/F/v370djYCJfLZQjI1dDQgEOHDiESieCHP/yhIdXU3NwchoeH0dfXh0OHDqm7zdnZ2bjn/z25vnjxour78vIyzpw5g4MHD6KxsRH5+fnIy8tDaWkp2traMDIyoowHW1u30jv5fD50dHSouZN70GJ58345d3GmE2h+Bzo7OxulpaXo7OxU3l2bm7fSUPl8PiwuLqr9QO7w73rXu9DQ0KBSRm1tbSEQCODatWuYm5sznOxnZWWpu6V0t5y72AO3Tjl/8IMfoLe3VwWm4/uLQOSxY8ewc+dOlJWVqbapHnpnZWUFc3Nz+Ld/+zfMzc0pl1FZ6L28vDyUlJSgvr4en/jEJ1S+ZBlZmfosvVaysrKwsrKiTrvfeOMNLC0tGQzqkg/o+sLplBsMWlpa8N73vhc1NTXKa4S769M+IH7OjTacP8h3dIVoLBqNYn5+Hl/5yldU3Bh+emgGmKXMTWWkNSs6Hm/2HedvpGcWFBTA4XCgs7MTnZ2dqKqqQnl5OQoLC9Ve5PKC9o9OHvE55Hqi1CN5ujnOo6T8l27O9BkAgzGIxwLhegA9T/VK3ZUfTkmAT3uFZD43qMv9SJ9Ru+TpMzY2hrm5OczNzWF+ft6QQooOjXSxK6QclfNL40ylg6cyDNAzmZR09CjrMduvumel3psOhJu1rxtXOn1jO3OR6VylA8Kp5mq7uvR2nv+FBtBykkgxIYseZ2qSKXEgSEXma+T10t/8N1fi+f8yUBJgFBq6Rac+kuIgwbZ0jSImzcfDBZbValXpt9ra2pQbOI+eyq22q6uriEQiWF5eVkKLXF3Ieq0L1W/mhsMZk464JYAyA3e6jSOV3UyZn5zz2ynp6r+dNtIx5FSf0edmTC3dXJitG/9e9xnfA/wu8vr6ukGJCIfDGBgYwLlz59SJNAUio0jfVVVV2LFjh3L9pr3C9zD1je8dndFBAmWd6xdXdvm+5H/z+eS0SvVKMC/7IV3q+B4mBdNms6GkpESlJolGo2rPzc3NYfr/R95/Bkl+Hvfh+Gdn84Tdybs7m3O4272ccDjgEA8EAZAAQYiiklmULJUplyW9kG25ylWucjmWy1YoyS5ZIopBZoIIkCAOgUS4Ay7f7d1tznl3dnLYnOb/4qof9PQ939lZgPr9DfmpmpqZb3jy092f7n76mZ3F5cuXEY/HldulziqxG8A2Gl/eRp4XF84JTK+trWF1dVUpSjweD+x2O7xeL5599lkVNVnuieY0kisuucWX5hFdt1gsag9xdXW12rs2NTWFt99+W+0fJXrE54IE0/Q/Eomgt7dXHfPU2NiI5uZmPP7448oiLd8nekwKn+effx4dHR24desWzp8/r3XFTaXuWQD9fj/W19fxH//jf8Rjjz2Gjo4ONDQ0pI2FyWRSlsZ/9a/+FX7wgx9gdHQUyWRS1X1rawvJZBKvvfYa5ubm8LWvfQ0lJSUq4NDOzg7279+PgoICDAwMYGZmRu3XXltbQ19fH0wmk4rcTN4RLpdLWW8JZG5vb6stBrFYDBUVFdjZuXeUVVdXF37+85+ngbFwOIxIJHLfvOf8LycnRynUqH9oHtO8pjlnNpuVJwvNwaWlJVy6dAnhcFgJxDRHaN+o3W5XY0BbD86fP592XnRubi6qqqqwf/9+PP7446ovaA88teeVV17BxMQEVldX75MBCgsLcerUKezbtw8HDx5Ukbt5IsXH7du3MTo6irt378Lv96vj2nRgkubYF7/4RVRXV6OsrAxut1sp+/k6kSBge3sbyWQSfr8fPT09GBsbw+LiIkKhEKLR6H1Rg/l65+uGy0pUH6vVihMnTqC8vBx2u125bkuLP71P9aR1yfPVWfnI0EBzYmtrC6FQCIuLi+jp6VHHey0tLWF8fDxtz6q0pMu1y1O2PJHLiZnuSSVDfn4+HA4H6uvr4fV64fP5YLPZlALKZrOp/eGktOMWaqJhkm/o6KOkpZL2SUAsQTbvM51CRSfXcaMRT9ybiIw5VI5UwNNzRtZeyiORSCCZTCIajWJhYUEdB0veE5ubm2pOEE+SbvtybmRSSMiULR/NlDLJtJ80P0q7zeW9AGT+fKZ5v1uf/X+RpDyWaQ3vte/3IjPL9JkG0DJxAsQJupHGUzd5dB2/Fy0NJ1i6Z6luOkGWPwN87Patc4WSE4kEdGJI5BIOAA6HI+09Epbo2s7OjtpLTdFOQ6GQctGjoCN8rwl39+Sup0S8dgPWsn+MQLbR/0ygare8dXkYJfmMDrTvlmQ7dmvbP1QyUkjs9t9ojvN7JCRxDTUdB0Fzno6CItdvEixqamqwtrYGp9OpzrekICr8uBZeJq+fBJHZKAWM/ss2ZlrP9L5R2VI44kHUgI9dhR0OB7xer1pDBFQnJyexsbGh1uLS0hJCoVDaOaZGrnK6tmf7jBTIcnJylFtoNBrF7OwsiouLUVpaivLycpSVlcHn88HpdCpQxgO+8Lw44NBZhYjekQeD1+tFc3Mz5ubmMDY2hkgkgtnZWUQiESwuLqYJ60ZtoL7a2NhALBaD3+/H/Pw8QqEQPB4PmpublfJGJpq3BELJg2JqagpTU1P3RZIGPna/3tjYwMWLF2G1WrG9va1ACBd+LRYLCgoK8OCDD2J4eBhbW1sYHBxUwDyVuhfga3BwENvb2zhx4gQ6OztRUlKilMVutxsAcODAASQSCQWINzc31XE+i4uLKhJ6KnVPwVpSUgKHw6GOMUqlUio6eDAYREVFBVKplFJk8KCZOzs7SCQSSCQSqt3EgyTQyM/PT4sHQoIwgUrqZ7PZDKvVqvZfkxKgt7c37bxrk8kEp9OJ2tpalJWVqbx3du4dWzU5OYnR0VFlwad6kQdFXV2d8gqhdwOBACYmJnD16lW1153Pgfz8fFRXV6OzsxNdXV2or6+/75hL6vOZmRn09vZiYGDA0JJNNJHOdq6oqMCRI0dQWVmpzvWlvLk1j6+lnZ1751xPTk5icnIS3d3dGB4exsrKivIy42tBl7isRPFZPB4PHA4HPB4PDh06BJ/Ph9LSUuTn5993dJYOFPOkA3fUXzTnSGlPZ+7Ozc3h5s2bCIfDWFtbU23hSgPKM1s+bETzpcyQSW7jCiKKPE7zlehURUUFqqurlZJLukUbeUDpwPluSfIe3idczpAAmhIHxkagmntT6uis7E9dH8o60fqnuAs0xnyfcigUwszMjNrCwxWmRkdD8rJ0sp3so0xtMEq/DHD9SZOR/EPXdHkbycJGMo9RuZnGd7cyP+kzn7QO2QBsmUc2WECXPvMAWif8SQJCBCBT4BsAaVEfeZIMTIIHnohAyjpJt25eR+muwr919TQaeA64+T4r7k7F3UJ54BXa58bBNXdLpG8SoiORCEKhEKanpxEOh5WAzzXtUrjPBHB0AI0zByPNk65vdIBPpt0WYKbEwdUnTTIPTvQz1Yk/v5c6/7KTrh66NnD34I2NDTUPc3NzEYlEYDKZMDQ0hAsXLqhAZWVlZaitrUVdXR0OHDiQFn0W+BhkcYGaXNeAj9cl3y9Jz+XkpGvHKWVaZ3zd820cOuCsoxGUOGDkgAK4595N+VA07/b2dpw+fVpFR+7v78ebb76JUCiEZDKZFm2WC5X0nWlOSQHSaAy50ErlEJgmy9fY2BgqKirQ2NiIL37xi9i3b58CapmEQZ1bKfUT9yYi4NfY2IhTp07h8uXLuH79On74wx8qesPpmqQnXNgiJcXdu3cxPDyMK1eu4J/+03+KgwcPoqWl5b5o6zTmAFBUVISamho4nU5UVlbi//yf/4OPPvooLWo49Rl5+UQiEfzsZz/D0NCQsmDSET+cPzkcDnzlK19BfX09/vRP/xTRaDTNckhHpP31X/81/vW//tewWCxKQKdIvr/6q7+KqakpLC4uKvq/vr6OWCyGy5cv4/Tp0ygpKQEAZTVra2tTgQFTqXvHHQ0NDcHpdKKjowOp1L090xQkingLWatjsVhaf+sitnP3bVLG8CPLaMzdbrey6lJ8kbW1NXR3dyORSKTxrcbGRpw9ezbtuLDt7W28//77uH37NlZWVtLcQQsKCvDII4/g2LFjaoxojuXm5qK7uxsffPABFhcX0xQiVF5paSm+8IUv4PDhw6ioqFDeNqRgoXZFo1H86Ec/Qk9PD0KhkLJkG4Fnu92Ojo4OnDt3Dk1NTcq9l9NNah/lQSBiZWUF3d3deOONNzA9PZ22P1+nWNPRO5p/dCSX0+nE5z//eTQ0NKCyslJ5X9AY6YKEUZIWdiPFFqdVoVAIw8PD6O3txY0bN9LO4uXymgR69JvXw4gf6wRv/q1T5EngyceM4kEcP34cbW1t8Pl8sNvtaYpeHXCW4FkHmuV1Xdt4X8i5JZPcYsj7g+opFd+SB/B73IuKe49IuillZk7LiCaFw2EMDQ1hdnYW0WgU8Xhc0QTugs37j9cxk/y1m/z3D510Y2G0HncDs0b8MxMuoP9GZexV/tXNn19G0gHjTODXaB5nyl/326isvcrRn2kAzcEuJ3JA+l4czoR0bppcyCamSxpqTkw4I+H3eP7yGV43yQgkSEylUmn7qXg9dRONA2MKxiKZFgftXPjnAJ27gwP3hCu5f4TXx+l0oqamBhsbG2nh/8nKQwfTh8NhRKNRFS2TIopnYo7ym38kQchEgHh/6YBQprQbgTBibHtJ2eRhBHJ0eemUEtk8x+tilHYDyfyZ3fqc1ohuTzXNz3g8jqmpKVy7dg1vvPGGsvrZbDZ0dXWhqqoKVVVVav8hzX8OcDmj5/ujeV2oP+Scov/8zGx6XkfAMzFGLlDx/LkCgNMBnqhtFosFLpcLjY2NeOCBB5SXSE9PD27fvo2FhQUEAoG0KNQ6QXM3Ri0Tp2eUCIDSGJKgQ27ng4ODKCsrQ0NDAw4fPoxTp04pd0be3zpFI/cykHSM9gzm5+fj4YcfRldXFx566CF873vfw+joKObm5u7b6ynnoBQ8KfL4//pf/wsHDhzAU089hYceekjVlb9LdaWtB42Njfja176GM2fO4Fvf+pY6K5jHzyBQFY/HMTg4iD/7sz9DJBLBvn370N7enqZMKigoQHl5OU6ePIn8/Hz82Z/9GUKhkLK8AEAymcTQ0BBef/11HD9+HA8++KCi7/n5+fD5fKipqcHMzAzm5uYA3JvDS0tLeP311+HxeNKOWyovL8fnP/953LlzJ83DaHR0FHa7XVkwyWW6pKREKW6Ae2czU9R2WndSMZSTk6NcWSkvCvYj90y2tbWpI6xMJhOWl5cRCoVUGbROrFYramtrcfDgQaU4W1tbQygUQm9vLyYmJhT/MplMKCoqQltbGzweD8xms5oLNAc++ugjfPTRR+qYOT5/CgoK0NraioMHD+L06dOw2WyK3vBz3XNzc/Hhhx/i2rVruHXrFhKJhIplwOcDgdXi4mLU19fjmWeeQU1NDVwul+ojCsxH9aC1QvVdWFjA1atX0dfXh8nJSaUAobWZCTxw+kN0sqioCA899BCam5tRX18Pj8ejttnw9S/XK09GwFamnZ0dxGIxLCws4Pbt2+jr60MsFkMymVRHmtHYcHDI8+cyE/2X9CITCNB96z7cIu/1etHa2oq6ujpYLBaYzWZ1rn1hYWGaUpV7Aupc2XkfSfmRK9XkGHI6xgGqkcxH71D+cq91NknyRw6EZR15fSioVyKRwMTEBObn55XHClmU6RlaS3KLoPzIelH/GQEw3RzQ9T///8tK2QDg3WS6T1sOl5v5s58m7730Uzbl7SW/vYDbbJ/dK2CW6TMNoAG95YiSnEA6IZoTJ90k0VmT+ftGGg4JNDgI5p/d3LllW2XduBAmCa20dPM6S4Fe5q0ThOibIoVKzSWAtHP1vF6vYowUJZwANrll0Tm0tJeFRyPmTJQL85KgZsO4dW0xWuB7AZl7JSyZGHu2z9N1I8aR6bm9Jh2jygaI68aEv8evczBFgHp1dRUmkwnRaFTt9zSbzVhfX8fExATKysrgcrmUuzdZbS0WS1qgMipLN3f4OqB7OhpBSW4F0Qly2dIDft+IhtFao/VmNptRWlqqjnOhPaOBQACLi4uYnp5WCiu+L0znCZLtvMj0jBR2NzY2VGC0WCymgH5ZWRm8Xi/a29vTjrqRtFnSIV3/m0wmFQ3cbDYjEAigvr5eubDyqN1GwrcE0nNzcyqq9c7ODpqamlBZWakix8s65OXlwWw2o7KyEgUFBXjsscdgtVoxPT2N2dnZNOUg0cfl5WXMzs7iypUrWFtbQ0FBARoaGtJoeFFREdxuN/bv34/jx4+jv78f4+PjKj+KRtzT0wOr1YrW1lZ4PB7VLjr6KB6PIxAIKKBLEa+npqYwPT2NhoYG5OTc23NMZz4TeEmlUlhaWlL0mmISkMU6EolgZWUFABQtJ8Cni7YNQM1h6j86RYID1dzcXFRUVMDtdqsxCgaDmJmZUXtegXvggPYJk6t3KnXPQn/79m0Eg0Gsrq6qsinY2PHjx9W+YsqfAhJdv34d09PTau85H+fq6mrs27cPhw4dgt1uT3PbTqVSit8NDAzg9u3bGB4evu/caGojrefy8nL4fD4cOXIEjY2NaUcXEU2id2je0raASCSCS5cuobe3V4FnGV2bJ660orypHiUlJUoxd+jQIVRWVsLr9aqtJdQPUolEychdWyZy94/FYmr7RSAQwMjICKamprC+vn7fXm0dMDQqJ1sgoqO3XP6hMafYFHa7XZ0o4XQ6UVVVhfLycqVc4NGzjWRMfp419YURT5S8SNeubGQTPoey6cNM7tn0LG8jHxvayre8vKz2rNPxdrSFa35+HuFwWJ0bLz2nZJuljJBJvss0F4zmhQ48G8lxewVi2Y6Z7v29AOpPK9PtJrfuZY39/ysZyVPZvmMkc+2lrZ9pAC0XtVyAcpLIs/UkQeCaQM5seP70m+5zokdavkyLiJfB86X8uOuWUZtTqZQSVjgQ5vfpP+WnE/I5AJD7miSA5km6/XChifeRy+VSfcvdtmifJ50xTNGHo9Fo2lmVfN+L1E7KwChy7HXjrwOdunHKFrTKezyP3Z7PJmUiCDpAJIWl3doq65iJSGdiTNkCMrl++HW5hqgN3O2bjmwj4YWiWpeWlqKpqQkdHR1qT25paWnakT8cLHPLLwn2sh6AXmAkgUhq30kJINcNz1OuMd2apGtEH/i+U+CeO+zW1hZsNhu8Xq86qzgSieCDDz7A4OAghoeHEY1GlZKKAIhOeONlGc0Ro/GiMaf3Keo1nSc9Pj6ODz/8EPX19di3bx/cbndaMB2iOzrQxftCls8VKs8//zxCoZA6N3pqakqBPOnWLfOm/lhZWcHY2Bj8fj/Gx8dx7tw5nD17FuXl5ffVjeYRWaILCgrwK7/yKygtLcWNGzeUNY3vzSbLYTKZxIULFxCJRJCTk6NAYF5eXlo5NTU1+PznP4/CwkL4/X4kk0lV37W1Ndy9exdFRUXYt28fSkpK1BwuKCjAiRMnYDKZcPXqVeX2vLOzo87P9Xg8qKurg8l0LyiW2+2Gx+NRigfqD9qLSIqo3NxclJWVYXFxUQUOIyvS9va24q1cIUB9RoGTqP+Wl5cRCATS5r/JZEJVVRVcLpeaS7OzsxgYGEiLKpyXl4f9+/ejqqpKrcGtrS1EIhG89957iMViaVs7CgsL4XK5cO7cOXXcFM0HPkcpzgfVhwJp0XFNR48eTfPgIhdz2lf/05/+VG1nIuUVX2fUh1arFfv27cOBAwfw6KOPpln5dYEJaa3R3vSRkRG8+uqrSCaTan3LsiQ95+XT3LVYLGhsbERLSwueeOIJ2Gy2NCUHX3eZ6AJ/jj9Pa2t7+96Z5LRPm8aI7301Ak6ZypRJyjT8mu4Zvq2H6AlFzq6oqEBzczMaGhqwf/9+tT7pm5JULui8DgEofiFpu6T5RgDaSAbl9aDnuJu47AMpF3LvKOkerZNnqO48EO3a2prayjM0NIRgMKhidpBHBFeOSAuzTNmCZiPZLZuULSjOVJZR2ZK/Zgues7mfSc7KBAYz9bMuZVPn3dYYr2u2fSiT0RwEdj/f2kj2lfRM0kj6z49XzJQ+0wCaJ7n3RIJhfk03mJzocCGYwCpNhK2trbTjODhYoWf5PfqWIJcHFCICtrW1dV/Z/JxS6fLJteU0oThzB4Di4mJFvLhbm7ROcxCtW6hyYVAe3PWbFAA8L3qP2kb/S0tLlfDc2dmp9j2Fw2FYLBbVhtXVVcTjcRVghIB2KBRKO9pGAnTeh0aMx4joybRXAqBj4r8sUJ0pyXylQuOXwXR0jD1T/tmWI8EkFzJ4vtLdm/ZRDw4O4p133lERf8nKQ4F/aB91UVFRWpv4XJVtpXkuBVrdPkCybJE7qwRdPA/gY/doLpTzPpB0hK8jEvZSqZSylpSXl6OxsVEdP0VReYeGhnD58mXEYrG0YDy6dS/HSc5VHQil57iLLXePXllZQTQaRX9/Py5cuICOjg50dHTg8ccfh8/nUwBN0m0+Dkb7+Kj9RUVFqv2Tk5MYGhrCN7/5TQSDQRXkkL8jmTrRjI2NDdy6dQujo6N49dVX8Wu/9ms4evQoysrKlJsmvcfdNQsKCvD000/j0KFDOHXqFP7iL/4izRJK+RNo6+7uxvj4OOLxOB5++GHs379f9QGBzRMnTsBsNsPtduPll19WVvXt7W0sLS3hxo0b8Pv9+C//5b+goqICZrMZqVQKZWVl2L9/Pz73uc/h/PnziMfjCuh1d3djdXUVTz31FIqKipQS6vHHH0d+fj4++ugj9WwkEsHVq1cVuMrNzUVHRwcWFhYwMzMDAComxtLSkrLeA+lKH5PJpFxdKe9gMIjZ2VnVh2T9J8UXjc/o6CiuX7+u9loSqH3sscdQU1OjomjPz89jeHgYfX19SnAH7sUVOHr0KB544AF4vd60+RyLxfDhhx/i+9//vtp7Sffy8/Ph9XrR2dmJX//1X09zr+Z0KZlM4ubNmzh//jympqbSAmryuUweCy6XC7/927+NxsZGuN1umM3mtPNsdVsm6Oz4H/3oR+roHu7+bgQ0uKxD85TOl25ra8O5c+eUJ4fVatWuaSM5icaeAy9ORzY3NxEMBjExMYGenh51DjVZJKV3GV+bPBkBBbl2MwFl/s3pMnn12Gw21NXV4ciRI6ioqIDH41Fu2TL4HecF3DVfV1/OB3geOgGe5DYOfjmNIvrB39XxEuD+GAQ8b8pP5qHrT+69RDyX4jDMzs5icXERCwsLaVs/eDwKDpZl30iFD098fe0GsKVsJfPcCxDkv+X7RmAxU17Zlr/bc7o5pusb3Tr4pHJmNvKu0f1M/al7X/eMrn06eiTlbCOgrPtNvJY+VqsVdrtdKbR/9rOfZWw/pc80gOYCLhfCOBgG0hdCJisQgDQNNd0jZkWMiANVnuTEo/KklcVIMJXWZOBj4qgT3Pn7UgDnRJJf1xEoXi/eF1zAlpOTkrTAy/foOncL4+NF/UKCKI/0mUrdc1ssLS1V+/eIEfO9M7QHc2lpSbmLx+NxrK2tKXdxua9KEsdMDJz3VSbNF78un9P1XyYBYbeU7XO68vea9loWT0ZEVNc3EtjonqXEPUZycj7eR02WnJWVFQSDQYyPj2N4eFhFWS4uLobb7VYRoysqKpT7JJ+vHNRKgYMLOfw/X0NyPvG1R3lxAZQr6YzaTGXphAgeCMhqtcJsNsNisaCpqQldXV3qPPi+vj7MzMzc5zbJ28f7XUdHJe3gTF32l7RCbGxsYGFhAVNTU6iurkZDQwNaWlpQU1OjBFY5/tzlmwRTKpvTD5fLhby8PNjtdhQWFmJgYACjo6O4ceNGmpur3AfH2017YLe2tvDTn/4UExMTaGlpwenTp1WAK6mANJlMsFgsKCsrAwB85StfwaVLl3D9+nVlYaNytra2VBkfffSROvu6trY2bR4VFxejtrYW29vbGBgYQH9/PwKBgOrTlZUVzM/P4/z58zh16hQ6OztVdPuysjI8+uij6O7uVse+7OzsKMvvrVu30NXVpc6nbmlpwcjICIqKitSziUQCPT09ePDBB9WRT5WVlcqzgwf7WVlZUeMuj5AEoPZA0xwhjwn+Dh1xR+NJLstkfTeZTMrlvLS0VLnXp1IpDAwM4Pr162mWX5PJBK/Xi5aWFnR2dqa5tG5tbeEXv/iF2qssA276fD50dHTgiSeegMPhSKs7tWl7exvvvvsuent7MT8/ryKZc/5K/VBRUYHW1lYcOHAATU1NsNvtSgHG+4zzp42NDczMzKiI3r29vYhGo2qffSY6wfkreWpUVVWhs7NTbacgV2SjrVqZEpdJeH/E43FEo1EMDw8r9/KFhYW0kwOkslv3vVs9jARl+Z/TZPJGsNlscDqd2L9/P0pLS2E2m+FwOFBRUQGr1Yri4mLtMai8XCl36upE/QSk8wtupJDyJ9EmnRxG31zOlTIJL48DYemJI2VP+pA7digUQjgcVl4oPKo7BbCktcnzzxQd3Yi3GYHkbOZCNnLYbs9me/+X/d5e89fx4b28k817/5BJygz8+m6/6b9uHkj8RzSPcATJfKQQ41uNyKOEsAc9k2k7g0yfeQBtdH23yaMDz3wwOGHh+UmQu5vAS0lnmZYCqgS4QLqgLa3TvA3yPZ1Aa9RXOuAtCZjRhJZAkRNzyXD4M/TNmRG5U0nhq7i4GCUlJap/uMKAW2XoXNLFxUUEg8G0yOBc009urZyh647D0Wlos02653WgQ97LNg+j+5nykGNrRNT2mrJhcBxkyXeyUVxQ0rlG8t/0of2Nubm5GB8fV5pGiqTs8/lQW1uLtbU1mM1mRWQpCm5hYWFakD6dULRb+znINxJa6D8X8CXAk+/zPHXCIz9nu66uDl1dXYjFYhgbG1NtTSaTSuFE60PuQTQaS13SCUWcBtH6Wltbw+LiIkZGRuDz+dDZ2amO+SENMEWKpjzIG4XyIppI40Dl0Ng5HA5UVlaiuroaXq8X4XAYi4uLKs6C0VjwMra2tnDjxg0EAgEsLCzA4/GgsbERNptNnYPLlZO0p7SwsBBPPPEE1tfXMT8/j7m5uTQ3W+7KODg4iJqaGjgcDnWEG9H4vLw8pRA4fvw4IpFI2t72jY0NdUYyRQWnoHqlpaXo7OxUZ4uTaza5G3d3d6O+vh5WqxW5ublq76vNZlPPrq2tYWRkRAFqk8kEj8ejvIPIk2Fra0uNHw9exNciDyIGQHkV0fooKCiA0+lU5+MCH3uarK2tqfzMZjMaGhpgNpuVy/jOzg4mJyfV0V80J/Lz81FfX4+GhgZUV1cr3kHW9evXr6uzhTnvzM/PR2NjI7q6unDo0KH7AspRPy4sLOD69euYnJxEMplMA7VUB7KYNzY2qoB65HkFpPNs8jCjrUvBYBA9PT0YGRnB9evX1ZnWOvCsk1EIMNJxVB0dHThz5gwcDofaQiH5Or0nA4jytSiVgDROyWQSgUAAc3Nzql9ovfGYABzo6WjHbklHa2UbqF2kUCRB2mazwe12o6KiAg899BAcDkfaHn+Z324CfabrnAbK9kplCT2nG0/+DN3j8pF0vZYGEt7nNMeIHpMSlWQhCvBKiptwOHyfckgXn4a3V8fz5fVPk/YCJH9Z6dPIRvz93eqbrTy4VxmQP5tNn+01T0rZYA1Zj0xAWcp2XKnFlVz8N4Fhio1js9lQUlKijkXlIBrQnxqRrfs28BkH0EQI+Gc3dxluTeYDwveEkGBAiTNRGSFbEiwJQqXApwP23Kqt20dDE4Pay98lIYS/S23hx4Fwa5pOG6gDChKU8MTrJrWcdF+6xlJ/k6s3lc+VEvSft4UL0WSh4s/m5ubC6XSiuro6DVSTxYvPD2IKdM5gMBhU51DyKL6c+cj+MlLG6PrIiNhlupcp7ZVA6d75JGXtlRHqntsrw9OBbsmUdYRYEuH19fW0eUxBo8g6Q2fiNjY2orOzE5WVlaipqVF7XEkrqRNcSCjhAo+c93yN8TrTs9IVUraBJw5UdBYveo+sualUSrknVVZW4vjx48qten5+Hm+++SZ6e3sRDAZVgBe+nnXjYDRWchzoOq11sv6RazdFaH3nnXfgcrlw/PhxHDlyBF/84hfTPFZknxDTo72FnJaTIGyxWHDmzBkcPHgQTz75JL75zW+it7cXo6OjaUHG5FqndhK9GBkZwfT0NK5cuYIvf/nLOHnyJE6ePHkf7eNa76KiIrz44os4cOAA/v2///fKnVvuA0wkEnjnnXcwMDAAADh16pQ60xmA2qP8pS99SUVaDwQCqm7r6+sYHh7G+++/j/X1dXz5y1+G2WxGQUEBSktL8ZWvfAXvvPMOfvSjHykhORKJ4M0338SJEycUmKJznvft24cLFy4AgFIARCIReDweFBUVwev1qvOnqZ9IIdLc3KzmJB8vss4XFRWpfqUgZfSMxWJBe3s7zGazWjuRSET1GQlM1dXVeOGFF5TLMVmpg8EggsGgmq95eXmwWq34+te/Dp/Pp3jH1tYW/H4/Xn31VQwNDaltDbQ2Sfny4osvYt++fSgqKkprD1n+x8bG8D//5//E6OioUjDwNU5CXUlJCWpra/Hbv/3bKoAZtx7KY7yIP01NTeHb3/42AoEAVlZW7guKR8lI2CTX/KqqKjzzzDPYt2+fOmZJB/w4TwWg6J0MEMrXInAvMN7Y2BgGBgbw0Ucfqcjj/GQOHd+UMshu/Eje1ykvOQ3gR9+1tbWhrq4OHR0dassI0XQ+j3Xzlsac6i8F+kyJy0I6b0WdXCUDwUoaJfPn8h+lzc3NNMUvlUV8iuhGIBDA9PS0Cj65sLCgADWPim0k/+jG75PwfB1/l/czvZttWZlkMylP6NaIUTm71UEnQ+nuf5J2S/DK73+SfLNJmcbIqN+MytThM762yUpMshrxKtq2VlJSogwCugCMHCcY1VUqM6ncbNNnGkAD959NqBOydZ2lE1gJNGcKoCUHnQuwEoBKQC2JMj3HBXBd2RxwykTEnxNNqXXUESgjbaUExpQ/txLT+5K4y4lK7eLEXAc2daCBX5NKEeo32bc6gMqtP6lUCqWlpaiurlaacw6wSbtKGnOKJJlMJhEKhZSLWiQSUe/K6KFSI6wD2/TN5yq/LvuYt9uISX1awphtHrKu8p7uuU9bL6M+5GVmIupc6UXzkY69Wl5eRl5eHgKBAObn59Hd3a0INQlbRUVFqKqqQk1NDcrKylBTU6MEUp5ozfCoq9yjQsegubKIzyEpHPN2Smssz4ue4y7hdI/2QdI5phUVFairq0MsFlPWosXFRQwPD6O7uxtTU1NqjnOrlJzjvL+NxgnAfUCDLBoUTDAej+P69es4f/48nE4n6uvrcfz4cezbt097tJTut/ReIYH661//OqLRKMLhMPr6+nD58mWMjY2poFM6QZXWNgmVP/7xj3HlyhU0NjbixRdfRG1tLRwOR9o4EZD2+XywWCz4d//u36G/vx8DAwN455130iyeOzs7SCaTmJycxF//9V/j2rVr6Orqwuc///k0mmc2m/GlL30J7e3t+O53v4uJiQnlBr68vIz+/n7EYjFYLBY8+OCD6pzi5uZmLC8vY319HT/72c+UYByJRPDGG28gHA7j3LlzKC4uxv79+5Gbm4sbN26oOq6treH27dvIy8tDV1cXiouL1daHqakp7OzsYGVlBbOzs9jY2FB8mIQZ6suioiLlck1W4NXVVaRS95THdrsdJ0+ehMViUeW+/fbbmJiYUDysuroaTU1NqKurU+7PKysr+M53voOhoSEFhAsLC9HW1oannnoK5eXlKljd1tYWLl68iLt37+LDDz9ELBZTFuu8vDw4HA7U1dXhN37jN9DY2Kis7DSv1tfXcfPmTVy9ehVjY2MYHx9PO/KK1hxtIfjc5z6HxsZG5TLNLZx8vqZSKeVN8J3vfAeBQADRaBSzs7MqwrkuMCmXN2iOFxcX49ixY6irq0N1dTVKSkrgdrvVvj4pu/C1wn/rjhQiZfSVK1cwNzenjqVMJpPK1ZcUAjp3Xs63ZTt0yUiw5u0m2cBqtcLtdqOyshJHjhxRliayQNE+b9oaJhWcujI5XaV+kDIGndets6hLeYfLeJxe8D6m/7wu3DuOAL9U+nHavLW1pU5ACAQCmJ2dRTweRzKZxMrKipJvKIgrBX2kuaYD7ZnorRGYNHqHnssmb/l8Jvlkr7KG0fO/jDJ0PJG/K13wP0naTVbLNu+9yo1c2S/nssyTK/RJqVdQUKDWI5ezCChLWZ97NXFLszz1Qaegkv2gk6tku/baH59pAC0ZApB5ERoJpHRNB2J0+fDnM2msZN5GwCOTEGqkDdEBRq5xMQK1RoyY10US+k+60I0moxwjXZ/Sf+6qKa2AOkao6xcqJ5VK3Xe8EU/cUp1KpdQe6qWlJbX3JxaLIRwOq4AxxIAIkNN+IQqKZhR9Uo4PH5tshApd/2V6R1fOXpKsn1EeuvHMpk66/9mk3dqiy5MTStr3lZOTo8aZCDK3Ks7PzytX3rm5OeX+R0dL0b5jcgnUgUxdP0i6k6k9uvWdqT/4GubrgpiZ1WqF0+lUbny0x83j8cBqtaKmpgbxeByJRAILCwvqDGBuOZN1yVR/KSiSYEnbKlZXVxEMBjE3NweXy4X5+Xmsr68jFovB5XLBbrcrUMSVoXJbDW8zP7d5Y2MDKysrKCkpUS7JFBSHIv/LdcnrOTMzg2g0ikAggIqKCkQiEdTU1KCmpkbViTP83NxcHDx4EBaLBTabDZFIRAW6or3R5AI9MjKiAvFUVlaivb09zb20trYWBQUFGBkZwfLysnJJ39raQjQaxfb2Nm7cuIG2tja43W5lAa2pqcGhQ4dw4cIFJBIJFdxtZGQEXq9X1dPlcqGurg4Oh0MdjbS1tYXJyUlUV1enWVXdbjemp6eRSt1TUEYikTQ6J+N98GOsqE8p6Fxubi7MZjN8Pp/ymNjY2MDw8DDC4TBSqXuBNOvq6lBfXw+LxaIAbSKRUHuDiWc7nU7U1dXhwIEDsFgsai1Sm/v7+xEMBtMsz2azWcUK2L9/vxpLAoOxWAyLi4u4desW7t69i7m5uTRFCPUheXrs378fhw4dQm1trbLYy0QgMxgMIhKJYG5uDnfu3EE0Gr0vOjVPOuDsdrtht9vh9Xpx6NAhtUWFW7zlutgN9FEd6Sg6Asp37tzB3NwcAoGA4oFEDyQd0+WZTdIBTe69VlRUhNLSUlgsFpSWlqK0tFQB6AMHDqi93fzIPCkrSGWZpCf8OV4nnYegURt0dJGURjJ/usc9EugaXefl8cBdNGco3gttXSOX+kQigaWlJaXw4UYCXraUS2j8spUdjOTaT5KMQPY/ZNLJn5T2On+zeX4vck428mG2Zcv3dfkZlcEVUMTvuJVY7jHmXiG0z5jis5BbNQFoes9I/udtM9oWwf/L5+T6zbbNmdJnGkBT0lnsdIufE2QemAZItxiTRZeezWZBSWFYgjheN+7qxpkFCZY6psejcMv2kMCiqxvPT4ItIwWEZBqZgI4ODNN17j7OF4YcL+7aKvuJvuUCocXJ68vdOWk8SfNOjCMvLy/N3VwewUXCMgC175qucddWyo+Op0kkEurc0nA4jHA4rFzwCCAYgWnp/s6TJAB70eBLMGX0XDZJN9+NlDM6MKPLI1NZOiXIXtJuc1ZHH6T2n7t+RyIRDAwMKEZRXFysLB8UHKiurk4BHSL43PIgAxRSOTxqL5AOdiVD53Nb0jTZfs50aB1w2gbcm1+0V3NzcxM2mw1VVVU4deqU2g83MTGBN998U51xS4IzXy+ZaIJubCRdpnVAwt3y8jL8fj/u3LkDp9OpzuJ96qmnlPKC2qFjnPw6P8mgsLAQhw8fRltbG0KhEC5cuIBXXnkFc3NzKiiOpEXU1xsbG0gkElhdXcW3vvUttLa2orOzE1/72tdUgDG+bSY3NxcWiwVtbW2oqqpCc3Mz/tt/+28YGxtToJf6j843p6Pa/uRP/gQVFRXKPc1sNqO6uhq/+Zu/Cb/fr6JPkxU/Ho/j4sWLOHv2LGpqalBSUoK8vDxUVVWhuLgYlZWVKtDTzs4OpqenUVtbi62tLSXIOBwOFcmdIj0PDQ2hrq4OOTk5CqzV1NTgzp07AKD2FBN9JBrLAQdZoPk40/yk/al2u13Nz83NTYyOjiIej6vxO3r0KA4dOgST6d4e3WQyibm5OUxOTmJpaQnAPYtgS0sLOjo61Dqk/GKxGEZGRjA6OqrmLgl2Xq8Xjz32GB588ME0r5Lc3FxsbGxgbGwM165dw1tvvaVOfuDJZLq337iyshJtbW34rd/6LXW8mAQ/XHm0sbGB27dvo6+vD9evX1dWXBlkS9IGUtLk5ubCZrPh8OHDaG9vx6FDh9Q+eopQrktGPJ/6hNYg7fW+desWRkZGMDExgeXlZaVc4e/J+hrR+kzCOvFzuiaVMKT4KysrQ2dnJ2pra9Ha2gqr1apAMz+KSyouOI+luQbc7zHB6SofO8pbp9gwahPnM0byjvRQ4mXwcrin28rKCpLJJILBIG7cuKGOlyOrMveo4/lIxYFu7HQgzAhY6tqruyff1c1BozyB+y2f/7emTHMZ0Htg8vfoGXkt23KzfU/3vOxv3X2uyMrNzVVyECnjeQBTWpNcxqZkZBjMyclJo1u8PM4/pBxs5BUnATOfR/z3J51bn2kArdsHQp0rgZgEkXxSyDzoOiUenIQPpslkwubmphoI0qBTuRzYSqFYunFwZsETRZ2VDIG7dRMo5PlR4sFWuCs2Pasj5HLBU+LMgE9CItKcMeiSrv3cGkFt5MSeu27xa9TnJHBw0ELP03PUbu6mIQkyB+MciBOjJWGIBF66l5+fD5fLpUByKpVSvylgEdXT7/cjFoshFAphbm4OkUhEaff5vqNM1mreDzLtBnLlOBi9l03ajVFmem4vwkc21zLVkc9LumbE7HVMja9fTgcSiQRCoRBmZ2cxODgIs9msLCNOpxNutxvNzc3Yv38/3G63iuYr96fpgLwOXMr2UD04DZQAXdJF3i+UP+8bCTTtdjvsdjuam5tx7NgxLC0tIRKJYGpqCu+99x6mp6fh9/uVayAvUycoZALTfN0SDScLy8rKCsLhMK5fv45XX30VDQ0N6OjowEsvvZR23jetTV3fccUZBVkzm8147rnncPLkSdy+fRuvv/46enp6VFA1HTig6+FwGN3d3eqopRdffBFdXV3K3ZzGhwIZkQb+3/ybf4Nr167h9ddfx+DgoIoOTkJDOBzGysoK/tN/+k94/PHH8fTTT6ugaiaTCSUlJfid3/kdXL58Gd/+9rfV3t/t7W0kk0n8+Mc/xvz8PH71V39V9YvVasXv/d7v4Yc//CEuXbqE9fV1rK6uwu/34/r16zh58qSyLj/33HPKnX5nZ0dZSInmEUh8/fXXlbt1IBBQW2UIaHMaWlxcjIKCAgX2icbl5OSoIFdWq1UB3enpaXUcVX5+vrIqV1RUqPlx584d/OQnP1EBzGj/8he/+EW0tbUhLy9PKSaCwSD++3//7xgcHFRB0sjl2eVy4V/+y3+JiooKFSAN+PhM8x/84Ae4e/cuRkZG1PneNGfJylJcXIznnnsOBw8eRGNjo5qTNGZ8Dm1ubsLv92NychKvvfYaFhYWlMVQdyYyn8s0n0gp09zcjAceeAB2u10pKTh9Id7P6QpfI1wRR5HVl5eXcevWLYyNjWFkZESd6UsWTgnIdPWV61vSHJ64vMHlD1JumM1m2O12PPbYY6isrITL5YLFYlFBH3kwNE5T+fYxGk+iAbTWuBGFGyc4f+cyiFSc6BQIUrakb65k5OPM5TbpGbW1tYVEIoFYLIapqSnMzc2pLWRcMc+P8+QAQ46LHDejpPNOMPqfjeyQSQYwklEy1emTyjn8mk6u1dVRKjY+DXjP1E6dkkHWOdtk9D6VwdeLpC0UhIuC7pWUlKi9xhRklUewprzJY48S0R4JYqUyCbg31znIljGhJC7jeA742AjA170OJBv106cZ2880gDaa9PweHyxpzeOJAzU5ODQRpHWYv0fPUh6SAcr3Mi0SuWA5YeXgkguJuvw4KNQRUr6YjAC4ZAY6hkz/dW3QlaXLNxOxoyQtZxIAyJSpXDkf6B4tXvmO7j9XapD2mysRuCYtlUrBZrOp47bq6+uxvLyctheJtP6JRAIrKytYXl5GPB5XWn8uwEgGqWOM2QAY2V+6vjdiTjrCsxsR0q0NXsZeiFgmppmprXtpJ79Gc46+SXlGbv65ubkq4rPNZsPCwgImJydhs9mUy6HdbofT6VRWwoKCAsOYC3z8dOMqgaeOxujWZSYhVvYNB3+kGHA6nSgsLEQgEFBHhc3OziIajSqQwbXEfB3q6LOuvzkjpLW0srKi1gW57fKI6g6Hw3AceaIgSSQw0NngOzs7qKurw+joKKamphAKhbSBdAgIEiDa2NjAe++9h7m5OczOzuLUqVMqUjQfG7PZjJqaGgXCCwsLMTExgVAopPqL8h0bG4PVaoXJZMK5c+cUbcnPz0d5eTn279+PJ598Eq+//rqKAr21tYXp6WnYbDYMDg6iqalJudVVV1ejvr4eMzMzGBsbw/b2NkKhEK5evYquri61T7ampkaN78rKiorMu76+rvabulyuNCGHhHngYyUzjS/1MykyufdCTk4O3G43ysrK1NyIRCIYGhpSykez2YwDBw4oC//m5iYWFxcxOzurzpI2mUwoLS3FqVOn1JnYVPbMzAz6+vowNTWVdtxWUVERmpqacPToUVRVVcFsNqtx2tjYQCAQQG9vL+7cuYOZmRkkEok0EETjWVVVhX379uHo0aOoqamBy+XS0jBSBvX09GBychLT09MqgrduW4Rcl3l5eYp+nDhxQs378vJyFBUVpYFPvn4zAVwav42NDUxOTqpgbOPj4/D7/VhcXFTRv6Vil9czGwAkeSclbowoKChQ2x0qKirgcrlgtVphs9mwf/9+2O12WK1WtRa4MM3pl/TU431BZcr7meqtk/Hot7RcGVmypBxKSi8C9BsbG2q7zOrqqtqzvLq6qgLl0TFmS0tLSmHFt5zJj0yZALSk/XuRFbK5vpd89ioL7MbrdTKmEV/9tHXhKVsgvJv8pMuHy/9GeXJFGgFcUrRRlGryVqH7xBPp2aKiIpjNZuUBovPw0K0rKZfrZGqaj9IwyPPkyWicuXVad50SN84ZpUx9qkufeQAtG2sEkjlhMRI05Xuc2EkirStDAmydBsaoPC5k6jQm3PWSuybSROV1pjbm5HzspiSBgKyrTsiWTE8SZl5X3VjIMiWT5/lmM3E5OOUReHV9SeWTAMfbKNuhW8i8vbyPOXim/OR9ShwYkZsstxhS3xETJCFrYWEBkUgEwWAQs7OziEQiyk2cBGVpzdEFAJHMUoIuyRyMNHWZlBQyGQEjozEySntlxJnqky2YlsxWZ8GV7aCxo7FfW1tDPB6HyWTCxMQEuru71T5qu92u9sxSsCdyPyQGRcyM191I4aADyPQMn6e8fToAzRkQD7hGz1KdaP+Sw+FAVVWVCrB39epV3Lx5E5OTk8oiTXEAuCU3W8WFrCfN75ycHLWP2e/3Y2RkBO3t7ejq6sLp06fR0tKirJ0ywBtPBOg4iG5qaoLP58P+/ftx8eJF5OfnK9DOXVY5wCfhd3NzE5cuXcLw8DCGhobgdrvTAD31MQG9jo4OVFRUKJBI+xOp/1OpFAKBAK5fvw6/36+ep2OnrFYrmpubYTabcfPmTezs3Du3eWdnB36/HwUFBbh58yYqKipQWlqqgmQ1NjYiEAhgYmICqVQK4XAYV69exZe//GXlbuf1euFyuVBSUoLl5WVliV1eXlZnqTscDtU/ZLUkPqMTrGgu7uzsqL3mdL28vBw+n0/RrXA4jN7eXuWVVFxcjKNHj6KkpEQpLCYnJzE7O6sUD3S2+9mzZ+FwOJSgRFHKL126hEgkomId0J7vzs5OfO5zn4PNZlN1B4BkMomxsTG89dZbGBgYUHOAtycvLw8ejwednZ14+umnUVdXp6I78+BjVGeKr/DBBx9gZGQEgUBAgVMjWs2tQuTZUltbi2effVa5iAPpUbSlJx31q0zcSyoWi6mgetPT02qM+DYNnRI+U8oEBLgcwONMWCwWeL1elJWV4eDBg6ipqYHNZlNbDDit4/IcB9JkaZa8jbZV6OpG7+ssr5yWyjbr+kQnL9I1Ti8INNOpBMvLy0opRNu/uEs/8XqpyJDGFd084v93u6/7nYlW7zXxPs1GBtCNVTbzUMqsuvn4aduyF6C1G3g2AuqZ+D1XItGznO+TFwd5apACzmazKaU+BUoly7PMiycue/Ny+bzj5fM1qmuTlNXpGufNErfx8TTCV7xv+H/uRcjL/DTpMw2gqQMkkOJCIJAOEDhBI8ZDefH3KWXaRyMtLJKg03MkDEjwpQNx/Brteyamz4Eat0QC6ZobLsDQPjBOxClvIzdwXjfOBCQQk0A1lUop0EiCg06Ip/oSaJRKAJ0AwNvJx4mEDGn14ATUCBhmM7b0m/evPKua9wMtfqobv8cJCwlG3A2XnquoqEgbMw6wyRKdTCYxMTGhXCynpqaU5Zqf28iZrZxf/DcnWNmmTExwL8wl0/NGDIVSJsaTCXzKd+Q48euS0Mt8dEok+r26uqrGPRgMYmxsDHl5efjxj3+sgpA5HA60t7ejsbERjY2NaG5uVhZBWVcOaPm65IoiXr5cp7p1RvObB8ACPnatIqYJfAyQcnLune9rs9nwxS9+EefOnVOW+Dt37mBgYAC3bt3CxMSEdntCpnHQzSnumk2gjrt2f//734fP58MDDzyAI0eO4IEHHkhzaeX5k/KN6CspLygoUVNTE1544QUMDQ3hlVdeQW9vL+bm5tLWE88rlUopT5H5+XkMDg7i2WefxXPPPYfa2to0ek/7xvLz8/HVr34VXq8XHo8Hv/jFL9IAy8bGBsLhMJaWlvAnf/In+L3f+z08/PDDStix2Wyor6/HH/zBH+CnP/0pfvGLXyiL8fT0NP7u7/4O9fX1aGlpgdfrRWFhIR544AGUlZXh6tWrKvL6wsICrly5gkOHDilQfvjwYayvr+O1117DxsYGQqEQBgYGcOTIERXF3Ww2q72W5H5MYJC8KkiAozrv7OwgEokot+uCggI130khuLi4iLt372JzcxNFRUVwu9144IEHYLFY1Jz8/ve/r/Yym0wmNDU14eDBgzhw4IDi6evr63j//ffxwQcf4NatW1hbW1MWfKvVit///d9HU1MT3G53mivi2toaXn75Zdy9exezs7PqmCqa+ybTvf3O5PpN52nz/bE8bW1t4fr167hx4wauXr2qgLw8G5kSF4rpbPGGhgZ8/vOfVwoROsYLwH3KCil3UN3599bWFiYmJnD37l0MDAxgamoqbQxl1O/dXHp5kvSPX+dKAbI4d3V1oampCU1NTaisrFRzhSLo0/MU8VpHH2geEF3k9FjSZl1fS1mB0ykeq4b3NdECnSy4s3MvaB25upIyYmVlBfPz80qBsrCwoJTi5AlA20d4oC/dPJHyGB+XbHi4Eb/VvSt5YLZ5ZcpfB9B4Wbu9r8tLVz+dkcgI0H3SlEkm2atcI6/z9UxzkLtaFxQUqH3HZFkm+ksKveLiYhVngrw3pLwgt3dymsjXHc15Dui5/C9lIN4f9Fu2UWIYeleCZt6nEuPx96Xco6PNurJ093ZLn2kADdyvmZFgWi4WGbBnt8TBtExcgJUaFF4216DoFroRqOHvAOl7cKQ1V4Jf+pZ7+Xi7OdHnVjRZF9k+/p+AMO97uk7vciGf+oeYg9QUGSW+OOi/tKTzfqb/sr68jZI48aRj/vK/TgNHZdIePDk3ZT/w+7xcEgR0c4P29jmdTnUExfLyctrRWnSdrHWxWAyJRCItgri0DuoshUZMOROT/jQMnN/fSz5GQDrb8vm64fnpkg6U03U+54g+0PiSsoiss0tLS8jPz1dB53p7e1FaWqr2+dntdtTV1anoyCUlJWnn6XJlFX3zeSTnpVGSdEknpEovBAJIxIhJUUda7ebmZpw4cQKBQACLi4uYm5vD5cuXlcuqVPDw+suxl3WRc5bm+9raGtbW1tDX14cLFy6gtbUVjY2NOHTokGKitA6NAjLm5+cr5UVrayteeuklnD59GsPDw3jvvfcUAOQgg+gotSsYDOKDDz7A4uIizp49i/3796ujjDjtsVqtOHz4MJxOJ5xOJy5evAi/36+AKeXv9/vx/vvvY2VlBU899ZSyFu/s3HM5f+CBB5Cbm4vz588rC1c8Hscbb7yBWCyGxx9/XO1fKysrw1NPPYV33nkHoVAIa2tr+PDDD5V7uclkQn19PaLRqMovFAqhu7sbXV1dSjDzeDzq6DPgY7BGQEa685HQQ3u8iUbSPvtUKoVoNKqAfU5OjtpvbTabkZubi6WlJYyNjangjKlUCvn5+Th48CDOnDmDwsJCZeUOhUJ477331LnfOTn3rJ2VlZV4+umn1V5lqhsd/3Px4kUMDAxgcXER6+vraes3Ly8PlZWVqKurw0MPPYTq6moUFxcDSFfacwVIb28vPvjgA0xPT6toyTqZAUAasCwvL8eBAwdQXV0Nn8+HmpoaWCwWpezhylVpidIBzNXVVYyPj2N+fh6zs7PKXZuUNPz892zpBq+7/M15G3cJpe0WTqcTLpcLZWVlKC0tRUlJiYqaLnkj9S+1T/JFrtSTcpjkbbyfJO/lbaB8uEzDFRK6fuDnKM/PzyMWi6mYJ0Sf4vE44vG42o5CMRCofpwncxplxJf570yy5V74YiagnC34lM9m6mN+zYif6+pkJLvtpT3ZtMXo3d3AsdEzfN7R+iBlC1mLi4qKYLVaVZRq2hJEczmRSChlC5+fS0tLCljTmqF8iXYDekOArBcl7p1Bv/k6IrrP14YEylx+kHPByOrNaRCnw7KfZRsk6ObjL5UGvK601jNhPpk+8wAaMBZo+TUpUH6SJIGZLENeNxJIdcRCp6WRYJALmDJJ1y2eF5/YRoIy10jxvpL11hFGXV9wQVUuVF4n3m+6fpWggJchNUUc1PMFxRUFMi9debJdEuRnYroSwMhneH70kcKmnAukief9T0EeeH3JUk17DSkAE0UGj0ajWFxcVIx7fX1duWGSKybfi829FnRWCD5uPGViWrq+lsloLuw16YDYbsx2t3rKuunazrW0PF9+j9zy1tbWVNAmcuEmsGO329HW1oZwOAy32632BBYWFqKwsFCBVW554XNTrm/JHCU90a1Po/7hTI+7ndPcLC8vR3NzszoCa2pqCmtrawiFQlheXkYikUA0GtUqcmTf68YR+NiNmntnLC8vY3p6GkNDQ5ifn8fi4iIKCgrgdrtVtFCdizFvF1kx3W43bDYbGhoa4PP5EIvFMDExgdnZ2bTzo3n/7uzc2xM8OjqKUCiEwsJCpFIpNDU1pe21zcm5B+iqqqpQUlKirLP5+fmYmZlR4I2Eor6+Puzs7KClpQX19fVq3F0uF1paWrCzcy+w1uLiotqz3NPTA7vdjtbWVjQ1NSEvLw82mw1HjhxBd3c3EokENjY2MDo6ivb2dkSjUbhcLrhcLvh8PlitViQSCcTjcYyPj2NzcxP5+fkqEjIHmQT6aT7o5koqlVKRgnNycpRbYXFxMXZ2dhAIBNJcrX0+H1paWtSe9Xg8jv7+fnUcV05ODkpKSlBfX4/6+nqlnKKI+YODg4jH40qQLCsrQ2trK06ePAmn06kUGltbWwiHw5iamsK1a9dUYC8e3JL2nre3t6OtrQ3Hjh1Tx6HR+FMbk8kk/H4/pqencePGDfT19alAkdK6S/MvJycHZrMZJSUlyt3+2LFjqK6uVgEIM61VLhjSOtrY2EA0GlVrrb+/H1NTUxgbG1OgmZ/dzNvBy8hEBzhP4vSF5gkFVqRovbW1tWhpaYHH44HH40FRUVGa0UPHV6WQLb22JNg2Spnkp0xt5OXxceaAmWIzkBV5ZmYGi4uLCIVCSilGz5KyggN7StKSTfXQ0WMdX8rUdl1fZNMPn0Zmzja/3YC+jt8a8WCjd/dSRyO5Zrf/cs7SNykVSdlMPJPu0YeOwuRHtdG5yTQPKUZDMplU2y3Ia4EHzCVQzsuT61V+69ahbCutRZJVqV5GlludzKHLWyeTcwWYNHjJ5+S7HMcYpWwVQkbpMw+gSRilJAkPHzjJHOQ+2kyLmCYHlcUjidKEla7G/BoXEHWMgeqkYyB0T4IWKovvjSZmSuWThVg3caVQzQGdDFalA5FULy5EGBE6ssjSfx3TMFqAVAcSpHi7dWBAgme5+HVMiTNmeofnL4mAbkHL52RUdjmmuxEs6jeZLx8nyl8GWLNaraqera2taVptstpRBE8KVjYwMID5+XkVCEtGB+dzkLdLpwDSAZ5MxEquvb0y7b0wXvqfiVjuxuh3I7yZ3qXn+Ydv86B5tbCwgOHhYbz11ltqn6DT6YTP50NlZSWOHj2KhoYGOJ1O2O12tYeJz0s5RrptCzTPZdA7Oc4SLNB/3V4linJtsVhQXl6OgwcP4oknnlAR6G/cuIF33303bZ5JOimZu64vubKCACcF3gmFQrh8+TJeffVVPPLIIzh69CiOHj2KsrKy+xR4vI18uwyP1tze3o6bN2/i7bffxnvvvafOYZbgn/ZOkxv01atX0d7ejt/+7d9GY2OjAtUkTNntdpw6dQpVVVW4efMm/vf//t/qqCpyB52cnEQkEkEkEsEf/dEfKRBtMplQW1sLm82GaDSK1157DWNjY9jZuRdB+/r161hfX8cf//EfK5f7gwcPorm5GUtLS8oyOjo6ijt37uDRRx+F2WyGy+VCU1MTent71Z7gjY0N5SLY0tKC8fFxFVyLzuqmIDUkMJIbIdHu+fl5JBIJmEwmJSAWFhZic3MTt2/fVgHOTCYT9u3bhzNnziAnJ0cd8/XKK6+oCOFFRUXYt2+fCqRFyqi7d+/ib//2b9VRYQBQUFCAZ555BkePHkVlZWVa/JC1tTW89957+OijjzAwMIC1tbW0LQukrPqVX/kV7N+/H2VlZarv+Tqice/r68NPf/pTdSwZuazzdUV5cwG7trYWx48fV/t/SfDlnibyfW5FoXXChex3330Xvb29mJ2dVRYrAvJyrRvRKSPaxe/zqOu5ublwOBzw+XxobGzE8ePH4XA4VDAifmKGlCP4f05LpMKAypbAkuRB/jyX0Tjv5jxHKja4ZwKnd7R9hKLPT01NYXZ2Fn19fUgkEuosZnpP7lmWYyj7ls8no3u6pONvvE909/g82q0co/vZAnH5XLZl6+Q6oyTrobN67kUGkR4dunnPr0mvC4ptUlxcrI54stlscLlcsNlsChjzfHi+3JMnlUop5YvJZFIBSMn4QYm8PWidkSKLPFdku2VbdxtLKbeQTLlXZQPvc4mB+De1l28vpP7l4Jq/L71VKGVSQuloSTbpMw2gqbOA9GjZ0mrLga7sbGm1ocHh9+UgUeJulMD9xIC7NkuCSWXoXKd1zIXXlZ7h5ch66Sa3EZjjzFeCe+7eKYmZBJE0DhwEcO2ULI9+y2syT5433eeaW14e1YuDYCPmT0d30DWp1aZ66cAIjTWvpwQnsjyeJEigMk0mk9p7KvOTVgbeJzzxfe9c68kVCqStJOvX9vY2WlpalPWK3LzJUrq0tIRkMol4PK6sa/SfooNTPlQ/qTSS4y77k7fLiLFmK1DoEp/bn0RgkAyW56sTiOg5LvDtdl23Bnnwo3g8jvn5efT09ODy5ctKQ+1wONDQ0ICqqirU1NSgvr5e7YsiGkVzQdIcTkN5G2Q9aNuFru1cwcj7h450SqVSynLudrvR1NSExx9/HIlEAolEAjdu3EB/fz9mZmYQCATuc2WUfSbHhfcl1YkHSjp//jwuX74Ml8uFjo4OnDx5Es3NzaioqNBu+9nZ2VGuskSv8/LycOzYMdTW1uLJJ5/ERx99hJ6eHgwPD6dZlahsor2zs7OIx+Pw+/14+OGH0dnZiePHj6t+pX1pVVVVykr38ssvY2xsTJ31TFF6+/r68Fd/9Vc4ceIEvvCFLyhA63Q68eijj2J4eFidob21tYXFxUV0d3fj/fffR1dXF3w+nzquyu124+WXX8bGxgYGBgaws7ODBx98UJ33fO7cORXUiDxZamtrUVxcjPb2dly8eFGNeSwWw8rKijpeiNM0rpCg87bz8vLQ0NCgBMitrS309/djenoaqVQq7RgVk8mEwcFB9Pf3IxaLqbnk8Xjw67/+66itrVW0/O///u9x9+5dBbJNpnvnUB88eBD79u1DTU2NAmTkUvu3f/u3GB4eht/vVy7WRIvdbjdOnjyJBx54QO0R54CO6h6Px3Hjxg309PRgcHBQefrweaEDmzabDT6fDwcOHMADDzygBG3ukiz5J1dE83Wxvr6OsbExjI6OYnR0FH6/H8FgEMlkUikFJJjj9CpTkoIzBwrk2VBdXY2Kigo0NzfD6/XCZrOpqNo8TomUdSjJLU7SuMHlPUoSZMg+4RY5/pwEqFKhRv0UiUQwNzenAnouLCwoD67V1VXl6UUeC1Smro91/S15hfyWMlu2SSfb8XvZAl+el66+PGXij/K/5Jm7vaOTy3heRnXW3Zd9YVQfPl9p/hQVFSlQarValRKQ4mdQfAsZe4Piccho17xcCSb5fn76T33gcDju44801jxKPd82JNeuNDQa9blcV7o5rZtTUk6nJK3VPB8Zx4Wel/foOn10mInnIeugwzuy3GzSZxpAA/cTCi6sS6GdayEpZRLidVpA3STTTSQJOI32ZvNn6XlddGlevpGlVlcvXV8ZTRAjom0kNOvu6wizbnFJMCOJmCyTLxA+PtLiRnlms3AkODbqc5l0Y6Z7JlNeunu8Pdlow2iuSCFLp9Gj60SEiDjT+zk5986LJYIko3qTi9rS0hLKyspU0CQ6I5RHJab3NzY2lPC2urqaFqhGAg5e10yC3V6EPt263YvwkElYMCpnL9eN5iavs2RyJLjl5OQgGo0q5YjFYoHf74fH40F5eTmqqqpgsVgUwCooKIDNZoPH44HD4Ug7N5aXz9sstbeSLkjlWqb203wjgFVSUgKXy6XcHy0WC6qrq9OOz0kmkwiFQpifn9d6QujK4euS5jLNNxKG4/E4lpaWMDIygvLycpSWlsLr9aKurg5ms/m+NUP1z83NVWfu2u12AEBZWRkaGhqwsLCg6kpuzalUSlnEKdpuQUEBwuEwIpEIamtr4fP51LFQdMZmYWEhHnroIVRVVWFychK3b99W7qLJZBIDAwMAAKvVqo54Ki4uhsfjwZEjR2AymXD9+nW1xzkUCuHatWvKtbqiogI1NTXw+/0oLy9HIBBAIpHAzMwMBgYGUFdXh+LiYjQ1NcHhcGBpaQnr6+sYGhqCzWZDbW0tvF4vzGazolVkaXW5XMraQZZVrhgkK11hYSEaGxthNpvV+c/RaBTLy8vIzc1FY2MjnE4ncnJysLS0hP7+fqWoMJlMqK6uRldXF6qrq5Gfn494PI47d+6gt7cXMzMz6jlaC6dOnVKWagBqX/7ExAR6e3vTgpvl5+fDbrejtrYWDQ0N6OrqQmtrK2w2Wxq/oCB2MzMz8Pv96O/vx+joqJqvRBP5XKI5ZLfbUVlZCbvdDq/Xi6amJhXJW+c1JvkeKVWCwSBCoZACcxShfGZmRik3pZt2Jt5OZfHfHEQQWLDb7XA4HEopZrVaUVZWBrfbjaqqKhWpneYAL2s3oCXlG1pHunelXEAfDrQlHaP/3P2a9qeTApnoRywWw+Liotr+RFsMZFRsI9Bs1M+7/Te69stI2ZRtlHRA3Oi+vLabPJoNb84kQ2a6z2U7WodkpaWtBvwkDO5yzRUw9ExBQYHysKI9yjab7T5LL3A/YOTAWW5xlPUn+srXIPCxYpr3K60TAs06xYCRnKuTO+R13byhdSKfpXbL8dHlo0tURx7vQYe9pOJc0gGZpGytoyN7SZ9pAK0DzxRVlVtE6FmjCSUXny7CmxHRlxpRGgiuFZJuSPw9Xu+trS0VfRJIj8JNZeusszyas7QASo2OkQJB15d8YUpQz+sgXTql8oD3g3xXp1DQad2Aj12iuSDA20h5UBv5fd2i4nXiRE4SZHpOAmYdgKYx45Z4mSQR4/lwdxxd4u3n7t2cyPJ5QnOLyuCAmUAN728ivnL8SOO5vb2Nzs5O9Tw/Vmtn52PXcDrPenp6GqFQCAsLC5iZmUEymVTH9pAQQnXkGlXeL0aE26h/dkuZmEK27+01GdGTTL91giynZxsbG+p3JBLB/Py8YvQ8CmdRURFcLhdqa2tx6NAhHDx4EG63W4FB8k6gvudKHC6069YK/Zf15mPHt0Jwz4r8/HzYbDa43W5UVlbi4YcfVgGwgsEgpqen0d3djQ8++ACRSOQ+ZY2RkonPD1oXdETc8vIyYrEY+vr6lFKBXGdfeOEFVFRUqEjAVF9KtKZyc+8dJeX1evHwww8jHo/j6tWruH37Nt59911EIhEFePmcXl9fx6VLl9Dd3Y3z58/j3LlzeOKJJ2Cz2ZSnAOX//PPPq325/+k//Sd1PNjm5qbaZtHb24vf//3fR2dnpwL/TzzxBOrr67G5uYkPP/xQKbl+8YtfKEVCRUUFHA4HampqsG/fPgUeAoEA3nnnHTz77LNoampCbW0tqqurEY/Hsbi4iCtXrii3XK/Xq4KtkbtwIpFQ40pjLi0tVJbFYsH+/fthtVqxsrKCyclJFZE4Pz8fp06dgs/nw/b2NhYWFnD58mX09/dje3sbxcXFOHToEF588UVYrVasrq5ienoa3/72tzExMYG1tTWkUvfOkO7o6MCDDz6IBx98UAXQ2djYQF9fH65fv44LFy4gmUym8TA6JuyZZ57B4cOHlbs2B0o5OTkIBAK4ffs23nnnHUxNTaXtR+Trl/qBIr23tLSgtbUVjzzyiDrf2mQyKct9JqCZSqWUC3EsFsONGzdw8+ZNBAIBLC0tYWVlRQE7mv+Z6IxOkJb1pvrl5+fD5/OhqqoKHR0daGtrg81mU0oxLoRy3sb5Ni9XAiYpABMtIiUYf5fLI9zLjMZI52XDA6Vtb28jkUggFothZmYGQ0ND6lz7paWltFgifDubpC9GgFnSo90SzyNb/mQETGUf/zKS0XzR1cfoOaP68ntGdZbXjFyOdTIQ/+ZxRqxWq1IEkVu1xWJRR8TRmuVyFtVfJ9vxec7XIL1Dc4/mLpfXdW2RvJjaTe3g8i7w8TYS6a1iJOPLfLlsIa26UvnG1yhPxC91cqzEPxKL6eROnTFRt954m2W/yrpJEE2Kkk+yVj7TAFp2IO8ISch17/J7fDFIcMgFV7lopAaUux9RIpdcqe2QC432CXMQLsEWB2ZcScAtsTwiqgSTuj6Qi4T3A12XgJTXkRLfe0B15eVIZYBcFFIzJME6Z36ciEkBnoiDBL1SE84XndQactduXidAH8mP5h7951G0dUSe9gRK9xv5rA4YE/Hk70n3Fs44eN2p/bIPSPFESVr2aR7k5uZiY2Mj7Vned3wMy8vLUVtbq0A1J6rcVTwWi2F6ehrBYBCLi4tYXFxUwiC5h1N9jSyQOuGQg7hsmLe890kI6m7CklTM6JKuPnyt6oQZub5MJpOKdmwymbC4uIjR0VFcunQJVqsVRUVFKCoqgsfjQXNzM2pra9HZ2YmKigolEPN+5EyJ8iQ6QMcvUeLCK6crRpp4+k3f+fn5cDgcqK+vx/Hjx/HlL38ZyWQS4XAYFy9exO3btzE3N4dIJJLxqBfZ55w+k4fE6uoqYrEYRkdH8eabb6KpqQknTpzA4cOH0dbWlqbQ5HSEhDCz2Qyz2YzHHnsMJ06cwJe//GX8/Oc/V4CarFn0oWB96+vr+MlPfoLh4WF0dXXhn/yTf4LS0lJlwaB+KC0txX/+z/8ZL7/8Mj766CPE43Flid/Y2MBf/dVfKYD40EMPwWKxoLW1Fd/4xjewvb2NgYEBzM3NYXl5GZcuXYLf70dzc7OKhvy1r30NIyMj8Pv9WFpawoULF7Bv3z6UlZXBYrHgoYceQm5uLt5++22Mj48jEAhgfX1dBbmx2WyIRCJYXFxUe5sJCBKdI+GMn6dMEbHz8vKwsLCAN954Q52fbrVa8eCDD8LpdCIYDOKb3/wmJicnsbW1hby8PJw7dw5Hjx6Fx+PBzs4OPvzwQ1y/fh2Tk5NYW1sDABQVFeGFF17A4cOH0draquZpKBTClStX8OqrrypPB84vzGYzfvd3fxcdHR1pFmua19vb21heXsbk5CS++93vYnp6GrFYLM3rgKfc3FwUFRWhuroaLS0tePrpp9P2A9NalUEAJc2i/dXhcBg//vGP1fxPJpPqPGnOG/nc1ynlJG/jcgzVp6CgAGVlZWhqalL1J+8Vsthxd3SZuEzGlQo6YTgnJyftlBHqOxLSJc3jMhbd5/yF8iMPkGg0iuHhYSwsLGBxcRELCwvqPvEhedSeDjTr6LaRAlR3LRtwvBfA/Ul4VCbeY5SnETiWvGo3EE3XdTKRLnHay+URCYpp3y8F37Tb7XC5XHA4HMpKzI81JHDMy+WBveQ64e2ULsVcecPnDq87xwVcTuYyowR2UibmhiCqG8+brwlef4kTaK1Iqyvd4xjEqDz6zy3EvN66ZHRdZxE2wgJGoJn3l5FR0yjJdmXj/UnpMw2ggfQJLoGIZERAZusVT1L41oEcncaV10knvEsBWC5CWbZRW7nWiS8iHTDiWiajiaQrT7d4eV1lv+u+6TlehhRI6RkOhnWEWbrEUR1p4RsRPul+SuXrlCHUl1KhwtvEx1sueNnXfK7oXGLlGPAydXXkz0nCJsuTecjneD9LTZ+0FvAxkl4BvF5SgWIy3QskRPlRvUh42draQnl5Obxer9pnzY/kog8d1UV7+pLJpIrGmynImW5eGwmYvF+ySdk+98t6N5MyQNI5zlQBKABBZzWT0EHH2QwMDODOnTuw2+0oLS1VLqZutxslJSWwWq1K4CBAxGmREY2R9FK2RyomKU8SZsjFzuVyqaOgWltblbv00NCQcmPlRwTx+ZtJCKDfJEhTJO/h4WHU1dWhublZHV1EYJBrsgGo6KkEqk+fPg2v14uWlhZcvHhR7SEmsE/l0VnuKysrMJlMan91VVWVsviZTCZUVlbikUcegcPhwLvvvotQKKRchMPhMO7cuYP19XVYrVbU1dXBarXC6XTiscceg81mw4ULF5R79NzcHN544w0899xz8Hq9cLvdOHHiBO7cuYORkREsLS1hcHAQpaWlOHnyJOrq6jA2NgYAas9wJBKBx+OBy+WC2+1WQI4sv9yNkb7J/Xxzc1OByvz8fOXWPTU1ha2tLdhsNtTV1cFmsynL9tjYGNbW1tRe2+PHj6O+vh65ublIJBIYGxvD8PAw1tfXYTKZ4HQ60dzcjMOHD6OqqkrFhBgbG8PIyAg++ugjBAIBrK6uKppkNpvh8Xhw9uxZtLW1wePxoKCgIA1Ira2tqXOTh4eHMTU1pdykJQ0hRYLdbseZM2dQVVWFiooK+Hw+FXmaz39u8aFEXgvBYBBDQ0MIh8MIhULo7+9HPB7H6upqmqu4pHeSR+lkFPoUFBSguLhYeSbQ0VJOpxNutxsOhwNOp1NtM5AKVl3S8WYZ8EjH83W0gtNlXYwafs5yJBJR0eP5MY/BYFBt3yCvA1qLOtBMZfDfmWjubuBZXpPv7yXpeIC8l837ey1HN5ek7LFbOUbzUsq3xKNobpaUlKC4uBhmszktwB55DJHSkR/9xM9FlvvwuRzKy5eymqy3bm7yfIz6jcsXvGxd7ByZeJ10wFauHR3PM5lMyjBktHXLqD38HuXPn5F9wuNDZTM/JGbieetwkBE+Mxo/mT89I2VjXqds0mceQFPSCf66JCeV/E1JuizoFgSfSPwZDtz4df4+fy6ToC+Znq6Oujbz+umAn1G7eNlywe62AHQMXDIcWbasm7Rac8GCW9hkcDBeH92C1TE+CUZ0c4I/I8eXfkvwRv2uA7M0XjLpxl8SRd34S0FIEnleH/6ft1mWxwUJIra8brx9Ok0lL4cIthwT7oKUk5MDp9OZJghysLG6uoqVlRV1nE4oFFLHg3CgTe8QUOR71IwAlVQ88TVplDKNU6Z1lSlPmU+mtFs+9IysF2lnKSiZyWRCPB5HKBRSwgrtT/Z4POjs7ERtbS0qKirg8XhUgBQSaGj/o1Q2ScEEuD+CN//NmTCNB8+LAqWVlJSgpKQE+/fvx9LSEubm5nDx4kVMTk6qiMfk2bC6upqmcNPRN+Bj6xUH0eFwGP39/XA4HDh58iQ6OjqQk5MDu90Oq9UKi8Vy39oksG8ymdDR0YHKykq0tLQgFospy208HlfW+p2dj/ewkss6gUwCXiQQ2mw2HD16FG63GwsLC+jr61NtXV1dVe7PPp9PRXctLi7G8ePHsb29jZmZGeWWGo1GceHCBRw8eFAFeDpy5Aji8Timp6exsbGBkZERlJSU4OTJk/B6vXC5XDCZTFhfX0c0GkUgEIDX64XH44Hb7cbQ0BBWVlaU9ZcHrZMAent7GwUFBepYlrW1NSQSCQQCAezs7MBut6OpqQlFRUXw+/2YnZ3F4uIitra2YLVaUV1djY6ODkUv5ubmMDU1hbm5OWxvb8Nms6GyshJHjhxBS0uLOjd9ZWUF/f396OnpQU9Pz33guby8HE1NTXjqqafSItrTellfX1cB2fr6+jA2NqbOA5d0mMbMbrejqqoKjz32GDwej3J557KK5DM0N0ghQUenXbhwAX6/Py2qdyqVvt0lU+KCIoA091Q6Yqq0tBSVlZU4cOCAGvfi4mIFUCSPkfnrZCYpf/DnOc/fTdahfDl/ILfs7e1trK6uIpFIqECEXKnGPTaIF2QCzLv1pRFN302mMsrDSCYzep6eyST/GOVjlJdRnWQecox08pEuDz7+XAFDwJd/6DptP6IgmXSsIO29J14kj3jjnk20xmmeyTkoZTa6Tu9m4vWyvbIvdFZU/uHlZcPTeZ/zpFMEyLpTmdvb2/cFONPVPZPsy9ehTtbXgVf5jMxbNwelLGCEUaTVXQJoKQdRXkYYYi/pMw2g+QDyAeduCkB6sBsCYRLkyEQuDlxDmkql0hggDQKQDmaoHB3ooPckcNNNJg5geV0kMJd7pXnKz89Pc42iRSQtRjxfSUh44vWWz/N2STcK/h71LW8btZsDRcqXgJGsD2fqUoPP99byZLTfkxNYcjnjDFZGBCUixDXq/Dn6z+vMQaNR4nOKEtWRRwWWBFK6jPM2ykAMcq7y/ifgSS7mUpspf/PxlYSQrzvePu4KzPtG1z9yn3ZXV5cCgvwMawpSlkgksLi4iIGBAQSDQUSjUQU2+FmJNK58XeoYj2wzr7fuOSOGk837uiQFIqO+l+XLZ2QsCPpNlmng43kWCoUwNTWF27dvp7nGlZaWwu12o6GhASdOnEBlZaWK6sznk876rWNuUtCha7y+VCe6b7VaFVAqKyvD/v37lSv25OQk7t69i97eXty8eTPtGDajdQOkKyIJ2C4tLSEWi2F+fh6vv/46SkpKcOTIEZw6dQqPPvooPB5PWv9z6/zOzo6y7v7bf/tvMT09jf7+fnz3u99VxwnRHOTnw37/+9/H22+/jZaWFvzzf/7PUVFRAavVqlzazWYz/uRP/gQ//vGPcevWLVy7dk3N/cXFRfzd3/0dSkpKkJubi7q6OjgcDjz88MNoa2vDH//xH2NxcRGrq6uYm5vD97//fZw8eRJf/epXcfjwYTXmw8PDGBwcRE5ODr7whS+o4DgOhwORSAQjIyMoLS1FV1cX6uvrEQwGcenSJcTjcaytrSmPEwrCU1xcjJycHLXHemtrC263G9XV1dja2sL8/Lw699pkMqG+vh5PPfUUTCYTrl69ip///Odqy0hzczP+2T/7Z3C73djZ2UE0GsWf/dmfYWZmBhsbGygoKMDx48dx9OhRPPbYYygsLFT9c+fOHbz77rsYGRnB2tqaovOFhYU4e/YsHnroIbS1tcFisag5THRmamoK/f39+MEPfpB2VBFflzw/n8+HZ555Bi0tLcoCzgVYKUATTSQFTjQaxc9//nP09fWpc9P5kWlSeN1NyKd5SespNzcXFosFZWVl8Pl8OHbsGOrq6tTROPw4PHqHJ8k7aaz5kU9EW3V7EWl9czlAKs/4+idPBVKMLS4uYnJyEn6/H+Pj42mBvbjiTCq2qe5GINkIGMs+5dd0dFj33G7XJGAxqhe/tpfyMt3XATCZdLKgTlGqk+NIWcMDXhJd8Xg8cDqdytuBR6vmci9XUMo97rzevJ5GIFAmXV9KeZ0+3PtB8jopV/E8KT8pU2UCiPx9LmuTbMXrRf3B5UCZV05OjqJvcqwlmJSGLNlf/DnZNu5ZIvPjSV7T9bekZRIYc/zF20mJK+5ledRX9B53cc82faYBtBQW+WDqJh9/R05+vvi4lkJOJA7S+TNyEUuLIa+TBMa8fjyIE1cAcGCkmyQ6MEt5yLaQtYXvpaW66CYubw9NNB0B4YtXAjNOKDiYo/pILRL95v1NddG10wikyH3JPEmALBkoVzJQnpxYSmWGjgjy/HX3ecrE+Djw5M9zgCH7mAR7aX3l37xNxCB4+0gYkVZGnZZRbkfghB5AWp14e/gY6Zg4Vx7xNnKLdUlJCRwOBzY2NlBZWYnW1lblvkcBnTY3N7G2tqYCmcXjcUxNTSGRSGBlZUW52Uoh1WiO6fqS/+d9sxuDNEpGZeqYtK5sWa9MTFtHD+lDgNLv92NychI9PT3Kgul2u1FRUYGysjI0NjbC5/MpyxXf5ykBtZEgy+tM84orgigPAOq8abK8+nw+nDp1Cs899xyCwSCmpqZw+fJlTE9P3xfYSydcS8FsZ2dHzaHr169jenoaly9fxv79+xWIJEDH68v7kc7qrqioUMcxXb9+HdFoNM2iRgGgNjY28Od//ufo6OjAgQMHcOTIEeTk5Kjo0I8++igaGhrQ1NSEn/zkJ2oP7PLyMn72s59hYmICzz33HBobG1FQUAC3243f+Z3fwfnz53Hz5k2sra1hfHwcHo8HkUgEVqsVBw8eRE5ODv78z/8cW1tb8Pv9eOONN/DMM8+gvLwchw8fxnvvvQe/34/R0VFsbW3B5XLB4/HAZDIpAAN8rBghoJaTk4OVlRXMzc1hZ2cHHo8HLS0tyMnJwdjYGAYHB5XSoaysTEVnD4VCWFxcRE5ODjo6OnDw4EFUVVVhZ2cHAwMDuHLliop6brVa0dLSgieffBL19fVqD//U1BSGhoZw/vx5ZWHPyclBUVERWlpacOzYMRw7dkwFRSO6sr6+jkQigTfffBNTU1NYWFhAJBJJC3zI+Z7b7UZ7eztaW1vR1NQEn8+nYg3wuU6KllQqpWjS6uoq4vE4Lly4gFAopAJb8SjaPM6AEa/j33wN0xqpqqpCeXk5qqurUV5ervbvu91uFBcXp0VM5/no1iYHNlJOImCcSWje3NzE8vIynE6nuk7vUv8HAgGEw2EsLi5idnYWq6urCkQnEgl13jvtP+f8Skc3M9FunozoqryeiZfr5IBMKRPIM+Ir2eSVyYonx1dXh0xzi0AxuVGTd47ValUKv6KiIlgsljSlDM1J8niS5xTzemXaLqZrg64fdEm+L5W+vL8k/9QBUI4PdH1N17hMLLEDcL/1lCcjTwkuE0usQzIYva8zUMn2cc8Y/hx/ltM+iS10iRsieZ2NsJmuLD6XZbA0nkiOlfWW+835Xm8uv+4lfaYBtBT+dBOFT3idFk3e2wtRpLIk2JKuIrpFLhewnFhykRnls5eUaZLrhGwd0cwEMqV2TjIc3fu8brI8ekYK3rwMniQ44GVIJYAkeLq8jJigJKq6ftS1ke5LIqlj2DxJS2k2ibdbggSjsmgdkBDJr+sYDL+fqW6SsVAiIif7hDMaOccyAcDCwkJsb2/DarWmvUsKI3Ltpn3WsVgMbrdbAeilpaW0s6/pLGzaN8z3W+ssmrq5lO2Y7WVseb9+kryzAeQ0B2gcqD+o3xYXF5UQ5HQ64fP5UFZWhmAwiMrKSlitVrVvjUc3NQo6tNt64HRVKhQpUdCtra0t1NfXIxKJKMBVVlam9j5SRGt51JAcP+7Rsb29jcXFRcTjcczNzSEWi2FpaQmBQAA1NTVwu92wWCzK4kofssaazWYV8bWkpAQAMDExgUAggFgspubozs69SPa3bt1CMplUAbuqqqpgt9uRl5eHqqoq5UI/NTWl8tnY2MDExAQ2Nzfh8/lgNpvhdDpRVFSEzs5OzM7OIpFIoK+vD4lEAnNzc+jr61Pu4W1tbfD5fCqic09PD86ePQubzYa2tjZcvHhRBbKiM5/pzGKqOwnWNG8ooNjq6irC4TB2dnZQWlqK8vJyAFABnQAoYFdUVITZ2VlEo1Gsrq6ioKAALS0t6hzmYDCIsbEx3LlzB8vLyygqKoLX68XBgwfR0NAAl8uFVCql9sjfuXMHo6OjyspN4LmzsxOHDh1S+9tJSKMtInNzc7h165Zyv+cB4ahtpECqra3F/v370dLSgpqamvvOJ5brbHNzU7nDx+NxhMNhdHd3K4szuYdzoVaX+PynPidQQ54DVqtVndPs8/lQU1MDr9ebFl1bB5p4vnKd6tYwX798LUklKn1vbW2pI9KWl5fVmiSlwsLCAoLBIBYWFpSihNNnrsTejQ7L/3uhyxI063i/DjDtlnSAVvdMpvrwZ3Rym1R8czovn6VvGWiLTgggoExeB6Qg5ecim81mBaApeJfFYkkzDHE5g8tlnBZT4tZMoz7Opu8539DND44fMsnq9F+uZzm3dGBc/pZyLq+n0XqXdZJ9wMvOJKfK8nVJtu3TYI/dyjACz0bJCDwb5aGjk3RdtwayTZ95AM3ddWjyccuWZD46gMWJvK7zuEsv8DEYA9KPoyIGzMviRIILZNIlQ1d2Xl5e2p45rlXhz/J7ksHxuks3Bh0AoD7l73OrjCRk1H7+jC7xxagDQWRtNxI8qN/pXYoGTeMjy6BnpbuwFL6pX1KpVJoLMe9H2SeSQPJ6ksVN9qnsC56ovpkSjbHO/ZnaIBVIvB5GTF+62VC7uKUEQBqY4vOfjymPLinrB+ijSPJxoXIkM6HffMzl+9SHtHdKjjF32y4vL1f1OH36tPpN7uDkwkv76AKBgArcw6OD6yzV0pKuY67yt44J82d2W1O7JdnfmcqRwoVOcWIymRQYycnJQSwWw9TUlHJhpSAuFosFzc3NaG1tRXNzMw4cOACr1apAJRfcM2nduWZYx/go0biTQGez2eDz+dDZ2Ym1tTVlkf7JT36C8fFxhMNh5drPFaFGwjgJ7nRubHd3twrc9dxzz6G9vR2NjY2KjnArHQGV/fv3o7GxEWfPnsWlS5fw1ltv4fr161hZWUnjZ7FYDHfv3sXY2Bhu376N3/qt38KJEydQVFSE4uJilJeXw+FwwOv14vz58/j5z3+uom2Pj4/jW9/6FnJzc9HV1YW2tja4XC488cQTqK6uxn/4D/8Bq6urGB0dxcsvv4zGxkY4HA5UVFTgzJkz+OCDDzA7O4s7d+5gYWEB1dXVOH78OL797W9jdXVVnc9dWlqqAvpw+k0Cd27uvbOtASjX21QqBYfDgbq6OgCA3+/H/Pw8cnNzcerUKXR0dCCVSuHGjRuYn59HKpWCy+XCgw8+iH379mFnZwfd3d24ceMG+vv7VRDCAwcO4IUXXkBhYSF2du7FTXjrrbfQ3d2NkZERrK6uwmS651JeVVWFr3/968pKzIPdbG9v49q1a7hz5w66u7vVvm0+P2k8PR4P9u/fj7Nnz6K1tVXFCJDCLFcAkhIukUigt7cX77//vtrbHI/H0+I2GAFAHUiiaxzMdHV14ciRI6iurobValWWPs6jMilG+ZqTdIPLJLr6cP7JFQE8z6KiIoyMjGBubg6zs7MYGxtTR9WRyzbRZCN3bKIRun7SpWzopeSVRuOQbcoECnRCvlH+RqAsE3+Qcpakn8RXubxH9LuoqAhWqxXl5eUqsKTdbldrniLJU56cTnOZTMpa/KPzYuCAWievSwMV7+dMfSxlZinjcQUtf4dfl4kbGmRfc3mM9z/lycun+nP5Um61lAoAqdgywhH8HWmoovs8GRlruJxJtFJ6RfI5wO9xeib7QidH8z7VySW64MvZJN3xX1TOJ8pvT0//X5Y4s+GDpdNOSAGfg26a0DSB5ZnNlCcNME1CKdjxyUub9aksfiwSZ7CcSNBzOr9+2SYOkvgeV774CBQYCafUHxIE8L2J1L8kIPGFyPf/ciUB/ZfuvxJIcaIk+4M+st06TwEOKrnlksrie2ZkX/BxlWVzgiSJHNek0zN8cUpCRnXgfUu/ZWRSel7mofMgMAKz1C4+r3VAjTMvSaR4u7kCgfcvXeMMkCcdQKI6cEsVH0O+v47XkbYdUJ4U0ZeDZFlv+i+PKaN8da7jZAWsqalRAhwddUIgilumFxcXVYRcLgSSAMgFB94HUnlh5NYkBc9sk5GQIX/zMdIBbMlwpUcMp20EsMhKMTs7iytXrsBsNqvIvnRE1YEDB5TlurS0NA0I8D4yiqcAGCtJOaBwOBzY3t6G3W5HXV0durq61BmwExMTuHTpEiYnJ9VeXAmied9wesj3Ss/MzKg9fY888ggOHDiAtra2NF7CBdSCggKcPXsW7e3tmJqawt///d9jYGAA0WhUAQaKstzf34+//Mu/xC9+8Qu89NJLqK2tRXFxMYqLi1FTU4MvfelLOHbsGF5++WWMjIwgHo8jGo3ie9/7HgYGBnD27L09vi6XC/v27cO/+Bf/At/73vdUAK5XXnkFJ06cwIEDB/D0008jEAioKPdvv/02jh49imPHjqGpqQmTk5NYWlrCrVu3cOTIERQUFKCiogLz8/NqXytZqaitqVQKy8vLChCbzWZYLBa1VgCgpKQEbW1t8Hq9iMfj+NnPfoZIJAKXy4Xf/d3fRV1dHba2tjA7O4sf/vCHmJubw+bmJqxWKz73uc/h1KlTas/zyMgI3n33XVy5ckXFPzCZTDhw4AD27duHp556CmVlZWlCWDKZxMLCAl599VX09/erc8c5Hc7NzVVnqh8+fBhnz55FWVkZ7HZ72jnIkh9tb29jaWkJ0WgUH374oQpyFYvF1JnhRGckSNStU6KNtMZKSkrgdrvR1NSEffv2obS0VLnSkvss0UDaX0pzWidMcjmHt4OvSSl8cmGf8zCytIdCIUQiERVQj05aIBdsopeUj5RJJO2Uv/cq+OrykknKdEYAhecjBXGZR6aydL/p/27AUL7P5SeyJJeUlKi1V1JSApfLBavVqk5Z4IpNGl9SyMjrfC5Se+Uc0bWJ6qSbb5xWcnmKeL9RfxnxUSB9nyuVBaSf2Szf0cmsUj7k+VOSXntGsiDxS1l3yfuof3eb2zp+xZNcL/xZ3VyT78h8OD2k/9QOo5gHHGfo6kXzQsqQfN7I/t2t3hJ8A0jDMTTHaD7qzq7eLX2mAfTw8LCKOEqL22QypQUi4FYzckMhokICFmcsFPmPL3S52HWDpRt8Akxy8UkixCc1Z746gs2fpXtG4EUHFuU1qYWjJP8baXl5nnJxcCIqGW4mUGAkPBgRCaN+4M9zIG7Ur0ZMTBJNHUEyqr+8zhUrRs8YERPKl94nQTsT8+WWNV2bJIHW9Y2RFZAn3v+6Pud5G/2nZ+X5jLIeHBzxJM/51ikCZN2kVZyekQoh4GNlEgdR6+vrqKysVPuqOzo6VGRwOlaJPuSeSIGCyHV8bW1N7X/VuYdnEhIlHdClTExRl1821+i6FOIIRNHcWltbw9LSEnJzcxEIBJRlen5+HrOzs3A6nbDb7SgpKVFugQ6HAx6PBzabTUXe5soUo7rx8ZbWAqL5hYWFKCoqgtvtxurqKlwuF0pKShAIBNT54wRspqensbS0pFy9+TjQXKcx29jYQDgcRjAYhMlkwvT0NG7fvq0iG3s8Hvh8vrT6kfXTarViZWUFra2tCAaD8Pv9GBgYUIGjVlZW1B5uq9WKmpoaVFZWoqmpCQ6HAy6XC/n5+Xj88cfhdDoxMTGBsbExhEIhDA0NKeGgqakJTqcT+/btw8MPP4y+vj7cvn0bvb29yh2zoaEBhw8fxs7ODt5//32MjY3B5/MhNzcXR44cwfr6OiYmJtDf34+2tjaYzWbU1taqKNqbm5tpR8aYzWbk5OQoZQNFzk2lUrh9+zZisRisVisOHTqE0tJShMNh3L17F5FIBF6vF83NzWhubsbm5ibm5ubw0UcfYWFhAdvb23A6nXj00UfR1taGkpIS5RUwNDSE3t5eRCIRpFL34iMcOnQInZ2dqK+vR3l5OUyme/u2E4kEenp61FnW/f39CAaD6kguGie73Y729nalAGpsbER9fT0sFst92xJSqZRSJC0sLGB2dhbLy8uIx+MYGBhAKBRSUbb5nmop2HIaSIr9oqIi1NXVobS0VB0pRdsDampqUFNTo47uIZmIaAOXhyhP3do2or2bm5v38VDaGhMOhxGPx9VWGFIK0LgnEgkVbZ3c4UkRyWmqXGOZ1vlu//eibDRKmcDsbjJDpjx0/3Xf9OFu1QUFBWqMCwoKUFJSkub1Qc8CSHuPZGXyYiEXa/pPz0lez9ezlK+y4S3Z8CUd/zJ6TxevRuZp5NHH+5aXayRv5+Tk3Ccj6+QJKlPyIHqey19GcjbPVzd/spGFdXnq+on+yz7QPWs0NrvJHbp8Mj0v6yDbnC24l/lJHKDzYDDq+93SZxpA3759Oy3CH01aIgJ0j7RndJg6CWpEPIgQkYsTaW35+9JNigMQ+ugmIAEm6R7L8yNgpXMH4UlaPYGPLb086SaiUZ5GAbYoHxIidMCe/ktXFdkHBCA4Q6D7RuCMv0tlGGm3SGMo+4/nL+tF7+gWJbWZE4ndgKCu/VQPumbUP7ItRmNB92R/S8u2fEcCHa7A4UTfSBlA/aGrsyTW3FWaA2ES4qWVQroU8TUh68WVYbzutH6kJZ6XLa27sixK3NIOfAzmeZ2kxrqysjJtPVI5fPvF9vY2VlZWVACckZERTE9Pp1lnCHhzoZIL2NyKLQVuOTbZgGU5znxM95qnbl7oGBKN3dTUFG7evKnmM9Fhq9WKxsZGdHZ2oqamBg0NDSgvL1f0mGg0jSlXIMl5LmMycKUJ7c/2eDxob29Pi4A8Pj6O0dFRvP/++1hYWFBghyxkfDsPBxKkLAiHw7h06RKKi4tRUVGB06dPY//+/crtkQu1tD+VlDCLi4vo6enBysoKFhcXVdmkoJmdnYXb7UZnZyeeeeYZdHZ2KoXA008/DY/Hg+7ubrWPeXJyUkW6/sIXvoCTJ0+ipqYGzz77LLxeL3p7ezE0NKQUPo2NjTh+/DhKS0tx/fp1zMzMKGvv6dOnMTc3h9HRUfT09OCJJ55AWVkZWlpacPv2bQWYuFaf4hGQ6zu5f25ubuLSpUuIRqPKal9cXIzBwUGcP38e6+vraG5uxpkzZ1BRUYHh4WF0d3fj7//+77G+vq6iwf/Gb/wG8vPzsbKygomJCfz4xz/G1NSUirRdUlICn8+H559/Xp0vbTKZsLKygkgkgtnZWfzgBz9QoJY8EEjhXlxcjMrKSjQ0NODFF19UAbc4HeZrfGdnB8vLywiHw5iZmcHVq1dx69YtpYiho5ToHaNE88NkMinZpKioCE6nE4888giqqqrgcDjUfKYtC2TF4zwMSN+CQ+tDCpX8Pz1HtIes6KSkJOUtzfnh4WFMT08rRdTy8rICyETDdJZlneC7V1rzy0q7yUySX0i+xetmJITr8uNyJFcQc+DKZViLxQKHwwGbzaYUdBREURqEKPH8aXw5L5EAkvcxDwpolCQv4opp/pFgkvebBEs6eYrL2pwf83J5/0qLY7Zysayb5Ik6OYU/I12MqR5y/nAeppPRjBIfPyPZzEh2le/zNWgEUo3kQqP6Sq8AqidvP39fymy6fOScMTL+yfc5LuCKIC4/cnr5/wyAJiYpgZkERrrr/L8Uyvl1fg9AmnAgAykQQCdATm52FO2S3iVmSNp4vu+XBpwTEeBjTSAl6bKum0ByIugAqI6JyYnK951yt1fKk/pnc3NTMXDp3s3BlDz6iQNDyYw4QKLydeOYqY3cJZi7m/J+ojGQBDmVSinNO+XBCZPsC84AJdCihUtWGg4mOUjSEWwdMeTMgoNcuSY48Zbzm9pGRMiIwXMFCBeGuDKI3qG60bjJdST3Nunayv/zMZLEkz/DhUC5H4vno+s3aiNfY7zNdKyXZDbSRWx7e/u+9UyJIs6mUil0dnamBbGivZEUTTkej6tjgyYnJxGJRBCJRJBMJrXBzCSw5r8lo9pLkjRkN6CtE4j481zpw+fAysoKTCaTCt505coVpeS0WCwoLS2F0+nEgQMH0N7ejqqqKtTW1qaBaU4raVx0fcPXCd+zSlYZr9eLw4cP4+mnn1ZAa2BgAL/4xS8wMzMDv9+fti+T502eBgTIk8kkZmZmUFxcDLvdjgceeABdXV04evQonE5nGt0pKSlBcXExvF4vjhw5gtHRUdy9exevvPKKCmK3tram9szevn0bJ0+exMMPP4zjx4+jqKgIR44cQVNTE44dO4a/+Iu/wNzcHFZXVzE8PIzvfve7uH79Ov7gD/4ApaWlaG9vx7PPPovXX38dExMTiEajaGtrQ1tbG2pra/Hiiy/itddew8zMDD744AM88sgjqKysRHl5Ofx+vwK/LS0tyM3NVVsaiLeRdZ0s9Nvb20oZQsHY8vPz4fV60dXVhdnZWYyOjmJqagqFhYVoa2vD4cOHEY1G8Z3vfAd3797F6uoqysrK8NRTT+H555+H1WrF8PAw7t69i+9+97tqz7LJZEJLSwsee+wxnD59Wp1lTQD3xz/+MQYGBjA8PIxYLKbWEs2J0tJS1NbW4qWXXkJVVRVcLpc6U5poAtFtypNc4t9++20Eg0EsLS0pV2W5D3g3IFVQUACv14uKigocPHgQra2tsNlsKngc0cK1tbU0MC/pLCXpraNzh+S0lSvsaN4tLi7i7t27yqqeSCSUwo8fEyiPjdN5helog1H/SLqzW9oNJEmglgn06q5JSyN/VvI1+Z8bXCheAMmHTqcTLpdL7TUuLy9PO4ebPpwXcvCSib5LviBBD6edUplC37q+4OMs5Q4uy8jtVfROQUGBykd655EsKQGYNDLwLYyZkpGBSso/Ej/o5FL65utaGsXom8uBEqRymVJ+eFk8X25I44mvXzLI0XYajiVoXLjiTP6m7XE6IM/nCv2XdZHeCtQWKavJeSP5qRwnnfwh8+V1lmMm92VzOZWucbyzW/pMA2idVZNPFEpGRI4nCXT4e0aEUWr1yGLNCSQH2cR0iUHSM9J6ThNelxd3z5LfsjzKi3/kJJV9SW2nCSWZBSesfHLyCShBCj3DJ7nsVw4eKX9ahEauXZIQ6cZU5s/nAV2jZziY5ESQE3ypuZKMmecn6yQJL2eI1FYjsMnnH2+f7DudhpbXV5d0jFUSSUmUeDlG48LzlwRS9qM8X50TWB3z5mBM1z9Ggoz0hpB58jpL4YFbzbnCTVdXPoZynphMJrVuJbjb2fk4YvjGxgaam5sRj8exurqqgpeR0Er7VOPxOPx+P0KhEFZXV7G6upomtEvLjxxz3mY5R3SCri5lEt5kkoxTCtoEPml9UJTi+fl5LC4uoru7G6WlpUrYdDqdKC8vV2fZms1mFBYWpvW3rh2SL9C4cFfvzc1NOBwOJdBSULmhoSFMTU0pSy/fvwp8PM/oQ8fvXL58GePj47hx44baB97U1JSmYOV8wel0wuv14sqVKxgZGcH8/Dx2dnYUYLl9+zYSiQQGBwfxyCOPwOPxwG63o6GhAV/5yldw584d3LhxQ0WWTqVS+Lu/+zs8+eSTKCkpwZkzZzAxMYHp6Wkkk0n8/Oc/R3FxMerr63Ho0CFcvXoVy8vLuHbtGs6cOYPa2locOnQIb7zxBubn59XxXPn5+WpO0n5gk8kEi8WCtbU1rK6uIicnB42NjUilUhgbG8P29jaam5vR1NQEALh06RL6+vqws7OD06dPo6qqCsvLy3j11VcxOTmJzc1NlJaW4vnnn0dXV5eKyH3lyhXcvHlT7acuKytDc3MzHn74YTQ0NMButyMnJ0cFq7p58yb6+voQDoeRSCTUOsnLy4PFYlHt9Pl8aGpqUq6ukj6Ew2EEAgFMTExgdHQU0WhUeTCsrq6mKbqMABe3MFZXV6OiogJerxderxc2mw02mw3l5eUqAju3BtI30SM5z3U0jq8zukfC9ubmJpaWlhAKhRCNRhEOh9UZy7RfmfbH0xnrfDvLbiBAR3N4vbJJe6EzvI086SxNOnpA9dLxCclXpAxI3iZFRUUoLS1NO4mgqKgoTabjsh29Q791bveyrvw8bamskHKxbJcO6JhMpvvkOZk3fzYTeKVydfKDHEspd1M9JQDl37wtUjFuJDPSWiHZKpNsJOtj9Dzn+bzemfgrHxtZRy6fUt9wuYXLJ7K/6Jr0wOJ5SVlVYgHdkWGyvZSPThEj5Ropxxl9c7mA/+dJyg4cq9BHvivzkMYmTkN18XKM0mcaQFMHcYHMaLB1v+XilRM4Uz7ymm6RcWInPzpBWzJG7kJOLjw8QiJ3PecWbTrTkYRBLphJUCfLJibArwHQgnFOiKi93ArLJ7B06TAiSnIcdQTokzJQvtAoP5321mge6cCFnE86Qsif5QK2JLqyvjoGx/OhOcut8zq3J1lno7bJOuqImyRw8p4OGOnaxJPUPO91nDOtV51glIleSIaiy0MquoD75zRfa1KDrusD/ixXTlRXVyuNMrfw0P7NUCiEcDiszqolUJ1MJpUliATgjY2NtKNg5LYRzmQzrQUpjNHzfNyzSXJtU6K8yVuEjrkxmUwIBAJKQUhWGwLPdCwZD4pTVFSk3HblvNXNdT5uBKQpAJrP58PS0hIikQg8Hg9cLhempqaUtZFABj9rmr4JoExMTKjjo2hv7/b2NrxeL5xOp3JRz8m5dwSW0+lEZWUlACjLYygUUoqU+fl5xGIxTE9Pw+VyoaurC16vFy6XCw888ACKi4uxvLyMu3fvKrfwCxcuoLa2Fu3t7WhpaUFXVxd2dnYwODiInp4etLe3qz219fX1GBkZwdjYGKLRKJxOJ1paWnD+/Hn4/X7lwl1UVITt7W0kk0lYrVbVj8XFxUqpYzKZUFNTg+3tbUxMTAC4d3RVTU0NlpeX0d/fj/n5eZjNZhw6dAhmsxnz8/O4dOkSIpGI2v978uRJdVb08PAwent7MTw8jFQqBY/Hg8bGRhw7dgwnT55UUbmj0ShGRkbQ39+PDz74AIlEQq2n3NxcdaZ5eXk5HnjgAdTX16u95XyN09pLJpOYm5vD5OQk+vr60Nvbq9bY6uqqobDMlXEULZv2oLa3t6O+vh5VVVXw+XwZo9VzYY9b+iTf5HSF6Ah9k5JubW1NfWKxGObm5tTxYn6/X3lU0PNGcRqM+EomkKLjD7sl3brN9KzuvyxTxyckTeAAmUAy/ZcGDIvFoj5OpxNOp1Ptn9ftm6e+4PvWpewgwRQlnYLZqO1G/EoHYPhckgYWo3xlHrp66JT8dF3yHQn0eR/w8uR/aqNRPaXnmBHPMppfRjiDnudKs0x5ynXB+473t5QtdIEK6X2uTDOSbzLVSwdaM82l3fLdra90z0m5kq7pZEpdvpme4TxeJ3tnQ4MofaYBNHC/S4QU4OR/o0ltFOk1WwJvNBmkwGaU5OBlIvw6Qs+JEv0nRi0JB9d6k8BGwib/zY8yoGMwJFgnSzovn2sM6TrXxvH7VEcuBHBLnySwfEx0wJK7mBPBJfc17nJHiVs+eWRGSdx5nxtZMOU9iqjO9ydLBmYyfRz9j+rLXZLIdZhb53gipk5giGsFJRPjDFESJeprcl+hyK2UdPvLeZv5PV6m9CrQMVvKn+rB3dN0whf/vxsYzrT+dRp5STv4ePE5yxk5jReNDXcLloHN+G9qp7QcSRDN5yV/rqKiAi0tLWllp1Ip5QZOlj8OsMfGxjA7O4ulpSUFbAhoS8FY9rXsW96WTEJtJkBtdI/3L9+Xnkql1NYdsrwPDg4qWkY0y+l0oqGhAc3NzTh9+jQqKyvTYmBQGXyMdOPD/3PQXlNTg6eeegqrq6sIBAK4e/cuhoeHcfPmzTTQwRUStEZJIXDz5k0MDAygtLQUbW1t+PznP4/W1lblmk6CeX5+Pp599lk88sgjmJubw3e+8x0MDQ2pcshy+Jd/+Zd44okncPToUTz88MNwOp04c+YMurq68L3vfQ/Xr1/H+Pg45ubm8Dd/8zc4deoU/uiP/ghf+tKX4HQ6sb6+jqGhIbzxxhuYnp7GH/7hH+ILX/gCPvzwQ/zwhz/Ehx9+iCNHjqCjo0MdQVRcXIyHHnoIFosF29vbCAQCsNvtav5arVYEAgFEo1GYTCY0NTUpq3heXh46OjrQ2NiI0dFRFaW7vr4eJ0+exPXr13H16lXMzMygoKAAHR0d+MY3voGysjKEQiGMjIzgf/yP/4FEIoGdnR3YbDb85m/+pnLxLyoqwtraGuLxOF599VVcvnwZc3NzKkAYra3S0lI8+OCDOHToEI4eParO8ubzgQeKm5mZwfvvv4+enh4kEgkVDCzTWqEPnQlus9nQ1NSEw4cPq0j0FEhP8gyi65xe6dbYzs6O8mrhkX6pbJp7dMby7Oys2tNOR7oRSKbtJNK6qNsipbM+yn4wUijQvd2EVknLdfx3N6E603M65abJZFJRqEkO4kCYjpKj87YJ/HKlh6w38Wsg3VpHY6aLZQJAWfh1+Rm1h0expjnMn6c5Q32iGyMOxqQlmdeHb0kD7tFKDiJlrB0p6+hkOu7pRfXX8R3pUbHbPKD2kPuuVHZymVG+T2Xr5AXen5kUA1weljydvAmo3VIJT0nKDFK+4/WRc4Tqxo1fvO90Chqe+Jzi80bWkdqmUwLIMTECyYQNeH9J5Y/k07r7nI5xfMTbbRRjKVP6TANoHbOSQpyOkPP7e8nb6LpOeDd6Xsf4dMQ9G4bCf8v3JPOkxBeDDnBzTSvfb8Pdx2S0R75AiXDzaOe5ublpruf5+fmw2WzKek5R1Ml6Tpp3GUlUBsUwYqBS0JAB0PjzHKzQIqP3+aKlMnm5OsYsnyfCz5UE/FnaM8vHhuqUm5uLzc3NtLpmEqLoXeBjqy5XKOjmHrWbniFGzT0RePlSgJHzWyoXOPOViTMZuTeFjyUnfEYETzIUrgjhHyqL2scjRss+4jSE9mrRmPG+zjQ/dIod+QwvOycn/VgoLsDwtsn+ILdZGks6Pmh7exuVlZVoaWlR0b5XVlbS9umSe3goFMLs7CwCgQD8fj/C4bACaNyqKhl/JrDNhS5O67IF1VyZJRkj395A1vXl5WXk5uYiEolgbm4ON2/exM9//nPYbDZYrVaUlpaiubkZdXV1KC8vR3l5eVoEW51nAM018ughqxMJ1RaLBR6PBydOnMDTTz+NcDiMkZERZdGVVmkal1QqpY7xoT20TqcTZWVleOihh1BXV4fq6mpFP0lJ8LWvfQ1+vx9TU1P46U9/qlz3l5aWcPHiRQwODuLKlSt44YUXFDAjcD44OIhXX31VnTP9N3/zN3jppZdw7NgxuN1u/OVf/iWWlpYwMjKC1157DadOnVL7fz/88EM4nU4cPHgQx44dw9jYmAJeXq8XOzs7WFxcRGtrqwIRZrMZi4uLCAaDak80HW1EUcSTySReeeUVrKysoLOzE8899xw2NzfVHvCCggL8yq/8Crq6uuBwOHD37l3cuHEDV69eRTweh9PpRF1dHV588UU0NDQoC/jg4CBu3LiBO3fuqDgCGxsbMJnuuZbX19ejs7MTBw4cgNfrhd1uvw88Ly8vY2FhAdPT07h27RoikQji8bhyZeb7fXXzxmQyobS0FB6PB9XV1di/fz+cTqeaN8QHif9JGkK0WAcYOLigZzY2NtT8WlpawszMDBYXFzE7O6uiixMdoK0ey8vLaZHmucDKP5L2GMlWmdazTDpaSe9kEriN8tBd08k4JGuQh4rL5VJBuWgekHxCsgw/0onLMvSfl8VpCSnJJX00siTTcxzg0fhSu2SQKp4HJe7aLZMsm+YQzS/el6ScpXc4v5LzgdpvFG+Hg2Ag3VIrQWmmsea/ecAyaXmVsgPVnZQVHLxLkCn/y3Uux0hXTymHyDbwvICPYxWkUqm0I20l0AXuDx4m68vrImVTeU/WRcpg9Cy33tI9qWSj6zp5gM8xKkvH0+U9PqdkoDjZXplk/XT9xMdyL+kzDaAzpWw6wgjcGml2dns223oZTXQ5YTIlSWjkdR2hMcpHl58EHTqh3+g5Aif0mzMcEqwo0rmMgE6CIn34+ZpcK8gBPt0jIZgDfA7+CahyZQAHqzQGRDwkE5DglRNtnjjh4P0jCQoXTuR9TmD48/w9vv9Nlg98DBS5i7Rkjroy+XO6uSPL5HOHM3uaD7pyqX68Hpxg66zVurbq2sGZKL+mY2qyfMlMM42XUZ3keBsxT3mdC1/0HmeSXMiRfcbbKBmdFIgpEjC5cdI5rNFoFHNzc2qvaCKRUH1FFjhy+YzH48pldXl5Oc2KLekn7z9+XSeUy+d07+oELFrLmdy+i4qKUFJSgsXFRUxPT8Pr9aKsrEydjep0OuHxeJTFifZRy3pzpQbRF7JMl5WVIZFIwG63w+VyweFwIBaLIZlMKnd7OuKH6ktu+aurq5ifn8f09DTy8vIwNzen9sXSsV4WiwV1dXVwuVxwuVxK6REMBjE1NYVYLIaVlRUkk0n4fD7lEuz1epGbm6vcooeHh5FMJtHd3Y329nZUVlaivr4ex44dQ3d3N5LJJO7evYu2tjYUFxejpaUFw8PDmJ+fR3V1NTo6OjA7O6s8HNxuN+LxOBKJRJriLS8vT+3hJ2BLc6StrQ0mkwnhcFiNR319PWpqatDb24vp6WlsbGzg4MGD6OjogMfjwcLCAm7evKnuk+tzZ2cnOjo6kJ+fr9yr79y5ozwDaH+01WpFeXk5qqurUVdXh7a2NrS2tqKoqEjVm6KeB4NB5co8NzenLM60DnRzPTf33jFDpaWlymLp9Xrh8XiUxwjfB6ujGzLpZBASsHd27gUwIwUKD+yVTCbV3FhYWEAsFlNbOHgQQkkf+JzX8SzJq4zkC7medwNDRjILp6fA/W6XfE1yUEveKPSb7pFCij4EnGmPss1mS3te0ma+/iXN5vPAiIdQ0lkR5bcEl1zO0gE6nnQ8lycjOsq/Jb/jdZHjxPMzUvTr5rFujsn28/+6vCVA4vNZyhBUhpHXqa4O9DECw1Jm0K0lKSt/EoyyW8qmr3X1NuLFmepC/WEko8p6GXlLGLVRzoudnfQTdTLNbVlHo3v824j+Zkr/KAC0XCS7JR1DonyyuSYXgNHil/dkHSVxNMpztzZkarvRPR0z2u39bMvJ5rdcCHxxyQjKusApco83Bd+gfWUUSIiCcVBEdPqQwMSDrXFmyYUjqXmlaxxwSaDDCbjU2HJCbGTtBtIjnBPB5+CQa/N0LtZcy0zt4tpkepf+U/68fD4OlI+RJVUHxI3mjIxKy/uR+oHvM6b2GzEf6cZFid4jd2leJlcsGDFmukcB5giAyiBVvE7UDp6fjpFTnXRzi7dHAnddH0jvAK5ckhZucvOU7mY1NTVobGxEKBTC/Pw88vLy1PEowD1rXDKZRCAQwNjYmLIsTk5OKvdPeewWH2cds9XRbh19NhJG+ftGngobGxuqH4LBICYmJpSXCwnQPp8PHR0dOH78OCoqKuB2u1FaWprmScPnDvUp0R+KrE/KQKfTia6uLjzxxBMIh8Pw+/24ceMGrl27hnA4nHZkEvULgehkMomf/exnKC4uhs1mw5kzZ3D27Fm0tLSoiL1FRUVwOByoqKjA1NQUhoeH8f3vfx+RSERZF7/3ve+hoaEBR44cwUsvvYTy8nK43W74fD5885vfxMDAAAYHB/G9730Pjz/+OB577DH82q/9GtbX13Ht2jXcvXsXBw4cgM/nw+c+9zkMDw9jYmJCuTxfuXIFyWQS4+Pj8Pl82NnZwezsbJr1LScnRx3R5nK51BzJy8vD6dOnEY1GMTExgeXlZZw7dw779u1DXl4efvjDHyIYDMLhcOCrX/0qKioqEIvFcOnSJbzxxhtIJpMA7h0hd+7cORw5cgT5+fmIxWIYGBjAm2++idu3b2NlZUUpVejIn0ceeQSnTp1Ks/7S/NzZ2YHf78f4+DguXbqEgYEB5SWwsrKinZc0t2j87XY72traUFdXh87OTlRXVysFsTxJgK8Lvr1IBuGk+U7PEIBfWVlRwfXo/O9EIqGsywSmuQXUSDmbCYzJeuiETR2tzyQzSCDMy5VyA5cXjLzlcnNz1ZnyNptNxQKw2Wyw2+1wOBz3BV7lefGxlPSf2mzUdllnzls475B0nPM8SQs5wObggb/Px1IHFIwswdzyCnxsxZV8VCqzOX+mcaHnZPsoH9lfEpzqPPOIP0pZh9rEx4nLajrlfqb2c0UztY1kIXpf52FCz/NyeF0kWNWBNLnmqP70DLnBG8k2uiRlB6Ny+H0dv5Wu07vJ/lyho8M8fJ1JLwSqo44u8bZwmUZiJr6+eHt07eLXjWSQbNM/CgANZNacGD2712Q0MLuVLQdVd58TRaPJrluQugkg66N7j/4baWdk2dkmviilBpS3j5iKrgwdY9YxLSOrOHeD47+52zm9zz/clZofMSY12GQ9p9+lpaVpQJ2/S4FGuJUbSLeCr6+vpxFjyaQ5AZegh/4T+KUPEd7NzU3lQib7TaeBlXNGR3y5sCmvyzHiwS34b+k6Rd4FNGeoPzgD4QxVup/R+BIQ4X0FfOzORoxZjgf1B1cUEDOVeRUWFqYJHJzpUfl87sm+0c1nPn91ngB8PvN3KG+5FjKtJ8mIqM2075H2czocDhXVmixm1F4umNM+avodiUQQi8UUWA0GgypiMbe+GgUj4ikb+kR9oPvPhT3eP7TmkskkwuEw5ubmcPfuXbz++utK8eZwOFRAJwq4RZZF7mrHXctoXpBLZ2FhIex2O2pra9HV1YXnn38eKysrSCQSuHTpEu7cuYPx8XEsLy+nreWlpSWsrKwgFovhJz/5CS5evIiysjIcOXIEDz/8MLxeL8xmswpK1NDQgAMHDuCdd95BX18f+vr6kEwm0d/fr87cfuyxx3D48GFUV1fjG9/4Bm7evIlvfvObGBkZQTwex507d/CHf/iH+MpXvoKDBw/iL/7iL/Daa6/h9OnTePHFF9HW1oZAIICPPvoIDz30ELxeL1ZWVnDhwgU8//zziMViiMViqq9JQbm0tIScnBy0tLRgenpauXxXVFTgrbfeQk9PDyoqKnD27FnEYjH87d/+LWZnZ/HQQw/hxIkTqK6uxsWLF9HT04Nr165heXlZgdMvfvGLsNvtWF5exvXr1/HWW29hbm4OsVgMa2trMJlMKCkpQWdnJz73uc+hsbERpaWlanyIFwUCAczOzuL999/H+Pg4IpEIlpaWlJJDCsQ5OTkqWJTT6cThw4fR2NiozuS1WCxpgJn4Bc0ZnUzA1ymPabC5uYlIJKIUMbdu3UIsFlOWZ1Jera+vp9WXr69Ma0T3Wyc7yDrKJAXabHg6kO45QzSO5g55oVFwwJKSEpSVlal5Two+zmPpw4+4I4W7zgrG+SMXzmnbjWyXHEOZn/Rgk7yU/kslMqfvEszK/qLE66jj6TwR/9SNiXxPgmGqD9+jS7yOrnNwwpXW0hqciTYbARrKk/iVTv6gRApT3X5ynZwlk+T7urUv20Ht1Hl9ybXDt33ICOq8D+ldDoqpDUYeI/J5nTynk/NkHnJLnW57kwSzu8UuMrJAy/4xmqOZaA9tdQTSlUE0X3TzScpL/8/tgdalvQDpvb5nxIjkffl7L3Uxyns3QVL3nhRIP6niYLdkBNBlmdn0g9EzuzHwTISSEz0pSPPffKFxRkwMmP7zcxll8DUZ+VxGQOfCJf/mwgMvn7+js7rzPVi0P4vv1aQ68nIlU6QktXOcCfD+kuBVZy2he3xcOFPezUqtm+/yXZ2V1+hdui7rKgmpbr7y67Isnp9OQNAl2S98LHj/8vIlUJcC3l5ojMyDB0HLzc2F1WpFKpVKA88EoGkMzGaz+i0FAgpOlkwmsW/fPnUebjweVxZqbq2m6M3JZBJLS0vw+/1YWlpS+5p5/hIQ6EC3ER2S48MFHjrLlvZQ5+XlYXFxEX6/H6WlpRgYGEBZWZnau0qxGywWC8rLy+H1epXnC63jnJyPFUMUgNFsNis3+IKCAmXxX1paQjKZRCwWU8GdaJ869QVF+qZAXRaLBVVVVaisrITX60VlZSUefPBBNDQ0oKurS7nuTk9PY2pqChcvXsT09LRSCFRUVOD555/H+Pg4/H4/xsbG8KMf/QhNTU2w2+340nkpO0EAAQAASURBVJe+hCtXrmBhYQGXLl3CiRMncPv2bczMzODy5cvw+XzIz8/HrVu3lPJxeXk5bRyAewJtUVERGhoa0NfXh4KCAhw8eBA3btyA3++H2WzGo48+irGxMUxNTWF8fBxHjx5Fc3MzioqK8NOf/hT9/f0Ih8Ow2Wx47LHHUFVVhYqKCmxvb+PSpUvqvampKaytrcFisaj923a7HVVVVapdOTk5am/wwsIC4vE4YrGYitQdjUaxvr6eJrCbTPcCovl8PjgcDng8HqUwtVqtqKmpUSCPbzvSAQI+bylo18rKCubm5lQE/eXlZeXaT+7Yy8vLSCQSmJ2dxcrKStoaIvogFayZ+LERbeDfnF7s9ix/hluHTSaTUihbLBZ1ljW5TBPv5DSJe4XRWiM6RO7Wcu841YEL6jqea9QPHFxwoZ8S71spQ3BQo5NFeN5G7/Mk9z8bRXWWvE56VElARtclcOV9oCsjEwChdujmGp+TUv7SKSB4vlL24HnyJAGmzJ8/o6unrDMH0JQfB2NGIF/msZtMTuPOLd+79Smfw1JBI38b5aED5bvhBNlmKfNnkpu4gkE+s9tYUJJefsD9MWjoOSmvZSMfca+DveCkf3QAmpLRRNJ15G6DqBOgP0l9JKHYSz2yfc6IQBhN/E9TXqY8dqvjXtJegTcngJnGTV7T/dcxPd07OnAur0u3Wh2zlmCdA3F+fBm5nvJ9XOS2Tvd5ZGIukOiEOwLoVI+cnHSNHBdqJCHlbl6cCUjGyxlLNnNP9vluGkIdQ9AxaylMcOUGrycfO53wxMdQWtR5++WckExU9pUUsHj7eJ3IxQv42BKxl0TjReO6sbGB/Px8WK1WdRQeuZ5y6xl3J+R9IwVBKdhzwMwj/W5ubiIYDCIQCCAQCGBwcFCdr0zRxPnzlAdZwKU1IhNt1QkKXCHDz4In6zRfH/zYQLvdDo/Hg87OTrS2tqqjrSgAEVe0UT/zKMlutxsHDx5UUbSDwSDm5uYUIE0kEmlB39bW1hAOhzE4OKi8X7q6unD06FHs27cPHo8H7e3taG9vx8rKCkZHR3Hnzh2sra1hcXERPT096O3thcPhwAsvvIC2tjacO3cOg4ODuHz5Mq5du4ZXX30VTz75JA4cOICnnnoKfr8f8/PzeP/99/H7v//7iMViCIVC+Oijj/DMM8/AZrPh/fffV8c7URAr7k2xvb0Ns9mM2tpa/PSnP8WBAwewf/9+vP7661hZWUFFRQXOnDmDb33rW5icnEQ8HscLL7wAm82GeDyOn/zkJ9jY2FCRq5999lnYbDZsbm5iaGgI7777Lnp7e7G+vo7CwkJlpTx37hyqqqrgdDqRn5+vFCSrq6vo6+vDwMAA+vr6EAgE1Pzi21MoJgfR0/LycrS3t6Ourg4NDQ1pLuD8qClqN18XpFySc391dRXLy8uIRqO4e/cu5ufnEQwGEQqF1Pwmbw+dRVnn9kj/s+HxRjxP/pf8DMB9ymHdOeY8OGhxcTEcDoeyHtMRdMS3iEdyXkJrhrvtEg8jGiPbwD1qpOu3bBdXyunAE+eVOldazvOkkk5H93VyWCaeIQV7vrZ0wIX4swSt8lkjZbJu3si60nM88rYEZLwtkm/x/uFtlXNV19+yH3X3dV5fuqTLNxM4Ju812c5MMo6uDHqHj6Xscz4feB/r+lGXv6yX7HNdu+V1HV81AsvZ9EmmdcC/eV2N1pHu7HMj7xJZpqyX/J+t1xvwjxhAyyQHiKdMi2yvKRPx+YdIcjLrFAe6/0YLba9l6xZDtu/u5dls60j5ZuOenE2eOmEC0BN3HcEyupdNGfyeDojpXN+4BZsLOpn2kdM3uTaSayJZCvjecToTlwA6ATkqm1u/eX25hSAnJydN0NYxXy7Y6PrUSACh31IrSXOVu0ZK0MoZGndJ4+MNQLmnkSsZT8RkpdDC65VKpbSWY50As7W1pYRz7sIOIM31n7sgyvrohCXpypZK3XM7LikpUVYxHhV4NwakY8x8rgHpx8Tt7OykxRyor69PA9dkAeQWuEQigfn5eQQCAQSDQQwPDytrNbmxcq8J6Uom66ybH3LcZKRvOs/YZDLB7/djZGQE169fV0CroKAAHo8HTU1NaG9vx6FDh+B0OlFcXKwAASXpPeJyudDc3IyTJ0+qgFChUAjvv/8+7ty5g9nZWXX+MwVv++CDD3D58mUVXOzLX/4yOjo6lFtxR0cHnn76ady4cQMXLlzAwMAA5ufn8fLLL6O5uRlPP/00jh07hvr6epw9exb/9b/+V7z99tu4desWXnzxRXzpS19Cd3c3vvOd7+DNN99Ec3MzXnjhBfzpn/4pYrGY2vM7ODiI+fl5NRdpXdCRYwSk6Pxlk8mEu3fv4ktf+hJqa2tx4cIF3LlzB2VlZXjppZfQ0dGBH/3oR3jvvfewsrKCJ554AgcPHsQDDzyA7e1t3LhxAx988AG6u7uxurqKnJwceL1ePPfccyrKutVqVeOZTCbx1ltvoa+vD4ODg1hdXVUuzzQvaI6ScqS6ulodgUYu86SMpO0enAbzNSf3Qq6trWFpaQmjo6OYmJhQUdTJTXxzczNtK4QEdbyOu/HOTLw9Ex+U7eA0m9YzKQuoj2w2G0pKSlBeXg6XywWr1aqUuTw4qDy5Q7f2pMWRW7FlXXUxOSjJ/av0PBewZYwTbvHlykHeT1JJyY+/49dlLBHeNk4PeT3ons7Sxq/TPZ4n7x/er3xcc3Nz1T54aotO/qH8OCgx2g8sgT09Q2Oi826TPFfGluD5SWVsNomPEeejUgGel5en+oOU6BwwckUaVwrpXLp5kjILL1vKKUZu4rxvpFeD7HvunaDjWbJMTkP4O9I7I5VKKa8on8+X1h6SNWjseF103gq8H3Z2dpSiXrafJwme+Xzf3t5GLBaD1WpVfaSzqBMdlv1A90m+kGNHPCGblJPaC5L5vyQlEgmUlpZqhbZsktE7clHw/7uBLiPg+g8NoKkM3SKR/3UA2+g5nne2KZs89tIvOuE8U30yjY2uPpkAr6xrNnMt0/1s5hDdM7qfCXhL7TrPS/eh+1yw4IBJRi/n3xw8EzOSjIYIMo+ozl3u+Bm3FPiNR2WnfKTwpXN5l3NDCmU8cI8U3oD7A9rRWHEBkgsE3NrCCT3vC9085wKdFEb4/jS5nnlfS8UAd9HbjZnrGAnlQ8yNC+8SIBgJ5nxfnE7Q43WXlnrZLmJsXGAiEE2uruQiTvtA6d7a2po6loss2tFoVIFs6fJqBFB4/Y3ohhSEuKcIKaNKS0tVlG/yEqmurobX64XP50NFRYXadsHnC494vr6+rpQGkUgE8/Pz6OnpQSAQQCgUUvvtc3Nz1V5o2l989OhReL1eOBwORKNRLCwsYH5+Hrdv30Zvby+2traUVbW9vR2NjY0YGxvDhx9+iJmZGXXGMwDMzc2hr68PR48eRX19Pd555x14PB6lGIhGowiFQkgmk/jGN76Bn/3sZ5ifn8fXv/51vPLKKygoKMDJkyfxxhtvqAjlMzMzOHPmDPLz8/H666+jvLwcDQ0NaG1txcWLFzEyMoKlpSU8+eSTaG1tRXFxMZaXl3Hx4kXMzMxgYWEBS0tLOHToEJqamlBfX4/a2lrYbDYUFxcjFAphfHwcExMTmJqawszMDKLRqALxfO3Z7XY4nU60trairq4Odrsddrsdbrc7LegkV7BJvkDgN5lMqmPgFhYWEAqF1PFR0WgUyWQyzbOA5qPOwiwVO9km3Trn1zht48pUsuDTWdW0VYCUp0T7TSaTUrCShZ5vIaI5TXlzes3bxNtJ656DHJ0Cj/Ll/U5Jp4yl69xLgJ+TTXyCg23eZ5xGSPrLr/E5JeuoC7xJ79K4y3s8L1lfzt8kzeXP8D6TdI+/R3Xh+XFwpJONdM9xXiFddnU8jO5R4vExuIJCtk0HzuV1apNONub8iJQmfO7xZ3k7eVt53XU8hP+WY0T5c2ULtZu/w5XB1Od8jqdSH8dckfWTNEDHv6n9PP4L1Yk8X3jAVJn4PJRzWK5pagsPqsfnP5dBOMClNtL/ra0trK2tpZXPx57LGbq9/fStU1xQfQYGBhCPx1FSUmLYduAfmQV6L+BsL0knnO61Tv+QSccoP41e5JO+q3tvt7ykcJAJBGdbtq79meommaQOrMuFpqunrgzJ9DKNDQdjRvU0SiRk8HzkO7r3OXOQVmIjIM6BEv/Pf+sANAlbJHDxSMgcQNOecg66SRDjAFUHqOk6P/KMu9LyPGRdeTuIwXJGI8dQClO8343mHxdedEKbFJoz5Snzl8xSN+ek0CSZMX9GWteM6EymemWaRxKE8ndIeOJ9vbOzA7vdrpgcd+Em0Eln3NL+VoooHovFFCjle6sJ2Oj2W2dqmwTeNFc2NjYAAMlkEgsLC5icnEwDJnV1daioqEB1dTWqq6uVuzztn6Y1QPOfjtiqrq7G8vIy5ufnUVBQgPn5eSwsLCCRSKiAY8lkEgMDA5iYmIDX60VOTg5qa2tRWVkJu92Ouro6+Hw+5OXlYXt7Wx1Ztra2hlQqheLiYtTW1iIQCCAnJwfDw8MYHh6Gz+dDU1MT+vr6EAqFYLFY0NTUhKmpKayuruLw4cMYGxvD2toarFYrVldXVR8mEgm175uidcfjcUxNTaGtrQ3r6+sIh8NYXl5GbW0t7HY7wuEwenp6YDab0dLSgq6uLqRSKYRCIQwPD+PmzZvKXbu5uRmHDh1CW1sbqqqqsL6+jqWlJbX3e3BwEMPDw5iZmVFeDTk5ObBYLCqiuc1mU0eYdXZ2or6+Xu1l1gmhJOTR+cl0DBz9jsVimJubQzAYxMzMDAKBANbW1tQc5QIjF/4kb9CBFrnOdb85neYxPHhgS/pNNJHmXHFxMex2O6xWK0pKStSZ1Tz6O61V7nmkW+O6OvK4DbJdXKjV0QtKOmUx/8+tyZRkvrKfJSCkd7jXjEyZ3FslneX56pKO3mQaa56fEUiSz+osfUbPcrmF8yHiXdnInEbgUrZRAlTe/0YKhd3KNmqX5MO0Do36VveOkaxptHZlHvxbtwWBkgy6qstLgm6iTbxuEljyetH7pARPpVIq8Cw9T8dZyrpL+rW1tXWf9x0BaK4IoPrSb6lApGv8Q8CZ83vyOONzmwNxPl5G4ymVPFSvbNNnGkBLwsqvf9L8Pmk+/18A5U+SjNq0GxjMlF82xCqbeuwGDLKtF8/nk4zDJ3lvtz4wWoycYRjlw62Uu5VJz2RyccrEeHXvSeCWCUDJ54zWo7wn909JgM7BMD0jQS+3TnNrNgWaIcuR1WpVQZwocA13T+du7JQ3t6IDH1s5aOykWxsBPqnRlpF3ueWKJxntVc5pLjxzSxh/ju/f1YF8GSSOjwl3d+LP7JZkfeQ9mXSufPJZmgNUf8qfgwxizryvePva2tqU1poiE29tbSkLdTQaVQG7pqamsLi4iJmZGcTj8bQ9qpwpGwlFuv/c/Zz6mY78ovlaWFgIh8MBl8uF9vZ27Nu3D5WVlaiqqkrzBqG5arPZUFZWpoDn8vIyxsfH0dvbi97eXgwMDCglQiwWw/T0tHK1feKJJ3D48GHU19fjiSeewIkTJ9DX14fvf//7GB0dxcLCAj766CO89NJLOHLkCI4dO4a33noLFy9exPLyMlpaWnD69Gn09fVhcnISf/RHf4TvfOc7WFlZgdfrRTKZRH5+PsrLy5FIJJSl3+/3w+PxIBgMoru7G1/96lfR3d2NgYEBPProo/jOd76Dubk5nD59Gu3t7RgcHMQbb7yBra0tnDt3DmfOnEEymcQrr7yC4eFhBAIBpFIpNDU14cCBA3jmmWfUcWMrKyu4desW+vv7cfPmTaU0oajyOTn3XMnNZrOKqt7R0YGqqiqlpCOXY6IDUjglEJxIJDA4OKjmz+TkpArsRW72/KxlnSDH5w6f+0Z0V0eHdTST6k5bcWjbTXl5ubK0ezwepbzhXhAEpqkMHnRSutTydc9dorlHBdFHGU+D0ybKg1uwiE/qgChvLz3HeaZUulEZVGdO8zit5m3RjQ29o1OqcBrA+RaAtPlH5fG28G859jR3pMKa8uNl6uqr6zv+zdvFx4KDZd6vRhZpTp95/xCd5uVIWqkDV/RfWvkpGYFpyVulNxoH67zNvI28nTrrMy+bjz13F5brO9Oc4h4Usl8k7ZByx87OThqQTKVSansc3eOxRvjpGTx+CG0j4fd4hHVuSeZ8lx+PtxtYNbomr+v6yCgP3fjvBZ9kKieb9I/Khfv/VhD7aZLRRMk2SYb8aYf7l5HHbvnrkhHgzxZ8f5p+NGJOu13PNu9slRnZMEkjRkwpUz9mU3a2ddQlaSXn5fK1rBMQZf5SaKT8pXVaZ2nm4ES6Y8trBKTJek6RZMkVnSIrFxUVKesNCeH0jjwSTVrSudBLe3q4QCj35HHlAhcCjIRILuzK/XJGTIkLEVJIp+d1wi0fU1mGVBDo8tIxYykwc8GCzx0u5MvI3VJbTgIBgR0655cDoHg8jkQigXg8Dr/fj9nZWYTDYYTDYfWsDiDxPtWBH94eUtyQpZkie1utVrhcLpSXl2P//v2oqqpS59hS3js7Oyow1vLyMmKxGIaHhzE5OYnbt2+nuXiXlpaqs3Cbmppw8uRJlJaWYm1tDTMzM+jp6UFPTw+2trbg8/lQW1uLM2fOqOjWAwMD+PznP49gMAi/34/V1VVUVlYiJycHfr8fGxsbKihUbm4u7ty5g1AopPYjB4NBXL58GU899RQKCwuxubmJvr4+5Ofnw+Fw4MCBA3jjjTewtLSEoqIivPTSS8qCe+vWLUSjUZjNZjQ3N+Ps2bPweDwoKSlBbm4urly5gqGhIUxMTCAajSr36J2dHRQUFMBsNqOhoQH79u2Dz+dDWVmZUqKRRZXWI81FAsoLCwsqGvv4+DhisZg6OiqRSGBtbQ2rq6vY2Ni4zwVRriu+Fngyom9yXtP6LSkpUXuNXS4XnE6nUgzabDalAKDj9oh+kfs1KRv5fmQ+d7lHDt+jKkGA9P6h+5JecUWUEa2gPakcMOpcoClxt3C53iRg5+9QkgHG+Nhwd2kO9jONnewfzl94uyhPShyM8LZz911J57jCgQMdo8Trwcvl9FyCP6nE55Y9Xg9J+4zmss6DiwAYdx3+NHKaDiTzsiTA59ZPPo6c/3LLL7d6SkspgVVSnBL9oQ/RB+I5tCZkftx9mdeDx27h31RHTmdknek3B7/8mpy7fK7uBoZ53+/22+haJkyRSdbNBodkypvmpe65zc3N//dcuLNNuwGWf2iQuNf0y1IM/DLatBt4+2WW8X+TQmSvWi2jvtgNBGdbjlHe8vpeCNAnKTsTQDd6TwfWJePVzYFM79B/I/AtgTZdM7J+S4s3B8AEkMmSyANI2Wy2tOekwMr3c8tzSukaB7sE0rmVXebPlQXUDhIWufBAiVt3pfAgBVI5XlJpoUtG93TgkgN83Vzi70gFDLfESMWKBOi8nVzAsNlsAD62GJNQurm5ieXlZbXnOhKJYHFxUR13RHuvCXCvrq5iZWVFHTVE+7HJ+iQFEaoDdz2Px+NqjpjNZpSUlGBmZgbhcBhlZWXq+B4CSuRqS/utPR6POlbL6XQiGAymKQBCoRAikYgS7srLy+F2u1FeXo6dnR1YrVZlhR8fH1dBosjFeWJiAkVFRXC5XBgZGVFtiMfjqK2tVUEIY7GYEtQikYja611VVYXJyUkF+FZXV+FyuWCxWNDf34/c3FxUVFSgoqIC4XAY4+PjmJ6ehslkQkdHB7xeLxoaGuB2u7G6uqradPfuXUxOTiIYDCI3NxfFxcUoKyuD1+tVyojKykrU1dXB6XTCbrennQNNAb7IM4HGj44Mi0ajaj8zHSmWaT+9TkDkvyW9ofVLdIQ8Zcg7hseFIABNQR0JSPNtAFIJKH9LpQ6tCemtIr1KdEo6vpZ1+cp1K+kQF/ClQo7nrwuUJZ/LJH9wSyQl/t+Iz/C1KmlKpnZn4ls8b/lfKgkpcWAo287nn+4Z6e2jm6e8f3QASeYn89G9YwSgZZ9y0MgBHt3nQFT34W69XCEhXYelYprTfF53/g6vBwe4HPRKxdn29jZWV1fT2srryD1TeLwP+q/rI6nA0fEznozArg4w8rmse8dIZpVy3KeRXSnJNayTFTPltVcZWPfMXmT9fzQWaEnMMyUjAJDNu/+Q6ZMCx92Aq7y/G4jL5rlMAPGXma98Vrdg97qIjfLQEYS9jsVu7+j6R9dGo76RZcl72fRFprWyJ+KRQejING7Z5rmXZCS87VaGDnTv9pwRUJeA3GhvNRdqdWCbzpcl93M6d5gCUdE9skTxY8s44OcWJl5ufn5+GrPmbeFu0DzqN7fmSwtTpiSZvgTABFa5RYnPHRl8R9ZVWsVIocAFEdlGLkhJK5v8cBdCnbV6Y2MDyWQSwWBQBfmanp5GKBRSlmruAscDqkihkhJX4hCgpvEvKSlBbW0tqqur0dbWhvr6elitVgW+COSQhXRxcRETExP44IMP4Pf7kUwmVYAeu92ujoVyuVwoKCjA+Pg4fvGLX2BkZARra2s4e/YsXC4XCgsL8dprr6GtrQ11dXUYHh6GxWLB1tYWwuEwDh8+jMLCQmxtbako08lkEjk5Odi3bx9sNhtyc3Px/vvvq+Bc29vbaGhowMbGBs6fP4+zZ8+itrYW5eXl+MEPfoBgMIitrS0cOXIEJ0+eRFlZGYqKijA1NYX+/n7cvn0bExMTCsjm5eXB5XLB5/Ohra0Nx44dUwGxuFsyzQc6IioWi8Hv96uzsEdHR5FMJhWI5uMnrT06YU0HPOWY8nVK3iput1spQ0gJQuvfYrGo92hvNi+f6Ilso/TC4eCC108GUOJt4OuWrx1OR2SgRiNvGL4VhkAMrWUCWvQer2N+fr4W8EqazIENTzpa8f9j789j3MyuM2H8Ye0LyWKRrH1RVamkqlJpb7WkVq+2u+P2nnbi2EFiZ5IZI/FgBphBZvLPAAMEmCUYYAbjD5gJEsPxJI7tJHbiOOmMu9vtXtySWt2tXSpJpdr3jcUiWSzWTv7+0O/cfnh035esktrfdOa7AEHyXe5+zznPOeeeq8dI/jtZQgW0yD222uo2M5Dlta7L0mCQx4/zEwAtyhZ5RiyaMjdzHfEl9dD32POJ5za3mUGiE3hykh+4T5kGSr/xPleuhz76TRSWfKQhH3PIR77JNQa4On8GsppXSbIpANzabQO8+bzjJCvZ+jSXjOX2zk4BpeSt285rj9vEa96pLk5tySflI1PmkqWdkjy/tbWVlwX6Hw2A1ikfEO00Uf/fBtG28hng5aN1cXtfytntc/mA3J0CwJ22RZfn1qZ883DKbyfzZDdzaDeLnMvS5dny+3nM7Z30oVse/J7t3k7y0XmxNSTfPN2e0fdsANxGpzRYtP3XgjdfY3Al7/A53gx0dcRzAdvi3iou6GKtE3diDmzl9Xrvi6bOHy0gAtn7BYUpsWDvJECwZYr7RvJlF0Yt1AiA5nzT6fR91/gd2z0NALhNIqjxs/Itbn4SrEzcfcW6OT09jcXFRSwsLGB8fBzRaBTLy8tZQjALrVroZsWLjJ+MXUtLC06ePIk9e/agsbHRuHun02kTuVz27r777ruYmJjAwsKCsWLX1tbiE5/4BMLhMDKZDG7fvo2f/exnKCgoQGtrK06ePIlLly5hcHAQJ0+exPDwMDweD/bv34/r168DAMrLyw343NzcxNraGoqKiuD3+9HQ0IBgMGgs4b29vbhx4wYA4NOf/rRxF79z5w7C4TCefPJJHDx4EAUFBSY42vXr1xGPx40F2Ov14pFHHkFXVxd6e3vh9/vN/GQQs76+btyxh4eHMTAwgHg8juXl5azgciKA26zKDPA4bw1UxStFThdobm5GIBAwUdlF4cH7rT0eD8rLy7O8TxhosYcGB7bKZDLGy0HAtYCR0tLSLPrLQMhNwGXvFekLSexuK/WQtSrv8dF7mUz2cTwyH3mN2crVYJdjSfC3Vn5xWezKqxVxOqq1BsqcJ9MbpmnSrzwPpCxZe5wft4cBv6Y5vO7lt7g6syJE3k2lUvfVVeohCot0+v29smx5tQVpSqVS94FUoXnsfSEAVerHHhnamqxdh6Wt2sruBDzd+knnYetDHh+Wo53kFS0j8Hs8hk5ym5OMnq+c5ybD5Xov33fcZCyb3JbP83zdrX9zlZVvG9zqwPXYafr/APQugILTQO52EJxSvvnlC5Z3kh+wM6CZb510vm7PSconH6c68HP5AvhceTjVPxeAdsvjg075zFn9TL712glhe5C27kRBYSubn7W96zbvdgOgtcDl9mw+19zu277lt7bKaqFeg24B09pSLdZqBtocCVqus6s4u47r40a4PBG4NfjTeXOEdg3WBfDbjsjhMeF68f48AFlH2ADZApkOLGQDrnzfZonk+cfPSFAWOeeX982yq7dEZ2ZBVFy7o9EoFhcXEYvFkEgkssA2gzexXPr9fgMkpd8qKyuNC3h5eblxTV9eXjYRpcUtXYBRKpVCUVERqqqqEAqFjFV9bW0Nhw8fRl9fHzY2NtDW1pYV5Xxtbc0Iwxwwrby8HJubm+ZIsdOnT2NwcBDJZBLBYBC1tbUoKLh3fMr8/LyZR2L993g8KCsrQ21trWlbaWmpcQn3eDxYXFxEMplEPB7HysqKUXisr68jkUiYveKxWMy42GtvAJmrHM2/qKgIzc3NJvCWBOfi7Rh66wX3fVlZmYmTIPNXzlrndSfJFmhK5pdEUWd3UHmnpKTEtIOPxmMFkA0I2pIAaKYvnA9/S/k2wZkVAQxMeR+uPKdBkYwLW6B1mTYwrpO+zx4qXC8Gf+x6K/UVxRmALGumrF/bPlZbQCbuA1YoyLdNgcPzga+xwkf3MwNXHRdCPyPlCv3he06uytxvGuTaQCz/tt23yW36Xdv/3ci2+T7LdWOlzE7y1vKYm0y1k7bkkpW0HOvWz24gV5dne2en9XaSe9z6ydaWhy1ny9z+v3YP9G471O29hwmi3fLJVY5MqodRl3wmfD59KXVyqpdNi2UDfPw7F/i21YGfsz3vRrhyJc7fTSuXz9jkqkcu4G6755RHLobEya1dOyFWOwXeTvV5EGaYaw25Xc/FNJyu7WRd7mQe2sC2nkNOzCjXOgNgFQpswJ2FXf44WcsYXHs8nqzjcwQwy7eAjIqKCgSDQRM1XayrAjAYTLOLOvC+9Vm+GWByQCUOvga8D671/kER6BnIaVdLGXMGPOn0+8ffcNCv7e1t1NTUmOd4jUqQGY6WKkdyTU5OYnJyEvPz8+ZMa7HwspVoZWUF/f39xurEShFxbW5sbERPT48BodKexcVFTE1N4fLlywZIl5SUoKenB9XV1SgtLcX4+DhKSkoQCASQSqVM2xcWFuDz+ZBOpw1olfGQ8SosLMTGxgYWFhaQyWRQVlaGlZUVeL1epNNpjI2Nwe/3o6amBs3NzVhZWcHExAQikQgKCwsRDAZNBPL29nYznmJdl6OrBgcHsbCwgLm5OXPes1jP2H2Yt1Fo5RAf9yTnXBcVFaG7uxuhUAg+ny9LScHxDBhES5IjYmQ+saKELdYMINlDQ1twef4wzdLbNZx4qtRB6sjznsGoBic6P+0mzc/yUTqyBj2e9624AAwo4+c0cJPn9frT64dBm+2euCxr0MjtZcDMrsNssZUj32TNiseJuPrLuMralPtyjwNIMSjVdXIK9qTbx31qA6ncVzYlgxs4tT1je4fnhNM7+n1WSO422crOBQwfFGhzfbW84PZft9NNBsoH5Or7Wh5wG8edyFv5yLL5PGuTrdwA8k7LzQdoc8pH1s0nfagt0LaACZI00c/VzHyF352C1wd5Pp93c4E5vp4PoHF7zu09J8DqVscHBRxOC8MpX12fnZSfT1vyTbnqkausnZaXb3IjNg8LQLv19wfRJj1GTlpWp3rpe7nqmA/4dsvHqe9yreWd1NOpD3bybj7vcX87KbYYiNv2iWsrOvA+QNcu67ynXECJ7Bv2+XzGXb26utoc3yPu6gLk+Vgz3lcuFjBbvXX7OTCNjiTMoIAtjtplVUB6QUGBcdGV/Y6830/AYyKRwMTEBAYHBzE/P4+FhQXEYrEsq5Pkx5bRYDCI3t5e7NmzB62trQiHw9jc3EQikUBfXx8uXbpkXKafeOIJs+/55ZdfxrFjx1BYWIibN28ay6rsa5dy2RMgk8nA6/WaKNhnz57FsWPH0NjYCK/Xi7Nnz5rAZ+FwGMeOHUNXVxdaWlrMsXepVAqDg4OYnJzE1NQUxsfHjcupPsebx0mAsRwHFg6HzTnHTU1NCAaD8Pv9Zr8xB/jjLRFuLsBcFguCNsvc5uYmYrGYiWdQUVFxnxVc8hKgK8BOtkyItZDXCQMtp3247IbuBHD5eVaM2drEc0vuS6A6yVveEXAp76+vr5t7El+A3ekFkApA1WBVuxULWM1k3t8/y6CbwavU1aYI4HWpgSz/5nHl/ud88gGp+jmeV055yfxmcKbrkE+y8RRWbLg9vxNZ1ZZHPnWy8b4Hkdty3cslo+Qrk7vVNx956mHJ7bsdo1zJJj/INb1VTrdlJ23biexvK283ADqdTv/jd+HOB0A/7PSwJ6Fb/g8KoG352dKDKBds+bst7HyVFPrZnRByfc/tvXzKccpvJ6BS57VTwunUp7slRLsF/7mSFird6uP0Lj/nth6cGJ/bfNCEPd82sVCiwaDb3NvtHHGqBye3eeR2T/dzvnWzPbcTIO8GvuW/DXDr627PMBBnd3MNrtlSyP/5/G+nKMYCxuQ9AepiJedjzXw+X9Y9jsbO5TL40GCXLd4MCNhVXKxl8XjcRATnsz1TqRSSySSSySTm5uawtLSEZDKJ5eVlFBUVGSDHEeW9Xi8CgYAJarewsGCiUns8HtTX12N7extjY2MA7u0zTiaTiMViWVboQCBgFBbV1dWoqqpCRUUFZmZmkEqlUFBQgPr6etTV1Zk99+JSLi7XYnFfX183e6zFAigu4l6v1yhL/H6/UZSw67QO2ieKEhkjDZpt81QDZhkXno8aMMt78i1u8+yJweA/k8k4AlZOrJQRMMiuwwIo+RgdHQWYtxowcNVBmNhVWbu+MyCV/LivGGzaoiMD72+PsLkPc3/ykT56O4XuJ20x5A9f1+Orf/O3k5zDa9f27k6S2zv5yGI7BbP5ymhusmC+gM72vFOfOtXBKa985XMbn7K9Z+ubfGS3fNNOwLt+72HgkFyyVS75cSfygy3tFBvsJv981gunnQDoD7ULtx68Dwo06zJ/XvnnU9bPQ/+Rbxm5ALxbchs7N6Ak//Md+93218MAzra88r23WzD2QSt83MoF8mNsD7Ju8+kTLVjstB/zFRhyCSI7UfLkWw+3Mh9k3eabbEKTG4DO1eZ8QLbOT4AM/9bPa5DNz9kCtfE920cfa8ZR1GWfsURRZwDN72kArV1wBWiLBdzJIsr7xcPh8H37GwV4rqysIJlMYn5+3gQvi0ajxgrI74hVT/6vr6+bfdhra2toaWkBAAOUxDq8tLSEWCxmxlnqn06nzf5cAfXhcBjT09NYW1tDJBKB1+s1fSDHesm+b7boB4NBM37iNSCWZTnay+/3IxAImGBd4vIt/Sbzha2kNquJphsM+CQJ8OP+03uUGdwJCFxbW8uqEwd54nVtA4lcR61QsQWG0udU62c1gJZrGtDKXOG9vroO0idSP/6We24u6U7gV4+J/m/jMbZ7uwGn+YBKJ9qmLcRu+UhZMv65aLON/u+UnudTxm7f+yB4e67xywUKOQ8bv8xXUb1ThYFTffPJc6cKkQd51w1Y7rYO+T7/MPP8eaQPNYCW9DA6dKeTLRdxcxJqdzOp88nX7bndpt2CnnzLfpiavFzKlIfVVw8ybrnApLZg6Hdt9cyn7rt9bzfpQZUltmfyVZK5PfcwacRuEgtFP4+Ur6XAqT76mXzmry05uQI6CXq2snIlm0LCTeCxeS7pueOUhw2g2/5rMM6g2Hbd4/Fk7cXl3xwpnS3F4m7MbsAS5Ipd0YuLi+Hz+VBTUwOPJ9tNl62UW1tbSCaTWFhYwOLiIiYnJzEwMIBEIoHl5WUAQHV1NUKhEOrr6xGNRrOslALOGTCwNdPr9WJ9fd20q7W1FeXl5YjH4xgfH8fbb79t8pLI3T6fz7iWSzAz2ZMtSgnuV30euhao5RkGhtIH8gyDXQ2MOSox73llECqR18UleXV11bzH0Y3X1tbuA686eBUDau1abQOl+h7XXa8DDVidfvM7PM81COG17iY32MCzLeVLb/IBDG7gOp9kezcf2ul2LxcAs9FON2Cjv/OVFfV9N9r5QfEwmyIg3/d2ei9fcOg0Vk6g2015s5P65fPMwwSTD4JJHrR8G33Opy47qfNO5JWdpn8UAFqnfCaX7tSfp9buYWjl8nnOCUTawIWT5infa25lO+Xh9K7bfc5PyslXyH4Yi2i3Y/cwiOX/mymf/ssXtOUD4JzSbvpit2v7YWiUd/rMbhRWboKTU1751oEZ1U6FGi0Q5UP7diLkSl5acHejPx7P+8GPNFjXdXYD8m5KKa6HUzRlDdL5v9OH97oKENTfEuFZ7yHX0dAZoAtgF1dovt7S0mKAeGlpqVE+SBAqsX7Lmdf6PFWPx2P2rSYSCQN8t7e3sbq6ao7PkuOqJLHbOu8BjsViWFhYyAKd+txXtp6yezvvvRXrOoAsS7uUw/u3gffnoY5KLM/LeNtcmjlf/bz+cPsluQnv+r+TXJMPAMxHHsqXvuUr4OZa37b65wLoNlCzG9qTCxTtFoA70RSnNtpknXzq4QYK3WTDfGhuvslJrtxpnR9UftNALd+y3fJzu8503ek9N7mb007GWPNcm1LCqf1OihO3uZJrLe4k7WYe2+7nq4h5GHL1P0oAnU/6eYMSJ2bA923pg6pnrknJ/90EyXzLyScPN+L5MNKDaNp0Pv8ngFpO+dbJTZmRixDmM262cd4JqMwHKD5I2u08zodR5Gq3EwjjOc5MVd/Lp45uddYALt988rmea2we1hp+GOU7zed8+8ctbyB/4dapTjagrf/LNXb7toFsdvfm/yUlJVlRqGUvrrhai+u1BtwMKgV4l5WVZbXb1gfyn13VV1ZWzDnRstdbrK8ciExAqABjJ6As78jzfAaudqXW7sYMlLXlj+vvBHqdfjv1i+3bSfDLBZLzuafz2UnaDbB4mGAkV35u4Cxf4JZvvdwAUT73nZ7bbWJw/bBTPgDcib/oezuRAXZ6b7d57vS9fPi6pneal+syNC9ymy+76cNc81PXI9+Ur8yYb175KBB2M8fd5ufDSP9oALTWikj6PxHscHKa0LbndgNMbHnsBmjlEs4fNNmATa5FpZ/JBfDc+noni+tB2u2kSPig5qitXU7gzA1ccx0flNg+TEL4MAQ1nfIFim4AzHYt3zXDezGdgp7tFlQ/7Of1O24g1I2GONHvfMq2CSI7Bcd6TdjyyQVsdRt0PrZ35Nt2RJgkth4D94Nmvqb3ScszHBxN771md2i2QHs8nizrrLhLc93EMp0raSAOAPF4POv4LnFplmBVeq+uBsbyn3ma3m9s+9jcnCU58UcnYGgDzbnWuROw0O85leXxeO4D+bnqqd+3/Xcql6/nWpsaxO9UTtgJSMglO+0GPOcCTrl4j02JYeOzbsmND7vNv1zyjROYExrxoGB8t2PO7+cjK7jJsQ8iUz0sgJVr/G0pFxC18Unb+27luN3LF7hr3rQT+dvpmVzr2SYT2Hi+W7lOifPXsS3ySR96AP0wJn0+iy5fJuOUHgZAchPsH1aeuQiyEwDMJ/98Frcmjvkwm53UYSd1+iCSE2HNBV4/qHrkGufdMNQP4vmHMffdCK6t721z0I2BuNXNrWwWYPJ9nr/dhPDdzqF838u1pm11cWPITnnuZpxt7zn1qwajGvjKb6ejtrQbNVtneS+yBBuTyMsCXmV/s0T35ijfHDFa8mJAzEdlcX34um4nW3ZlX65E8Y7H40gkEpidncXCwoK5trW1hYqKCvh8PjQ3Nxtr9PLysmmnLkf6SdrBQsr8/DxWVlawvb2N8vJy1NTUIBgMIhwOo7a21gQEE1DP9eVAWalUyuw3TiaTZt9xMpk0+5FTqRRWVlbM+drr6+v3RaWW/G0A27Zv13Z8kPx2csG2zU8nMOCW3GiA03W3tZALkPN/J5DzMGQcnfIBY6xs1PV6GODdDZTvJO98aZjTmOWjEHBqs5ti5UFSLl7qJN/YQObDqB+P/YPI7G581G1e5VI+uY3NbvLLVZ8HTbnyzVX2w6iX07zZLQ6x5c/zZSd1/lAD6Hw6brdaR13Og06EfBbdbgis0/sPqpFyAnQ2oufGrHfatt2mh13OB0mUOOVbxoO2T78v7duJciHfucRjny/wfZjzIx/hUZKThjPf8ed9m/m0N5dm3XbN6R2nsco1V5xAVT7vOb2rQaa+xyATgAF44kYsILGwsNAcoyRgVNyNxfVY3pXfAiL1vl4pVx9BpcGybhvXmYGQBsuSioqKsuaRPjOYwTbXRZfFAbFkL7O0TUfqto3T5uYmVlZWTMTtWCxmjqqKx+MmsBW7R4v1V+pQWVmJqqoqVFZWoqOjA52dnYhGoxgdHcXQ0JCZX16v1wDgiooKrK2twev1oqamBvF43PRHSUmJOQpL+kmOjqqsrMTq6ioKCwvR1NSEzs5OlJWVoaCgAJOTk7h58yZWVlbMfmjuK1FAhEIhA7SDwaDpXwHDApDZki0WbgGu+mgwCSgmwcYk8XO2SNsSUEzAvOzTTqVS5rqcYcxWdh04TOqlgbUG9TIHbNc55eLjvA6cntMA4IOi3060Ox9Fpaa/OwU5tnx3KwM8LKXCTurq9vxOgM7DUjrsZE7sZv7stI9zyQC50oOMpVvZD5rfg9TLjec7KaJ2Clxz9e9Oxv6DAutM5/6vAdBaC5Mr7XbBuRElW51y5ZdvHR4WAXIDRQ9a5sMGmfkuzp8XwH1YKZ/6uj2T7/uS8p1fOt9chNR2zwlYOb3jVt98CK5b0nN9N8R7NzQFuNcGdrm2CZz5gmGbJl0/I2XZQCvvXwWQBeYEADKwA3DfPll5T8rh93SeXB4DTL5XUlKS9Twf0SQAS8B0WVlZ1jm97G4sAFOst2zhFBAubsJOx0XxOcV6zPm3ABruD2kf7wUWxqv7JpN533opfS+JAZkG4DJX5MMgbXV1NStyNgfKSiQSBjzPz88jkUggHo9jaWnJ7DmWKNfaQi7jI0c/ZTIZcyxXMBg073s8nqxjjKTPKysrTb0F9MrZzxKATCy90mc+n8+A7IKCAnPEVSwWw9LSEpaXl801aaOUWVJSgsbGRtTX1yMQCCAYDMLr9Zr2yJwoKCgwbZJ287nNOgiY3OP1BSDrmCkZDwbOMiZra2v3nVstx0MJmBaLv1jTJQ8B9ACyXNWlbjpCt/7oOaXPUOZ5zXTL9s00SwNoplO8XvQ60HRLp53we3neiXba6m3jm7reNl7JvNGp3U7lO9Xd9u5uUj71t5W9m/u7Sfm0z6nPnZ5x49P6eac27bbv9fx2q1OuOj5ocmvbB5keBAA/SN2cxsxtrriVuxPwn1f9Mh8mFPL/T4lEAlVVVVnCRj5pN532oB3utODcBGm3yZCLWH4Qw/mw832YTOSDSrb+zmf8PsgydcoXnOUqj/PLxah2wkDyGaOH2ae2fsgHuLqV+0GBb023+HmbBVcDXm3NFNDIrsJ89jCDB3Yj5jOKJZCUuBOzZTiTyWS5FYtVGICxBLPl1ZbEhVcEfeB90C5AVtrNQFNHZ+br8l46nUZxcbHpJwYL8pyUXVhYaMCf1Fksj9JWBjKStre3zfMMaPQeZS7b4/GYsrhdtrw5OjgDteXlZSwuLiIajWJubg6Tk5MGYC4tLWF9fd1YPPnsXgZPAujleKj29nbs2bMHhw8fRktLi1FMrK6uYnBwEKOjo7h27RqWlpZQXV2Nzs5OPPLII+jv78fQ0BBSqRRaWlpQUFCA6elpJBIJYxleX1+/b65L36ysrKC+vh7BYBB9fX14/PHHzXnQFy9exNraGkpLS/Hoo4+iu7sbTU1NKCoqwtzcHGZnZ3Hnzh3cuXMHsVgMqVTqvraxe7ucB11VVYXm5mbs2bMHNTU1CIVCWUoZriOvPRkruba+vu44xgK6JQ9trRZAK6BY8tBRvtmdXAdKk2jmosgQV3X5LfdWV1fNZ3193YB3mYc6YJp2WbdFtZfk9DvXvVzXbHTajXfYQHG+5eaSpWx8cKeyxm5kODeB3y0PN36XT31s+fAztr2hueqq+arTOOeqS66y8pGL3ZKbgiXXtd0kWx/nC/5sz+903fyfnnY7nvnIjjuRq9PpNOLxOPx+v2u5/1cBaFvKRSjz0TbmO2i2920CvdN+pP9TkhPQypXyYSD5Tkc3RUO+SoZ8gOduNOT6mr7uVI8HTfmAPbf5rOvr9N/putM7UqZbm53qng/gzQV89W9+TwNXmyWVj+sRV2EGqLwvVa4z+JQ8+bmKioos0Mnux/yOgFWpqwaWDK75mnYzZgssW+jknvQru0BnMpksl1gZQ+0KzS622lWagQSDawYTck1bxRhY8zyyjSWALBDOQIEt0pKvgBS2ikpdBLgw8NNAgtvMSYA3W7rZcijt3tjYwNLSEiKRCKLRKGZnZxGNRpFKpZBMJs2RUGJ1ZSDEZwmLu7G0V+ZTWVkZwuEwampq0NTUhI6ODgQCAVRWVhqrMnDvnOabN29ienoaMzMzSCaTSKfTKC8vR2dnJzo7OxGPx9Hf349IJILW1laEQiHcvn0bgUAAW1tbmJiYQF1dnTmqKpPJGMWMRPSWMYhEIlhdXYXH48GZM2cwPj6ORCKBdDqNY8eOoaioCMvLy7h69Sq2trZQVFSEmpoadHd3IxwOIxgMGgv85uYm4vE4BgcHMT09jYmJCSSTyfsUFmKBFiu0bBGQtejxeFBbW2vOt66rq0NlZWXW/mu2RstHlC0yvjL/GWSzSzgDUpknPKfYe0Xe5+f1e/yby7K5rsuc1nNZ3pH74mbOFnNRzshecul7npMcDZ0/uu68hrXyQCe5ngtI55IZbPzeaV3nkw+nXIDVieflKz/a8naTcfIFILoPdpPHbp/nOjjlkUuW+SBhy8OWy/ItT5KTLOkEkj8MoPlB14DtHbeUC7e5/ZdPPgD6Q+3C/TAmeD6aG76Xi5jnWy+nZ3a7EHYLah9mclrk+Wj0bADP6Rmn/7muO5VlA1s28JdPnm7XnP4/LDCdb3lA/oyKn3cCrLnAqg2wahCm93iyZZJBIVtdbXtbJW+xRnJe+qNdkhlQsjVVyuLr4mLMoFesuryXl8uQ6+KWrAE0W5L5Hd4P69S/TmNiExD5CCMGgmxNBZAFelkYlvGSciQPrpP0G+/r5L4V8Cr5CfjjshmQ6LWYS2iz9ZWtf5wiMtvKYACkwb6AlI2NDWMhXFtbQzKZNACD3XUlYNfS0hLi8TgWFxeRSCSwtrZmLIfsJq3BiNSvpKQE5eXlqKysRCAQgM/nQ3l5OSoqKhAKhRAMBlFTU4OGhgZz3FQkEsHMzAyWl5cRjUZx9+5dY9Gtq6uD1+uF1+tFVVWVcaMGgHA4jHT63lnMgUAAGxsb2N7eRl1dXZbL9vb2tpm3AAzY93g88Pv9BrzH43EAQHl5OQBgaWkJJSUlyGQyaGlpwfLyMlKpFKampuDxeLCwsICamhqUl5eb+sn/xsZGNDU1mT5cW1vD0tKSCSQmgdAAZK1tqePs7Cyqq6sRCoUQCoVQUVGBioqK+7YSiHdGZWUl/H6/oUG2OcbzXM89HlN51jbXeY7xbz0/5T5bu2VdyX89h+RdPvpL5qkoZwQky5yVgG187vbW1pYJysaKIu1KLmuGAb7kJf/1MWSSXz7R1Z1kNNt/J/poA5b5ygB6jJ2u2/Jy4s1a6ZDPe3zdDYTlqnM+cttO7un6uJUrz9rqqfsknzJ2mvIda6f+1Ned+sYJ0OVTv3yezfe5n0d6ENn2YZXzsOvwobZAs9Cs004XWD4gZqcaOf3Owxw8JwbrRozc6pdr0mlGkw+gzJeY5juGuyHe+ZaVKy+n+aGvu/Wzm0Cfb1vcmAsTa1s5bkzTBsycyud7Wnjkbx0JmK+J8KrdLjUI1a7HFRUVWW7J8iyfXSsWJ7YYM7BjwCsCrtRN2qQFWgaWHs/7llERDG0gngVlSRrMM0B36m/uQxtYtY0nkK1NlXpsb29n9ZW2pIrQr/flSn78zff0vJT2i0AsH1aIyH5WaZeeUzwWkr+AMy0Ac311fQBkRYjmMrl+Mj7cTramsUWZgz+xdS4ej2N2dhazs7OYmZkxQHV1dTVr/6t8JA9tjeQ6yRywueuHw2HU1dWhsbERvb292LNnD/x+v4nwLX25tbWFZDKJxcVFnD9/Hn19fYhEIgZUhkIhNDY24lOf+hRqamqQTqdx69Yt/PSnP0VhYSHa2tpw+vRpvPfee+jv78fJkycxODiIgoICHDhwABcvXoTH44HX6zUWZilXAmdtb2+jt7cX1dXVKCoqwuuvv47e3l6EQiFsb2/jrbfegsfjQX19PT796U9jbW0N8/PzeOWVV7C0tISNjQ0UFBSgrq4Oe/fuRXd3Nw4ePGjcsQXUraysYGlpCTdv3sTk5CSmp6cxNzdn+t5mHZW5rJViYq0uLS1FMBhEbW0tgsEgmpqa0NzcbBQWQk/Yc0WvGQbMAlw3Nzez1j8Hn3OiIUyzeK54PJ6srQGiIJPn2RKutxDImpJ92E78SYCy5oWyP5zbye7r3PeiUFpbW0M8HjdbEMTavbGxYVzT5TmZQzoAHpclfcTXWXbRQFuvs1wA3CaL5COP5JIbbfJDPrKOm0yTj6yar0z0IBAhF8CUZLv/sJQWO0m5ZFZ9TdYR8yw9NuxZ4jS38qn7bsbLSdbPt29tAH8ncvkHkXY6L3b6rtCTf/Qu3LkANOCu4XEiWG4dbJtA/L4TMdvpgDuBcFvdnZ63EaV8gK8tH7d3bX2bT/5udXMDn7nKzbeNTgDB6bl8ymYXVVt73Nrh9CyDLRv44j2AUgcWtMvLy+/b5yr32A3Z9pyAVy6P/7P1VFtK2YKpwZ4G4TpCMwMaDWIZNEk9xELEAif3j7wjv7VbJtMSXVY6nc4SRqWdcqQOgCxLsdRduwdz33Db5LctaQsXzzcdvEoLtpK/FpblXbEQM2jW9eA6875hHkOe69K38hvIDpbFlnyOiqyFQu0doJOurxaOpf0CVHi+ch4MoAUYi+CfSqWwvLyMZDKJpaUlTE9PIxKJYG5uDvPz88Yax5Y4saoJSNCCPveLE/1mLwwJztXU1ISmpiZ0dXWhtbUVVVVV8Pv9Rskke9elHzc3NzE3N4eRkRH09fXhxo0bBqCkUimk02nU1dXhxIkTeOqpp+Dz+VBQUIDBwUGcP38eo6OjWFlZwVNPPWWiW//DP/wDenp60Nrailu3bqGyshKbm5uYnZ3FqVOnjPU5Go1icXER8Xgc0WgUXq8X4XAYHR0dGB0dxcLCAjY3N/HCCy/g/PnziEQiqK+vx+nTpzE9PY3z588jHo/j+PHj6O3tRUdHB5aXlzE+Po7z58/j7t27xr27srISLS0taG1txalTp9DY2GjOpWZX5M3NTSwuLiISiWBoaAi3b99GLBYzAb60J4Jt/guo5iB2MpcrKipQWlqKyspKhEIh1NXVobq6GjU1NairqzNHlPE4661axcXFyGTe33svdJXnhOY7WgGm5xpv1VhZWTH5Cl3Y3t427ZH3tfzAPI0tyjxfJT8bQOVnbG7bsu42NzdNmRxATe8j1x4xbKnm8ea4ABKZXlzU4/G48fQQoC6R0t3c0bUig9dyPkBcywVOMpOmqfkkt+ecZMh88neTi3I9z7Kj5l+5wPWDACVbPfMBevmCwZ3KvDvtQ1tywydObbTJ0U733crUicf1QebWTtNOFA5O7+Z6//8D0Hi41l5b3m7d5rZgHqScfECyWx751sFWbi5Q7tYnuUCjUxtzLXabAJ8LaLOwYQN1Th/eD6tBHYMCPnKHrW0cgImf93g8RlCyCfnaIsGaTq6XBs8s/HCZTi7CfK6s1JctuiK4SD10HbS1GcgW7vg9Jrzym62Keux4nNi1b21tzfSRuK1ykCYu16YM4uOHnMbf9h6XIQCa+4CTBnVOc00AuuTFfcvv6v3G2vLK/csWLP7wPS308jgI8NR9WFhYeJ/FWP6zskLqrYVfzo8FZG6D3i+t3V0lXz3fdN9qUCxRrFOplLEYi6twIpHA6upq1n7QVCplgjPF43GzR3llZcUI2gzCdRRkJ2GQ16fQioqKClRWViIcDqOhoQE+nw8+nw8VFRUIBoOoqqpCbW0tqqqqDGiWPhLX6uHhYSwsLCASiWBpaQmLi4uYnZ1FJBJBQUEBysvL0dHRgdbWVtTV1aG1tRVFRUWYmZnBxMQEJiYmsLy8jOLiYhw8eBBerxexWAzj4+Oorq5GWVkZMpkMhoeH0dTUhEwmg9HRUTQ1NaGystK4OY+OjmJ+fh7xeBz79u2D3+9HSUkJ+vv7zVnSmcy9KNxbW1sYGRlBS0sLfD4fSktLMTExgdXVVQBAS0sL9u7di5KSEiQSCczMzGB+ft4oCMrKyuD1etHe3o7q6mr4fD4EAgG0t7ebOhUUFJhxj0QiWFhYMHNAgrRJ5PJ4PG5ci50AtfZQEUWjgHqv12vGMxAIGHrK535XVFQgEAigrKzMjDXPB+Yx2itDr2epm553XMeNjQ2Tn56jUh6vec0ftSJOC8kaPNvmu5sssrGxYe4JrZB3NA1husC0gfeAiyJJnhFwLFZtbdHmuALyDtNHnR+vf8lPQHgqlcqyuEteYuG35c3KBQ00bcBTp50C4d3cd5Lb+L+TvJjv/XzqZ+PNOtlk1VxJz9OHnf8Hkdzqmq/Mz/nY+kCnfMf1/yQALe871Z2v5QugP9R7oHVyA1huz/EzTgOj7zMRz1UPt3xzJRsTyve/vudECHKVlU/dnZ5xy1MzaNt1FgC0Fl4LFbb8bBY1W55ctgBBbckVwUYArwBmdiNm92MOGiV7FfnIGMmXf2t3XgaxTvUVq7ATwNFEQ65JHmyNFeGAA0nJdQ18mOlrAG0DbdoyaQNuDFRt84bd9ORIHelDfk/qzsIl52ezcOr+5fcYeDJo0a5bnCeXL4KftJnnsuTJVlpbfXjMtPIwk8m2/NrqYOtP7lNdhrZu6bXDz7LQK66itrqztVmPKwN+/Q67aHL9WLi2nefL7qOyvziRSCAajSIej2Nubg7RaBSxWAwLCwtYWVnJOjKKXa01OOa6S1v4t63PmZ7IcV1iPZajmPbs2YPu7m6EQiFUV1cb6yXvK5Z2iRUtlUphYmIC77zzDkZGRjA9PW2OrAJgAFpNTQ1OnTqF3t5eeL1ebGxsoK+vD9euXcPNmzeRyWTQ1NSEtrY2nDx5Ev39/YjFYpibm8OZM2cwPT2NyclJA0o9Hg9CoRBmZmYM+K+trTUKoaKiItTX16OwsBAzMzPY3t5GdXU1Ghoa8Morr+AjH/kIvF4vRkdHcefOHezbtw+nT59GIBDAxYsXMTAwgNHRURQWFqK9vd2cTT09PY3BwUEsLy8jFosZl/ni4mL4/X40NDRge3sbtbW1pg8FuNfU1KCrq8sAmqWlJUxNTWFmZgaDg4OYmZkx1kreD6z38zvxPPaoER7BlmoB1sFgEA0NDaiqqjL71dkDSPMYyVNoXa61LWtE6iQ0lj1veJ3JWtKeRJqOM99hnsE0Qj9rq6/2ANLrm3k374GWd+W6bjfTWK3Y4zWsaTMHW9Mu/vIRxYrs+xbALOevi6VbYh/w2d/yLNMXaRfXi8eCfzPP1coDm8LOCeDqMec+d5JndwJcbHKYDdTl4lO5yuB8baBoJ+lBgKdbnlyfXPL3wyrvYdTdli8nzfv5WT33nHAYP5+rHJ2X21x1etepjAdJH2oLdC43v92kXCAUuH/R2gbTNmkeFhDVZTotHKeJu9OFZlsg8lszRNuCYoYrjJGtsQziBFwKKBRNvVg2BFDq6Mdi4WUXO20R5r1tXBfuDw0YGMQwWGRgy4mBjTBmp36WsjkasXZJdXKXFeFA6siWSnYdZqBhA7V6nPQ90czbAnZlMpmsPXM8/rpcPY/Yoingj9vFebEQtLq6aoSQRCJhrpeXl5u9nyUlJVnHxdgSt0VbarlcfU/eFes1C0GZTCYrYjb3rbzH16QsmbNi7aysrLxvz6uMBSvu9Lq25a/7X+YGj7d8izunlKVpF1vCpH+cAKPUR+YHz2d5Xkfo5ny0NVnaLPtg5Rm2Hksk62g0atytBWBxICQWkvV+Sk4ssPM1ndxADHuQiDu2AMiDBw+is7MTjY2NqK6uztpWwV4qGqyvrq5icXERIyMjOHv2LCYnJw34F8AH3AsWV1NTg/b2dnz+859HfX09qqqqUFxcjKWlJVy7dg3f+c53EIvFUFhYiKqqKvzmb/4mmpubsbGxgR//+Me4cuUKurq68Iu/+It47733cPfuXaysrOBrX/savv3tb2Nrawtf/OIX8Ud/9EdYXV1FIBDAF77wBVy6dAmjo6MoKyvDmTNnsLi4iNdeew0vvPACVldXsbS0hK2tLYyOjsLv9+NXf/VX8b3vfQ9TU1PY3NzEP/tn/wyFhYVYXFzEt7/9bayvr6O0tBQ1NTX44he/aIDnxsYGrly5glu3buH8+fNYWVkxwIOPZGtra8PHPvYxdHR0IBQKZYHEdDptwJC47kvgsVu3bmF6ehpTU1OYnJzMmj/62DFb0vyS14/H48nig3zGeUVFBaqrq1FVVYX6+no0NTUhEAgYJYu8x8EStRyiLeji2m6zrOutJjLX9fpjGsOWbO3iLIqeTCaTpdyVOSz/OZK5Vs7qbTQaAGr6I2uM6TQ/L+3UqbCwMOs6K8t0ZH/51nVibyDmi7o/GSzzcWXMS8RqzRbx5eVl42ouQQrFo4LBOrug25R+TOd0n+o26mtO/3lcpb26zW5ppwBT8+N83rONhVvZbgqAXPfdwL1TfdzKstXPKX3QIF3Sg/SVU1759oU8axu7fDBNrvJknfyjd+Fmd8NcoFADBL5u+50rL/m2ARGnZ22/gewzKG2CvQ62JACS3XL1MTjyYU02f4Bs66YOYsTaXy0QyjUt3HEfS7ukLLYIsjDOfSFggevCQIL7hK9rACnMmNvFZWjLtVNiMMjzRrtws9aY6879o8th91Odt80NmPtQj4lNMNMgicGhBlbyHgsFGrjzsT7SfhEGWJDUINqpLN3P/M1rigUTGVvR/ksApMLCQuMGKcGTxB3QlnQdGSRrgKrXqtRTBFdum61/5RoDYac6aSFcFEC2JHVlK6wIqpomsaKloKAga08wrx1tXdV9r5VD/CwDZH6e89Vgm4XEVCqFlZUVpFIpzMzMIBqNIplMmj3IYi1kS6C40Mt8EIuhWGbFWmTbi6znpRbI3JKNlgvdKisrQ11dHVpaWtDc3Iy6ujrjtltaWory8nKjFPT7/aioqDAWRl4z0r6NjQ2MjY2hr6/PnP8swnMymUQ0GjVt9ng86O7uRltbm7Ewsxvx5OQkJiYmcO3aNdPXiUQCn/zkJ1FTU4PKykrMz89jYGAAc3NziMfj+OhHPwoAmJycxOTkJHp7e9HU1ITz58+juroaxcXFxi1+bm4OS0tL+J3f+R1cuHABY2Nj6OjogM/nQzwex/DwME6fPo3x8XFMT0/j9OnTppy1tTWcOHECW1tbmJ2dxfj4OJqamtDY2IiamhpEo1FMTU3h4sWL8Pl8JlL4gQMH0NraioqKCkSjUeOOPT4+jmvXrpljueRYL6/Xa9y6g8Eg6uvrcfjwYfh8PrOHXObX5uamieK9urpq3PZlzs7MzGBhYcEAbAE42lKt6QP/tnmiCM8XHi/KYwmeKEHL2INJlMjSL36/H+FwGNXV1aa9HFSO57u+poEsJwbsTANY8ASyt4I4Kfa4b3jdyX2OKaGP4NLeJiw7aJrO65r5lSStpGQLtPaaso2r5nXaFZvpJtNr3uet6TkDbNuRZPJbR+oX2i758lzkejPA1+Ono6JzZHSO+cBBEdnSLqCf87FZym1zwGneOSWn52x80O1dJ+DpNk/1f1Yg8Ds7AdA2ULiT5PZevvztQZMuPxfAdnrO7Vn9ntP4uL3vBMJlnv6jd+G2CexasOFrWoDldxmAMUjg35IHMzvOS741mNFl8fMaUEoZ2moqjFKuCTMVkMiWV4/n/T2s5eXlrgCd8+fJxH3l1E5NKLSAwMzMBraZyXG5WnOsmaDTuDMDkGusCdfzQlv0uEx5lr+1wMHjLQxGC0W2d3R5Uhf+byMCfE0/kwuU6vyY0bs9z32lk7TVlo/Ow4mhcTtshJfvs2KEQazMY54Tegyc6qjL1czQ9jy/o8dB3tUAOhfTEuuvAFxdlm0+aCCorUDSHwJceaz0fNW0U97nvtAMxumb3xNwu76+jmQymbVvkIP8yL7i5eVlTE1NmeOTEolEFnDhY28kfy2Y6fGzre18kx47oZUCaioqKsx5wfK/sbERra2tZp+xLTAfK6EkiZu5uJiLUmF4eBg3b97ExMQElpaWsoTT4uJieL1ec/zSkSNHsHfvXhw6dAhlZWXY2NhAMpnEyMgI7t69i6GhIVy5cgVFRUUIBoPo6enB4cOHUVxcbJ4bHBzEysoK9u7di9bWVkxPT2NoaAg1NTVmz+7Q0BCee+45lJSU4O2338YjjzyCra0tLCwsmHYVFBQgGAwiEolgbW0NdXV1WFxcRCqVQiaTQSKRMBG5z58/j97eXgSDQfh8PgwPD2N+fh6ZTAatra3o7OyE3+83lveFhQXTbyUlJdizZw/27duHra0txGIxhEIhbG5uIhqNIpFIIBKJYGxsDJlMxng2iSdAJpNBdXU1/H6/6UsZT9mrzcBC5q/sxZYzpCVatLjwikeJRK62rV1NV230WvM59k5gjwVxX5cjvqReXq8X5eXl5kQD/hQXF5sAaG4KPl0nG2hmDy3bO/ye3NPr0UnIl2c1n5dv9tZg2UT3KcshTjzXRiM0P7TRdS3LSF5a7mN6znlpRYamqdzPnD/nx4puAIY+6nYJqJWkgbt8mNawp4a4rQtdln3l+ogzmwKTabX+rY8xk+v8YXd+PQc1j7LJqHqs9Bi7jb9TsvF4t3f0+OfKy2le6ftO5X4Q4NlWd7frXI+HWV6ue7spJ9/0oQbQmpEIANNCtXwLo5EO4n1lbKkVra+4BQtYZa0w711lgZ6PstBWUwBZoA6wH9Miz8l924AywGciWlBQgI2NjSz3ZtaoSuK+ksTPaPd42yLXoJC1n5KHJLGwSF1tIFnaz/2mA22wIKEBExNRW7/LddteUW6XrV66L/g3Kz64b3WQI2Ge6XR29GBdLv8WFzebsMX1YpDLoJ6tj5Js7nCy942FELlnEzScQLhmVDbli+TPc5YZpR4/Ue5wvUXwk3J57WmgrQU83W+2+muhVVtjGXzqdaDbqZ+RPGwCjFai8RzSc5ndLrlMEXhKS0tNXdlNUdrClhjeQsHzhvPlclngEsAv4KWsrAzpdBqpVArz8/NYXFzE4uIi+vv7sbi4mAUwRPjSFgu951GPvwYinNwYqZvQoS1levwLCgqMBbC5uRltbW1oaWlBT08PQqGQsS5LrAOhodIWjhNgm/PRaBRzc3Po6+vD22+/jYWFBWNxFsGV61pYWIhAIIAjR47g6NGjOH36tAHzRUVFWFtbw/j4ON555x385Cc/Ma6eAHDo0CEcP34cn//855FOp3Hu3Dn89Kc/RV9fH8LhMPbv34+vfvWruHPnDiYnJxGJRPDP//k/x/DwMC5cuICioiI0NDRga2sL4+Pj+NKXvgQAGBkZMXOroKAAtbW1uHPnDkpLS3Ho0CG89NJLqK2txb59+/D666/jy1/+Mjo6OtDX14eXXnoJJ06cwKc+9SkUFhbi9ddfx1tvvYXJyUl88YtfxKFDh9Db24sf/ehHuHnzJoaGhnDu3DncvXvXuKk3NTWhtbUVzc3NOHz4MBYWFjA1NYUf//jHmJiYMIqaVCqFWCyG0dFRXL58GV6vFz6fD/v27cNzzz2H5uZmY32QOaPnYiAQwP79+838FRAxOTmJgYEBTExMGLCvg1vxR89dJ2FYfvM80OBwenraXNdbmsQKXV5ebvZch8NhNDc3o6GhAV6v16xdVrBLndgirPtCEtMQ2zqT+Q5kn0KgeRXzc+anGjiLxVPkM+3lwvmzFxzTZP2bASvTfH4uFx0SHi8easwzJb+ioiJzCoKmP3p+aGOD9gLj/mcexsf3cR3YrZ77WwNRIDsgp43u6/YzzWPQqwGwPK+t2PItR5lxpHS5zrEJmGfocnVfcrl6jjqBbZ2cruvtd27yM1/TcqXm9/p3rv+afuh8cyUnMLoTvupUFsuP+dbF7T8nbaSzPa/73IlW5Js+1AD6E5/4hGF87MLMoFYLt0JQGEhpEMrgzOZCzETNJnRx2TxhZIA0cOXyS0tLs4g2W1C1xUiSEHybQM/EX/9ngGsDqEysdRICxfmIwC9tkmtCeLV1WZ4TYUv+c/u4bCcwIXXlttv6SfcXRz7mPCWxEkErOZgZsAJH+kxrP0WpYQN23A49v/gZBkHSXmZsNiKpAaFNe82gkPtIjyEzTmmvDdTo53W7JH95h8t2qr+0l4U7vS9b3J03NzezXOttRFgzLf0c9xWDZ7mn26L73jZnND3gMeDfWjDSiiD9HrdJ+kWERe2uyNf0fJKPdg0U4Ub2Gy8vL2Nubg6xWAzRaNQAk9XVVSwvL2dZMNjljyNcMwjXHxY49RzQ88JJcNDjzc/wvOZvofcCOHw+HxobG1FXV4eOjg5zxrJExharXllZmclHB/2TeSvt4v6ORqO4efMm+vv70d/fj3g8bsBdMpnM2hMp+ZeUlKCtrQ379u3DiRMn0NbWBp/Ph8rKSrP3f2ZmBpcuXcLZs2cxPz+PRCKB5eVlsxf4C1/4Avbu3WuiXf/pn/4pJicnTcTsT37yk2hra8Pw8DD+5m/+BpWVlfjSl76Ezc1NDA4OYmBgAF/4whcQjUYxMzMDr9drrPJ+v98IwQAQDoeRTCZRUlKCffv24Yc//CHq6upw/PhxnD17FpcvX0ZHRwd+67d+C9/4xjdw9epVRCIRfOUrX8HS0hIymQz6+vrwJ3/yJ+jp6cEnP/lJPP/88zh58iQmJyfxF3/xF4jFYrh8+TLGx8fR0tKC7u5unD592ig1Ghoa0NnZiampKYyNjeHs2bOYmpoy1rKVlRWsrq4iGo1idnYWt2/fhs/nQ1VVFQ4fPoz29nYTIVwrxcUCzIJ7IBBAR0eHEfxXVlaMV8GtW7cwNTVltiiwdc4m3Mt8deJTmr5zkqjb8mFZZnh42BgHBFiLwl28K8rLy1FTU4NQKIRAIGD26otxwUme4TkPvL+/mush85npGfN3lgnEiqllB+Ce0k7aIfmywop5gNAVMSpwYhouwFbqyHSJx14ryNnay/yP89B0W8sY/Azf4/qwIkP6U9rjZFXXc0XykuvMr6TezHNt8klJScl9fJHlDOYnmm/p+S7va8Upg2K5L2tG8mMFuVaw8DM6KKAoJWX7j+wfF4DOijGmxVoJxv3rBtD1NZtsyvxJK4P0czo5PeskU+00aRzjVCY/Z2tvPuVzHziVo9NuQfmDpA81gBa3K7/fn+XGrPfpSmIrG4As7ZzWNGoipwkncL9bLhMQJjhsbePn3N5lYVru84LSk5jz1CBSayht4JInu03I1xZv6TMtfNrysdVXt92pXzh/FiS04kKPF7df6qoZCIMjLpevMeix9a8mknq8mGG4EQPNfGz969SPNuKs85WktbI28Kfz0YzC6Zp+3w0E2QCoHh/uLyfAyGuTn9GubPkkzRyc2stCilzXtCBf0KfbowVmbfHgvrDNPb7G655/M5gTcCuCg4BksVZy9FgJUpVKpbC0tIRkMolkMolIJILV1VUjjPCxTvqIJ5sgaZtb+fy3zRnuT923knhNS8Amn89nIkiLJbmyshI1NTWorq5GfX09amtrszyTtDKM6Q23UZQRKysrmJmZQTweN0dMjYyMYGJiwkTN5mN1JBUWFqKpqQm1tbVoaWlBQ0MDGhsb0dnZiXA4bMqMRqO4ffs2xsbGcPfuXQwODiKVSgEAOjo60NbWhra2Nhw4cAAlJSWYnZ3F+fPnMTQ0hIKCAjQ3N+Opp55CbW0tUqkU3n77bUSjUYRCIbS3t+Pq1auYnZ1FcXEx2tra8MYbb2B+fh4tLS1IpVLY3t6Gz+czwmcmk0FFRYWhfQy8PB4P9uzZg2g0ipKSEpw4cQJdXV2YmJjA+Pg4+vr6UFFRgSNHjiAWi2FpaQl37tyBz+fD8ePH4fP50NXVhaeffho3btzAzMwM5ubmsqxYbW1tqK+vRzgcRk1NjQH4BQUFmJmZQSQSwfz8PGZmZrIiJG9ubiISiaCiogLr6+uYmJhAXV2diZYdCATM3nZWCgufFAWMrDNZW8lkEpWVlWhrazMeGOKmL8dziaWNFUw8f230hOebjebKGuAjqnhdaEWkeNyVlJRgZmbGKGhCoRB8Ph9KSkrMvn55jt3EKysrTSBELS+wnMB0TrfPxqf4OVlrfFa2rBXpOydZRP4zSLPJcjbFqY2+6GsaWDu1Ebh//7luL9NJmwzmNB/y4WNOvEnTWydZS9M7ucYytI2nSv9wXXgucmIZSvLk8dX8UGiNzfrM8QskD3ZBt50FztZttr7zb76mvSPYS0KuswEml3u7bWzdZC9bss07fc/JcyNXfrb5YnvfKb9cPNwpf6c8bP/zqcdu04caQAsh5zMxeVED2QRKCyUsYDPIFcskW1nZusnfNo0f52mrEycZbG3dZgAm97TWToMezVzkWxavZl46aUKpF5dt3x6XyfcZ/OkkbbItHhujk//sImNjePo3C8oAjBZXCxE8jtra51QftipJnUSA4oXPDJgZqROx4D5i4UnysAE1G7iy9afMZ64bey/wOzZLtSSep24gjv9rAq3rzIoOsRzoNmtmrMeKg7Jwf7MlQidNaHWb9XzX/avBoO43HgMnRqPbJf+1AkALWdqKws/x/jUAWeCVtfFyvvHy8jIWFhYwOTmJxcVFLCwsIJFI3HduqnggcPRqHQzHidk7CXtObdhNstFzpt+8Z1SsbeFwGE1NTejp6cGBAwcQCASyzjSWrTscaEi3VXsXcAAeUTosLCzg4sWLGBkZwdDQEBKJBFKplLGEctsFhAk4OXr0KA4dOoRHHnnEuIjLcUai3BgYGMCLL76IgYEBrKysIJPJmD3Sp06dwokTJ9DR0YHS0lKMjo7i1q1b+Lu/+zsA9wD24cOH8eyzz2JsbAy3bt3C66+/jurqagSDQQSDQbz11lvIZDKor69HTU2NCRp28uRJxGIxbG5uorq62lh0MpkMysvLs+ZwZWWliaB/+PBhnDt3zngwPPLIIygqKsLo6CjeeOMNPPvsszh+/DhisRjOnz+PyclJzM3Noby8HN3d3WhtbcVnP/tZMy7iLh2NRjE4OIju7m6cOHECBw8eRDgcNu3Ys2ePOTP7xo0bZn++7NWXoGESpE32r3u9XnR1daGtrQ1Hjx411lhpI9NQ8YaRa1VVVUin06ivr88S0OPxuAl6dvHiRTMnpA/Zm0PLMDaa4rTe3ARYtlTruTw9PZ0FrNklXPb/e71eNDQ0IBQKmb3XtbW1xqqtleCiePB4soNdcv2lzZxYsSz1ZFfkdDpt/tveZ3d05ktSLrebjSXMh22JAR6DO1au5ZL/bCBQ159lUN6+o/NzSixTavnClofmdXJN1wm4X6msZRaWITXv0nySE9Ncbbjg/mBFrZYttPwjZbLnBINkG3DlvtK8VMaKrdWiyBOlsiiY+Szyzc3NrEBser+4zdLN5UqyKfT1GPM9PbZu468T33NbE07P6PnEedrKteXvVr+fd/pQR+H+2te+hqqqKvj9/qxzEjUzk8ki+02EAbC7N4MbDkihXegEXMsk1hZKZgzA+0FnGPyxyw3wPnHgumhCwESAFz8LbEK0mTAwQdACuRNR5/vSFg7YpF1kpJ2yf4qZoM2CywtLKw24TZqpceL+FCGe98EzkXEKJMbP8JhxGTLmvEz0Hh52qZK8pDwhjDpPVq7wO5y/7hNply5DC0x6vjGo47y1hUPmngabPA5SNitl9Bjx2EmyAUUeBw2SNfG3zSHtOqnnjzyrt0Hw+hChAoABJNw3vJ60NpyTbe6Kx4tuA/eHEx1x6ke9pUEfoyXRgufm5rC4uIilpSXMzc0ZV96lpaWsaMHr6+umDuLGZhPg3AQLmxDv9t8p6bltS3r+yDcL/6zgFMAsVsOWlhYcO3bMuKPK9h9Wxmp64/G8v5dQhBxND7g+si94aGgI7733HsbGxozLruz71gIfr8HCwkLU1dXhwIEDOHHiBI4fPw6/32/Og2bAPTo6ivPnz+PixYsYHx83gX08Hg/a2tpw6tQpPPvss2hsbERxcTFSqRTefPNNvPTSSyZy9Gc/+1kcP34cPT09WFhYwPe+9z1cuXIFW1tb+N3f/V0UFBSgr68Pr776Kp5++mmcOnUKqVQKP/zhD1FaWoqvfvWr+Pu//3vjLr26uopr164hnU7j3/7bf4s/+IM/QFFRET7xiU9gfHwcCwsL2NjYwG/8xm/gm9/8Jm7fvo3a2lr8zu/8DqLRKM6ePYsLFy7gmWeewcmTJ9HS0oILFy7g5s2bOHv2LLxer7Gkf+lLXzLu11euXMGPf/xjzM/PY3193cRJ8Pv9OHr0KJ599lm0traipKQka3tBIpHA6OgohoaG8PrrryMajWatAx4XDrxVX1+P1tZWHDhwAEePHkVlZaXZgsUKYj67Wwd1EqAnxxPJ72g0as7zHhgYMG2SsbcpcXgN2YTQfNehXn/cFk2n5D/LORwzpqioyAQ18/v9qK+vR319PQKBgFHO8LGSLHNwYqOGrDkGaAKmWTaT9zRPkPxF8aeNJHJso8fzvnKB+9fGe/k+0wPd91qJvrGxYcpiN2zZhsTPMn3U7cw3sWGIx5B5jNAPbqM8p7cFcNuYp9lAHD/PcrUk5rNaZtXxdXSfa5lZEs9d5mlanhFZjeVzlok4PwbamgexFVry5fUqY8D3OFiabbyEX3Df6YjnfAqFKGUFyPNpF3yOuZO12yb/2X7razvl8zq5zSfb2O8UuuZSCPBzotz8Rx+FG8gWYDRIlOsyCDpwhW3icmdqFxvtnsPvaMLC9zQRYaDMi1wDIhvx1gBB8rCVo/cB8TuaAGimy1o/+W3rK87TDSxw3pK4brZvDYx0f7CVUScn4sd5cL9pcMJl2MbFxjD4GpchbXFaxPp521zg52Wu6znM/Sbv6frw/LERx1zzm9eSft7GXJ3u67rqPnFaS7b6Sn/w+7Y8uc8A+9nltn5wI9ZaYGbmL8nmOWBrr9wTWiNa642NDRP4SI52EsuxBFphZrqysmLOCxU3UWGwrADT81zvieb68hzLl6k6JafxsV2z0XMt/Hk8nqxjfFpaWrIEdZ/PZz61tbVZZ4ZrTyGbooDphtBU6a/19XVEo1ET6VnOZY5EIpiamso6w5WVHZxfSUkJGhsb0djYiP379xuXcXFBFgt4JpPB4uIiJicn0dfXh5GREUxOTmJmZgbJZBKFhYWor6/HsWPHcOTIEbS2tqK+vh4ejwfXrl3D3bt38e6772JmZgZ+vx9PP/00zpw5g0AggGg0ir/+67/GwMAAysrK8MQTT6C5uRkjIyO4du0a/H4/GhoaUF1djVdffRWpVArBYBCBQACRSAT19fUIhUK4c+eOEbSlb9fW1jAxMYG9e/ciHo+biNhtbW1YXV3F8PAwhoeHEQqF8Nhjj+H27dsYGhrC+vo6PvvZz6KzsxOVlZUoKCjApUuXDPgvKSnByZMnUVtbi6NHj6KsrAyDg4O4fv06ZmdnjWX56tWrWFtbQ1tbGw4fPoympqYskFdUVITa2lo0NDRgYGAAk5OTGBwcNMdgiYAtwFsE1lgshqmpKdy8edPsm967dy8aGxtNQDcn3if9I6Bc9pSm02mzrWDv3r3o7u42Fi2JlC4B5hKJRJaAzhZTt3XpdF8/K8DOxo+1zMNrkhXF4qZfVlaGkZER491RXl4Or9eb5Q1SWVlpzsCurq5GeXm5+TjJO+y9x+3ia3xdAJkkXv/C12xyoU3+0UI+8xgtnGteyK7M/JzQBOYZmt5qPmPjOel0+r4AnLosNx6rZTF2dc/VNptMw8/ZaL0ot3X/2p7lPPXRXfyelsf0GHNfcfu1/Gq7p+eX5kmSr+4Llrvlv3w4Pw1weYyZj/PaF37E/Jx5ldMRe2yI0G7mokxkryr+sAVdK/dYUeIkz9pkIZ5PPHf0c055cD75vOM0x3KlDzWAtiUWpHlR8MLRk5cnvG0haquwDQRoAVgnJupcJxth1OU7/dcEy/abBXtdZj4TyCZM6nbpOtkIj+0dW/m2usrHDSTn6ns9TnqRsmVSMwVmQFxfvRj5PT1PuC+5TU7Emdsi39xOYY62NnJZuk/cGJjud/5mZQ9/25LbHHBaO7rfdD62srRyRINUJ2DO1g2uC4+PUz4yF3Td9NhLnXR7mEmx2xYzH44sKpFIV1dXEY/HMT8/j2g0ilgshsXFRROlWSyb7PKpmSePr42J7uR3LuF7N8lGR2xzRaxc5eXlqKysNEGE5LzjYDCI/fv3Y8+ePQiHwwiHw6ioqMiykDEf0AorG4jmubG9vW2syaurq2b/6uTkpIkOLUHVxCXPRtcLCwtRWVkJr9eLYDCIvXv3oqOjA8ePHzdHKckJEXLE1dLSEkZGRtDf349z585henraKE/Ecr137148/vjj6O3tRXl5OdLpNCYmJnD9+nVcvXoVd+/eRWlpKerr63H69Gm0tbVhcXERQ0NDeOedd1BQcG8/9KlTp1BcXIx4PI6pqSkcO3YM4XAYRUVFJrK27ImNx+Oora1FVVWVURaIG3NRURGSySRmZ2fx2GOPobi42IC/xsZGpFIp3LhxA0NDQ8Y9u62tzZx/ffjwYdM3mUwG4+PjWFxcxNjYGLa3t1FTUwO/34/Gxkb4/X4Eg0Gsra1he3sbsVgMq6urmJqaMnUQBYi46peUlKCmpgbhcNh4JoRCIQDAwsJCljKKhVWxXs/OzmJoaAherxeBQMDEBggGg+ZYLAHrnLSCjU9ckCOptre3sWfPHmP9SyaTCAQCmJ6eNhHuxcIkAcvEPZSFa15judaubd3beLWmbXxf03C2VAutLiwszApeJkoDsVTX1dVlnfnNHoPsSs5Hw3Efa/pskzv0OHB73ay7brKTDUjaZAotO2nA6SQHAPfLtlp+dasz0zmbHGNri01eccrfiee7PeOWbOXm0958ZA+ukzzj1E6+52RM4nKZl/C809Zv9vzjcdFu+lw20wruD5ZVbfXT84avi2eV/BbQrI8kEzd0HXxNb+2S96VMxlD6oy30/I7U0dYfem3lSrsFyk7pQw2gbdGsGVSw65Tem6KFWycLkU2Y57I08RUtHbv96kHnsgsLC7GxsWEYitSXAaMGkMyQpO5OQr0OfsCu2DZtKtfXyZ1KL1x2PWfCxkSDg3swkdCEUINheU/6le+Ly60mChosyLsFBQX3RY5kCza7nHNdxK1LAzbd3xwpU7tfcVlAthu4aEP1uGiLORNaj8dzn7AgbXLaH8V9yn3PRIwFHidCp4E15601zTZlFo8/JycApYEfA17dv3pcWKsr64GTzW1f11tbmHVEWLmnnxPNuPRbYWGhYUjxeBwLCwtmD+TExIQBxhKgi5kTu3rqPVj8vRPQ68R89X03AUuPm35eP8P/dflynT88nrJ+KyoqEA6HcfjwYRw8eBB1dXXGqsxHDwqtk3HlMmR+b25uZq0jvd1C+lq+RZFx7do1A5bFdZoFCZ53kpjmFRYWwufz4YknnsCJEydw9OhRs7dZtibI8xJZe3h4GH/913+dFfVcypBjpf7pP/2nOHLkCHw+HwAgFothcnISX//6102wt4KCAhw+fBgnTpzAyZMnMT8/j5/97Gf4h3/4B6ysrOD48eM4duwYjh49ihdffBE3btxAUVERvvCFL6CsrAyzs7OIxWI4deoUOjo6jCKhoKAAVVVVRnEgoKa8vByRSATDw8NGkZFMJvHuu+/i+PHjKCsrw09+8hOzx/rgwYP4yle+gu9973v42c9+hm9961v4rd/6LXR1deHkyZPm3OizZ89iaGgIP/zhD9Hf34+vfOUrqKqqwtGjR9HZ2Ynr16/j7NmzuHLligl2J3ufa2trceTIETz++ONob283+3urqqpw5MgRdHV14ZlnnsHk5CSuX7+OGzduYHh42LhAypyQNbm+vp4FpsvLy1FRUYFAIIBPf/rTaGtrQ1NTE0pLS++bgzzvmSdIOQy+Q6EQGhoasvZbrq6uYmlpCWNjY7hx4wZmZ2cRiUSwsrKStcWD1yivdQ3y3Na6vs601ba29ZrWSa9vvUYEFEvQsrKyMgSDwazI4PX19SbQmURKt4FnTeulfOGrtn253A7tRsyyiPBqaS/zSbmnaQLzMU0r+LrUw1Z/3cf6OeFVElmcPRRsQd5sPETLuDyW/L6m/yxDaFkKyN5a5SSTskcU02mbXGirD89tJ3lE6Ccrx/iebS5Lntriz30jYy68R/7b+pMNE5KYPrBbufQdzw/NN9nyy/NKby+Qdsi2BVsf8tzUHmu6Lzlx/VhmYis3A3T5SBBIOcWArzNIt8WI4Drb1jD/12PL7+abPtQAmgktDzD/11Y6TjLhba6oPPk0MXay/LHQzsBMMyheRBpMOFmGtIXNtrAlyULT9dJt0UBeg0pODEKlPnrR2kAN9ycTX26jBl3cZq6ftuDKUSk68R5zqY9e7EzMub38Wwc6kfsM5G1AkMvg8WcwxXuztNKA+1CComjAJIK1ZrpOxMM2Xno8eN5Kfnru2JiQVj5JYiJrY2pu9Qbs0VG5XK6/DjbCTJDd9XRd9JriPVIsAGjhhfeJMSOQM4+Xl5eNhVii7QpjEGbAGlzbmcisleaxt42vE8NwYwbSfzYF2W4SjyvPZydaJN+sRCsoKDDWZa/Xi3A4jM7OTtTW1pqza8WlUyx84ootlixZn7LGeD3pOjJdsSmUEomEcdO9cuUK5ubmTPAsGVuxduo1pNeMgNy2tjYcPHgQHR0dxu3Z5/PdR/tkX+xrr72GW7duYXx83ERqlvLKysrQ1dWFAwcO4IknnkBLSwu8Xi8ymQyuXr2KGzdu4L333sPs7Cy2t7fh9Xrx1FNP4SMf+Qjq6+sRi8XwJ3/yJxgaGsLa2hqamprwzDPP4PDhw4hGo3jnnXcQjUbR1dWFmpoak18mkzEBtcbGxowAVl5ebuZ5aWkptre3zT7zWCyG7e1tA1bfeecddHZ2oqamBk8//TTOnTuH/v5+vPjii/jUpz6FlpYWtLW1YXR0FD/60Y9w5MgRfO5zn0NXVxfKy8vR2NiIH/7wh8Z9fWlpCZ/+9KfR1NQEv9+PQ4cOoba2FqdOncLLL7+MsbExLC8vY3l52Vhz7969a6z+e/fuNXtyKyoqTPCwmpoaPPLII4hEIujv78f4+Dj6+/tN5HHgfZ7LVhup0w9+8ANjRRUPgaamJuzZs8cE1BL+K3NQaJ/MVeYD8l/ogc/nQ3V1NRoaGtDd3W2CoMk54PPz8xgbG0MkErkvyrfmqW5A2Ea7bfRC52ET5Jmf6rViWztsuZ6dnTWKMnEFF5BdVlZmxq2qqgrBYBB+vx/V1dUIBAJZZ7U78S3tEsz10Ep06TM5m5vbpvuU+b2tr7QsxNcZuDBAtYFOfk+e5b33rKRwolm6DnKPZUvm21ru1jIw58HzmhPTUC0LMp/S8rrT/HKaU1yWrQ9tVmMbNtDBTjlInZbrWbEu5XO7pQyb/CzXbUYNfkaSE/+2YRV+nuVZlkM1npB3NOjX/cj14BOPpA9l3mi5k9vHVnEB3npt8JyRfFhhxQptBt0sa4kXl9Du8fFxax/q9KEH0DYQoye9G3FmIqCBkH5PJw0KbM/pZ3T+gP0Adv2MDWTw4rS1W+6xgGgDL/ztJjzrxa37UY8BX9MgUfcP52f7LYuN89BETyslNGPR1khOup90chtbSTo4nB5HZhy6DM0MbGCIn5P2MzB2AlDa0sHzKNfctl3XjEWPu+1dfs+2XnSdJA+bckGSBkZSHy0Q6DXjRKyFYHPwDQ7MYdvjIwRa3hEr8srKCmKxmHGxFoGWNa9635Fe37m+9Vg5XbfNd9tz+SS9hp2EFr7H12SdFhUVobKyEuXl5fD7/aiqqso6Gkci/ErU5GAwmBX0S4RkyY+FQmH6NuWpjU/IeKyvr5tga3JklwDo6elp3LlzxyhFhOHavD08Ho+xnAWDQYTDYVRVVaGystIcRbVv3z40NTWhoqLCBC5Lp9NYX1/H0tKSsWonEgm89957GB0dxeLiogkuVFVVZY6z2r9/Pzo7O7F//35sbGxgbm4Ow8PDuHbtGgYHBzEyMgKPx2OOsjpx4gSam5uxvr6Oixcv4s6dO1hdXUUgEMBjjz2G9vZ2FBUV4cKFC5icnER1dTWOHTuGTCaDubk5jI2Noby8HOFwGGVlZbh9+7axMBQWFmYdZVZYWGiOOJqdnUUqlTLnC8/Pz2NhYQFVVVU4cOAArl27huXlZdy6dQsnTpxATU0NDh06hGg0irm5Ody6dQvNzc3o6elBXV0diouLMTk5ibt372JpaQk3b95EfX095ufnjaKipaUFVVVViEajCAaDmJmZwfj4ODY2NhCJRLC8vIyVlRWk02lEIhGEw2G0trbC5/OZ+SjKmrq6OlRWVqK+vh7BYBCxWMx4kIhyQNOFjY0NTExMmH3Os7Oz5uz0qakpc/RTRUUFmpubjRcCz1UOGCoWLelb4B4dLCkpQXl5OXw+X9a+xHA4jMXFRTQ2NhoALZYcoW3Ly8uGTonAaqNFQkc0z8iXfmi+5MZH3GgI0xl26xblm/S13+83bvpVVVWoqqrKAtDyHgcflXf5LGzxpLABKptMpvmU2z1bm/k9kXv4GVY4AvcbZDjZgJ+We7UsoPmFlkls+TvJEbb26L6zJac5ZpOzOT8n/uNUhu0ZLU85JTdsYFsrnK+b4sNtTnDSgJrL1PKmm1wm9dF9IXW03eO5rPm+k4zNsq+Uy566Wp4XPq6Nik7yo3yzXAXAKLdEvtNb5dgAIjz4/woADSCLAALvC9navVsSTwDeR6Ang9bSOU0OFvBzERGeaFyO5KMns54o7K4AwBB2fh/I1lbr8nQ9eXFo90VbYk2j7itNmG2uKlJXJ9BvAzzyrQkOn2vJ0Y7ZWq7dXKR8abt8izaR3dF1m2x9wkRCu4Fz37KSRJi11M2m9eMxZYImz7GwJvf08xo0amLIfaLbIuVz+22aVz2ntOCgAb6N2HPdhahy3/A9KUu8B2S8bK5J3EZ+3+biv729bYL0rKysmOjVS0tLiEajZg8lR7BmQC3frOnn9eSmGHFi1Pk8o+9x222g0e39fIQgLkczMZ4Lmj7IGhPwW15ejtbWVmNlPHToEKqrqw2gFMFVe97YkswBrouOjK/bxxptcamfnp7GuXPnMDg4iImJCSwuLhovAd7L7NS/TIvk2KNjx47hzJkz6OzsNKCPo+RLvdPpey5pS0tLuH79Ov7mb/7GHCUmR1IJ3aisrMT+/fvx8Y9/HGfOnIHX60VxcbEBa9evX8d3v/tdxONxo3Ssr6/H888/j6eeegqhUAiJRALXrl3DH/3RH2F9fR21tbXYt28ffuM3fgObm5u4c+cOvvGNb2BrawuHDh3Cpz71KUxNTWFqagrT09NoaWlBMBjE9vY2rly5gvX1ddMP4josfREOh+H3+7G1tYXFxUVUVVWht7fXHOdVWVmJ48eP480338Tw8DD6+/vx7rvvGlfs6elp3Lp1C7dv38b4+Dj+5b/8l2hvb0dPTw8aGxvxrW99CxcuXMDi4iJ+9KMfIRgMoq2tDV/72tfMftrPfOYzmJ2dxZ07d/C3f/u3mJ2dxcbGhgHQ4+PjZk/3F7/4RXR1daG5udmccwzAKECEVszNzWFgYACXLl3CjRs3sqLf8jxJpVKmb5aWljA0NGT2/4qnRW1tLT7/+c+bwHdyXrasG5lvQhM1LRRaLTxIjl+rq6sDgKzzbmVOi3Kov78fN2/exPz8PJLJ5H20zSbA2uY/Jxudsz1jo3Fu4EWX5QY2WL5yokOyFsWrxefzoaGhAbW1teZ4Owl0Jgo75jGat0hZmh9xe4WXspcMcP/xkJrPs5LAprhjHq3bL7SOPavYi47rq+UKdvu2jYd8tIFCyyEsm3OddR7s8szPcXnyn7c62OYDy6E8j3Vfc5/oOam91Jje63x03+SzVvg5nl/cfm215zqxt6X0iY3Xcfl6HmoLMZfjpvDh8bPxQ91O3Raeb1IXLVdorMB9JckWADhXYoMXt3NzcxNvvPFGXnl86AE0kL0wPB5PlgZXBkaAHxMxGwFioV7yZvDGBNk2UbSmUvKQ/Fkg1AtRnuFJxKBZNvBvbW2ZoDnafUIEQhE+be6rNoAmYFzK5/d0e7RAqyc9E0qnPuL+11ZGZnTc1zaNHfeTJhq2uvIilP5kwi3XpZ5cZ+D+I7F0nbS1QBIzL6kvMzNpCzMsrr8mRtr1VNdD6sAMRhMoTeAZrLKSY3t7O+sYES0g2sbJNrZSTibzvluNbYy4Dpr5cp3kfb7Oz4qLjliDE4kEFhYWMDc3h5WVFSwvL2NpaSlLuOT9OBzMSx/74ERH3LT1uwHEbvfcBFd9zYmBOwlGkmyeEpqJMtPXQmogEEBtbS2am5tx+vRpY8XjPY3aIqQ9K4D315WOM+A0nzVj1i79YtW8ePEibty4YaJmy95zvZdZ96H+SHsrKipw8uRJHDt2DIcOHTKRvwXQ8HgIHVhZWcH169fx6quvmiOvlpaWDJARoVkAubg3V1dXw+v1ArgHWu/cuYO//Mu/xM2bNxGPx5HJZOD1elFfX4/f+73fQ11dHSoqKrC8vIw/+7M/w/Xr17G2tgafz4ennnoKn/nMZ+DxePDqq6/i3Xffxfr6OlpbW1FTU4Pt7W28+OKLuHv3LsrKyvDRj34Ufr8fs7OzGBkZyZorbIFOp9MIh8Oorq5GOp3GwMAA9uzZgyNHjpj91dvb2zh+/Dg+/vGP48KFC3jllVfwk5/8BLW1tejo6MBXvvIVfOtb30J/fz8SiQS+9a1v4cknn8Szzz6LcDiMX/qlX0JPTw++9a1vGWAbi8Xwn/7Tf8IzzzyD06dPo6amBk1NTQiFQuju7sa5c+dw69Yt3Lhxw3iGiKfJd77zHQQCATQ3N+OFF15AXV0dqqqqzPgJr2xtbTXRv+PxOAYHB3H37l28/fbb5nxX7ZYq80csHqurq4jFYpidncXk5KTxvNizZw8OHTqE5ubmrL3TNmAmSei01JOVSuzdUVZWhu3tbYTDYQBAb28vnn32WeMls7i4iLm5OUxOTmJgYMBYp7VywEbrNJ3JF0Dw+zaapK2ntndtieUPDda4f5jeiHs4ByiT37K3XTxAwuGwoXFlZWVZyjFpD8tVXAfdd0ynbEphSTa3VydrJgNwlvtY3tRHq/F9LdvpbVWSL28BzGTe314ndFE/x7KDboueW5nM+96HTvzNth6k72w8U88xPq5MYwApm/tE8tKyPfc1t1ODOjbw2Nqj28lKDMY1ck3LSroPuG7cDzImXLZ881yUpOvrJF/b5AydD89HnvsyR7QCQc8Tvm4z/jGPtdVXGziEBmjM5JY+1ACahSN9Vi8PDnB/VEMnrYq8YwN+bkxA7tsmsc5DBktbBLl+QnhFqF9bW8sidlpj5JQHL1InpYG02Qmg6jboMhjsaW3fToia5OnEfN3q5jQm2q2a82Mmqq3qmtjYBHUnEK0Tj4VmDjZGaqsr56Pv6/G19QcTUUlas6fL4LzcCLS2VOu8uN8k2fbVcH66fTL3BcBvbm5mHeEkgYzW19exvr6eFWRHjnVKpVJIJpNZxwrJ2auSL1tc9LfT2uHf+YzjTp7LJSA6vZvPe7mEWfnP46SFz4KCAhO8x+fzoa6uDqFQCBUVFSgpKTFulMFgEB0dHcaaIwG+OFAQJ2Z0OniMJJuCRcZJFD6i/FhYWDCf2dlZLC0tYWlpCaOjo5ienjZRtW2WZt03rCgQJcG+fftQU1ODuro6dHR0oKmpCfX19Qa48FqTusbjcfT392NwcBADAwPo7+9HNBo1c1PKKikpwZEjR7Bv3z50d3ejo6PDuLyn02lMT09jbGwM586dw/DwMJaXl5HJZBAOh9Hd3Y1HH30UTU1NKC4uRjKZxJtvvok7d+5gfn4excXF+MhHPoIjR46gqqoK09PTGB4exsTEBDweD44fP47Ozk6sr69jdHQUiUQCJSUl6OzsRGlpqbFoioIgk8mYPhShT1y4pa4CPEpLS7GysoJoNIrl5WWEQiETyVsiZi8sLCAYDOLEiRMoKSnB+fPnEYlE0NfXh5KSEnzyk59EdXU1urq68PGPfxznzp0zZ51PTU3h0qVLSKVSOHnypFEgFBYW4siRIwgGg2hoaMCFCxeQSCQM8F9aWsLq6ipSqRR+8pOfoKGhAfX19Th8+HCWSy8Acza3RIMPhUIIh8OIRCKYn5/H0NCQ8QSweTCIpX5rawuRSMRYRpPJJGKxmNkCUFNTg1AohJqaGlRXV2dZLnluaquMTWaRNSx5yHYIoasCCFtbW9HZ2WkikC8vL2NiYsJYrpl2aj7E325pJ/TNJovtJDnxdF2GBHXVHz5urKysDNPT0+bYLTkWj4/kEsVgIBAwnjVlZWVWcOEGrHX9GLjZ2ujWfl2mjJsG12515LrwN5fBHjY6D9tvLlvLjlq2ENnYJkflarMNxPF1m/ykx4XnkOYTNoDOxhn5r5NNOcDlagWcble+88a2lx6438LN2IEVKk4WaclP8rHJ9Pqb77GCQvK1ye48TrZ56tQOW32d+mgnNOlDD6DZ1cjmTmFjIEw0nAgFExKnSWkbYDcNjQ18OS0KuSda6lQqlSW0ssZUT0qeJFrzpIk1t5fL1X2mtW+6L/VzTkzUSUC3Eeh8NKzyvNNicyOs3Jfa0qv3s/HztjG0KWo4sRVXe0Po/rItcs3oeNx4nHXf8FgKAbWNvxtjk/rbmIOut85H95vc00FHtJWctZJiiUun02YP3+rqKhYXFxGPx5FIJBCJRLC0tGSAsuzzYw8OvQUCyGZM/Jv7z01BovsilwBjG1sbQ7Rd5+dtz7qlXIIP39PrnteJCIgiLJaUlJj9obW1teYIIq/XawRICfJVVlbm2E5dB6Y3tt88V2Tus9VTgJ3s8RwaGjIWwjt37pg5wvvS9bYImxAldROXT6/Xi+bmZjz99NNob29HS0tLlvu59khhy+PY2BjOnj2Ld99917iLs/eJ9G84HMbp06dx4sQJNDY2ZrmSRqNR3L17F5cvX8brr7+O1dVVpNNplJWVYe/evTh58iQ+/vGPo7y8HMvLy5idncVPf/pTjI6OYmtrC4FAAB/96EfR1NQEj8eDwcFBE3CqpKQEx44dQ1NTk4kwvbq6Cr/fj+bm5qzIqDIfZBy4L2XfKQDMzs5ibW3NHN+1vLyMRCKB+fl5c+Z1fX09+vv7MTs7i7GxMdTX1+Po0aPweDy4ceOGGc9kMmn2Sjc1NeHZZ5/F9PQ0MpkMFhYWsLy8jJs3b2J2dtacPVxTU4Py8nJ0dnaioaEB7e3tmJ+fx8TEhAGF4oEge9Bl37pEfxbQxAog8aaor683bucjIyPY2trCxMQEUqlUlmVexpgViaIA9Hg8SCaTmJ6eNtsd2tra0NbWZtaXKKgkCJltnWvez+uZabK0Q+pTXl6O2tpaAMhSQi4tLeHatWvmyLZoNGr6ShT9vKVF8wBe8/q3rf5O13PlYUu2d2zeNXKf6aD2hpEkijFRpPEear/fD7/fD5/Ph6amJrONQTwZ+D0eD1aMaDrkVA9ul00pYGu7TR6Ua05b1TQY0f2n+1LzfJ6LTgYbLYc6gXTJPx8QrevFvzXw42e07MTlc5ts+WulBAe0tNVJywP6twamTrzbKU9uhy7Lhhuc3s+Vcj2jZU9+z0nhp5OMu9Mzuo+1S7sTzdgJcJb0oQbQIqBoBsIdqEGVNu9r4ZmFNxuA4k5mECCgwJY4TwYMDP4k8cTY2toy2t+NjY2sM0/FzUhbsjVR433CnHR7MpnsoCQ6SRkyyTXTZYUEg1K5p/eps0Aq13Qf6MUtY8uE3Im4ST42wK+ZiDwnx2JpYswuHaL5tLngyBwQgsn3xZuAGYsIGk5KFq25lPv8zUBa3nXaz5TJZEwQInZ7EZBaUlJy3347eY7Hf3t723hASH5cL+1SI+1l7af0q/SZWKHkzFkO0CNCrXhiSP7sZivjyMDKbcz1fHG6b3vWCfDmeifXs5LyZUK53rOte9tc43c1UJQxl8BPNTU16OjowOHDh81RMhIJWywvhYWFJrJ4IBDImh8CsvS8Z3DsRsN533txcXHWebfpdNp4G4yOjuLSpUsYGhrCrVu3sLy8bPZ+smu2lM19a+tL6YuysjL4fD48/vjjOH78OPbt24dwOJwFmuV5pldSxuzsLG7cuIHXX38dt2/fNvRdaAwL0vX19di3bx+++tWvGuAndVxfX0cymcTXv/51DA8Pm/OKCwsLUV1djUcffRT/5J/8E+Naura2hldffRXnzp3DnTt3sL29jX379uFXfuVX0NbWBo/Hg4WFBXzzm99ELBZDSUkJDhw4gMbGRqysrOCtt95CKpVCRUUFamtr4fP50NfXh4mJCWQyGeN1wEBKxll4VjqdxszMDFZXV1FRUYHe3l5cv34d8/PzeOmll/Brv/Zr6O7uRnl5Of7Lf/kvuHTpEhYXF3H8+HFUV1ejt7cXn//85/H973/f7Fv++te/ji9/+cs4fvw4Wlpa8NWvfhUXL17EX//1X5s+WVtbw3e+8x2srKzgyJEj6O3tNXuQKysr8S/+xb/AnTt3cPv2bbz00ksmYGA6nTZ70CcmJtDX14d9+/ahq6sLH/vYx8zecxlz2S8te6nb29tx8uRJ3L17F319fbh69SqmpqayvBxsXhQy58UNNh6PIxKJ4Nq1a3jppZcQDofR3t5uAsLV1dWZ9Sf5yByxGQGEfzJdZiWV7Pn2eDxZcy4YDKK5uTnLKy6VSmF5eRmDg4MYGhrC3Nwc5ufn7wu6yGtL18WJJu8k8XqV8mwggBM/J+Uyz2QApMvyeDxZa1bT0pmZmfus1wKwRTFWUlKC6upqs8VBIvJXVlaa88mF1ulTO7jvmG7m6jttAPB4PIaOcjtsIEtkPpmzLMMyoNWytQbSW1tbWbIE95PMeZaBJA+uj21/cCZzzzOTXdJ5fFkeY1mW6+zE2zU+cFJWcJJ3+ThdllU46bGV993kXO4fbiff17KC1FnjEZtSwLamnNop5eg1xUkb1+S/U7wA4H15gcvS9ITH1UlBwc/LNb0HOl8lDKcPNYDWi1dbJ+Q3d4qtg2wEnRewJqY2IVQDBAE/mgC4TTB9PZPJGGIrwWOE8DJR4rK1dZqJGrdDMy6bNpHzkcVv2y/BYJoXqI3g8POaaNg0wkwImFDmCyLckhOz4b5hQYcJsa0sHm9N2Jh46vnJChBO+ppmnmytYuDL5WcyGeOSJv3O64Qtb9rCrffBc/7MwLRFV4Smzc1NY9VJJBLGNXJlZcWcFSsutuI+K0KZuGGL1UbyZcsGt9/GADTgzSWouQkfzFjzBcVOip2HnWz0zQlMa6CsrVDl5eWoqqpCfX29OdYnEAjA7/fD6/Uad8WqqqqsvYIMtjX9YZrEZTOwtu07YmGP28PgTI4KmpmZwc2bN81Zv7LHWdxNNdDm8dA0WQuMEjH88OHDaG9vR2dnJ5qbm41VSayALIAx71hZWcH8/DwuXLiAu3fvYnp6GjMzM4jFYsZaK+2Vvc4f+9jH0NHRgT179qCurs6Amu3tbczOzmJgYMDs45UtCQUFBThw4AC6u7vxsY99DOFwGEVFRVhdXcWLL76I9957D0NDQ9jevne0VGNjIw4ePIiioiL09/fj4sWLiMViSKfTCAaD+OQnPwmfz4exsTFcvnwZW1tbaGlpwcGDB5HJZDA5OYmJiQmk02mEQiH4/X4DLFjIFmu9CMiirDt06BBGR0cxOTmJkZERrK6uIhgMmrN9Y7EY5ubm8Morr+D06dOorq7G0aNHcfXqVYyPj2NxcRGzs7Po6+tDWVkZuru7EQgEcPjwYZSWluL73/8+FhcXsbq6imQyibNnz2Jqagrz8/N49NFHzZFHfr8f+/fvN0GjXnzxRUxNTRllndCepaUl9Pf3Y25uDqOjo3j66afR3NyMuro6oywG3l/rkrcoWQ4ePIjZ2Vn09/ebKNwbGxtZPM02J6UOfGZqMpnEyMgI7ty5YyJM19XV4cCBA/D7/VnHNGngo8tjviteUkwr5D0BAuLy7fP5sLGxYVzLe3p6sLKyYuh9LBZDJBLB2NgYEomEoetOygObjKLpmo2O5gMc+V1NG7X8p/mF7Xkbr9b3bR+mh4WFhSYie1lZGSoqKlBWVmboKp9pLzRYIop7vV6jrJH98bquup7M9zWd4jgmtsSympbJJE/beGm+I4nlI5Y7GNQ6gUZdT47zosEzy1a2cXSSJXMBVNt8zCU/aAzAv3X93MC8xj263jaMIXk59YVNGeBWtpaF5LfGRrn6R4NqJ6CuFe6Sv23ta8OV5C8GT07838kI6ZY+1AAauF8QBOxuxvIsf+vf/Hwu4dgpbxszlPs6Xychlxe1uPik02mz34qjFDsxFAZ7GkDbGIYkBrOa+OnJzozCrW/kNy9sGzjkb1tetr62gSMn1x6tqeV5wuCc+8FWDxvR4/botumyANyn+bJZ3bVbkZ5bej8Lv8tjxEog7e2gXe24zpw3g2xx2xMrsIT/FyGPg3DJmchLS0uIRCJIpVIGQPNRQAySGeRoQGwTMvX46N9OApaNeeaz3t2Y58MAzVxf/dv2bD7fzBzEolFSUmL2p8qePa/Xi1AohMbGRnR3d5s9qXKsDwcpsglNDDxF0Sf3mBbZ2qCTCD88zltbW+acWzmLeWFhAePj47hy5QoWFhYQj8exurpqwIZWtOi5rftJhNuKigpzRnMoFMKJEyewd+9edHZ2Glqs3cO4nhsbG5ifnzcuwm+//TZGRkZMoDIR9qS/qqqqEAgE0NLSgkcffRStra2oq6tDeXk5MpmMOXrp1q1buHnzJt59913E43FDO/x+P7q7u3Hs2DHs378fpaWlxhX48uXLGBkZQSwWg8fjQVtbGzo7OxEMBpFMJjExMYGbN29ic3PTnFfc1dVl9uNOTU0hk8mYPd4AEIlEEIlEAADBYBCVlZVm3PgjYKCwsNCMh8fjQVNTEyorK5FOp020e5/PB7/fj/b2dvT39yMej+P69evYv3+/CYjW3d2NjY0Ncw73yMgIKisr0dzcjIqKCmORvXnzJgYGBszZ2ZOTk1hdXUVhYSFCoRDq6upMxGsZ52AwiJGREXPkVCKRyKJLi4uLZstIdXW12TtfW1tr1gfP9aKiIlRXV6OqqgpNTU3mqCo51ky2nSwvL98XtE7mKK8HUSKmUiksLi5ifn7e5NfY2Ih0Om2Oe/P5fOboJi04an5qAzwid/B1kT2EhkjgvEAggJqamqz4FLFYDPPz8/D7/YjFYlheXjaBytbW1sx2GxvNt/F1XX8n2uFET/LJw4lP6Pz1NW05dKLD8luDIKEBTH+kf0tLS00sCTnzOxAIZO2zlvck5gK/z8alfPrAJkM48WAbP9TARstgDJI5H5tMrO+7JZ6vtvds46y/tQyu+ZutXrov3Oamrpc2yOn22Nptm4+6zm7zTsvstndsso1byjV2XId8k26/E14CsmV+N3zn1Ddu9XdLH2oAzQKhJDd3CXaH1e/xgtb3eJ+SXiA2rYbcEwZqi4rpBIC1m4kQRACoqKgwddWLRcAW768FcJ+7IrdX6sntlGtOrsOSbEBb32egrxUD3HZ+zmYNkm/NeGSMZRyciIYIuRokc597PJ773JF1Htw2jsyoowaKcMECjy5PW535fbHoSbu4HnrcpM/EtdUG3J20uVrQ1d4L8pxsJRC33NnZWUQiEeNivbS0ZIAxW4wFbHOQLg3suT6aaLsRcTdBxybguD2fL/HcCSB2etapHNuck+98hEQbEJT/LKCJlbm6uho1NTU4ePCgOWJJwJoEu+FAhSKQaS8fdu8Hsrdf8LrT8xV4f3uJTpyfPCNKluXlZQwPD2NgYACvvvqqcdOVI4RYENc01iZAaSYs9Lq8vBxdXV34yEc+gv3792PPnj2oqKi4z7queYLUf3V1FQsLC/jud7+LW7duYX5+3hzvxHWQfiovL8fx48dx6NAhPPPMMwgEAll0YHNzE9Fo1ESonp+fx+rqKjKZe1r/srIyHDx4EB/72MfQ09ODoqIibG9vY3BwEK+++iouX75sAlFWVlbil3/5l3Ho0CEUFBRgZGTEHBOVyWTQ1taGnp4eA64lUJ9Enj58+DA8Hg9mZ2cxOzuLgoIC1NfXmzOIeV2LC7cI8xIgbXt7GzU1NSao3NraGm7evInCwkIcPnwYzz33HFKpFGZmZtDX14cTJ07A5/OhtbUVv/ALv4DCwkLMzMwgEongxo0bWFpaQmNjI44cOWI8tb785S/jpz/9Kd58802Mjo5ibW0NMzMzxmPh5MmTeO6558wWBJn3X/ziFzEwMIA33ngDFy9exOrqapaFS5QjP/7xj+H3+1FbW4svfOELJjK6rBsZOwHVFRUVZn/xmTNnkEwmcfnyZdy5cwfXr183Hgk2SzHzN15jssc/EolgdHQUV65cMedK9/b24vTp09i7d29WID6PJzvSLM9llhXkv5TF8oHQBOGpsnbkGQH0+/fvx+nTpw39T6VSmJycxMzMDPr7+008AtlHzeW78QcbjXe7rte/LeXiBxog6TJt/MfpHV0nXZ42YExPT5vf4g4usgefbS10vLq6GqFQCNXV1eaeLoNlGF13HnOnMWGvBl1fG/2Vd0T+EZrO84zz4XgB4vZtM1RoGYnHg2U+yZ/b4QTMbWA0k8ncJ9O6gU09j5j3aVmX28TbAOWek7FA2sgxddzmuZaNefwksTcNt8kGTDXN4OdtuEi/y4oEvsZ5c7423KZlDGmD7l+e27a0GxD9oQbQTKSciB93LguA/L4GZ3zNqRx+Vk82HjgbgLS5SPFveTeTyWQFmZD8NCjjCanBmexHZALIhITf53Zubm5mTVaba4ZTnkw8ud5MzHgfDCebFon7VtdDExh5T/bcicAj4w/cv7BFQGE3TN57oceOLWnauquJNFt4GRRwW3Xio3p0srmmSB2diCzPNQ6YJPsoZR+buLyKC56AEo5oLW7WbN3jIF+acTJxta0jvs5tdCJkTvf0Nbf8nZ5zS075OdUzF7HeTdLCFs9/LXyIZaiyshKNjY3o6OhAQ0MDWltbjdtxSUmJsVDJf2bIJSUlWXOY9x8zM+NxZ5phswZIEpcsZvpMh8SzYWVlBVevXsXg4CDGx8cxPz+P5eVlJJNJE8SIAxfJ+24Ct+6rgoICY40/c+YMurq60NHRgVAohGAwaARUveZ02t6+dz7wu+++iytXruDGjRuYnJzMOtJIkvRTKBRCS0uLAWCBQMDsG5ckYO3ixYu4efMmlpaWjLKgpKQE7e3t6Orqwhe/+EXU1NQAuHeU1Ouvv47Lly/jnXfeMUEoa2pq8OUvfxn79u1DaWkplpeX8Rd/8RcYHh7G5uYmSkpK8Pjjj+Oxxx5DOp3G9evXMTAwgHQ6jbq6Ovj9fhQVFWF5edmcoezxeMy+aC1MpdNpM5e8Xq/xPFlZWUFZWRnC4TDC4TDGxsZw8eJFlJeXo7u7Gw0NDfD7/SgsLMTKygpefvllRCIR/Pqv/zr8fj9OnTqF6upq/PEf/zE2NjYwOTmJ733vewCAffv2GevyU089hba2NvzlX/4lxsfHDb0bGBjA0tISbt++jV/7tV9DTU2NORZSLPm1tbU4fvw4Ll26hKtXryKRSGTxL9lfHY/H8c1vfhO1tbVoaGjA888/j2AwmOWBwYCnsLDQeHs88cQTOHr0KJ5//nm8++676O/vx9jYGJLJZJbXD887LWOwgl+26xQWFiIWi6Gvrw9+vx/V1dXo6elBS0sL2tvbTVvloz2ibDSa14/wRwbe0lapj7RV6ApwD1iHQiH09PTg5MmTJjbB+vo6xsfHMTo6ahQzqVQq6+QFvbbdgKlbyucdDZzcnnOiM5LceJZ+lvm0TfCXMWZ6mUgkzDiOj49nHb2lI4PLdopgMIhgMGi8FGQ/v7zjxKu1fMof7U2nZSZpF88j2bPMbbb1kQZ4bCBz6lMN7myeiSL7aR6keay8w0pfHhs2KPH73I9aZtdK7oKCAiMXy/PMo/i/nNIgYyJ9zW3R9+W3lv/12LoljWWYhtjmhn43k8lYwb5Tf8s1vcVAMI3MIX5XsIt4PNnkfcZKPDZOcrRT+tADaK3RsVmE9WSV5zXh43u8OLi8XEKxDWA7PSfPijCpQTyQrYl0Egx1uTahVLeTCZOtrlrTqOvg1EY3QMH143I04XIDKLZFp687BXMT4sRESd6V95xcMqU8fsdGOFkry+/puaPnkWZYtnvcX1JfdpcW17j19XWsrq6a67Z9Z3KPLctLS0vG4iSudhogsyVZf3Q7pL7cB7Y26X5xW2e5hBnb73zyccqX33UT2HKthVyA2rZWOQ8NkgX0yd7k2tpaA27E2if76sRdVaJls/As+3f1vOc1r4Ot2NpmY3zA/UzZplxJp+8F/4rH44jH48bVVgC0uOGKS60ob/T+Ubex4X4Ua3p5eTkaGxvR2NhoouYeOnQILS0tqK2tzXLT1h45rFRIJBIYHh42ge/6+vowNDSEsbExExWbhTgRUnt7e9Hc3IzW1lZ0dXXB7/eb8jKZDFZXV40L87vvvou7d+9icXHRCHHl5eV49NFH0dnZic7OTjQ2NgIAotEobt++jXfffRcjIyNIJBLweDzo6OhAd3c3ent74fV6sbS0ZPYTLy8vo7i4GEePHkVbWxsCgQDW19dx+/ZtjI2NoaCgAL29vaipqUE6nTZnqYtwLGdds7VW+ge4F2DL5/MZF/u5uTl0dnaipaXF7JMVd3w5uqq5uRltbW0YGBjA/Pw8BgcHcfnyZRw4cADBYBCdnZ04ffo0+vr6sLi4iOnpaVy6dAkrKyumrsFgEAUFBThz5gyKi4sxMTGBaDSK1dVVzM/PY21tDW+99RaamppQV1eHffv2oaCgwJxVLlagqqoqzM3NYWxszByTxYqb6elpJBIJRKNRs+YCgQDq6urQ1NRkZBINBGT9VldXY2trC+FwGB0dHSZmRDweNy7o7F3BtIjnPgvIYvGNRCKorKxEKpXCxMQERkZGsqzuNTU1qK2tNZG9Nd3hdaRpvRtNExrD77BiTtotPEYCaUWjURM8UvhbPB43irN4PG4i1vNc032h+QonNx7rdM0pL7d3nMrLNx8nPmaT6wCYWAhMu2UcdJA7v9+PiooK8+EAZ0B2kF720BBlq3hE2upkkwtstJqBjFvbeD5K+5iHOMlVuk9tc0MnXltsnXdLArxsc872vtP46fra6uT0rBMuyIUZbHXIJT85tSEfucomp+Uqw9avrKjhxADdVgfbPOXn8hlvSR96AK0FdT3hnQAiv8OLUudr+84FjiVPt8G3CXzaFYNBvw0YS56sSWGQ51Qnzs+tLWzttIHVfAR+bptNCaDroAkF56OJLI+ZdvWwWeiF4Ep9OII68L511gkoMbHncnlcuFyOxM1jxCBc94kInSx8iODEWlePx2NAxNraGmKxmHGnjkajiEaj5szj5eVlY0GW/EXws7kL5pr/OmmC6NR3Tnk4zUM3YUTytJXplv9OiKNTynf9267x2uPnbN8y3+QjwqcAQL/fjz179qC1tRVHjx41RyiJ+zV7oci8EyFJ5hWDZxbyRSDQ69hJCOQ5LdpxWYecj4wVR1Hf2toyxzENDg7izTffzDrjm12zbS5wTv3P9FH6kq1/NTU1ePzxx3HmzBmz11uOJ5IyeBy4PPHgWFlZwdDQEH70ox9lRcPm6MNSB1FYVFRUIBgM4oUXXsDevXtRU1OT5Z6YTt/b+jA3N4fBwUF84xvfMKAtk8mYNoTDYWO5loBh8Xgc4+Pj+MEPfoC7d+8aN2+v14tHH30UTz/9NDo6OozV9gc/+AEWFhYA3LMOPv/889izZw+KioqwuLiIK1euYGxsDMXFxThz5gyam5uxsbGBoaEhLC8vI51Om8BnxcXFWFlZyVrnElVXjuMaHh5GJBLByMgIDhw4gH379mF1dRXnz5/H6uoq5ubmMDQ0hIaGBnR1dWFtbc2UNTQ0hH/4h39AW1sbqqqqUFZWhhdeeAHJZBKRSATJZBKvvfYaJicnsb29jaeeegolJSWoqanBJz/5SeMWKfuNU6kUUqkU/vZv/xaNjY3Yt2+fsaTL3tOKigo0NDTg5MmTGB4exiuvvILbt29jcXHxvtgPcrTe2NiYOb7o0UcfNcoZWbtsJSopKTHKkGPHjqG3txcbGxsmsvXw8DAuXLhgjjljOq4BLa9Hoe+iHE0kEpibm0NBQYE5Gsvr9aKqqgqHDh3CiRMn0NDQgMrKSkNf9IkMAsrdrJC2NcjBNZkWSTnyXF1dHXp6egxt4Kj54+PjJvDawMAAEonEfZ5Q7C0jfaDrw/3G/cXP6L50+u+WbDwtn/fd+BjzBifrq3azdwOjLD9poM3jIxbqQCCA+vp6c/JCOBw2HpIAzG/tqcMeDtz/wn+0XOUmfzE9trkZu/WnU5/Z+oP5s61eWoZmAO00hk6KAr3ObGtJe/LZ5pbmxbZ+4D608Xfmz7Y667rra5ovuwFZp2saNzjJe7b+ENqitx4A9287lTzk+k4sz5I+1ACak54IulOEIPAkZ+0odypw/7m3XI4eUKd6MJi1lSvPbG5uIpPJZDETJiq2CaTBoyyIra0tFBcXm0nF+06ZuHK9uDxJPDk3NzezglHotmgwKf0t7/M1J2FUnuW62DwJbGOs74mQKXlzvvKe1uRzHeRIB26Hdg/lfpJnpa+ln0R45DpKWTbCIZY4cZ9OJpNYWFhAIpEw1o1EIoH19XUDLtgKrc895na6gWI95k7POM37XIKGTdDLlbebYONWllPaLXDeDfh2ogvyzR9JrKQSIaSoqMhYlxsaGtDR0YH9+/ebIEFytq0I+nr98kfWlN6bL8odEb5464L2pmCaIeuBo+/zt7gzc/uFRsne1gsXLmBkZATj4+PGKijeD3pLALfLNhYa5Gs6UlxcbKyaL7zwAlpbW++Los0KNc14WVjb2trC7du38dZbb+HGjRsmyjAHBpOPCKbiQnn69GkcOXIEp06dQjgcNuMsdEHW8w9/+EPcvHkTd+7cQTQaNX0hAbBOnDiBX/mVX0FLS4t5f21tDT/60Y9w8eJF3L592/R/WVkZPvOZz+Dxxx/H3r17sbm5iYWFBUxNTWFiYgJbW1tmz+ojjzyCkpISLC0t4c0338Ti4iK2t7dRUVGB/fv3w+fzIZFI4MqVK8ayLcGMAGSNXTqdNoBPALTHc++4rKGhIWQyGXPuc2lpKVZXVzEyMoLXXnsNp0+fRmtrKzKZDF5++WVj3Ze92nv37kVDQwMaGxvR1tZmImOnUincvn0bs7Oz8Pl82Lt3r/EmePbZZ7Fv3z4Eg0G8/fbbSCaTSKfTSCaTxnV4eHgYX/3qV9HR0WHOLRfLXU9PD+rr6zE9PY2f/exnuHDhAuLxuKHnTHslkJbsSz569CgeffRRtLS0ZM1Tnmsej8fw2bKyMlRWVqK7uxvPPPMM5ubmMDAwgKtXr+Lu3btmSwArlDjxupG1LWtClK7xeByzs7MYGRnB66+/bizCx48fR3t7O9rb21FVVWXWFrtmcxlauBdFhRaEmT7wNa4zK/3E9TudTqOqqgo9PT3Y3Nw0c2x9fR2xWAwDAwMmIrzMZw2onfiHHgtbX+o6yvO5klO5Trwu17NOwMx2n8ee72vgJ/fELRzIdkOW9SpjIh8OUCYeNRJs0u/3o6mpyUQN10cZ8rhrb0Fub0lJSZZRgxPHCmCFggZZvPefj+ri5OadqkEaG7i0QUP4JV/PJ/FxaNp1X5L2PNQyrbzP9dW8X8syfF/olyg13BK/q704bVjJtp60Z4rtGS232oyj0h/8X8sLNi84oVGaHskY5Jv+UQFo7Z6rNQ7MbKRjeUJpIKkHUBMeN6GfLQp6Utvy5slsI36S+D0OTqY1vJJE4y35cD/lAgR6ATODcwNTcl8vLs5XKxH0wssFQjhf/d+2aLheTIik7+RjK0MLDLY6SdlMPIWgilCcTCaxurqKVCqFWCxmXK7F3ZotBhsbG8bCJXvEZP+gbd8xu7JxPW1zzwkQujFoTtxPOjkRQn1vp4DYLd8PIum5YrvvdF3f42t6DYoAIoKHuDHq/WlyLxAIGBc62eumXbD1XNTrSzS0MifE40EfYWOjUZKvJKd70ncbGxvGFbmvrw+RSMQogyYmJoybqgjFMredhBinceBvtp4EAgHs27cPvb29CIVCZv+l7P3W+6d04vW1traG4eFhXL9+HXfv3jWgK5FIZAVA4jEuKipCMBhEQ0MDTp06ha6uLjQ0NCAcDpu9hjJOyWQSMzMzeO+99/Dee+9hdnbWADSPx4PS0lKEQiF84hOfwIEDB7KOt9rY2MDw8DDu3r2LsbExrK+vAwB8Ph8aGhpw+vRpNDU1obi4GBsbG3j33Xdx6dIlEzixo6MDjz32mKlTIpHA5cuXkUwmUV5ejoaGBpSWlpoxnZ6extramgliJHxLzh5mhYqA7FAohIKCAqyuriIajQKAOSKsoaHBuLwvLCwglUqZdx555BG8++67iMViWF1dxblz55DJZFBbW4uSkhIcPXoUBQUFmJubM0HKYrEYXnvtNaRSKRw5cgShUAhlZWWoq6vDo48+irW1NYyOjppzrMWaPDU1hZ/+9KeYnZ01gcuE/peUlBgwcObMGRQUFGB4eBjDw8NYX1/Por28d3d0dBTr6+uYnZ01Udzr6+vh9XqtSmuZO7KFgCPk19fXY//+/RgdHcXMzAzm5+ezgjbqfDjZZA1WviaTScOX+vv7EQwGEQqFzHxtbGw0c4C95aRstiJqWYzr5AYUdR8wDRagJsqa7e1tA9o6OzuNF9b6+jpSqRTm5uYwPT2NZDKJlZWVrKPsbLTNxhedeIyTLKifsY2Hlud0nrtJ+Yy5punaE06vWflo+VE+Omp4LBYzW4fGx8fNkVxlZWVZW4sqKyuN27jf7zdK4NLS0qxtdtrzkfvTyQiRj3xt63MN9mxg2pYvX+c5L8nJguuUbIBYl6X5tzzrJAfb5H7dJg1C3Tx3dX1ta1eX4TQvuX94TurnNOZgxQiALGOAxn7as4DxlT5nOp82c/pQA2g92WwEiu/picWThYmh0yDKb3nOBrj4t61czstNe+w2mfi3rQ9si06nnU4UDvqj66WJEguRuk02AuFWH9s7fM/pHSfiqpkeB2pxc9Xh57mPxcIiC1iCbmUyGRPEYGtrC+vr61hcXDR7uGQP4crKCuLxeNZeZq1BZ4bv5h7jxPhtBE73i1M/csq3753eyafMfFKuOaNTvoKJjW7Y/jsJgcD9wfb4I+6TRUVF5sxPcRWVs1Tr6+uNgC1nf4oFVQLjcVk2RmerJ88B3t8MvK/RlvXNSjjbvONkU1TxMTWyl3N+fh5vvvkmJiYmkEgksvbY66CI+bjmseDDdFv6qqqqCn6/H42NjThx4gQef/xxVFdXo7Ky0gA++WiFEAtJsnaTySTm5+dx+fJlvPbaa5iYmDBgzekM6+LiYoTDYezZswddXV147rnnDOhj7fn29r1jiaanp3Hnzh28/vrrZt+r0JKysjIT3Orxxx9HS0uLCWwmLr99fX0YGxtDNBrF9va2sfp2d3dj//79qKioQCaTQTwex82bN3H37l2k02mUlZWhpaUFR48eRWFhIVKpFOLxOIaGhrCxsWGO1hJhY2NjA4uLiybomM/nM4I2B7fhsZT9+gUFBSZytPDg8vJyNDc3m3ORl5eXsbi4iLq6Ovh8Phw6dAi3b99GPB7H5uYm+vr60NDQYPZCy7Fa77zzDqampozC8fr16+b4H1lHfr8fXV1d5jgv2XcvtDudTuPy5ctYXV1FTU0N9u7dawCAuOAXFhbiwIED2NjYQFlZGdbW1jA3N5dF+1nxEo1GsbKygpmZGczNzZmgjPX19fD7/caSp+e3lCnAUSx7TU1Nxo22qKjIxK1IpVJW7yq9PpkHyvwX5YcElBR6Ew6H0dnZidbWVuOpUFpaivLycrMHVnufaLrHNMhJdmAAZ5Op2ErI1m05wkvmXiqVwtramjknOxAIYHFx0ShfNjY2TGwFVjzYQJItcVuc5JLdJG6zTaDPBdbzTU4ygvxnYOMEOOVbYjHItWQyaf6zx6IoeOU4O1mPVVVVxgtIADWD8tLS0qz5Ispilofc2sZ8S8tA0gbN5/S4uoFnpzyZHwnfZ08vN36q55T27uA1xfW18S89Xrp8jUW4r23GL6c5b5uXbmvDTX5zk9VsygC57pa4z7R12SYj7ST9owHQnHgCsbDo8bwfvY41FGylsQnHmuHw+3JPu4HIb86PI8kJkRAhTfLkhaGtR5q4SdJaLtuE4TpKYvfL9fX1+85tlcTaZbkn5bPwadO2sZAqbXKzinPEcJtVTS8+XQ8uj/uH6yNJR1RktxKb+7xYx8RVUwIfzczMIBaLIRqNYn5+3kR65ei74s6oXcv0R9rE5WpCJ9dzEY5cTMP2rO4j2zP55MHXnAioJD2fnZIu15b3TpIT8Mz3PV7beo0D9++9leBCYhHcu3cvqqurzVnMIjxI8CK9N9kt6fmjhVFNB2U/Ju9XloiVmg460TpJsvbS6Xvu2YODgxgcHMTVq1dx69YtI+Dz3mC9R0mPv43W6P7W9LS4uNgcK/SJT3wCx48fN8HV2O2Q+4z7jtd/JnNPOSZ7il999VW88847Rgmm9zhzHcUFNxgM4rd+67dw9OhRNDQ0mPNaxTIpirJUKoVr167hhz/8IQYHB5FIJLK23hQWFqKxsRGHDh3C1772NWM5F0vE/Pw8+vv78e1vf9tYwwsKChAMBnH69Gn82q/9mjlvOR6P44033kB/fz8WFxdRUFCA5uZmdHR0oKOjA+l0GjMzMxgdHTUgt6GhAU8++aQB66urq0gmk9ja2kJlZSXq6+tRVFSUdSa8zEGh53LWMgADYOLxuAFAp0+fxs2bN808+clPfoKnn34aXV1dOHLkCM6dO4dYLGY+165dQ2FhIb70pS/B6/Wio6MDv/mbv4lvfOMbmJycNMHdfvazn2F4eBj/+l//a3PEVCAQwJkzZ9DY2IiGhgb86Ec/MsHetra2MDs7i6WlJdy6dQu//uu/js7OTjQ0NJixEKXXo48+iu7ubjz11FP48z//cxNgjIPbATB0f21tDYlEAnfv3oXf78fBgwfxqU99Ck1NTfB6vVnzWxTWsm5la5ZEUW5ubjYuzBcvXsTdu3dx/fr1LE8OXkc2GsE8hGkpu7rK/JeyW1pasGfPHhw+fBgHDhwwShytlOO1qS2+NoCiwYGus3xkm4lNtpIAWVJud3e3AcqZTMbw5+npabz99tsmUJnwc11PN4DmBLL0fRvo0IoGnZ9Otnrk4tH55qPrJMnmuaTf0bSZ77MiTcuUU1NT94FrURSVlJSYEyTC4TBCoRCqqqpQXV2NYDBogLaTrGfjJ3pMpR7sOq09B536RvMMG15g3qTBsv7PsrC8y/I/97W42ev72sIq99LpdFYEfC238KkaMuYyLpyX7k9uM8vJ+QBRxgA6T+2NI3KCJOF3AIwy11YWKys4er9WLor3FdchV/11+tADaB5A24CwawJPdJkoNrcGvThY42kjGk5E0DYpbPVkhsD3NSi0EWK+bquXjkjHQjETNgbPtn7mZGMkPEG5DG6XdqXXefK7IsDqetgIlh5/ET40kXdi4MKYRXu9urqKpaUlLCwsmMif7FYtwq8oHlZXV43w6ORibfvovtTX3IiSnkf5gsmdMNh8n+O5ZctDX5Pndgt+HwQ07+R927rWzEPWuHyXl5ebo4hkf6Zo3MX6KceIVFZWGksPr0Vhakw/hJkwANR11YyVr0ti2pLJvH9Mnu1ZnQfPRRHSV1dXcePGDQwODmJubg7z8/NYWlrC8vIyYrGYAXS859ptDdj6n/tGPiJ8lZSUoLq6Gg0NDXjmmWdMtPGGhgYEg0FjxWBloRbohCbxmo7H43jrrbdw69YtTE9PY3p62hybpc86lvrIR4KTyZ7j6upq4x4vH/E2uXHjBm7cuIHz589jcnISyWQyC8AUFNw76uq5557DY489ZsCzCAcTExN44403cO7cOQN4Zb/1r/zKr+DgwYMoKyszUfpnZmbw0ksvYWFhwVipP/7xj6Onp8eMydWrV/H2229je/veqQTBYBD79u1DUVERIpEI5ubmTPvLyspQX1+PwsJCsz1FxlQANPC+BbqoqMhYiBcXF1FfX4+Kigrs2bPHKBg2Nzdx+/Ztc051WVkZHnnkERQUFODs2bPY3NzE1NQUAODpp59GKBRCZWUl2tvbcerUKXi9Xty6dQvp9L3zuKenp/Fnf/ZneOGFF9De3g6P555LeXNzM8rLy7GxsYGrV69ibGzMzNX19XUsLS3h7/7u77B//350dXXh9OnTRvEkPFMsyL/0S7+E8fFxjI2N4Y033sDa2lrWVgS9p39zcxNXrlzBwsICGhsb0dnZiSeeeMLkz+sMQJYMwntPS0pKcOrUKfT09OCJJ57AyMiIiQDP50pr3qrXup7PvC5ka5F4loinhNC5UCiEI0eOmKPH9Pm1TnKNtng50QN+l48i9Xg8Jt6L9CsL1h6PxyiOBHhXV1ebY9/4SLXJyUksLCwYt3jN53U9uM9sdJNppo3+6mR7Vueln+exckr5POfEs3WdtNzE12yAVdddzz/90aB6fn4epaWlxnItW5bktxzLxcBarNnFxcX3KY21gtQGCmXN8ZxlQKm9lTjZ5FpuF4N0SdrbSurEdZV8dLAxLQ8z4GRsJPd5L7msFfktQJ5BOcsSudrM4yyyC+/nlrxssi33vzZcybM68fFUWt6XPKQv5D6nTCZznxs4eyTnmz7UAJqTk5Do9AyQLZDpQeOktSU8qfUC5Qkoz7oBUBvjcAIkvGjkvly3vcvtdOojNwJr6w83kK0JgFs+uhwn0Kj7SpJmzJpB83iKUCRCgAjBsidKAC8D6Gg0ikgkYgC0uFOKy6bkL8BAg5d8QEKua7mIiBNTdUo7Zc78TK562kCWW7Ix41xJM7x86mm7Z3vOds0G3OS6MPKysjKzn5bBcyAQQFNTkznbV6LwigCoXdx4nmgN+E4SM1db2/g+A0tJWhnFDFfA5fLyMubn54275/Xr1zE0NIS5uTlEo1EDHuTDa4HXh1uyCVjykX23DQ0NqK2tRW1tLZqbm3HixAmEQiH4fD4jeElZTOO10CE0YH19HTMzM4hEIpidncV7772HgYEBE+BM3HP1PJR+lMjePT09eOSRR3Do0CFzPAwLEeJuOjo6ips3b+LatWsYHh42Lu0itMl+wePHj+PgwYMmOjYAYwm+du0abt26hdHRUWN59nq9aG9vx4EDB9DY2Gj40vT0NPr7+zE5OYm1tTVjjZUzrwGYPpienjYWDHbTTiQSmJ+fN/S3tLQUwWDQbFeRPpK+FQsAR5DPZO55OywsLCAcDqOiosIExZM92tLnmcw9JU9LSwsWFxdRWlpqrNRzc3O4c+cODh8+bDwNurq6kEqlMD4+biz5Kysr5nxlCcpXWFhoIk739vYilUphe3sb4+PjZozW1tYwOTmJTOae23ooFDLu0xyl2uPxoK2tzbRD9vfHYjETqEzmDQcck4BYi4uLWF5eNsdeSZBA4P49iSzQy1qoqakx73q9Xvh8PgQCAczPz2NmZsYEntRr0EY7bP9lrGV8JYaHzIvq6mqk0/eONgsEAubsednDrfk252+Tj3T5UmcnTxzmBQIEJE8+rxqA2T9dVVVlePna2hrC4TAWFhZQX19v9tLL6RbC/wVUaxqwU163U5qu83AC2pzyub+bejiVw3Vyklnd+owVKja5Wua68EwG0aFQyAqgBUTzsY5yjb07GJw61Y/rmU9/6Gf5Oitx+b6bHGaTsbivmMcyf7Plyc9p+Vr44U5ApNTDTR7L5S3Jz/O3VrrotvC3W5I22cbHhj3yTR9qAM1Ek/9rtySbpsIpPz148j5bD5wS560BJecpddGTX4Q8fp8tJ+xiwa4W4oqsAZsIKrbFyt/6N/chEzYW9kUIkP7XSghNNPVk1SDZjWBJvrz/RS9yLaTwGcixWAzLy8uIx+OYnp5GJBJBPB5HMpk0e6L4aCe2IOs+ddJGOxG/fMGh7V23fN1A7U7A5W7q55QPE/h8gfRu0oOAZ31Nf/NvZugCfOU3H+sh5/k2NDSgrq7OMO3y8nLznsxdyY+FA74n5YqgJuuN17st6fxZgcdtkjkudWRwJy5iMv+1ACBn5966dQtvvPEG5ufnsbi4eF8Eal4jGjDbaKLTWLGHkNDhwsJ7Rzg1Njbi+eefx5kzZ4wFQqzNNhrPLtFiDZa6MJ146aWXcPPmTQwODhr6wHES9JyR8SsvL8eePXvwkY98BM8++6wJ9qaZtijhVldX8eMf/xjXrl3DyMiIOaJK2l1YWIiqqiq0tLTgd37nd4w1XYCXBBz7y7/8S6PMELBZV1eHz33uc2htbTX7nre2tnDp0iW89dZb5kzhyspK7N27F/X19aisrEQmk0EsFsP8/DwikYjpK1H8pNNpzM/PY2hoyMwhCcwl9zVQEy8iUQgIP5OgZ21tbaZtwWDQHEcle+Q3NzdRWlqK1tZWxGIxAwzFRfvFF19EKBRCfX09ysrKcPToUWQyGYyMjODOnTuGD8RiMVy+fBlbW1t49tln4fF4TH16e3tRUVGBuro6/NVf/VXWGc8rKysYHR3F3NwcFhcX8ZnPfAY9PT1ZZ+WKy2lzczPq6uqwd+9evPzyy7h9+7bZR675k+QvAH92dhaTk5N45JFHcOzYMRw4cCALMPDaFxokc5fdXr1eL/bv34/19XVMTEzg1VdfNcduaWtqLtAj9ELKFF4syujV1VUsLy+b6OUVFRWorKxEXV0dPvWpT6GlpQU1NTVZ1nMOEqV5uE3RZ5MNWBlloycs7/F1XrcCpgAgEAigtrbWKPwELCeTSdy+fRsDAwOYm5vD3NycUbTI2DnV0+YdaAMtut065QOW80lucoPbMzsFFE51dZID9X39nG6/BtoFBQWYmJjIWie857q0tBSVlZUmAF8oFDJKJlHY8d5qUdQ4yTEsg9ra4wTQZC7Kb15Pcp3XnZbldH9p7w3mb1x3m9KYy+MyeO3w/1xRqXVeco2957h9bqBY56f7RUA+GyulDCB7W6p+l/PX5dsiveeTPtQAWhNF+S2DbiNY3FHafZHz1e9I0mCXhTVbMBlJLOCK25Hkx5OWXRNE+BJCwYxDJ9uCEAuCuNFpIMzvAvefpc1MlLVT8q5tL7Pkp5kXu5Pwc6yUsBFKrtvKyorRDC8vL2NpackE5RKQLFGrxerMljB93JO2VPOicxL4bf2+k//cvnyecypvJ3XiMjWRdlL07DTffJ57GMm2XvU9G9HU69tGO7QbkATL8fv9OHbsGJqbmxEKhRAMBlFeXm4iwoqlRTTdUr6AZ8mXz2bWyjwnK7R2J3OywshzzLT0GuJv2XKgQaoI9+vr64hGoxgeHsbo6CiuXbuGSCRijleTs3TZzdE297Vgnmsspc6633w+H8LhMH7hF34BnZ2dqKurM5GMtVun9Bv3LwMBBsQbGxu4fv06rl+/jjfffBOzs7PGE0W7nOu5I/vaOzs78Yu/+IvmyKSqqqr7xkHqFI1GceXKFbz88svo7+831i2m80VFRejp6cGZM2fwzDPPoLa2Nkuxsbi4iMuXL+MHP/gBZmZmzJ7bwsJCHD16FMePH8eZM2dQXl5uxvLy5cu4ceMGhoeHzX7atrY2/Pqv/zqCwSAKCgqwsrKCF198EWNjY2Y+NTY2oqamxvAvAdBSXwHQxcXFZhsMR8hdX183YyiBp0Th0t/fj5MnT6KgoAAVFRU4cuQINjc3jQvt4OAgamtr8fjjjxsX7RdeeAHf+c53EI/Hsb6+jsnJSczMzGBxcdGsy97eXlRVVeG//tf/aqIyr6+v49q1a4jFYigsLMTjjz9u9lJWVFSgo6MDwWAQVVVV+MEPfoCpqSnDj0URcOvWLUSjUezbtw+//Mu/jMbGRhNHgBUERUVF+MxnPoMzZ85gYGAAf/VXf2Ws4dw3HA9AzjqORCK4cOEC9uzZgyeffNIoOHguFxS8f86p/JckdEM8Ympra02cjrfeeguTk5OIRCJZZ1jzurEBaZsgKvNR5qycgy0BAycmJgxwkeP3mpub0dTUdN8RV5KfeFew/MBKKu432zpn5b60i+OWlJeXm3scX0WS7KEuKSlBOp1GdXU16urq8NhjjxnvNQmMGIlEcOfOHUxPTxs5hGUK7S5sAxb5yAq5eGkuXu92zQmkOQEtWz5OgNiWv1xzmlNaZnRqk82t2MbPNS+5e/eu4cF637XX6zXRwYPBIMLhsJm/fMyhKJmZX0pi+Z/do23xblh5pF2buU3CP3j+S55ajuFk8751kvFkHcma0OvKyYPElrdNFsw1/6WNQLbnrqZNzHfZLdsWgJT7ln9Lfra+sxkbc6UPNYDmTtZClxY0bcIaTyg3y7Q8a1v0bpOHEw+yBmr8niw8XV9bGTIBdD6aYMkCFiKg2y7/ZSJr7Y2eVLY9BZIHC6z8m4XWdDptImKKpldcq8XqwEFQ2H1UIp0KM5M9yCL0yn1dnvy2AWQeF26LrX250k6BMPDBW4f1HMoH1Pw8k43Z2+7pua+f4996/fA1oRNyzJEcIcXAWDTTch7rnj17jHui1+s1wrIIzNqSooPqANnMxIn52Sw+tvflP1+3CWbyvPamkHssGM7NzWFmZgbJZNIopsQaOTExkRVwh4OPOQkA/F+31TYuQmsk+m84HEZLSwtCoZCJ2trb24va2lp4vV7jHi1jqvuOy5f729vbiMfjGBkZwezsLCKRCEZGRjAxMWGOUbJ5nzDzLioqQnNzM9rb29Hc3IyWlhYcOHAAoVDI7ONlerq9vY1EIoEbN25gZGQEAwMDJliYuDzLfAyFQjh06BAOHz6Mrq4us79Y6N/U1BTeeecd3Lp1y0StFtoeDAZx/PhxHD9+3FieV1dXMTc3h/Pnz2N8fNwcM+X1es1e8YKCAnNu8a1btxCLxZDJ3Nsj1tvbiz179mQFwUokEgDed8sWhYG49/JcFqAmYyBeGevr64hEIuas6sLCQrS3t2NqagpFRUVmf/etW7dw6tQpFBQUoKqqCvv27UNDQwPS6TQSiQTW1tZw48YNFBcX4yMf+QgKCgrMsVjPPPMMrl27hqGhIROlWo4JKy0tRVtbG5qbm40HQWFhIfbv348zZ86gv78fd+7cMcoNUQ7Mzc1he3sbL7/8Mk6cOIG6ujqEQqEsgV2AmHhFxONxTE1NYWZmBiMjI2brEK/dTCZj4meIBdTj8WBwcBA1NTXYs2cPampqjPs50xlOMs9l3UuUYxmjaDRqjo6TmAVsnbYBJtt65v881wEYpZq4ea+srGB+ft4AEzmyyOfzYf/+/eY8ey0jOYEzm4spy0IyDkwPdMBBTtyHDHyBe6C6oqLCKFHW19extrZmYi3E43GsrKwYhaLcX1hYQCKRMEdo2TwYnWhmPn1vAyr6nhPv3Ek5O5WDbGPmNqfcgJcbOOdntAztJAvIsXt8X3i4zMni4mJ4vV4DnMVTQZQ+DL55b7YcNcdbh3T8IakP84dcbeb//LxWemi51tZXGiPw/NDz3iZL2Oaubdxsa5MNaPy+bZ6wjGRLvIZ1HzKOk7qwEcEJ4Mu7/9cBaD059Ue7Iur39Xt8XU9oYTA2jYyTZcipXB1dTspxigpnm/w2q7SeeEy4pe62djAT5MUkzEdPQJ642sWDXUBFaOXo56urq2ZvUTKZxMLCgnGplnMotbWYPzZiYVvotvu5GEK+INlG3HMxNadnnerEDMKWf74pnzbZGJBtHeSbhxsgtj3jRiwluRFCG9Nk0MNgV/ZHiWtoc3Mz6uvr0d7enuUOLG5gvN8RuH+Nai8UfSyNpi1ODIKtF5x4HNjrhdeAZk5asJB35cMRoBcXFzE3N4erV6/ixo0bWFxcRDwez7LC2rToXL/dzDH+sEDi9/uxb98+dHZ24vTp02hvb4fX60VZWdl9Ltrak4ZppGb4EjBoYmICb775Jvr6+jA0NGT2N2sXdD3GAgCrqqpw9OhRPPXUU+jp6TFRvrmvhVYBQCKRwNjYGH784x/j1q1bpm95LovL9t69e/HJT34SBw8ezNo/LQD39u3b+N//+3+bc5gFPJeUlKC1tRXHjx/HoUOHAMC4pY+OjuLcuXMmcnZhYSFqa2tRX18Pn8+HdPpe9PT5+XkMDg6avcdFRUU4fPiwic4t9HplZcXUWYBQQUGBia7N842VmQDg9XpRUlJijjeTOSb1r6+vR2lpKTY3NzE5OYmioiKsrq6ivLzcKLI6OjoMmN/Y2MCVK1ewurqKEydOmFgDVVVVeO6555BOpxGNRjE7O4vNzU2z31gUErW1tWYvdHFxMZqamvDUU0+huroa8/PzWFhYyDo/eHl52fTV1tYWDh48mHWkk/RJJpMxyrfq6moMDQ3hxo0biMfjWF5eNvtpNZDmWB2Li4tmn/Hp06fR09ODwsJCcxa1jYaIcC9Kbqmb3+9HQ0ODUXIsLCygr68Pd+7cMZ4QUie24tgsTlJf229Zd3zEkRyJVlBQYDx2/H6/OcdcvDaENmsPPFbA8LpmQVp+s+Wa5Rd+jvPQ1m2mR9y+TCZjeIbP50NNTQ3a2toAwNBR2ZoRi8Vw+/ZtTE1NGdd/oS/iHceKBy3f6T6V//nwYP1evjKDLjvfsjTPsdUhn7bY6p2PXKb7juVaGxhkV2opB7h3BJf8Zx7ChjmWIeRoOTlOzu/3m4jhEixUlLts3bUBV90vtrbaPLzkOvN+W9s0z5brWtnGcjwH43OjAbZ5IjyJ6b4eB10fmxxjk2c4L46iLtd4O6ncYzzjZiRzoqluaUcA+g//8A/xh3/4hxgdHQUA9Pb24t//+3+PT3ziE6ZCv//7v48//uM/xtLSEk6dOoX/8T/+B3p7e00e6+vr+Df/5t/ge9/7HlZXV/Gxj30M//N//k80NzfvpCoAkEUYhWgLoWPhmX/bLDpMaGUisUCsXYNsArEWIrUbNE8W7ept06Kwe4KTQCzJCfBIW7ifpI88Hk/WInESbnVZ0u+ycGVPnzDm2dlZxGIxLC4uIhKJYGVlJcs6rMFwrmjVDBTcCGq+Qjz30W5Svu/nc98NVOvndpKciPCDpFz5OQFaJ8Cb7zVN0LSnCDMgFpLYRUsiYtfX12Pfvn1obW2Fz+czQX+0FVnTDS1QMcEWoi2ptLT0Ptqgn5Mx1bSEtaXcbyzQ2kAzC9+6z3meiZul7A/t7+/HrVu3zH5TiTSvQTPnySnftaD7kP/Ld2VlJfbv34/u7m688MIL8Pl8xi1ezuFlQRewKy2FjvDxFVtbW5iamsKlS5dw4cIFc7SWCLNOljeup9TjySefxC/90i+hvb3dRMTmOSH0Xf5PTEzg+9//Pq5cuWKCEzG9l7x9Ph++8pWv4MiRI9izZ4+ZR5nMPXf7iYkJ9PX14Y/+6I+yjrkSUFJfX4/f+73fQ01NjaHNa2truHr1Kr773e8ikUiY+VJSUoLPfvazOHbsGIqLi7G2toY7d+7gzTffNHuYpU6NjY0IBoNIp9OYnJw0ZyYDMIBCBMXNzU1TjoyFgFXpx3A4jJmZGTMuy8vLSCQSCIVCBvjW19djaGjIRMK+du0aDh48CL/fj9LSUnz6059GUVERJicnTVC74eFh/M3f/A0+85nPIBQKmXX/xBNPoK6uDn/8x39swPr6+jpu3Lhhzrv+3Oc+lwXampqaUFVVhc7OTvw//8//g4WFBayurpo2yefVV1/FjRs3sG/fPnz5y1+Gz+dDUVFR1rqRQG2HDh3C3r17cfLkSbz22mu4efMmpqenrccnybyVuqZSKfzkJz/B2bNnzdFoEsxMrwNZY2wpE3omAFVcVpuamvDMM88gFovhzTffxJ07dzA4OGgs4U77At3WO/NteZfdTTc2NpBMJrG4uIiJiQncvn0bZWVl8Hq96OnpwcGDB40iRUfJZWGfFYnME7Sij9clt4U9/eS6zTWY/2ugIv0ubsCbm5sIBAJoaGhAe3u76UPZKx6JRNDX14eBgQFjQNDHvnEfOvW3rf+Z5+9GZtB58xi6jbdNceskN0o98y1fP+8GvLksPY7aG1Lz51xttMnG8ntmZiYLXzDIltgEpaWlCIfD8Pl8ZiuSKITLy8uz6pIvvmCQ6FZfDZJtANHWdo5VYNsHbRtzPQZyTbti2/ZUa6OAk2wocolO7H6u62jz/gCQhY1s20rySTsC0M3NzfiDP/gDdHZ2AgD+9E//FJ/73Odw5coV9Pb24r/8l/+C//bf/hv+1//6X9i/fz/+w3/4D3juuefQ399vokr+q3/1r/D3f//3+Iu/+AuEQiH87u/+Lj796U/j0qVLO7LiAu8PPBNo4P4jGeQ/B8wB7hdInYQo/q21FJr48XWbKwPX3TZg0haegNxWnrAsqDm5d2iXBi5f7+2WcmXPkHwk6mYqlTL7kEWjKgK3/Ge3ahFQ9T5J6S/+1m3UY5yLibgxnFzJbczd8ndjFLb3c73nlM9OGeKDgucHed8NMOvk9oyN0GthSWuH/X4/fD4f6urq0NHRYc5XrqysNIBZXLZ5zzLnp8uS3zwGmtgyQLAxL1vbbIKHfkbTKSlL952UbVtb6+vrmJ+fx507d4yL9uLiIqLRqHHnFCUWW9psTNttfnJd9PixgMG/q6qq0NzcjL1796KjowP19fUIh8OoqanJilIu/ar7SGu4NU3Z2NjA9PQ0Lly4gP7+fuNGu7S0lHUmuxNw9njuKRkrKyvR1NSEj3zkI+jp6cGePXvg9XrvszpzHcRd95VXXkF/fz8ikQjW19fvE2bKy8sRDofxy7/8yzh27Jhx0WUQurm5iQsXLuDtt982VmTJo6SkBIcOHcKjjz6K6upqI+xsb2/jvffew82bN7G0tGQskqWlpWhpaUFraytqamoMH5mbm0N/f7/hKRUVFdi7d6/ZJ7y5uYnh4WEsLS2ZOcKWVwH64pItgo64mMuYB4NBlJWVGQAtbsThcBiFhYUIhULo7u7G6Ogotre3sby8jHfeeQetra3w+/3GlbuxsREtLS0YGhoyAcWuX7+OEydOGCuhlNfR0YETJ07g5s2biEajBpjKUVhtbW0mmJmMqdfrRUNDA37xF38Rly5dwrVr17CyspIlc4hL98bGBr7//e/j+PHj6O7uRlVVVdZ84m0GjY2NePrpp9HR0YGbN2/ixo0bxpLOtIIF6UwmYyyc6+vr+NGPfoT6+no0Njbi0UcfNdbbwsLCLKuMXn88DplMxlh7S0tLcebMGXR3d5szxScnJzE1NWXOlba5m7olTROYnkjbZJ5KNP+1tTVMTEzA7/ebAI11dXVoaWlBXV3dffTVqU4aQMuH6XE6nc4Sunl7GwvpLIdxf7LMJ4n5h+y3zmQyxg08EAggHA7jyJEjSKVSBlgLHZ6amjLeCey5oWVUW7/Kf/620eVcY+cGJp0ACqdc/D/XfV333cg+udrKdbABNt1OJ/4GOO+r1VbrWCxmlFdlZWVG/hAFpABt2ZpUVlYGn8+XFU1cl2uru5OMKTIHrwm+7xYoTN+zgXn+bStbvy/rj3m7TabRZTPQ5mSTD3Sf8PqX39rqvtO0ozc+85nPZP3/j//xP+IP//APceHCBRw4cAD//b//d/y7f/fv8PnPfx7APYBdV1eH7373u/jt3/5txONxfPOb38S3v/1tPPvsswCAP//zP0dLSwteffVVfPzjH99R5Z2EPCZsLIy4EQ4m7PLfNig2H3n9ru3+TpLT4pU6aWJuI2y8uFgoZquvdo+WdojgI5Zj0Z4mk0mzr0cYPgcj4SAa+Qjh+p5b+3MJ77mIrG3B5QMIdnLv5512ylxyJSdgn4up5pOn07NO15wIqjCUkpISVFZWmj1HZWVlqK6uRjAYRGNjo3Gt5T3NwtD4nFJeTwxUnfrWBubc1j4nzpPXciaTua9sfofLcaI1sv7EkiwCaTKZxOTkJK5evYqpqSlMTk5muSy7HTPltDZ5PtiAv3xrRQcHkpJjdzo7O3HgwAF0dXWhsrLS7B9l5YVbX2oloCgC4vE4FhYWMDg4iPPnz2NgYACpVMrqQmlrg9RXjsnq7u421kwBZ7Y6yR7r4eFhXLlyBe+8844BPwzWBZzX19ejq6sLjz32mNkfKqBWQOn4+Dhu3bqFO3fuGHordQyFQti/fz+OHTuG0tJSADBAtq+vD6Ojo8Yl2+O5F/Srq6sLNTU1Zp90LBZDJBLBwsIC0un3z5Hu6Ogwx/6IFT+RSJi8xFVR5oO4qErfCo/hNsualDkbjUaxsLBg5klVVRXa2trMPum1tTUMDg6aPaayX1miXY+Ojhpr+9TUFEZHR0006IKCe8HJwuEwDh06hPHxcXM2sljLt7a2cPPmTRMwUBQjAODz+XD06FHjLj4wMJAVlV2ioa+vr+O9994zFqf9+/eb7QaytsXDxefzYe/evSY6tZyrvLCwYCKpayCo57ZYr6enp1FVVYWGhgZUVVUhEAiYeSH9aRNeZSxEgC0sLERbWxsaGxuRSqVQUVFhjuaT/dIyh23CtFPS97RMxV5scnzkwsKCoectLS1oamoyUdlla01lZaXpTwbEukzNR1h5wBZs7hORl3T/y30ug+9p7yG9tUT4VTAYzDI+yLFwkUgEPp8PS0tLxiOIj88SRZSWbzWI5nruNLkB4p2mXO990HJUPgDexmdtSgknGdypLJvsItte5MOWT5FnZHuQgOhAIGD2YGuFMp8KIjINl2erp1M7ncbCZgS09YVbclNmCG10Ul64gfF85X5bubpN2nNvJ2nXe6C3t7fx/e9/HysrK3jsscdMUJZf+IVfMM+Ulpbi6aefxvnz5/Hbv/3buHTpEjY3N7OeaWxsxMGDB3H+/HlHAC1RNCVJEBMGiTZLqwhYNkIJZAuk29vbWYECxBIsE91JsLZZsbV2SgNe/gaQRdR1/eW6nsxCpFlI5fbLe0J4RbiRCLoCiiORCBKJhBG4NaiWvmEttNa82qw4XA+npBmR22LT122CwW4XVT7l2p51u7abZ3b7jhPw3W1ZNqWM27P6nh6HXH2mQZcWeID3XRJDoRDC4TCam5vR29uLuro6Y1WWfcseT3bEayDbamwLvOPUHslDAzUWBvX84W0l0hccOVY+vJWD15RmUrxOeM2zhSKdvhdUaXJyEkNDQzh79iymp6dNoCVe29oThJMbcOakaSBflw+7WBYW3jt3t6enB11dXXjqqafQ3NyMsrIys/+U32OaKGUzDWQBQZ4RoXRpaQmvvfYa3nrrLUxMTCAej99nXec28ViykqW6uhqf/exnceTIEezbt8/sSdY0n7fbrK+v48KFC3jzzTcNeNZ9KmVUVFTgE5/4BJ5//nkEAgEzZ6WdImB/85vfxN27d00wIlkXJSUlePLJJ3HixAl0dnaisLDQ7MOUYGNTU1PGqlxUVIRwOIxf/dVfRV1dHYB7YPvy5csYHR3NOq0hEAjgySefhNfrNWBxaGgIi4uL2N7eNq7JAtp47y67/uogYsFgEJWVlWY8x8fHEQwG8eSTT5r13dPTg9LSUhMQcm5uzpzRK8eDdXV1oaKiAufOnTORv1OpFF555RUkEgkTHEwiuD/55JO4evWqOfJLvDO2trbwyiuvGHB4+PDhrDEKhUJ46qmnsH//fnz9619HJBIxCgnmjzMzM3jppZdw9epV/Oqv/iq6u7vN/nKZ26LMFwvT448/ju7ubty6dQsvv/wyhoeH7wswxvRByhL335mZGQwNDaGzsxM9PT346Ec/mmX95nnK60RHqgVghPTKyko89thjeOSRR5BKpTA4OIiLFy+ao5zEi0LmO9P7XDxbfut2MT3b3NyEx+Mxp2zcvn0bb775JkKhENra2tDe3o6TJ0+iurrabKFwiovC22ak78QiKJ52AkbkRAJ2wbcBKVsbmdZJObZ3NW0TZWJtbS22t7fx+OOPZx1zd+PGDUxMTGBychLT09NZ22s0v9DKOf62AWwbf+d62sYzH/nCbT7sFtjnKk+S09jkel5f0zxdP+vWL05ykxPItnm9MTCWa6LUlPgBDQ0N5sxrn89n+KhW3Girq5wYANwfH4nXiiSbB53kZWujlo3ynTNSX667NmjKt9zTeMhWlpMFW35rWmZ7xy3tGEDfuHEDjz32GNbW1uD1evHDH/4QBw4cwPnz5wHAMGZJdXV1GBsbAwDMzs6ipKQE1dXV9z0zOzvrWOZ//s//Gb//+79/33WbMMQCFncyExW3xSDXOR/uXJvArMuzaU7YzVwTOHYX4omj92xzu0W4EGIrwU1kX5cEexFtpxB2ERpEC6/vayCvJy63ydYH3Id6QeRKNkLP7+p+dxrHnQJJ7RbrBK5z3XNLO6lTPgSYrzHTe9DkVHa+dQJwH8hxUh7xemDmIe5LVVVV6OjoyLKwSHRMOfOUj5jgLRq2vHX5DFa4zrruwsAYeHL9dZ42Au3xeAzzclI6iHVUIjlLPbg8FoKXl5cxMjKC0dFRXLlyBdFoFCsrK0gmk1haWsoKCsSMUgvotrWzE0WIHk+2bJWXl6OtrQ379u3DM888g+rqavh8PhOsjQVPSSw4CAjgcjhQEJ/deuHCBRPpWo6XkWj/WiDWgrbUu7S0FO3t7eju7sbzzz+PhoYG4/6v92lJHkKDR0ZG8MYbb+C9997D/Py8cX/lviooKDCB0r761a/i0KFDCAQCKCkpMXkLGL1+/TrOnj2LO3fuIJFIZCl1A4EA9uzZg09/+tOora01St/19XWMjY3h29/+Nubn503wxsLCQrS0tKCnp8ecmSweC2fPnsXg4KAB2uIC3dzcbPZ2imJC9gJnMhkTiEzmrljKOInQL/0sVhXgnlV7YWEB8/PzZvwlME8gEDBbgdbW1nD58mVkMhk8+eSTxrJcU1ODrq4uDA0NGcvy3Nwc7t69i4sXL+LYsWNGKKyoqMDTTz8Nv9+Pn/zkJ8YLQYD3hQsX/n/svWdwY9l1J/4DIxKRAYJgzmQ32bmnJ3VPT1YYyZZkyet1lGVLVasql2u96w2f/MlV9heX1/8qrbz2luSgtS17FEcznqBJ3RM6J4ZmTmACCIAAQYIJ/H/oOnfOO7gPBHtG9kreW8UigPfeffeee+6553fOuediaWkJLpcL9fX1yoNM0RBVVVX48pe/jJdeegl3795VhgSixc7ODtbW1jA7O4u/+Zu/wenTp9Hd3Y0TJ06ovgNQe+ZJuS0v/+Bc8+9///uYnp5W46bTb4j/6Z27u7sYGBjA7Owsbt26hSNHjqCnpwednZ3qbG8uO4gXOE9S/XQvHctntVrR39+PxsZGrK6uIplM4tVXX8Xc3BxSqZQhkkP+yWIGprjCTXKK5jrNg7KyMrUffnh4GO+++646NaG9vR2HDx8umKNcVtBnHUDgbSMZqUuARGMoZQiXX1zuc1pwWcqNbRzY0LN0DGJNTQ3OnDmDo0ePqlNGaAvd8vIyJicnkUqlkEwmkc1mi4Z7S2BD18zkuZT7xUC12Th/VPqITv8yA1yyzaUWSYtS+1isrlJ1MpkPSeop/PPa2hrKy8uxtLSE6elpQ4JTnuPAZrPBarUatqwR+ObbSXTHbvG5oDMk6OSFDu/o1kneR10kH63nuq1R8v00R3k9JM+54Yy+U594PdQOrhvp+lysHBhAd3d348aNG0ilUvinf/on/Pqv/zrefPPNgg5SKYWR9rvnv/23/4b/+B//o/qeTqfR2NhYUEepwEf3vdhzkrBmYIJbBjkDAUaG1AEMCncjYMsBLykw/B7an8yPdKIwqLW1NUO4ImeQUkI2zWhT7LpcKEpZRPcrZmNW6lgWE+altkXylBmYPEgdurYdtM6PohxEUJgJUt1iYQaQ+e8UIkv7w+jcRRL8dJREJBJBKBRSR01xwMz30EhBytsi3w/AIDzN2k73Uf1SCQGKe1d4PTre5QqUrIfPSwpzpDNyKZNvIpHA7Ows5ufnMTQ0hEwmowxipNxK0F9MydUV3WIur3Hal5eXo6amBl6vV+1hbGhoQFNTE7q7u9Uizo8G0S3KZvTk/dje3kY0GkU8Hsf8/DyuX7+O0dFRRKNRQ8ipLtcD7xMBJYfDgSNHjqgM4D09PYrf5BjxNqyvr6uMxjdv3sTs7Kw6DovTioOlQ4cO4dChQwgGgwbwTHJ/dHQUd+7cweDgoDruitpqs9lQX1+Phx56CHV1dWpPMXlCx8fHMTk5aUhYVlFRgZaWFhw5ckSFem9ubqoM7JTsi3IJ0JFuAFTiJ/IuEw1JOeP04H2W34F7QJZAJABsbGwoQy/fkxsOh9U6ls/fS2AWDAaVF7GiogJ2ux19fX1YWVlBKpVCPp9Xx3bduXMHPT09BlDV0NCATCaD27dvY2FhQc0ROnJpZmYG165dU3sPuZyyWCxobW3FsWPHUFlZievXryujBtGexm9+fh6Dg4Pq2JwjR47AarUa5JPFYlFeJeKL48ePw+v1YnZ2FqOjoyqZl24e0LiSXkAhvwCUAa2lpQV+v1/RgBfuWOBrN28bB/h+v1/VW19fj0QigenpaWQyGQXgdNu2DgJ4dECP9Kq9vXs5DTKZDFKpFKxWK1wul3IWUOhrfX298szRec4EdLkuxunI5Rop8LxtpRS+7uicHjT2Ut/i48K3ZgCAx+NROh8/QisYDMLr9SKdTqtoBALYlKuGO0YkbXWl2HqgWx/3e2a/UqoeZYYN7kd/o/eWen8xvpWlmO5bjOaSDpJ3zHST9fV1g+Gfh3bTWeY0R2irG+235rlfaNsJGc10Ua1mOk8xHV8Xpcr7UQxP7WegkPVyPMVpQn2Q90svvSw/UQBdVVWlkoidOnUKly9fxp/+6Z/iv/yX/wLgnpe5rq5O3b+8vKy80uFwWFmyuRd6eXkZDz/8sOk7afBlkYqX2WSR3g0qXLGSYZ1ccHOgq1Mi+W9cYEkLMl9ApfJMoJg8x+vr61hbWzN4lSjMWnqW+PErEhwXY85SBIN8Vif4DjIB5D1mliteDsLQZu+SC/V+9+1nLDnoe+XvP4myn5Arpd0SGOuelTSS/+kzF+4EQuiPwgXJ03Xy5EkEg0GlCPE9PiTYSQbo3sMzNEuwI72+0sPJaaYD+8UKnxNkCOPAjNoiw5HIqEX38iRPXC6RwYyOeHvnnXcwNjaG2dlZxGIxZSSj0EpdeJ+OF+T8k2Nr1nczYwRPhNLY2Iju7m48/PDDOHz4sAJNXDGX9Jbt47JMKplEl0wmg5s3b+LmzZu4evWq8rrzI6nMlEY+RpT9ubGxEb/yK7+ChoYGeL3egjVHhnaR53lubg7f/e53MTIygkQioYBrPp83WPwrKirUWc2f+9znUFdXh6qqKtV3kum5XA6vv/46bt++jYmJCXUmMPG52+3GoUOH8JnPfAYOh0OB7u3tbQwODuLGjRtIJBIKvFJUR19fHx555BHFbxTBsLq6qvYul5WVoba2FvX19SoknI494go5ecE9Ho/6Tn0geuuMF9wLQjQkwy8B6KqqKnR1dSEejyvv9NzcHGpra7G5uQm73a62BDzyyCO4e/cupqenVWTWwsICtra28OSTTyqQCgChUAhbW1vo7+9HKpUyRGbQ2b0vvvgiurq61D53DqLdbjcefvhhhMNhLC8vKw85DwOk+u7evYvFxUXMzc2ps8z5WBOtSS5WVlbi3Llz6O7uxvT0tOEoOU5TTkv+TgJad+7cwfj4OC5fvoxHH30Up0+fRmNjY0HiQ2585BEdpJByxZRoaLfb8cwzz6ijml5++WUV7bG+vq74Qxrt+JyT7S8FYFO76PPW1hY2NjawurqKhYUF3LlzR4W2PvHEE2hvb0c4HIbL5dIq/1ymEM9StB9FbPB3y/Zy3YroRB4xLtd1faT1ge7jEQk8GorLJzIYESCqra1FV1eX2pZHRxEuLy9jaGgICwsLauuOzFHD+19MPhYrpegRZvpHsWc5zczoJ+/h16XxpRjAK7U/96urlaIjFzNGyD5y44tZe/naLHUQ/p0yhJOTwuFwwO/3w+v1Gs6y5tsdpD4jx1fOXTkO/DfpYdaNp64+M1pxLCV1PT7vuMwkvEfzTiaHLrV86HOg9/buhW+1trYiHA7jlVdewfHjxwHcs46++eab+KM/+iMAwMmTJ1FZWYlXXnkFX/jCFwBACcA//uM/vq/3y3BE4IPQSRmeSUKEh+zJUB0d8CSCS1AhFUAOjre2tpTyu7m5qRbD9fV1JBIJpFIpFZ7Gzz3mHmNSqKhOszCdUgGtrv1mpRigNVO+ZVsOImh1dRQThMXawd+vE6hc4OruL1ZHqe/WCRbduzkPmfXzIJN6vz4Ve4/Zu83As/yjwoGyw+GAy+VSR0gFg0H4/X64XC4lyG02mwpbJpDF+0N1k8KhA7d8XgOFBjHdfJbzl4cP8Wt88ZEgWdJDhj5x4W7m+eBznJTltbU1LC4u4o033sDw8LDytPDjl3QKq9n83m8OSXry3+T4k+wk5c7hcODw4cMKNNMxHZQUjOjJlVMZwsWt3XJvN9GL2jo/P4/h4WH83d/9nToqjzy+nB66/nFFgMDz8ePHcfz4cTzzzDMIBAJKeZDeKRpDigwaGBjA7du38cILL2BlZUUprPRO4kFSfsPhML761a+ivb0dPp/PEDZHcn9mZgYvv/wy3nzzTRUyTbxIoctf/OIX0d/frzJkU9nZ2cG1a9dw6dIl1Q7q46OPPoqOjg7U1NQo0EDAX4aH9/X14dSpU6ptFDpLRhqio8vlgtvtNhiwZAg3bVsgAEeJoGiu0NFqS0tLylNitVrxwAMPYHJyEqOjo+p0h8XFRdy+fRsnTpxQcsDn8ymP49raGvL5vAr3/cEPfoCzZ8+iv79fGeAaGxvx8z//81hYWMDU1JTKKk7ALBaL4fvf/z5OnjypcrJwHnU6nejq6sJXv/pV/Omf/inm5uaUl5x4lsLCySD+v//3/8aZM2fwyCOPqKRrRBuqt7KyUp0a0NDQgNbWVrz11lu4e/cu7t69q4CQ9EgTbxDfk0Eik8ngBz/4Aa5cuYLm5mY8+eSTaG1tVcYHviZyg6OMuKGjLomPyfPv8Xjwy7/8y9jY2EA6ncbly5dx/fp1LCwsYG1tzRABYyZrzNZIfj9vCx8L4lfad59Op7GysoK/+7u/U+tJIBBAX18fGhsb0d7ers4rJxlOdCA+tFgshugImsPSk0ttku2ReiNfGzhgl/KBxpXTn/iIrtPc5O3a3d1VkTOUbf7kyZMqWimXy2FxcRGLi4uIRqMYGhpSJ6jI9kp9cj/wWWxt4fqMmQ7Gx/cgpZQ2HLTeUtbGUuow0/VkfVI3kIYAM2C9X3t0OqmkA9dbEomEQefiRjVutKGkZna7HV6vF263W8lpntwM+OCYXLMQbd24mEVs0BosZR2tw9xpoqObGQ9zeuvefZByIAD93//7f8fHP/5xNDY2IpPJ4O/+7u/wxhtv4KWXXoLFYsHv/u7v4g//8A/R2dmJzs5O/OEf/iHsdjv+/b//9wAAt9uNL33pS/i93/s9+P1++Hw+/Kf/9J/Q39+vsnIfpHBrhlRaixGHW1ep8Fh5uofq4aGAfF8W7a/jSbfk+aPkGSDBRZ8p8QkBZ10IVDGwLIHFfmBTPk/0M3tGB/RKrY9fl7+XKgTk51IFYjEAuR+Y1AlA+bnUduwHVA8KZM3qOMh9ZmDYrC7uQebPcyFbXV2t9idTFmw6poHvx+H7XikzNglemfxCtosDHjPQzhV7MyDIC8kHHQ3kfOP18jkpFwk+f6Xs4XVyj0Aul0MymcTU1BQSiQRWV1exsbGhFNPx8XHE43EFzvjeyGIKUCnyQFckYJQGBErM1NraioaGBtTX18Pn86kjqBoaGlT4pDw2kACj9LxzmtBnHhpLoclzc3OYmJhQnsmZmRkFnKX8lH3ifamurkZ9fT3q6+tx6NAhNDU1oaGhAT6fTykEOuUnn793rnEsFsObb76JqakpzM/PK28kN8bSOysrK9HR0YHW1lb09/ejra0NHo9HAROqd2NjA++//z7u3r2La9euKW86taOqqgqhUAjPPvssurq64PV6FX3IG//aa69hdnZWJS6zWCwqO/3Zs2fR0NCAsrIytbeUks5xIOdwOFBXV4e6ujrVF8pATfdR3wiocPpwbyk3JFN7uFeXxm1tbQ3j4+Oor69XAMbj8cBmsymgsL29jVgshnfeeQfd3d1wuVyKLocPH1Z7uYkPtra2MDo6ikAgoI7kIu+21+vFE088gVu3buHKlStIJpOG+TQ5Oalo+9hjjynQCUCFNAcCATz99NMYHR3F8PCwStbGDT4EIkdGRrC1tYXFxUX09/ejoaEBbrdb9Y3PCQKpoVBIeY87Oztx9+5dLC8vq0gAqR8QEOTgi2hBRrfa2loEAgGEw2H09/er7QlmcoKvG9RGviaQ4cLpdOL06dOIRCIqhHhgYACxWEwd36bTZ/jcKlbM9DjOZxbLB/kQstksKisr1Ykhw8PDuHbtmiF/Rm9vr9qmYBahxOumecP3WMroJTO6kaLP28s/83uoLn6/DEklOSYB9d7enkqqls/nFfAJBoNoampCW1ubMrzu7u4qw2MqlVLJ9aQRUKdvyj5LHYv/36/oAJ4ZPUstvA2lrn/3A+YPUkrlebN5aKb771eH2X1ynCjXABWum62urqokg6S7yW1YXD8jvZAM6FarVYFtnquG2ioNCToDg9TFaT7KSF6g0HnCc1VwsC8jyojGP7EkYktLS/jVX/1VLCwswO1248iRI3jppZfw9NNPAwB+//d/HxsbG/gP/+E/IJlM4syZM3j55ZcN+6T+5E/+BBUVFfjCF76AjY0NPPnkk/jGN75R0OlSik6Z5ouJbnDoHqm4ceWLJ9WixXtrawubm5tIp9NKMNPxDqTYSg+IPPtYTgLeHt52ed3sfn6vvF6KMDADxaVeL/Xa/SrxB+lTKe++Hxrt18YPc2+x3/cD3/fzXvoujUd0TXc/31vD9x6SALXb7YhEIirss6mpSe1l5kcS3Q+tdeFHvF269pst8sUiSOgzD12ke7mApvtK+V3KG3ovyRLKWbC6uoq5uTlcuXIF0WgUy8vLBXuZ+QIgvdiyL2YKqhkv6GhIn3nYPZ2HTArzyZMncfjwYfT09CivLV9ApUwmWknAwOUs7yfleKAEiUNDQ7hz547KbE3XpcdZ1yfeh6qqKnWsUW9vr8o0zS3wknbU3lwup8Ikf/CDH6goIvK66sCz3+/HkSNHcPToUZw5c8aQII7WIAJX77zzDgYHB1XGXd4Hl8uFlpYWfOxjH4Pf71eKMnBvH/HKygouXLiAxcVFBbBoP3pjYyOOHTsGp9MJAApkrK6uqnORady8Xi+CwSA8Ho+iayaTwfT0tGov0ZLmOPWdwDxfz2SiKVLKuJKUzWYxOTmJM2fOqHOlyVNNx1nt7u4imUzi1q1bWF1dNRjpurq6sL29jcuXLyuP/c7ODubn5zE6Ogqn04mWlhb1bpvNhtOnT8Nisaj5xtdqSgCXSqXQ2dmJcDgMp9OpeLqiogI2mw0PPfQQ/H4/dnd3Dcc7Ut+p/4uLi0ilUpiYmDAYE1wul6IBFaKN3W5Hd3c3mpub0d7eDqvVivHxceTzeZXATMoDXhcZpyhUf3FxEU6nE+FwGF1dXfD5fPB4PCojOBXd2sDrJmPn7u6uUqAp5L61tVVta7DZbJiYmEBlZaUyCpp5PqWsLPa77ju/jzssstks4vG4WrfI4EOZ4xsaGgxHHZIM4OsLXw+kgU7KN6mD0m80Frztcsx5hJIZDczkKh83vg7Q0Vl+vx87Ozvo7u42hJnTHur5+XmViE8mn5XbYcz6wIsEsGb6jPx9P/2u2HUzvVnHQ2Z89VHphAfVd/drx356eDF9UYcpdHSX9/H30xFc/H6aI3x9pTWPtufRdjyn06ny15DM4NFXJFNlCDatF7yNvG1mupBOhpmBa919B/FKHwhA/+Vf/mXR6xaLBX/wB3+AP/iDPzC9x2q14s/+7M/wZ3/2Zwd5tbZwgnJQLC1+XGkjoUBe4Gw2q5SJdDqtzlClcDVuyeWeEf6Z+i7B8UFBcLFndfWYTQ55rVgd/Jl/7SL7VapAMutLKYLMDHDprpX63lKf5/fJ8bofq2uxOnQCUH7nf9wCSefh1tbWIhKJ4MSJE0ogEkjm2SB1oDefzxcITWrzzs6Oyj5KERx8DzRXXMnSSIoNKTU8HI6UB7qP3y8TSMicCESX3d1dg8d0e3tbWU450OJeH86//I/kBx3JMzMzgxdffBHRaFQlZ6KMzRyE8D9edAJep+DI62ZGEgmcadxo7Kurq1FbW4unn34anZ2daG1tVWFc5DHkRgdZP40TP8PYYrEY+sllLIG2ubk5XLt2Da+//rrybPG93jr6yL7wfvh8PjQ1NeErX/kKgsEgnE6nAoC69kvDxfDwMN5880288MILBaBL9pf2Vf/mb/4mjh07hnA4bAhnJz6nxHBf+9rXMDo6ilQqpTxAVFdFRQWeeOIJPPLIIyrrNQdos7OzGBwcxNDQELLZrEEp6e3txS/8wi/AarWq9W9ra0slGuOh3larFadPn4bf7zd4fik5EQdnTqdTGU2IJ/kfrcESNMl5mM/nsb6+jvHxcYPRgDzcNTU1KkR6a2sLq6urGBwcBAC0tLQgn88jEolgc3MTdXV1mJubUzySy+UwODiIVCqF06dPq6PCgHuZpo8dO4ba2lr88R//MVKplDoqk86I3tzcxF/91V/h/PnzOHv2rJIpNN5OpxN9fX1oampCVVUVBgYGMDc3Z9ALaKzJ0PLCCy9gcHAQ3d3d+IVf+AVUVVUZDE/cw8vPpvZ4PEgmk4hGo/ja176mwqR1c5/Pf/I2kt6TyWQwNTWFS5cuobe3F/39/Th37pzKM0HvprGR3hgJVvnvVVVVakvOxz/+cRWtd/XqVdy4cQMTExNIJpOGo7r4HJNtp3qLAQjdusf3dNN/i8WCjY0NlJeXIxaLYXZ2Vu0DDQaDePDBB9HU1IRIJGLwMHOjn9xaZBayLYGwTMxE32mN4fqrXFdoHkvZzaMdOGCg0yKoPVQPJezkXruamhpEIhF0dXXh0UcfVfM9Ho9jZmYGy8vLGBsbw8rKisqwz+UuB/1y3GTR6XK6tYKPq043LqZnlXpfsfJhQfT9lFL1W64zfZj6zQB6MY8vFTPaSP5cWVnR6pK0nlEIOEVIuVwuBbQpZwrfRkXykfiP6xWyP7QG8e9U+ByT/Ev9OIgz90Pvgf7XLDwkmu8hptAUskLyjNV0n/zjRzpxqzkXhmZKMnCwcGBepMdKB4rl9WL1yjZIoSQLF4ZmdZUCxEsVTsX6Iu81a28p7/ioykH6V+z9pRozij1rBpB1C5EZQAb0obllZWVwu93w+Xzw+XyIRCIqqQTfB0OWRb6ok/KlC4Xj7ZNKAfEez3paWVlpuE+CbbM5RjxMRVr8uTLFlR96jl+ntnOa8bAjrqBxQM/7ubd3LzfEzMwMotEopqen1bnMq6urmJ+fV+HHuqOmeP+KyRU57rK/OoWE36vjAwrV6uvrQ1dXFxobGxEMBpUnjrxWxcIYdTwpjRcE3ggcUYTPtWvXMD09jaWlJUSjUSwtLRlyStDzOuDA+0SLtd1ux9NPP422tja0tbWhpaXFwLM6PiLlc2trCysrK7hx4wbefPNNTE5OKvDC1wY+p6qqqnDixAk89NBDOHPmjJpHXMEuLy/H5uYmrl69iqtXr2J0dBTpdNrgoaSxCAaDaG9vR1tbm1LoiW50Xuzrr7+ugCZwb46Hw2E0NzejqalJvZf46+rVq7h165aaaxSafOLECfj9/gKjhgzD9nq9hgRIfL3k3jBOJ75dQ+7/TiQSKjkm0amurg5tbW1YXl428AmF47a0tCh6U3j7d77zHSwvL6s5tbGxgXg8jn/+53/G+fPnDQCJwluffvppXL58GePj46qfxGczMzN4//33sbGxgWeeecagfJFM8Hg8eOKJJ+D1enHnzh0MDAwUGMF4ODXPXv3UU0+pecX3wcrtD5QZ3G6349d+7ddw/fp1jI2NYXFx0WC4kIW3gWi4u7uLRCKBgYEBlU/g/PnzaGxshMfjMSiWW1tbymPEwx/J4GmmM1CEgM1mwwMPPIC2tjYkk0ksLi7ixo0bWFhYQDweN4QL8/aXqu+Y/U5tk/UQL+/s7KCiokId+7m6uqoUeK/Xi4aGBkQiEfT09BjWB5IXsu/cU81D82XbZDv5Wsfr4WuiBJM8l4SuSAMi8Yb08FGhrQ1kwK2urobP50Mul8OxY8dUaDflKojFYkgkElhaWjLk7OF0523ZT6/UrXPy+0FA7f3oq7ydB9X5ihWdHnsQHbUUff/DtFf37H56ORUzgwdvF+dfvi5TFvHy8nIsLy8rzzT3UOsyitOWQEpGSfVRkZEcZvSRc47P159YCPf/bYXCryoqKgyh1ul0WgFoUnb4UVB8wZELjATJ/L8snElKuZdKMaFCnz/MpDMrpU4Ms2ultInf+2EFUamL50GLWXvM3icXYgm2PqpSrD7dOznABAr3SvH75P4UCu9yOBxKcHm9XgQCAfj9ftTX16tMxORZIOHGFWQe1kdeJ10Ys2wPLzxMh75LgEfv46UYoDajHQe75HHmAEg3/2X9HBBwBXlnZwfJZFLJn7W1NUxMTCAajar9spQLgbxkEswXU0rps45PdIsDl02Sf8yAM2XjrK2txdGjR9HZ2YnGxkZlNOGJsWS41X5KLLcY80WOFPpYLIalpSXcunUL09PTSCQSyhPIn9MZUyTvkAfP5/Ohs7MTp06dQlNTE+rr6w3Jt8yUtL29ewB/dnYWU1NTuHr1KgYGBrC6uqo8MZL+ZBiKRCLo7e3F8ePHUVtbWxCyTH1Op9OYmJjAwMAA0um0oV6qi7JnNzQ0qNBTAve7u7uYmprCxMQEpqenFeijed7e3o7GxkaVOIzeu76+rgwT/P7q6mo0NDSofc3AB0ZqAu10L/fmcppJj5RuXzjPeUD3bGxsKC8X1ev1elU2cKpnZ2cH0WgUiURCRYWUld3bu93T0wOPx6POhKb7s9kshoeHcfz4cYTD4YJtCYcOHVKALpFIKFrR3vLZ2VmUl5fj8OHD6lgoTreysjI0NTWpvefxeFx57biHlcAP8fTW1hYikQhyuRyamprUOHEjBPE0b3NfXx92d3eVTI7FYkqucNrrxoYD6Xg8jnQ6jWQyCZ/Ph2w2i3A4jFAoZPAAcTnP5Yc0INE7OdAmJdjtdmNjY0PtrQ8EAlhYWMDMzIzad0vzg7dZyq/9dIBiOon0SlEuAIpGJC+ty+VSY5jP5w2h3zwJHMkiXqdca2SbdMBbev7l87Ive3vGiCtezLxqko7yGrWd5CZl9w+FQkp33tjYgN/vx/LyMuLxOFwul2GrDTmreJ6Oj1Jn0+mWRBN+XymlFN3UbK39SRYdzwPF+3+/7zH7LmlTiv5fbO2X/eCfLRaLChHnBh5aJ0j3tFqtcLvdynjPvdTcKCsjIXXZtbmx68OWn2oA/e6776oFmCsmukyVZp8BvfVFJ/zMCK6z/JZq0TErOoY0e/+HmVD7gbZi9Raz4pV6PxWzSbtfXR+VYaGYIi0VQ36P7DNfrHifzGhjdk1HK66k6ACR/E9/PBzNZrPB7/ejtrYWbW1tKjMvKQmklJHyJOuyWCzK+8Ct56Tc7ezsmIJlXgcPl5b38H7K41f4fcUWAeADMEUZV4EPMt+SJ4I83vl8Hlar1bDnmBd5ni3VQcJ4e3sbq6uruHDhgspGm0gk1JmcfL+uzlpfqjGArpnNJTNQyb9LgwoZUBwOBx577DEcPXoUJ06cUHvdudFEAlWuSPPrvE983Ol3Hkq1t7eHu3fv4r333sP4+DgSiYTaT8pPItApwrJNHGj4/X4cP34cX/nKV1TWa75IE29wmtD4EMB94YUXcOPGDUxPT2Ntbc0ACKnQIk2A9/HHH8eDDz6Irq4uA/8Sz5Gxd3R0FHfv3sXY2JgyEvC2VFVVwe/344tf/CJCoZDBs2WxWLC9vY2XXnoJAwMDyGQyql0EhinkntOd9lvHYjF1bjAAQzgrhYGWl5cjk8moftN7Kysr0dDQYNg7K9dhM34kOlE4NM3jzc1NpYCTd7q+vh4bGxuqPfRHCnwmk4HP54PFYlEZtsPhsArHpvbkcjlMTEwoIwVXUK1WKzo6OrC8vIzt7W288847iteIXktLS1hbW4Pf78f58+fR3Nys+Jf6RJnoI5EI8vk8Ll68iMXFxYK1g7zoBN6ef/559Pb24qmnnsLRo0eLykR6VygUwmOPPYbjx4/jypUrePXVVxGNRg1OAc5zfIwA43FbdErICy+8ALfbjdbWVvz8z/88gsEgHA6HNsJGjiu1kd7LjZFlZfeSxdF2D4/Hg7q6OrUt4Fvf+hZmZ2fV8W8SmHMeKRXQcCAv28yf5x5/okNZWZnaF3z9+nW88cYbCIVCaGxsxKlTp9DZ2Qmr1aqcNlT43JTKuRkokuPL77VYLIZTIai9PF8BPcvbwUPAef20NnOZLQ2gdB89A9yTCzs7O2o7hcfjQXd3t6LX2toa0uk0FhYWMDw8rE6YoTPjdeudGbDW6U3yurz3oKXYcx8FMC21DbwU0/V1/HI/BgP57EHm0UHrLvZbKXoulbKyMmSzWcPvfI0nvbayslKBaofDAa/Xi5qaGjgcDrXViNZh4sV8Pm/wYJPeyqM/Sik/1QA6kUgAMLf2ye/7TVxZ9lNiixWzdhRT/KXSYTbR9puA91vMaFPq/WbtMFtsdfWX2pdiNDsIiC/ld6n87yd8dIuAFHrFBIl8lwTFVDioIUHAwxNdLheCwSCOHTsGn8+nhAplSCalhoMKDrZ5QhUZoswVJa4wUWi2XDQ5iOVt5vfy+vh81ikjnKa8Lk4/ufeF/nOlcGtrS/VZ51nUAVvKHByPxzExMaGyJqfTaXWsEgd/0usq6+UKVqml2CJqxjNEWwLN1dXVaG5uxpkzZ1Ros8/nU8nCzBZvneeZt4cDQTLE8DwUBCAHBgYwMDCAGzduqPB28qTtd0QX7xv1i4AZhdQ+8MADaGpqUl4vOY/luBI/xONxTE9P45vf/Cai0aiKKJDeVPqj8Of29nY8/fTTeOihh+Dz+VR/uWK4vb2NVCqFaDSKv/iLv1BRCRI8W61WnDp1Ck8++aRK0sZpmEgkMDY2hps3byIejysDDyUO6+zsRFNTE7xer0GpXl1dxQ9/+EOVzZmeCYfDOHLkiOHezc1NTE5OYmFhwTDnq6qq0NLSApvNpuim8zgRAKV+7e3d85w5HA54PB51xjNFb0SjUbjdbrhcLuXlDgaDsFqthj2fm5ubmJiYwMWLF/Hss88aMhA/+eSTcLvd+NGPfmSYe+vr63j77beRTqfx9NNPGzx4drsdJ06cgM/nw/T0NBYXF5HL5dR1ArwXL17E3t4eDh8+jFOnThUouhTx8NRTT8Hv92NoaAgXLlwwGEeoEC+trq7i9u3bWFxcRGVlJRobG+H1eg2GSFL8iLaU9Mpms+GRRx5BZ2cnRkdH8eMf/xjT09OGjPBSrnCZQ7KMjEWUOG1+fh51dXXq+Cs6XozPbXqe1goOyIgnONDj/SBDrdPpxK/92q8hm80ilUrh4sWL6tQBnr1d56DgfTEr+63DfCy4ck3bJMizmkqlMD09jZs3b8LpdKoIndOnTyMUCsHpdBasxVze8G0X8v0cIFP7aJ7LbVFETz62VDcv3HDM6+Z7uHX1yDWJCgf4lEuBQAkZ5BsaGtDf32/IhJ5MJhGPxzE0NGQ45o/Twkyuy3HUfZZFN8Z8HMzes59udtCi00UOgjHMcIBOZ96Pdmbt+zD3FNPd99PVZB3SyMXpxSOq5Jzi93PdlwA1eaHJKER/VqtVRV5SNBE5jehUgn8zIdzcolYK05tNVjNgrXu+2G9y4hyU4c3A2X7AtBjQ1gkf+btOAS+FHh+FsOHt+qjqP+hzpRoq5G/7gWmz53Vg2ew3CeD5f9pjZrfbEQgEUFNTA6vVqhI00H7llpYWdY32fprVyT0dEqDIeSJpQQoVAANIpe86ukl60HX5nc9T3k4dvbmwNRsTegcpGaRwmN27urqKeDyOVCqlvF/JZBLz8/OYmJgoSAamAxVmiqzZtVKKGXjmdOUGEQLNoVAIgUBAHZNTV1eHUChkSAjHlXY+J+SiJ2kllXT6y+fvZRCOxWKYnJzE3bt3VQgyZR7nHmAzBYv3k3ucA4GA2it8+vRpdHZ2wuPxoKqqypAdmbeVg5Pd3V2MjY1hZGQEw8PDmJycVMYQneeZg+djx47h8OHD6OvrQyAQUNnnOYDe2dlRYduXLl3C/Py8OruY07aiogLt7e3o7u5GW1ubIdP13t49b+3CwgLef/99FVJObSPgeerUKbVvFvgACGYyGYyPjyObzRrmZm1tLbq7uw3zNJ/PY2lpCSsrK4a+V1RUwOv1FiTrNBtzHqlhsVjUsXacd3d3d7G8vIxIJILm5mb1HpvNhmAwaBiD3d1dxGIxjI6O4sknnzTweV1dHcLhMNxuN+LxuGFsZ2dn4Xa7kUwm4ff7DbLK6XSirq4Op0+fxptvvmlImER0SqfTGBsbg8ViQV1dHSKRiAKWNH4VFRXweDzo6OhAeXk51tbWcPPmTYORhM8PAhv5fB6XLl1CIpFAW1sbmpqaCmSnNExZLBa43W6lMOZyOfh8PkSjUSwsLBSE3pvJGPJE8wiJbDaLTCaDqqoq1NXVIRgMorW1VZ2/zce6WN3Ufs4TxOeVlZWoq6vD9vY2QqEQdnd30dDQgFgshsXFRczOziKbzRoMApx2Zuu82ZpsppvJOni0BfHu5uYm1tfXkUgkkEgksLKygu3tbXUOud/vV4kJCVDrZCFfE2Q0jG495VFecuzN+mh2jYd3c6N4MZ1Yt97z3BF0nfbnA/f4aWNjA263G36/H06nE6urq8jlctjc3FRRLXSSjTQ087HS9U0HLEsFhaXc+1Hpv2b6yUHbdlB94CBtkvWb6afFsI/unfuN44e5T0dXPmcpkoT3hwA1Jb21Wq1IJBIqmoSi8LihupTyUw2gaVEuxjD7DQz/TQd0zRhoP0YsVSEudQGg9u23OOie2e9eXd2lCmgzQFkKveR9BwG+XMibXTd7z0dRzMaNfueKqK6YhTnLa9I7zP/IGh4MBnHo0CHU1dWpfSLcs8z3qxabL3KPG/3xuaAD3Xyh5+Cc7zGWfMH7LD3OOn6UCpjuum7+ShpLxYEr9zzcjJSn3d1dlQxscHAQk5OTGB4eViHG5DHlQEEqH6UsBMUUQlnkfTp6cMWMZ730eDx48MEHcfjwYbS3tyuAyc9oJL7h7dWF/OnmrgRP/BrtCR8eHsbrr7+uPH2UPEqnZOrGkD7zfVJ01u9TTz2FkydPIhgMKmMA52MzJYzA5aVLl3DlyhU1xtzzqXt3dXU1/H4/Hn/8cfT29qqMzEQr8iSSEj4/P4+bN2/ipZdeQiaTUYojX+irq6tx/PhxNae5MYq8hePj43jjjTcMABy4F3IZDAbx6KOPwuVyqXfT3udkMom5uTlsbGyoMa2oqEBdXR0OHz5sCJfe29vD/Py8AtC8jXRmthwvHQ9wIEoA2u12G3g/n88jGo0aEp7RvY2NjSrEl+pbWVnB+Pg4Njc3C9pVW1uLcDiMZDJpMGAsLy9jamoKs7Oz6hQBTje/34+nnnoKAwMDSKVShgRoPBQ8l8upJIs8EznNu6qqKrWnuaqqCpOTk8ozJ2VBPp9XQPfNN99UeV2IfznokaWsrEx5Tehs6nA4jOvXr2NzcxPJZLLAcFRMeeXjRc8vLCygvb0dnZ2dcLvdCrBL+S+3ZPB3cA+sBEkU6UIJLDOZDFKpFAYHB/Huu+9ieXkZq6urahuBDCUvVQ8w03m4fNMVLjMod8X6+jpWVlYwNzeH6upqOJ1OdHV14ciRI6itrUU+f287kA4ck1eNX+OGHF0CW8CY1JLTWfaLjwPvNz2n6yeNEdUn977LsebzjdOHRxuUld3LSxAMBtHS0qKy/1MissXFRSwuLmJmZsawzYlHHsn1Q44pH0fdGBcz9ErayLEuBZDvx3Nm6zlvcynv0bW9WJt0Opbu3fvVcz/loFjH7D45rsV0yFIwAI3p+vq6YU7yecj3TpdafuoBNE3+YoUT3Iyh6f9BGPr/xnIQEHrQUoxOOrBQSuFCeb/Jz585yO/7XdO1pZR75ef9DBA6I4UEpXxik3JLZ++2traivb1dWbtJQSPLGT1jBjLN2kQ0lx6lYmCWJ8eh+Udh2hyscsWJF6lc8OsywysHQFwhlkdQccWDQskBGPa30LvoGoW1cbC/sbGBZDKJd999F1NTU5ienkY8Hjec+c4VDAkaeNlPYeXjogPVZmNXKu9UVVXB5/MpgNff36+iESorKw377GT7efg1/52HDRJIpHZwutBzmUxGHb8Ti8WUB0IqizoayrnFlc2Kigq4XC709/fj8ccfx+nTp+F2uwsS/RDYlfxDSloul8ONGzfwT//0TxgaGlLRBFJZp/Hh725pacHv/M7vIBKJqD3jFotF9b28vBxbW1tYX19HPB7H17/+dUxOTirPC/WX6vR4POjs7MTHP/5xBINBwx59Cn1/8cUXcevWLaTT6YJ9mO3t7ejr60N9fb0hZNNisWBkZASXL19W+xOJjk6nE4FAAJFIBBUVFcr7SmHVlAWb7q+srITb7TYYo3TARqf47uzsKG+vDG2dmZlBW1ubQR45nU6cO3cOs7OzSKVSAKCMWqurqxgeHkZrays8Hg+Ae7Kjvb0dn/vc5/Anf/Inykixt7eHXC6H6elp/O3f/i3+83/+zwgGg7BYLMpoYLFYUFtbi97eXuzu7mJ8fLxgrm5sbGB2dhbf/va3VXQAz7BO9ZFHw+l0YmxsDENDQ5iYmDBECxB/kkxaXV3FzZulH3LXAAEAAElEQVQ3MTExgdHRUXzsYx9T7+Ahilye8pDFiooKnDp1Ct3d3Xjqqafwj//4jxgdHUUymSw4n1uODa+P5DsliFpdXcXAwADeeOMNfO5zn0NnZycikYghDJhnZJeyhHjDYrkX5s75me8lp9Buj8eDSCSCBx98EGtra4jFYvjrv/5rLC8vF8gNnW5XTAbL+/bTJbjMoHlNWw62trZU+PnS0hKuXLmiknO2t7ejo6MDra2tqK+vV+szRcMQvfmaqcvcLiOtJE3z+bxBtvGxlPoxr59Hb8o+S5nPQbQ8ilIH1gGgurpaeZarq6sNR7K53W60t7cbaLm2tqaOzYrFYirKiwA1l3M8kkMHokrV4T8KXZnLRf7bfvUWW+v3K6W0uxgN5LuL6b263/n7SwXj+913P2Ohu9+Mpjo5YebEOkg7fqoBNJViHd6PMMWEbbG6f1IgldetY9Ri7TGzfOnq033/sO2933v2A3n7lQ9r9Cj2/v0Es/yNh47we+QfBzkOhwM+nw9utxvBYBB+v99w6DwBZJfLBZfLpY6WolBbDkbpfWYZUyUfyfnBAS2/R76DfpfjSos+t5LTAigBM0+EYla/BNdU597evf2k1E8OgEn55/VxJY4r7bOzs4hGo2rRpn1a2WwWCwsLyvtBR+XpQs34glmq8mZWzPhNRxf+ubz83lnHNTU18Pl8OHHiBAKBgDpfsbm5WR1RxsP4ScHiwJToxaMWqN80xmaGg729eyHG8Xgck5OTuHPnjsr0OzExgY2NDcMeZx1o5v3lfSUgXFlZiUAggMcee0wdN9Pc3Ayv12sAG9QeHlIvPYpzc3O4ePGiCtsmzyNX2PiCS96+/v5+9Pf3o6urywCeqW4qdE7z1NQU3n77bXWEkdzfVVFRgYaGBnR3d+Ppp59WHl4+B9bX13H79m3cvn0b09PThqzL5I08c+YMHnjgAYO3KZ/PI5PJYGxsDHfu3DEYPyoqKnDkyBE0NDQYxnl3dxeZTAaZTMZwLjXtIyPvKFfIudLNQQAf47KyMpWbQYaLk2Flc3NTAbKKigrU19ejpqZGKeXktV1bW8OFCxfUOcnAB6CbMqGPj48jFouptmxsbGBxcRGvv/46+vv7cejQIcUXFsu9BGlnzpyBy+XC7u4uZmZmFGAjehKo/OEPf4j+/n6cOnVKGRT4PKVcFI8++iiam5sxNTWFV199VRkwJO/v7OxgfX0dOzs7GBoaws7ODhoaGnDo0CF0dXUZ8hLQ3JV7paurq1U/Pvaxj6Gvrw+zs7O4fPky0um0wfgn+ZuPG/EdzYXNzU1sbm7ilVdewfXr1+H1elXehMbGRkPSSTlniC68bqm88igrbiwg0PWFL3wB6XRayeXR0VHE43Gsrq4WyCMJ4IsBBF0xe1YHJKjPdPwpJd7L5XKIRqO4fv063G43qqqqUFNTg8bGRjQ2Nqp95bQeccMI8So3gHGDFy+6PZt8PCVPUrvpv1xjJX/ROsDrI3rzM6c53em7NPpQ3dXV1QXygSeA2tjYUFn5SRblcjkkk0mkUiksLCyo6CA59qWMrVnRYYViOvhBQJcOtB606Gisq8usLWb36Xh7v3bs965izxT73QyjHeQ9Oh2VyyP6bBZ1cpDyMwWgzSwo/xrlfsHph33GTNiblX8NwMqLBP7F3mmmZBd7ht5hdm2/Ihdfs8WIf5cAhyvelKyAAHJ1dTU8Hg9qa2tVMo66ujpljechqLwvtEDRZ7N2SMuoXMxKXRR0gklHX5m4hC+UZkCf86xcwGX9vEjAzxd96is3BnDFm8LxhoeHMTo6qoD0xsaG8rzwhblYaHapC8p+/SjGp5w+nE4UwuxyueDxeJQn8bHHHkMkEoHb7Vb8xpVUKlzBJX7hYIGPhe5PepwzmQzi8ThmZmZw584dXLx4USmUuVzO8Bznj/0MBDSHHA4HAoEA2tracO7cObS0tChllEAX7we9i/7IC5PJZLCysoJbt27hjTfewPz8vCGkWjcOPCzxxIkTOH36tPIQymgIKmtra5iamsLNmzdx4cIFrK+vG/alUr1WqxVtbW0KkMm5sru7qzyU09PTWFlZMRiJqG0dHR1oa2sz0HZnZwexWAxzc3OIRqPq/UTT7u5uhEIhw7js7OyobLryeCwe8cKVEZ2hi4dwUx12u73gSK69vT2VQ2B9fV2FeNOebrfbDYfDoY6KojDj4eFhPPjgg4ZxqqqqgtfrRXd3txpnGvft7W1ks1ncuHEDdrsdbW1tCsjQfGhvb0dZWRlisRhisZjiG+rn3t49I9G1a9ews7ODQCCA3t7eAj4gg0NHRwcCgQBCoRBGRkawsLBgMKIQbbjxYnFxEWtra5idncXOzg5qamoQDAZVgjWqXxfZQ1sXjhw5gvr6etTV1SGZTGJ2drYgqzp/P/9M/Mm9rzs7OxgYGFDHHFFYPQCV7E1msJVyTcp6ndynz7T+Wa1WPPDAA9jc3MTGxgamp6dRXV2N2dlZxGIxJJNJtRVE7l8upZQKvPh9EljJkOP19XUsLi6q+UJHeXV3d2N7extutxtOp1OdayvzHOjWGNknbpgwo7eZTlxMZ5b36nQFvr7y9UvShWQTj3DgY7y9va3mbHV1Nbxer9bYub6+juXlZSwvL8NmsyGZTGJzcxPb29uGbUDSMFtq3+TvH7aY0ex+gKrUp4rVIflFd033Wac/7gfUi5ViuvdBiq6dpfA3XZN8IOmjo9dB2vwzAaAPUnTM8FENtlkpBUybMUapQLzYJDP7zO8vdl13v+4+Mzqa1Vlssu9XZ7F7D/K7WVv5NbMtAhyg6pQA8vKR4t/V1YX6+no0Nzejvr4eTqdTeZKp8PPrZDInLhAo9IsvZnyR2tzcVMoHVyoksODfubWaK7dcAdaFbEn6kNJFFmoK0yJjwN7enjpWg+qQGUf5GOh4YG9vr2APFheWvN30nmw2i5mZGbzzzjsq0U4qldIelyT/5PtL+X6QolNUOG2Jj7hVnxSPSCSCs2fP4ty5c/D5fHA6nQVZtDl/6pRYAIYxkh5c+qwDvwSMk8kkLly4gFdffVUd/bOxsVEAtM3oKdtK7aBIDavVisOHD+O5555Db2+vCnHm+5bouWIKFGVkvn79Ot5//321n90sURjRvqKiAp2dnTh//jw+/vGPK8CgU9TJwz08PIwf/ehHuH37tkoWJeUtJWr69Kc/rfYhS75PpVKYmprCyy+/bABfxCPV1dVoaWlR407ygdpx4cIFdeYuzU8K/z1y5IhK5kRAKZvNYmpqSiXFo/dQdn8zeSB5g8AngX3aj+90OgvkMp27vLS0pLKHWyz3vKlNTU0qqy83KqRSKRXVAEDtY7PZbDh//ryiWyaTUe3a2dnB9PQ0AoEAmpubcejQIQMotdlsCvSOjY0p4wrn23w+rxKELSws4Pd///fh9/sNspwKAXq73Y6vfOUr+M53voPr169rgSzNt729PWV4WllZwezsLE6dOoXHHnvMkKyJGzFIhlM/rFYrIpEIQqEQurq6cPHiRdy5cwdXr141HDPE1wBe5Hdq187ODjY2NvDee+/h5s2b8Pl8eOyxx/DAAw+gtrbWsPZRmC4VCbC5LOIyR76b1kKbzQa3243Ozk51FNbLL7+MyclJzMzMqL39xdYHqSvJUgpA0T3DATTNMb73l457eu+991SSz6NHj6KrqwsNDQ1wu90GeSPfJUGozmhl1l7qEw/PprGQXmwJjjno5eCUP8Ppy/mR1npOe6krUaE+cyM/8QQlSu3p6cHDDz9siBSbmZnBzMyMAtgks2REjKSJGb/LsdQZBSRdpY5iBkh1urmOJ0vhy2I6+H7lw2Ce+8UQpeKgg/xerJjp9mbjXgyHmJV/cwBaVz4K4CyZw+xzqW34sG0qlRl079FNBl377oepdaWUeva756BtkYJPJyR1hgcJPLiST4loyNtAiyIdO0J7T+koKQ6GpGWZh9JS4YuZ7sxlCq+iTLtutxttbW0GYCoVFr5QcMFN90uPNaeBWeH7+njYrQ6oc+WcFAKuhHLvl6STmRfFYrEgm81iaWkJ8/PzuHPnDpLJJNbW1pRHiqzWMgEY1VVsLnOF7KMqusWR+kz/aW8lefBOnz6Njo4OhMNhRCIRFZ5NHkLqE1dM+dFkVDhN+X5xUpK4J4D2RpLylcvl8N577+HOnTuYmZnB/Pw8YrGYwSOgM0YUo4EEzjU1NThy5AiOHj2KI0eOIBwOq/3/UvHgfE5Ah/pAyX/+9m//FuPj41haWkI6ndZ6LXhbiH8PHTqEhx56COfOnYPNZjOEvcvnkskkZmZm8M1vflMlypHgmUJUa2tr8aUvfUl5Q4EP8gCQInjhwgW8++67yGazhvYSsHe73fjCF76ApqYmZbgi+m9sbODy5cuYn583GNOqq6tV9n7uAcvn88hmsxgaGlIGEOLHmpoaBAIBlWxOgj5epFeOFGRKlMYNamRkSyaTGB8fR2trq1K8yXCRzWZx584dQ72UkTwajars3dQmu92O1tZW9PX14dKlSwZe3tjYwPDwMLa3t9HU1ASbzWZI1EQ0/YVf+AVcuHAB77//vqIF7/PGxgaWl5fxrW99C+fPn8exY8dUJATnS6JXKBTCs88+i46ODjz//POGfZ68cKPVzs4OhoeHkUwmMTY2ht/6rd8yjJfkVfqN5Ci9+4EHHkB7eztOnjyJ73//+4jH44bkXFSfLFzmcUMYGS4otPvWrVvqOLRjx44poM/r3N7eVlsTZNSQzKGhCyum++12O6xWK5xOJz796U9jbW0NiURCnYmdSCQMx4fRO3Tr3EHluJTVEhjp1geSaZTHYH19Haurq2pbBp1Z29DQgFAopLbcyKRGZoCLA1yz9hIN+PzhBg2dTidpT8+QcYTPGR0P0X26saS6OK+b6RVc1pI8zufzcLlccLvd6OjoUFFOuVwOq6urKpN7Op1W+UtkVJnsuxkA3q+Y8ZCkRal6fjGQup/uVayOYu/dr34zkFzq78Xm2UepS5X6Dp0+ctB2/EwAaJ1A+ygtGfL5/UDnR132sxbtZ1nh9+iuyd95H0vpl9mkkXUWe86s3vsVaKW8oxgo5N8lWKaD2ymbLIWQWq1Wtc/U5/Ohvr5eXSOhTwsAfz8HNBxgcoVhv3ZJwUmebVIaivWZjzUP2St1DpWy8JHCaVa4MJMLm1ROdM9ubW1hbW0N2WwW6XQasVgMy8vLmJ+fx8jIiDpGQ4Zn60Kz5Xt0CtH9KF3FeNnMQEMeNbvdjpqaGjQ1NcHj8cDn8+Ho0aNobm6Gx+OB0+k07G0uFhlhxg+AEfRwhUuC0Uwmg0QigYWFBVy5cgV3797F4uJiwbFPEjSa9ZsKAWfqs9frxaFDh9R+1ZaWFjWf+DzixgbJ07u7u4jH44hGoxgbG8OtW7eQSCSQzWYNe0JlO6kdNpsN4XAYx48fR3d3N4LBoKnnGbhnhJidncWVK1cwMTGh9rXqFGraq9vV1QWHw1EgCwj4R6NRte9Z1uNwOBAKhdDR0WHw7O7t3UuIt7Kygng8rgAgPWez2dDQ0KCMefTM3t6eyhi+ublpeIaMN9zIIpVyyU+8vyTf+Dmd/L1ra2tYWloqmJOUG6KiokJ5m8lIsLi4iLm5ObS0tBjeXVlZiXA4jPb2dly/ft0wznSk2NzcHGZmZtDQ0KA868RDlZWVaG1txcLCAhYWFjA+Pm4Iu6b3b2xsYGxsDOFwGA6HAz09PQWgB4DipcbGRlRUVODYsWO4c+cOVldXDXTmcpDeQ9sLcrkcbt26pc6L5mCd01jyEWUopyPE5ubmMD09rYyMFIHD3y8Lb58EvkRPOjqMaB8MBhXYpz7Rdh5u3Cul6EKGy8vLUV9fj+3tbdTW1iIej6v/i4uLKq/Ffn3T9VP3+36gRK5TXBbReBK9ysrK1NGIFGGzurqK5eVlpFIp1NbWoqamBjU1NXC73coLrytcxhdrP5+rnEd4HbJe3Xoh5a28xvUO6c3V1cPvL0UvJPlBeWKcTqeaj1tbW0in0yr/B+UwoQzquVwO2WxWGSO5kVfKI/psZlgopmObtf2npRTT6w8Ctotd/9ekx0eB2X4mALSu7Cfs7qeUIqR+UuVf+n1mfSyVpvuB/oPU8WHuNzMcmAlz/hzfM0qWYBLWoVAItbW16OrqQlNTkyG5F/ee8fdxYMLDcHXtpPcC0FpouZJEY0W/VVdXo7Oz0wAmqB06kEH1kULDAYlU6vazXHIF1GL5IIxbgjIpQHlIqqSDtGzzhZmU4Uwmg5GREUxNTWFoaEiFn1LWbJ5ISvanGHDmn83mg2yXvK8Yn9F3CXK5pd1qtSIUCqnszKFQSPEb3UeeZ163zJhKhXsOOZ9xYCK9++QJpb+pqSlcvXoVly5dwtTUlCEMniv+ctyKKWnUbzr/NxQKoa+vD7/8y78Mv98Pm81mODZIKnH8jwOdzc1NDA0N4d1338XFixcNicJ4O3l7qB1VVVUIBAJ44IEH8OyzzyIUChnOVub8TnWtra3h2rVr+O53v6s8fDrwXFFRgePHj+OJJ55QIct0nZS6nZ0dxONxLC8vI5FIFGynKCsrU+dfU1Zp6vfe3r3zy+ncZwLf1F6Px4O+vj4DCKPnKMEaATtqs9vtRigUMowleZG4Z5xfl+PPt6dwfiDazc3NGX7b29uD1+uF3+9HVVWV4Vzg3d1dTExMwOFw4Pz58wU0bmhogMViwQsvvGAwYlBirFQqhcuXL6tcFHIu+3w+9Pb2Ip/PY25uTo0Jb9ve3h5WVlZw6dIlrKysoL29veB4K6ITJZOqqqrC5z//eayvr2NsbMyQWVqOBW3J2dnZQS6Xw9///d/j6aefxokTJ+D3+w3tlbKE10lJBm02G37u534Oo6OjGBoawiuvvIJsNqv6JA2Y/L+slxsSNjc3VTblaDSK/v5+PPLII6itrVUyhsaMeIRyZsiTAHTgRQfYuJysrq7GU089hY2NDayuruLKlSu4dOkSlpeX1VFJ0nCqo5NORun6z7+blWLrJ9GCtk5ks1k1X0nuNDc3o729HYcPHzZErvH3moFgHejhBtFiRdJCN5/59jJuUAOMuVC4PODRdbwN/HmdTJZh5qRbkRecIi8qKytRVVUFm80Gv9+Pjo4O9czm5iaWl5cRi8UwMzOjzhknAyeni+RBM3rtp+ea6Z+cpsXql/fKYqZr7Fd0PKzTCXXvlvcU66PZfTqd8aex/MwCaF6KMedBBu5+weCHtbaUKuw+7D0HvVe3iHxUE6FYPXzSFaOtGVDhAkGCWB4iXVtbi2AwiPb2duWhcDqdqK6uRlVVlTrChIcicmAsATlgVIrknl8qXDGTz1F/ddZ73n4zOnAFBjCGcNGiJAGU2VjwxVi+m5Qqqp9CziXNpYJUVlZWFEzv7u4im80imUzi5s2bmJycxPLysgrRprOZKXyPK0s6JUZ+l4JdV8x4zgxgm32XfMi9r9XV1aitrcUzzzyDY8eOwev1wuFwwG63K2MOB8BSYZfePd5GriiQYsK9y9Q2Gl8CzdPT0xgZGcGbb76JmZkZpNNplaVZp3wUo7Oci9T36upqRCIRfO5zn1Ph6YFAQPWPJ8DiHlBJW8qKOzU1hX/+53/GhQsXkEgkkMlktMfg8DZxo8TZs2dx9OhRPP7446ipqTGATXl8DIX0fv3rX8edO3cK9irTO2i8Ghsb0dnZic7OTqWMkhGC5kE6ncaf//mf4+7duwXeYAoBP3PmDD75yU+qOcb3qo6OjuKHP/yhIXkZ9S8QCODs2bNq3zTVncvlsL6+jmw2W5DwzOv1IhKJFCh+lGysmNJJ40UA2ul0qogFemZtbQ3z8/PY2tpSIHt3d1eBv8bGRoyOjhrm9vLyMmZmZpBIJNTZ1zQ+lZWVcDgceOCBB3Dt2jWVFMxiuZdhOpPJ4L333kMoFILH44Hf71f7tcnI0dzcDIfDgaGhIXUsFJePNO4LCwtYX1/HX/7lX+ITn/iEymwuwSDN70AggF/5lV/B7du38eKLL2J+ft4QYSDBCM3HqakpPP/887h06RI+9alPobu7GzU1NYb5z9dHXs/e3p7aFnH48GG0trbi+PHj6sirtbU1w7t18lAnL/mWj+3tbQwNDWF6ehpvv/02Dh8+jFOnTqGrqws1NTUFc5bayNcfPl8AGJJpVlZWmmZfpgzxLpcLfr8fDz/8MFKpFObm5vDaa68hHo8jnU6rucTXWaKxLMXkmO67WZHrBt8aQ78R71EyvcXFRdy4cQMvvviiOiu7u7sb3d3danuY2V7vfD5fkFuE+rmzs6MF4zSGvI0km/hv1Ha+bvE5qQvF59e5rObblGi9kaCKH5XIjTG8cPlNdOB8Q8eBNjY2or+/X2WWX1tbw6VLl5BKpZDNZpWnmp9JrVsvzPSJ/cafPpMs1vXDDITS9YO816wtOv2Sv1+ujWb6zYfBC/vdp7v3IO8sVr9ZGw5S988UgC51gH5S7/2/0YryYZnto3j/h7nfzNpr9n+/e/gf7SelUGy/369ACiUroTNSeTZjUgBJETV7dzHwVErRKaH891JC4PhixQW2XNx0xgipYJi1kdrB2ypDxczmpg6ESmCysbGBtbU1ld15dXUVmUxGZSNOp9NqPx4HghI0l6oUyu/3M3/MjDdUpBeVsrQ7nU4cOnQI4XAY4XAYhw8fRkNDg/K+ysJ5cb9FTtdXnbJKtKfzOROJBG7evInZ2VnMz89jbGxMJV/jnlydgiDr1hmrSCkOBAKoq6vDuXPn0NfXp47hokRhcm7pFnxqey6Xw9DQEIaGhnDjxg3EYjFsbGwokKdTlKlNdH7vyZMncebMGbS3tyvwbGb02t7exuLiIm7evImRkRFD5mfebwJlDocDTzzxhPJWynvy+TySySQmJycxOzuLtbW1Au9ueXk5mpubEYlE4PV6DeOQz+eRTqeRSCRUWK3kG5J7pGQSP6yuriKRSGg953a7HW6328BLxCs6wxdd5zQnOWSz2QzGR1LeKTcBHeVDCnxNTQ06OjpUxAMVOlZqeHgYfX19sNvtik50/N/Ro0cxNjaGeDxuaNfu7i7S6TTu3r0Lq9WKc+fOGdpPRh2fz4eHHnpIHa8jE8Ll83lsbW0hk8lgdHQUt2/fxubmJlpbWw3gjCv5lZWV8Pl8KiHWD37wA9M90RwEb25uIplMIp/P4+LFi8hms2hubkZra6upkk99oXEkXqb/Dz/8MEKhEIaHhxWQl0YxqbjzeSABHEUJbG5uoqysTJ3B3draipaWFrXlRNZrti3CTGbJwsEV5RxxOp1qa0MikcDKygquXLmiDK58rZDr2E9Cpyy2nsj1ijz76+vrWFtbQyqVQiaTwfz8vNo33d7eDpfLBbvdbtgbT/95ZBmXo1KW6QwKuvZynqeiW9PlthAzHuKyR77brHAQL9dx+iy3+FDfKZGh1WrFzs6OSuZG+6RpWwZlfSeji45fpG6k4x1q3359kut0qQCvFEC93z1m7S7WDrP6Dgrwi2GUf2lMZaZzm5WfKQBtVv61ge2/xPt/kiC+mGL+UbbDTHAWA1zyOVoEpaLOvUqklFmtVng8Hni9XoTDYbS2tsLr9cLtdqvjQnjIEVd++Hf+R20oJjD3szByGvLjn3jdZu+RiwlZg82EAlfqzBZOoilvp+4eHYDi9e9XuIK9vb2t/lKpFJaXl3H37l1cvXpV7Rkkr5rOSqxbEMzA8kFLsb6YGU0kj0hvs8PhUOGxjz/+ODo6OhAMBtX5wtK7T4WfBc4VWFnMlEI5PhbLB5lj19bWsLCwgKmpKfzoRz/C4uKi2kPGrfMyVFt+5rTQ0aCiokKdK9vb24tnnnkGTqdTJU3jSh9XkKUBiQDR5uYmYrEYrl27htu3b2NkZEQp9NKwIseHvHPhcBiPPfYY+vr64Pf7C0C87Gs6ncbk5CRef/11zM3NKe+t5IeysnuZrGtra/HYY48hFAopwEztKCsrw/b2NpaWljA4OIiVlZUC7zO1taurC+FwWCUf48otnW2eyWQM9ROAIiVSzu1UKoV4PF4AoMvKylQSRCljSLGUha7L0GCLxQKn02mIgKHxo6NpeCb5srIyBaDfeustrK+vK17f3d3F2toaBgcH0dbWBqvVqt5B43no0CG89tpraksJl0+bm5sYGxsDAJw+fVoZSakOGvtTp05hcnJSZf6Woc6keEejUdy6dQu7u7sIhUJqbzsHaURzq9WK+vp6uN1uXLp0CXt7e4aM37x++o3es7Ozg0uXLqmkVD6fDzabrYDnKPEf34vM10W3243Tp08jHA6jrKxMGSR40jTeDv6ZyyRp1CLDCh03dffuXRw5cgRlZWWoq6uDy+UyHCGmMxrQNQrVpc/yPnonFZIrPGw+FAohm82qeRGLxVTeDOLfUgA8p+H9rCU6ACR/49tLaE5sbm6qYwLHxsZUNvvNzU1EIhH4/X6D3KQtPDJaSeox1CZuwOCyWgJB3R/viy7EXJfwk98rZTKPWOPPUZskD/C2ES9yz7kMMd/b21P7p6uqqtDT02MYewLPq6urmJqawsLCAuLxuNo3TWNS6rFZEmQfVDcsVkq5v1Sgq9NfdNdLeedB+vKTwkjF+vZRlJ8pAP2vBZT/tQH6T6oN+wHXg7Sj1N/N7jPb5yMXTQloKXELhXQdPnwYzc3NCAQCcDgcBiWe/gjY6IAqLQYkHOQ7uTClEGYJgGUIE3+HVEz5u+UiI0Oo6TkZTsf3xvJFSApyDrYlOKH7aUHnoe5yL6lUeni4Og/T5so+tY2OmBkdHcXExARGRkawtramwq22trYMC6VUYnWKp1nRKV66cpDrHJDx34iWRAcCMKFQCL29vfjEJz6BUCikwvJIaacQVqmYcJrpDBe0r44rS8QTnNckqCEwOD09jb/+679GNBpFKpVCOp0uaqzQAVJJI9ke8vQGg0F8+ctfVplnrVarmrvSIyT5kOcH2N7eRjqdRjQaxde+9jXMzc0hk8kUZMCW9VF7KKz4iSeewPnz59Hb26uyRXN5wNtA4PF73/sebt26hYGBAfU+yQO0t/vo0aP4+Z//edTX1xv2U1Nft7e3kUgkcO3aNXznO99R3meqh0KTa2pq8OlPfxq1tbUAjEr3zs4OXn31VQwODqo5w5/nRkKiCSWpmpiYwN27d9Uc5bKUADSnO3n8+Xu43KL90Zxm5eXlqK2txezsrOJn+r+1tYWZmRlUVFSoPb4EoHt6ehTo56HqqVQK7733Hs6dOwev12sAwGVlZXC5XPB6vaipqTGEYNPzKysrKC8vx9WrV3H06FG4XC6DnCPA/+yzz6KxsRHf+MY3lDJNfeYGmlu3bikjxLPPPgubzYa9vQ+y4BNtaJ5XVVXhK1/5Cl577TVcuHDB9ExyGica4+3tbbz77rsYGBjA+++/j9/+7d+Gz+dTYc57e/f2wd+4cQOnT59GTU2NYa2i4vP54HK50NraijNnzuDKlSu4ePEiVldXCwxPfC0xA9Qy7JzO3ybvbzgcxrFjx/Dss88aws91/KMDTTr5JeUMB420tttsNng8Hvze7/0ekskk5ufn8dZbb2FoaEht7+AyjtcrZcf9Ft3ar7sujdvEi9vb29jY2IDFYkEymcR3v/tddY6y3+9HT08P6uvr0dLSArfbreQoD/Xm4yV1DZo7co2RY8P1Grmu6EKT6Vm+nkk+5DoHz59CegbX1/j6z8eM5/7QGVjpNIa6ujrVfjrRgb7T1g+fz4fm5mYFmuk4smQyienpaczMzKg1RpdnRbd26UBpKUBP97sZ7+iulfo+fr3UOng9+82R+zES6OrYr9zPOw46z3+mAPRPaylVkf8wdX8Uz37U7TNTsnW/6UAKV27Ky++dtVxTU4P6+nqEQiGVwZIWF8ogS/uYufJICwcHe1wA8r00XFHg3gSqgy++HFCQp0n2RybI4EUudvJ33n6qg47AkYlZqL2cjnwfqRRsZu+WQsbMGMANCvI+UlxzuRzi8Tju3LmDRCKhwk4JtK2urqrFiyty/D3FhL1uwTKjcbE+HaTw8eVGg7Kye0edeTwePPjgg2hvb0cgEEAgEEBjYyNsNpvKpC1DlqltpAjJqALOV3LM6ToVGepL40THHY2NjWF4eBjDw8NYX183HPdVCs3N6CHpcOrUKXR2dqK7uxudnZ0FR1NJhYzzE+d5+j8+Po6rV69iYGAA09PTWFtbK5plm8/h6upquN1ufP7zn8ehQ4fQ2tqqPIe6cSBQkEql8Oabb+LatWuYnZ1V5yzTO7nhqLy8HEePHsXx48fV8XJc2eJg49VXX8WNGzeQzWYL6FBeXo5QKIT+/n643W4Fwjl43tjYwMzMDJaWlgxAmPrb2dmJtrY2w/ygORmLxbC4uFgATihBDz8qifgpl8sZ9pZzEMCTz1Ef6Mg/8pzL9k9NTam5QYUDIAI79Bx5oefn51WSRy7zqqqq0NfXh+3tbVy4cMEgb8kLnUgk8Pbbb6OpqQlOp1PJRuoPeWubm5vx6KOP4uLFi8qwJOlBx1u99957OHnyJGpraw1RAnw8aUzr6urw6KOPIhgM4jvf+Y7B28UL9Yt4hZT3nZ0d/P3f/7068s3r9cJiuZelvbe3V3mnJfjkc7OiogJtbW1wOBxoaWnBxYsXMTMzoxLv8febyVv+mQM0vseVQGAqlVJ7euvq6gr4Zz9FX25J4usZ3cPnPhktOKB2OBw4efIkYrEY5ubmcPPmTRXOy43lsr/7yb5SZaNcc/h3uZbKdXhvb0+FG1N0EEVjUDSd3+9HOBxGV1eXQY+hOnVeYB344+2T32W/pWGWzyWz9+m8/yQ/yRive6eZjiGBoMXygRHT5/MZ5DI39vC+0VpLHvHKykrYbDZ4vV4Eg0H09PSokz2y2axK9khbhiSoNmub2bWDllKeM+NjSVszvc2snaW2udg8Oqje9WH1tQ/7/M8MgP4oFN//Vz66ohsH3QIof+eWS53STQm8rFarWgi5N4sUnHA4DJfLhZqaGuVB4tm0+TtpUZdtk+3iYF13H1e0zIAbXS9Gt1IEjFwYdKCGFgxpuedGAN0CLt/LF3H5jK4e3bOkVHJPMi36S0tLuH79OmKxmDpuisKjpKdL1i3ps59SZ3btIHKjGG/LiASr1Qq73a4S0NlsNgQCAZw+fRpdXV1wu90q8Y3cemBGU52BhyuRso188SZep/+rq6sqjHF1dRWXLl3C+Pg4JiYmDGfE6ugvP5vRhXvd/X4/ampq4PV6cfLkSXR1daG9vR0Oh8Mwr7iSJRdw/re5uamOfhkYGMC1a9cwPDxs8CaZgWdqG2U57+rqwunTp1UkAG+PnGfb29sqvP3KlSuYnZ1FKpUqOPea+mK1WhEMBtHf34+Ojg643e4CQwEZMZaXl3H79m3Mzc0ZkkpRe6urqxEMBnH06FHDedRURy6Xw+zsLFZWVtReXU7XiooKtLS0oKGhoeD9Ozs7WF1dRSqVKpj3DodDRbNwYESAnUeH8L5x8MwVWa/XqzWY7O7uYn5+XiW0koaOuro6lcCOP7O5uYnp6Wm4XC6EQiHDsxaLBU1NTcoby4Evl0+Tk5NYWlqC2+2G1+tVtCMetlqt8Pv96Ovrw9DQELa2tgzh3FQf5Q+Ym5vD6Ogodnd3EQ6H1dnIujlSU1ODlpYW2Gw2DA0NIRqNYnV1Fel0uoCnOC0pjHRnZwc3b96ExXLvJIaGhgYEAgFYrVZ1djcVCXD4fPB4PCqLcSqVgsPhwNLSEmKxGNLptJpXZgBKN184vxB9CPBROHomk4HNZlNGErmuSppJIKcrujWRy6Sqqio4nU5EIhHE43H4fD4VyUJHwFEGe5nrQfK5bFuppZQ1SNcP3W87OzvIZrMoLy9HNBqFw+FAIBDAysoKAKgtbJRojU4OMYsq0oF6Pqd0eoiunXIsZf2AMV+Lbi2TY60DpbrPcmwIRPPfdB5zqduRY6KqqkodK8mjQbLZLLxeL5aXl+F0Og2JyGiLAJeV3ClQjGd0Yy77eRB++yjLhwH7H2XRyQiz+4CPDif+zADof+liNkE/bF373VPsXZKZS51cZvcVa9d+AFkneOW9/I8KD1Ml6yCdkVhXV6e8y21tbQp8UEZsAsok6Oj9UgElwcvDJ7lQpz8ZVkaFsoXKumXf+O9k6eWKBG9fKYrA3t6eQQniIU1EO6qb+kr7Kalu7gXiigRXirliplv8ZD904XcWi0V5SGhP4+DgICYnJzE5OYnFxUWVhIqOaOGWZBlCZ/ZZ0uggRXf/fnwtv8ux5lEMlZWVqKurQ1dXF44fP47jx4/D4XDAarWq7Kn0LPci8oyjZgqM9MjKezkvbG1tKa8hJXuiBf/atWt44403MDExgZWVFaXMSiAoFSOzIpUdaivtRX3qqadw5MgRHDlyRO2BNaM5/S6BLP3P5/NYWlrC+++/jx/+8IeIRqMqCYzOW65rV2VlJWpra3H27Fl88YtfNChWujlLYCuTyeDFF1/EW2+9hbm5uYI9lPQOCs8NBoP41Kc+haeeekqFGPO5RXNlbm4OL7zwAgYHB1UYL7Wf5GEwGMThw4fxzDPPGMaZlLHl5WV873vfQzweV15D/rzNZsOxY8fQ29trAJAE+gicSn6jbS/0nUKI19fXsby8rJ6h8aF205hQfcSfDQ0Nar8yp/n29jZGR0dx7NgxtQ2G6qqursZDDz2E3d1dLCwsGEI4Nzc38dZbb2F7exuHDh0y8A0AtLa2Ip/P48aNGxgeHlbAl/oPQB1/tL29jUceeUS9n+Z1VVUVfD4fTpw4gRs3biCfz6tjtzif0bzb3d3FN7/5TZw5cwaPP/44ent7DbKXz12KinI6nfjqV7+K1157DXfu3MGtW7cKMsfzd3Ev19LSEt544w1cunQJ/f39eO6559Dd3a3WPeoL523pQefe2eeee05FCb3yyiu4fPmyCoE3C/HVzWe+rhCQ2NrawuzsLBYWFnDhwgU4nU4cOXIEPT09ePzxx5WxpljdUtbx9UyuhbLQmJJ+4Xa70draioceekglanv11Vdx584dJRulIagUcLNfMbtPBwp0cljKESq5XA7pdBqLi4sYHBzEm2++qY54qq+vx7FjxxCJRBCJRFRCNz5GEkByvUH+zvUAel7Xbrk+8Pv4/mw57tL7zJ0Cum0+9AzfR038T3JZtl0XvcD1RS4LeZtIhlDCWeCDvAM0L3O5HDKZDFKpFEZHR7G4uIi1tbUCnuI0LabzmOn6OnpzI6DOy2/Gf3ysPgre/jA46X4wiryvmL53v4aAnwkArev4/RL6w7yzlHff70DtBxoOWq8ERrKUAiTMfpeAWHddCmK+BzEQCMDv96OxsRH19fUqtNVms8Fut6vkNxzQcc8yX9x4P7lg5YKQBCrfN8r3v8nwWBn+xxdrLoyJtnwhl/WQUKd2yr2WfOGnhYPXR+/UgQyqnwwKe3t7ShGjdsowdv4nhR/1k2hD/ZeCf2trC+vr65icnFQZkMnTubGxofZLUtt11m/5Th2f88/FlDdJF1mKPSN5hz7z7xQWR+Cku7sbbW1tOHbsGAKBAJxOJ2pqauBwOAxGHqqLKwB7e3uGseTKLY9s4AoTKTbS00zXLBaL8qBsbm5icHAQN2/exODgIBYWFpBIJNQ5qXI/u24xN6MTpxUPTXW5XIhEIvjN3/xN1NXVqez2upA8qWBxXqffd3Z2kEwmcfXqVbz44osqSREBIsmTgFEOUbvsdjuamprwq7/6q+js7DQcCQPAoGRRoaOlvv71r2NwcBCLi4uGI9Mk2K2srERbWxsOHz6MJ598Ej6fT9XL69/b28PS0hLu3r2L9957z+BBp7YQGP/4xz+OI0eOaBXNra0tJJNJDAwMGEIIidbV1dVobGxU+R94u7e3tzE7O1vgnaX+hEIhFdpMICiXy6mQRQm6if7cIMPnDHk6SdHlspKyvNP2Fp6tu7W1FSMjI6iqqjJ4Qy0Wi0qyNDc3h3A4rPYYk+ExEongU5/6lDoqS86Z7e1t3L59GxaLBR0dHfD5fKofXJG2Wq34+Mc/jkAggBdffBGrq6sFoZrUn0wmg6tXr2JxcRG//uu/rrYXkcwgetCzFRUVcLvdOHv2LFpaWuByuXDt2jW1JUHORSk7eT/KysowNTWFp59+WkUj0frF57hOBlLkBJ1F/3M/93Oor6/H8PAwrl27ZjiPW+dFK6abSLlExpirV6+qOXDq1Cm0tLSgs7PTkLGbr4nSCEH9kn3jf8AHe7RpPeM6CeU9qKqqwnPPPYezZ88ilUphamoK7777LpLJpPIuFgM7xfQr3X3F7ilWdOs18MHRT1xPoAzymUwG0WhUeaDD4TAikQgaGhrQ2dlpmG8SrHK6kiyQgJp/1xnZZR2kN3AHgew7tcNisRTsgeZrBY2jPAVBF4nH9Ri6j4ebE2/odCGen4TThsLNq6ur1furq6tRU1OD2tpaNDY2qgi8jY0NLC0tYWVlBfPz8+pYSJ0RmNZ5aq+ZLiR5w4yexcp+eILrZsXq+KiL7DO1Zb9n5LOyHIQ2vPxMAOiDlFKE1octP4mB2q/oBKjZwkjFTHk1u48+y3olg8rFSi5g5eXlqKmpUfuPXC6X8iI7HA54vV54PB7U1taq0DMC2Dxkm3tXqG5paZZt0PVD1ydZJwlnrizI+uS7dQJQAiFOf/kZMO5Z1lkP+XOlAkTZHrnYmS3IEpQAHxyrsr6+jnQ6jVgshvX1dayvr2N+fh6jo6NIpVIKNMuENBKs6ehhRh+z+3V91tHjIILXjJ8prNTr9aojaVpaWhCJRNDZ2WkAzWZZ3WV7+OIkvSpm7ZYee/58Pp9X+7NGRkZw9+5djI6OYnp6Gul02nRcdPTX0UdHEwKPdIZ6a2srOjo6YLfbC46DkkqMLpyO88ji4iKmpqbw/vvvY3x8HKlUyqDMm7WZyx+/36/2nHZ3dys5U2yO7e7uYnFxEUNDQxgeHkY8Hld7nvk7OR2cTid6e3tx7Ngx+Hw+g4JIhRS1u3fvYmhoCOl0ugBwWiz3QuC9Xi9aWlpQV1dXcEwLACwtLWFubk6F3/NxIl7t6OjQ7ofd3d1FNBrF+vp6AQ3Lysrg9/uVh17yI/cyyyKBJT1LHldpJNzb+8DQR+PFec3hcMDhcMBms2F9fd3w7NbWFlZWVjA6OopgMFhwbrfNZlNni1NCIGksymQyWFhYwMDAAB588EHlseX0rqioUJFQ/f39uHz5csHZwlTI6AIAV65cwcmTJ9U2JKIt0YkKGRj29vZw7NgxZDIZzM3NYXl5uWAvsqQdAehMJoOpqSnk83m4XC4cOnRIHccm1zA+H4lvuGG6oqICtbW16OnpUUZsOus8l8sZ2nMQHUeuORQ6vb6+jsrKSsTjccTjcRw5cgQOh0MBaf687LtuDSBe4hFYsh1UOM95vV64XC74fD7Y7Xbk83kkEgmVRIqONpIGp1IKn38fhT4q383rp+s07hQBQOsSHZG1srKCZDIJl8ulkmjRPCUgLnUf/v5S1lS6R25FktEDsl5uTOR16IxW/F0SdEndj9NOxzuSjnRfMd2R2sbrpDWxqqrKYNBwOBzw+/3w+/0qIzwl3SOnw9raWsGaoOsb/11+NhsHXTHTucyeKxVLlPJuXb26ttxP+ahx388MgNaBn3+Jd5YKWv4lyn6CWAd66bOZcq4TaBwA8MKBIQEFEoocRFRWVqKhoQHBYBCRSESdC2m1WpXll/Y7l5eXK+WMe47pj4QnD2eWQlT2EfggPJPTTtKR1yczosp6dWHMEpBIuunANP1Oz+j2YUqFnfrD6+V18rq510kuiFIJkQsav8b39iQSCSwsLGBychK3b99WWSlpvzMPs5RAz0zp0s0rs4VBNw+l0Jd0kN8l/3Pe4ONL9CBjTlVVFVwuF7q6unDo0CE888wzKou2zH5OCqkZT3IFlivVXLnligRXQCR4kV7C5eVlXLt2Dd/73veUt5aDHuJxSbtSFiw+B0jZpj12Dz/8MI4cOYK2tja4XK4CxZVniOVzjEeAcIBH5zvfuHEDb775ZkGiJZ0Sx8E9ZZJuamrC0aNH8bnPfc5wnBKPIpH1bG1tYWRkBC+88AKi0ag6zkvKGu59r62txZkzZ3DixAkDmJPjmcvlcPnyZdy8edPg0aZ7yRvY2NiIhoYG+P1+RTMuoyhzPfeu8nbZ7XYcPXoUTqdTXaM+b21tYWJiwnDsFd1DoeO0h5d+48flmNHfTAbKI8r4/bz/nA+Ae9sdKCFkKpUygBdKgnb9+nWcOXOmoE2VlZVwu91obGxUZ+tKBXxzcxPRaBTvvPMOjh8/rvZpc3losdzbE97W1oby8nIMDQ0VhDVToXDO1dVVvP7663C5XGr/KfGcbi2trq5W+RK2trZgs9mwtraGtbU1gxzQ0dpisWBrawvRaBTJZBJLS0twOp1oampS53jz/kgZQ2PEZV9FRQU6OjpQX1+Pnp4erK+vY25uDolEwhAOz9eXYoXLfj7PyRtNofYulwtutxuRSARut1slsuPPEh13dnYMeod8F90jtw7IttAY0NFfVqsVLpcLTU1N6ljFV199FQsLC+pYMzMjpO49VMxA9H7AwQyoSPDIi+Qz/p1yL4yMjMDpdKKurg51dXXo7+9HKBRSW+TIgaFby3TjyT9LwCk9xVIWWCyWAr2Le3l10Y1mhY9pMR3CbCx045nP5w0Zv/k9xJ/SiCl1CZvNhpqaGkQiEbXG0ba3WCyG+fl5xGIxZdjke665TkZt0PVbpw/Lz2bP62jI79fhBjPwbjZWB/1dvqPU9hYrB9V5qPzMAOhSBPa/djmI5eVfq04zhpeAgiv/ciEmD7HX60UgEEAwGERXV5fyYFRXV6swKVK2dYCBhDTtOQY+ULiBD8LeOAjQCRMzYbi9vW0I/eYhldzrTPeQgON954o3/U73UV+40JahZWVlZYZEEpyeMgycGww44ODeEQCKHtLIwAE5Vzhl+6htPMMx0YaOmBkZGUE0GsXMzAyy2SxyuVyBl1mG0u4npIrxsRnQ3u+5UorkD90fN9pUVFSgvr4enZ2dOHPmjMogTbzNx4/GlS+aHPBwvqO+yNBhelbyOdXP6cznQyqVQjQaxfe+9z2Mjo4ikUgYsppzhdeM5maKmgSLfK52dHTg+PHjeOKJJxAKhVBdXa31epm9l/iO95eOKvrGN76B4eFhLC8vF4QamykQvG12ux1PPPEEnnjiCfT09BQc5UTAjveRwOW1a9dw5coVDAwMqORc0iBEtLDZbAgGg/iv//W/oq6uriB5FDcUrK6u4nvf+x7GxsYMxwbxPlRUVCAcDuNLX/qSSpDFQxJJ7ty4cQOXL19WBi66RuHfbrcbJ06cUB5oHsq6ubmJu3fvKlBKzxINGxsb4fF4DDkgKPqiqqrKIEe4gkMJAanNxKNkTKVwUW5ooyRTlFiK0213dxd1dXU4fvw4ZmdnVV8tFovKjD4+Po61tTXl6SU5CwA2mw3PPPMM7HY7FhYWCuhN3tvJyUlcvXoVHR0daGhoMMiDvb17SYXoyKjHH38c169fx+TkZAHtiX/z+TxWVlbwgx/8AMPDw/it3/otZbzhe925vKe18tFHH0V9fT0aGhrw3e9+F7lczsDzZgCL8kvkcjn8z//5P9HX14cnn3wSHR0dSgZJYxG1mRvyaG4QkLLZbPjyl7+MmZkZjI2N4Qc/+IHaBnK/sppkEfECZepeW1vD//f//X8IhUJoaGjApz71KRVdQMc0kkfV6XQWrGXAB8Z90k1kWDLnd2kspXqIXymRXFtbG7LZLBYWFvDDH/4Qc3NzKrSbj6eZoUPS+6C04s8WA0M6EEXAlfpPc85isWBzcxOpVAojIyO4dOmSMh7U1tbigQceQCAQUGd4c71Qx8NUv2wfyU6a+/QMlx98jGQ+A/ldvouvT3w+Sf2N04SP89bWlrbtVA9/htOYdEWaP5zevB2yH9yRQrSpqalR4d5krN3Y2EAmk8HExATi8TgymYwyAnL9tNjazWldCh8WK2Z8awaiP+qia3Mp/fioMNNPNYDmE6HYPWZg6sOWgwzCTwI8U73UllKtPVKQmtXJ7+GCjStVlP3a4XAgFAohFArBbrer7MMUpk3gmfak8Tp0Wa2514FAi1RUabHlQogLIl0/ZR30WzEe4del4OYCVHq/6bOkHa+Xj8l+QEA3xlw469ovQbIEsTqhDkDtlcvlclhdXVVHmVCYNmVk5SHA0gIvQyOlYJU01tH+J1l0/C+NIzSulMSutrYWHR0dCAaDCIVCaGxsVPtaiZd14JcKpwPnf13ooZniQ/XQoskXT0occ/XqVUSjUSwuLmJgYADJZBK5XE6FmeqiGOTnYvJEtp+y9p46dQo9PT1obGxEJBIxGBSoTjOa6OZOPp9HMpnE4OAgBgYGcOfOHcTjcWWN5/fp2kjtq6qqUvv7zp8/j+bmZtjt9gI+leO3u7uLbDaLaDSKN998UyWf4sqipElFRQU6Oztx+vRphMNhBVapcNrTXsSrV69iZWXFcJYy70MwGERTUxPC4XBBGDj1gfY38qzQVMrK7oWT+3w+BXapfuIfSiLGt8bQsxUVFWqrDedhoq0EoXJsOQ9xPqZII5mALJ/PI51OY2VlRWULp2erqqoQCATQ2tqKioqKAtBGic3GxsbQ2dmJcDhsyAReVnYv03QoFEJdXR2mpqYKeJAA/PXr19UeUZ7UissIu92OI0eOGOSj5GUa962tLbWf9uWXX8b58+dVUjmpjPN3WK1W1NbWYnt7G83NzVhcXDQc5cXfw/mM6qBjuoaHh1XG66amJgSDwYK1ksac5gI3FNGYWywW5cm32+2oqKjArVu3EI1GEYvFCtaC/Yp8P287GUUoOzYA1NfXqwSNBMLM1l+qTxrIuQFR6lG6yAi+9pPuQ6eCPPPMM1heXlb77ycnJ9W2EtlH3Tqo0znM1kod3czouN97iTZcbyKDV1lZmSGUOJ1OY319XR0PSjlqampqUF1dbYiC4tsd5Lt1Ogv9rtPPuIGZ2svr4s+WAtjkvOT1cn6ne3TrpHw/faZniR+lIZTPL9l3/lmCbDJAU/Zv2r5CUX50fFksFlNbmriXWvZFp09yOnL6HFQn08kT3T3FntcVM11Fp9eW0kazew+C1X6qAXQppVRCfBSlFIGne+Z+26ibxMW+S8BgBiDkf1KgSFmi0Gp+LqfX60VzczOam5vVBOdAmR9/Ahg9trxwwcEnIVcweNv5/TpLpwSH8r1SwOtAAxc6ukVatlf3WddXfo1/1y14sh5dnRy0SRAAFIJ/EvhEFx5CxM+UXF5exq1bt7C0tIRUKqX26XDQrGu7GY0OKpDNhJzZNbpe7Br9lwswt2BTdla73Y5AIID29na0tLTgxIkTKgM88TlXzqXlnIM02Q7+Z9ZGMyWJFnwas2QyqcI133rrLczOziKRSKgwZxpfqRTIOSAXJ91nHrXhcrkQCATQ0tKCRx99FO3t7WpLhuRl3dhzHuR9JOWNPIHvvfeeAplm4bK8rTxiwO/3o6OjA6dOnUJfX5+SYZJP+Vjm83l1lM3g4CBu3LiB5eXlAsWEv4+Sx7S3t+PBBx9ETU2Nduyo/lgshqmpKUxOTiKbzRqAOZdxdXV1aGtrM5xPzMeNPNn8OCneNovFokCjNFgCUF5KuZect4EnWeOyhpJTSR6XskDOOwLDFCbL+YQAdDweNwBoACqjOxkTZJQNGRMmJiYQCAQQDocLDFQOhwPBYBDNzc2Ym5srCL0lD+jY2BgaGxvR0dGB6urqAh4mINXc3Iy2tja1P5b4WcrA3d17x2XFYjG8++676OjoUHNIjilfc8iA0dDQoLzH+XxeZWo3KxwUbGxsYH5+Hqurq8p4RF50HtnE+6bjc7qvqqoKXq9XGWYAqNDoRCKhthGUCgY5D8j201n0a2trWF1dRWNjI5qbm5XhnqJcJO1KKTKCi/O8jm+5nlFRUYHKykocO3YM6XQaS0tLcLlc6jg48qDT/OBJp2R/zWhkBjaL0a1Y0Y2HDjRRewEo41wikUBlZSUcDgcSiQQ2Nzfh8/lQU1Nj2OMro1F07detNfI+HpnIASrJ9oPQpJhOINdUM5AtaVTs/ToQLa8XA360vnJaySO0SPavr68jmUzC6XRiYWHBcI45JXEkw4iMmqJ3FwO7ZjpBMb48qJ73ky7F+K1Yn4qVn3kAXUopNtClME4pjHI/wKFUwWn2rKyDfpNAUyryEjzT+a2kJNMRUk6nUymiPNkIX2SpyIyz8l28TTwEmN9HB9mTUCFQLQGcrs98QeSFvDncCivbSAoI91hT4cKWQpLoN/4+qRRIIWYmeOjdvE75XtkvWTc/AoWe5YoAeZ9yuRyi0Sjm5uZw48YNLC4uKiun3OMl3yGV5WKlGCAupejuLfabGW11fM8VVrfbjc7OThw5cgTnzp1TCbAIXPPQfr61gL9DKrd0TfKsbk5yvpN0pYUTuKfcxGIx/MM//APGx8cxNzeHTCZjCNWWAMGMh6XCaEYr7nk+e/Yszp8/r4Azn6MUBsoNCZz/ZF+IZnt7e1hYWMC1a9fw7W9/W+2zlNlJzcaVyyO73Y4vfOELOHz4sEpkxucO7x9vz87ODqanp3Hr1i184xvfUGfgyjGVIex1dXXo6OhAT09PQbZY8iSQh/PixYt47bXXtOCZeKKyshIPP/wwzp8/XyCT9vY+OHP48uXLyvsnC3nFT5w4YVA8qc9kKJMKFp8PPNRaKq8kJ3Tzn8APzRWiVXn5vSObKOyW0z+fz2NxcRETExM4deqUQXHe3d1Ve+zdbndBAjNKbHj58mXU1dWhs7PTsK3CYrHAbrejp6cHTqcT169fV4CZz4/d3V2k02ncunULOzs7+Hf/7t8ZDGx8HKxWq4o4mJqaUsmldHKSxn5ubg7PP/88jh8/jo997GOG0xLkGkB8UFNTg09+8pO4du0aBgcHcfnyZQCFCSv5s1S4Qv3jH/8YQ0ND6OjowG/8xm+odZwnEJPzibyS9D4aQ/LCPvvss3j44YcxOjqKv/3bv0UsFjOMO1+b9wMy/D76TDrAzs4O7t69i8nJSVy+fBknT55EX18fjh07psAbjR/JVh5NRGPGI9eknkBt4SG/st183gOAz+eDx+NBR0cHzp8/j/n5eUxPT+P1119XiTR5PfsBsWLrqNl6J3WfUvVUHbDgv5GxnMYzm81iZWUF169fVyekNDU1oaGhAS0tLWhpaSnYmiHfodNv+XYaeicHojR2VLiXmp4r1k8uZ2TEB6cRv4/TiOuF0qnDIyL59kAyMPK2m4FqyV98reRzXBoy7Xa72lZA83x7exurq6uGLN8UyaEzAuvmmxmPmv3O6Wx2r65es++yzg+DwXTt02GC/fRXXv4fgEbpAyGZar/7eTkoA5ZSh+6abuJLJVEHksvKylR2U7J0ezweuFwuFaJTXV0Nu90Oh8Oh9q7JRBJm3l4ueDgNSBiY9Y0/V11dbaibe5jMFjrZNtr/pAO2nJZSuMiwST4BeRgt9V9aHot5viV4kfdywcuVY+nhkDzAnyPFmBY1UjJnZ2cxPz+Pubk5zM/Pq6yPFPJLi5gMl+Xjs9/nYsVssTcrBxWUumelEsz5qLa2Fg0NDeqMTK/XC6/XC7fbbeBTWhxJAMstB7zI9/Ex5koap4fkC8kD5B0YGBjA2NgYLl26pBR32ouoU6rl5/3oy3mKK6F2ux2dnZ3o7+/HuXPnEAwGFXjmz3HDgqxTGmPo9+3tbbzyyisYHh7G8PAwYrGY8ozqst1Kvqe2VlZWoqWlBR/72Mfw4IMPIhAIqL3IcksDtYHm7c7ODpaWlvCjH/0It27dUllQOU1173M4HPilX/ol9PX1KbDM5wvVsb29jZWVFcTjcaysrJh6tcvLy+F2u+HxeNTRR5xupCil02lcuHABKysrBvlGCn5lZSUikQja29sNcorasry8jNHR0YJjkogmlOCR8x8HIzIhHZehlBRHGj7KyspQU1MDt9tteB/9X1lZwcLCgmG8CMRRdEh7e7sKYeR0JvAbj8cRi8UQDocL2kb7t9vb2zE1NYVEImGYa9T2paUllJeXY35+HrW1tSobMw9TpWis2tpafPazn8Urr7yC+fl5bG5uavlsb28PuVwO09PTapzPnz+v9ntLOcLf5ff7cfr0aTQ2NqKiogK3b99WuQ10c5rzK433+vo6FhYWsLa2hq9//et47rnn0NzcXGBQpsKNrZw/6X1kNCM94Rd/8Rdx584dXLlyReUq4EZxOd66Itc2+qM5RF6169evY2pqCleuXMEnP/lJBINB1NTUGACIzpBBbZHySQI1CXa4rObzn66VlZXB5XKhsrJSbb1YWVnB3Nwc3nvvPZVlXxo2i9HgfkoptJXf5TrM5TKnB+kQtG1ofX0dGxsbmJ2dxc2bN+FyuRAMBlFbW4u+vj7Y7XZDvhhaOyUvSOMdb5PUXak9POpLgjNqp64fOvDE+cFs3aTvfL+x1Ilk8lezwoGxbAeXMXLvNq+XzymSRWTcoiSnzc3N6O3tVfupNzY2sLi4iFQqhbW1NWVw5/qCxDsfhheLzfmD6I3F5olONzTDWTosdz/l/wFoUQ5C0P0GrFSQvJ/VZb/f+HcJ0DhIoEWegLDck0x7mV0uF8LhMNxuN2pqalTYIPcwm3mxpRdX0sbsGX6PXNB0dJSKps47rKMVV/rMwITZAlLsvYAxAZdO2ElgTL/r6CQFPlcEzNqpa+ve3p46ZooEJykeGxsbmJmZweLiIhYWFtQRKeSlMANgZkqQmfJGtCpWSpl3+80FOY90BgsJmMlr4HQ6YbPZUFdXh0gkgv7+fgQCAVRVVSnPEH8XVwB0XkxdO3XzXEdf+Z0DE77PKZvNYnBwEOPj47hz505BAhud5Z+/txhtJeAvK7uXkbampgZ1dXUIhUJob2/HoUOH0NjYqDLjyv1qci7LNnDAQmGCo6OjuHr1KqampjA/P19wvjPndZ2cKyu7l3yJzl8+duwYQqEQrFar8rLxucUNGXt7947SSSQSyss3OztrOKpG0ohoEwwG0dvbi0OHDqm9pTpvMHkgb9++jfn5+YKEUEQ36kdfX586ZkvyST5/L4x3eXkZ0WgUGxsb6hrnT7fbDZ/PVwBWib+SySTm5ua04dvkxZcylo8FP0NcjrGZx4PWHDIMyOey2SxSqRR2dnYKErsRzdvb2zE7O4vl5WXDs/n8vczmCwsLGB8fR21tbQG/VFRUwOFwoKenRymRcl2gPfDLy8sYHBxUmfd5e7gBxel0oru7GzMzMygru3cGMyVnku2jyIH5+XlYrVb09PQoQ5SkL5cxJLuqq6tx5MgR5PN5RKNRxadm6y+vk7ZHbG1tYWBgQGUlD4VC8Pv9itck6OCFG4n5XPB6vejp6VFzbXl5WckszuulrBvyu1yH8vk84vG42i8fiURQW1sLj8cDn88Hr9erksjxZ3WRBDo5LNsi1xP+O9GDPjudTtjtdrjdboRCIXg8HuRyOSW7c7kclpaWDPtV+buL6YXFihkwKEW/NHtOB6S4QYSSuGUyGTUX6AgyAHA6nQrY1dTUwOFwqIgu3mYdXfn75T26aBjZL1kH7xPXqbhsMdMHdTwj36Ojq1nRjbGOx3R6I72Pt5dkA+dD2iJDRiwC0TabDel0Wm2LID2D37OxsaGMkzrjxv3oFsXu/TClmK7O27Lf7wcB1v8mAbSOQMWIVupkOMhzZmCAt0MHJOUE5vfpFHzugbDb7WhoaFBHFDQ2NiqvEd3Hwy2pTh6WLRVrbhnjCrS0ZlH7eR94G+V13h+pEMrJu7e3Zwjn1gEZWnC5R4wsqLp38TGRfeDt5UqqDMEkJYQ8RVyoFQtpp9+kt42HKfF+0sIt9zrTO+nMytnZWQwMDKgkE5ubm0rh0lnDdQqErs3FFA1JR1lKWcB195ld04Eq/p14lIxJp06dUscs0VmfZFQimtDCwo1HnI+kp4joqVMIqI+c33Z3dw2eHz6WpOzS5/HxcVy8eBE3btxQ4FLubeIKjqS9blx09ORzjeRHTU0Nuru78dxzz+Hw4cPapIDFxklaykl5IRrEYjGMjIzga1/7GrLZbAHwkgYBXpeUdT6fD5/5zGfQ39+vMijTHOUAWgLc7e1t5UX567/+a5VUS8oyHv5ZUVEBp9OJ/v5+fPnLXzYAEB0Ncrkc4vE4vvWtbyEWi6mMr1SoH+Q9+KVf+iVEIpECQE59WFpawuDgIFZXVw0eZOpzZWUlOjs7EQwG1R5V3h/ytg8PDxv2MhMP2Gw2BAKBgjBJ/h4C0LrxJzkji8Vy75xdv99fYJDN5++dXZ5MJrGxsQGbzWaQuxaLRYVN37lzB5OTkwXGxc3NTQwMDCCXy+H06dPqOCqS2wR4n3rqKSQSCSwuLhZ44ClSJ5lM4jvf+Q4cDgfcbje8Xq9SVHd3dxXfWSwW1NfX46mnnkIoFFLbYHQAlHhheXkZmUwGzc3NOHbsGDo6OgyKPUUO8dBk4o/HHnsMPT09uH37Nv7hH/5BeTd1hhvZLxr7ra0tPP/882hoaMDZs2dx7tw51NTUFAUDJP8kTwL3vNH19fUIhUI4efIkZmdn8dZbbxlyCHAZp2sf5xG6RuPO5RrJZzK+ffvb34bNZoPX68XJkydx7tw5BAIBBaJ5pAnnOWoPzzzOeU3XPvk7X4uJRmTosNvtCIVCOHToENbX15FIJBCNRvHyyy8jkUgoOSOjyqTcKUarYuXDAhUzoET0kVnMLRYLMpkMZmZmcPPmTVitVpURn9bb+vp6w/YNWmt4dBCnLckmmctFRuXxseUh4FQP7w/XoXXjS3XowDtfk+gd/DdeB/eSy209vO3Ub95m3j7JD3wd5d95O8hIQe+3Wq2oqamB3+9X7+VnuZNBdX5+HvPz8wVGHjMe5X3W6YSllGLA/KMqUl/knw/63n+TAPpfanDu9zmzkEcu8CWQJeFDiT0aGxsRDofR3Nys9ihVVlYqpZfv4QSMizQAwySWijGfvHzfFhdk3Bqre5YLSvk7LxJocuDGASkP1+Lt5nVLUCPHigs0The+qOoWMk4PLhg57SjMnIoU7HyseWZVSUMOyPk5w1TovNGRkRHMz89jdnZWnftLR01RG3VePR1Y1tFKXqd7zOZWKXOuFIBd7LoOPHNgRR6n06dPo62tDZ2dncozSfOD72sm5YyDWapHNy8A43nkfLHnRg/ZXs4b3HBC4zw5OYmhoSFcunQJs7OzyoPBzwveL6KiFCMHAAMYpn2vNTU1eOCBB/D444+rrR12u70AwNJ3HqrHi/RYUXtyuRxeeeUVXL16FePj44ajnCRolvzIjXB0xm9DQwN+4zd+A01NTSqJF08wRDKL2kqKMwGuN954oyDUUkc34gW73Y5f+qVfwtGjR+Hz+VQ/uaGMxnJzcxODg4N46aWXVBIeadknWR4MBtHZ2YlIJAKbzWaQd2RY2drawuDgIF5//XXlJZf0sVqtOHv2LBoaGpRhiNpEnoZsNms4/5krck6nE42NjYZx5vVsbW1p94YTvSm8m57hRgwOoOX4UlRCPB5X2cw5PcvKypTRi/bo8uf39u5FbCwtLWFhYQHBYFBlROcKusPhQF9fH7a3t/HGG28UKMEkB9LpNF5//XXE43F89rOfVfSl45RovMvLy1FXV6eMl6+//ro69ozThde9vr6ON954Q2U6PnbsmAHc8SgU/kdRNCdPnkRDQwP+/M//HPF43JApnvMuH18egkrHdiUSCUxPT+P48eM4efKkSgQo114y+lGfueebAD7RpqOjA4FAAI888gjeeecdXLt2DfF43MD7Ul7xMZT8JL9zcEXzYmNjA6lUCtevX0dDQwP6+/tx5swZxUOUTwUoNKLlcjnD/lUOsvgY8MJlm9zGQp+5XHU4HAiHw+jo6FBbDd555x3MzMyo/fN8/CRg2a/w+Sv/c7odpOh0AfkbjT93UpCBg+j59ttvq+OxnE4nmpub0dDQoLa9kDFKB2qpTqknUikW8cT5SQJqHiUi38vHlvoo9UjJG9RGqY9KxweX1zrdnht85Hzg8oHLMzl/5DNUL3eU8aMCAagkiz09Pcjlcmqtoa0fqVQKyWTSkCBP0kbXVt0832+sSik6Xr4fLHbQZ/5NAmhZ7pfQH8Ugy/p09/IJRQsWCR+Hw6GOFaAMiE6nE36/X1nKeaIvssLLCSdDmqjQdTOlmJe9vT0liHRhrXzCS4uZ/GwGprjyJN/N+8WVTb54yAXELFxHp3hIEFts/Hg75WJVDMTogBCnG7/Ghdrs7CwymQyy2SxWV1cxPz+PZDKJeDyusjBzJYP3sRjw0n0upZTa52LjLD/rntctOhw4V1RUKINSIBCA3+9He3s7QqEQamtr4XA4AHzg9ePvk/SRPM0XXMC4R4wrdnSPzkDDFWkqBLQSiQRu3rypogfGxsaQTCYVINEZP0pVrszoyA0OlBCnpaUFhw8fRmtrK9xutwrXPkgh2cC/53I5zM3NYXR0FJcvX8b09DQSiYTWmy4VAz7GNM5+vx/9/f04fPiwAs/c6yhlNld2stks4vE4Ll68iOHhYaysrBR4IzmtCEQ6nU4cPnwYXV1dqKurU/ueaUy512t3dxeLi4uYnp7G+Ph4AXjmdVdUVKChoUGBGC7vuOxOJBJYWVkxnN3M7yOZX19fr/buyj6R3NCFYAP3jpoikCtpx/umq5uuybqJLtXV1bBarQVykOre3t7G4uIifD6fAnN8faE1r7q62gDi6XkCp3fv3oXNZjNkhqd20P7wTCaD9957z+Ax5vOTPPVutxsLCwuora1VeTk4bSyWe97xQCCAI0eO4NKlSyqRmm6O0rtSqRQmJiZQXl6OcDgMn8+H6urqAv7gY0B0r6qqQl1dHc6dO4fBwUGMjIyo82F5Pzh9OR/RXta9vT2MjIwgn7+Xtfv06dMqKkfOQc4HvHD5QvuiSQ/Z3NyEw+HA9PQ0hoeHlbGM85JOT9L9rlPUpfFxe3sbuVxOrZPhcFjluTADHhRppNOT5PuL9Z3+S6Mhl7GUiNHpdGJ7exstLS1IJpNYXl7GxMSEkhFSZypWzNZOM/1SFt2aW2xd0V3TRT9x4xmd8JHJZLC1tYWVlRUkk0kV4eHz+dSJAcV0T7N2SS+wrn9SDvA6JZ9Lfuc6pu4eWRdfs4rxuATiUg8kfjJzsvH383ZJ/Zffz3UTqeNQrglK3ud2u2G327G+vq7y5VCodzqdVpFjMucFb4OkkVmR9+6Ht8xocFDd9SDlpx5AS2b8KAi2n4AyY4JSgHgxS4kODMjQRDo2wePxIBwOw+/3IxKJIBgMorq6Wl3nHl6u7PJESHwBlmGY5JmRSqtOOJgJFQkqZXgrF3L8/TrhqwORcsLwtlE76J1SmPA+0fO6fvHf+PNcWeQJRKSglV5H3jZd4QqAtBISCOGKQSqVwsrKCq5cuYLFxUUlxHjSJV3SNCmc5X8d7SWdSl3ISy26BX4/BYArJXzO2Gw2lR20ra0Np0+fRktLi8GTRR5WvnhwunAvKP0mQ02pDVKplfdKC7bOok2/097PyclJfP/73zdkQy8VOJvRXsoY/jvRjkIOm5qa8Mgjj6g9xASc5bNyLkpFh4MZKru7u4jH47hz5w7eeOMNjI6OKku3jIzQLfr0ncCzzWZDc3MzHnroIZw6dUrtudN5NqWcoCNnxsfHVSIumZSKKyCcTl6vF2fOnEFTUxM8Hk+BoYSD6e3tbUxOTmJ8fFyFC+sUPfIaNzc344EHHjAkMJRjvrCwgJWVFayvr2sVJ6JNKBSCzWZTY8ENi4lEQp2rrSs2m0151jmf83nBvRCycIWK2kVtpMgPXSEPdDQaRXt7u3oP339Mc91msyGbzRqepzZubGzgzp07aG9vh9/vN4wlye5wOIytrS24XC41zyTNd3d3kUqlMD8/j/HxcbhcLkM0CvFaWdm9fYcejweHDx+Gz+cz9QhzcLG5uYmZmRlks1l0dXWhsrJS0cbMYEVbcSyWe5nFn3jiCVRXV6ttOpzuOhnB11tqWzQaRTqdxtzcnDpvmfapy7nDn6MigeL29raKguvv70ckEsHo6Kjag03JKnV00bVX/ia/8/WTwFoikcDU1BQ6Oztx6NAheDwew1GbvA/c68zXIanbSB1AJ6f4c7KtZLwhj7TH48Hm5iZWVlYwOjqKTCaDdDqtkuRxmutoU0rRjZNOlzpIncXaoNORSY+xWCwKSEejUYyOjsLr9SIcDqOxsdGwjss5z/WwUooOjEmDtpStEvRJGu3s7CgDrVn/6XfdtWKAz2yumj3Pn9XhIV1fuDzmwJnTl29529u7B/C9Xq9BF81kMkilUohGo1hZWUE2m1Xyjv+ZRXLp9H2zPpZyjfezGA+b8eZB+P6nGkDrmMqs3C+4/bBFp/TTZ/mdL8DkZfb7/Qokt7S0qGRHPAxblyGa6quqqtKGBPPCMwoDhVYzWoj4wsgtopzhuLWQJyLhbSwGzmTGRAl2+bu5589sYaDQQQl8JcDnk4cEhRSk/BoVChvUhXeRskc05LTk7dQpJtyzw8OhotEootEo7t69i6GhIQWsSAmh+s0UNbP/8j6zUgxM65SO/cpB5y8fM+JZrgyTx+Pxxx9HV1cXWlpa4HK5YLfbDZ5TMkhRO0mB5YWfp0vKLM073m65L5UbPUgR5wsT/c77sr29jc3NTayuruI73/kOBgcHVagU91zpPLNUDqrwyHYRTQ4dOoRHHnkEjz32GGpqalTyLT5v+J5trsjIhVmn0K6vr2N+fh7/63/9L8zPzyOdTivvl864xt/LeYDaGw6H0dXVhS9/+cvweDzqvF7qlwSg1EYCtevr67h16xb+4i/+AvF43PSsTKqT5GpLSwuOHDmCT3ziE6iurtYaV6gvW1tbSKVS+N73voexsTFDYjTAGIpeUVGB/v5+dHR0wOv1auvb3d3F1tYWXnzxRYyMjBQcIUV1eTwetLW1GcaLy6F8Po/R0VEsLi4WyA2qw+FwoK6urkDe8rZIevF6yDNcUVGh5CXNGTLW8D2+HFTmcjmMjIzggQceMMwVGv+ysjLU19ejtbUVKysrBTxHybIGBgbw1FNPqfWDjxMZLAKBAJ588kn88z//M5aXlw19onGiqIl/+Id/UMe28bWI+kAGlqqqKnz2s5/Fu+++i3feeUcdZWRGJ2rz3/zN3+Dnfu7n0NfXh6amJoO8oD7u7n5w9jfJpmAwiKeeegq9vb34H//jfyAejyuPuhnY5OsTp1smk8Gf/Mmf4PHHH8fx48fR3d2tnqFs6NTviooKg55BNJPgkZLtud1udHd341vf+hbGx8cxPz9v4C2LRb/fX1d06xDnAUqaubW1hWQyidu3b+PatWt44okn0NHRAY/HY5BZPK8L3xZATgXieW7UkGs6py/RhetTXJ+h/lqtVrU/tb6+HidOnMDs7Kwy7PGj0czGUxadHlUMIOv0KN29ZvcVa48O9BKNt7a2sLm5qZLq3bx5E6+99hqcTie8Xi/6+vrQ3t4Ol8sFm82mZADwwbYpWT/XqWW7+P0SR0idzwzokv5AY8HHkniFdHnOk3z9oe86XVZGtXDDPPVbXtOtP7o6SH6Qbiz3/tMcqKqqMjzD9S060YYces3NzQanQyaTQTKZRCwWU0drcj2Vioyu4nQx4yE+TrK/uv9m9+33237lpxpA68p+RDADblQOCqIlCJaAj98j/3PvidvtRiAQUIlerFar2rNss9lUdmzuXdZZPSWT6xJ1SAVJRxv+uw506sI+OB3lHhO+oMl38b3YOjqZ0ZMrrFJ5MwtJl33iQk2+T3pcqK2y/bxvsg5OOxIscgHhdQDGMxeXlpbUOX6JRAKpVAqZTEaFbZJyKvdLmSmzpRYdMCt1bugEW7F3FLtXgib+nVtHHQ4Huru7UVtbi9raWjQ3N8Pn86k5w0Ev90xyYCcVNj7+ktd0YWVy7nPDk4z8oOcoXPvy5cuYnZ3F3NwcRkZGkEwmlYdGKvKlKE770VHSsKqqCg6HA+fPn0dXVxe6u7vV8XVSzsiQdbnQ8X7KkMqRkRFMTk7i2rVrmJ2dLehjKbzKQWxPTw8OHTqEU6dOwePxGPYfSjnG5ymBgK2tLfz4xz/G9evXDcftSLpyL2NlZSX8fj/OnDmDM2fOKPBsNha7u7tYWVnBa6+9hqWlJYM3Uq4ZZAB6+OGH0dnZqc0JQWCAtmqk02kDWCH6l5eXIxQK4ejRo4Z8CZI/Z2ZmsLKyovWGk6LEM2VzZZEACudLOf+3trbUnk56B/WLIqakosvBx/Lysjo9gNOYwE0kEkFrayuuXbtWoGBRG/lJBKT4SQBjs9lw6NAhvPPOO4jH4wVzmxsuVldXsbi4CIfDYTByyDEtKytDc3MzVlZWEIvFMDw8XBB5INtK9b///vtIp9Nwu90q2RLRTD5DMon25NfW1uJzn/scXnnlFYyOjioDC3+ffL+OtqlUCpcvX8by8jISiQR6e3tVlnA5V/hnKdM5T/J5+dhjj6G9vR1zc3O4cOGC4ax3uf7q2i2Lrl9yjaa8Ei+//DJu3ryJxsZGHDt2DG6323BUpk4Wcd2D6w1Sf6H5LR0C9Kysk88t+k4RLS6XC6FQCIlEAsvLy7h79y5SqVTB2sDB+UGL1Gd4/810ZU5bqeeZAVf5nes/wAcRQRaLRUXZZTIZrK2tYXh4WCW/6ujogNvthsPhKNC5eOHgmq9X8l7eB929dA9fp7h+Lddlep7ryFLXlNFKkvb8NylfZTEDm3S/HCNJH7qf7qGtSDTHdXxOz8i8KdRewjZerxeRSERFItEZ4hTCT+uhxBmc7vuVg+q3H1X5qQbQXKn+MATc73mp5FAxWyikkkqMRX8Ejkl5cLlcCAQCCIVCqKurg8PhUN4yUvYJMPM6daDT7DovZsBFB6ClMNX1lX8uVrdZuI0UaDrBKu+XtNcp8WZ1SKAp32/WHl2bOX3k4sV/4/SUdCgr+yA7MHkhNzc31TFTMzMzWFhYUIlXSBCZgWaz/pqVUufOQeaY2b37Le5mdOY8TUKbjEpkpT5y5AgikQjC4bDyOBNw4BZnXbSFjAzgBhjAmAFdN4Y6ZYPTgY8BeXjS6TQymQwSiQQuX76MyclJdRa3Wfh9MSW4GE0lHblc8ng8cLvdiEQiOHPmDBoaGhAMBg3nvMs5Ifsv5xmnE4GC+fl5DA4O4u7du7hx44YhAYmOjyUP8PZbrVYEg0H09fXh8OHD6OnpQVVVlcETqBsfas/Ozg5yuRzm5+dx48YNjI2Nqf2GkracXgRwOzs70dvbi/b2dlM5S/Wsr68jFovh5s2bKlO2VHzpf3V1tVIQaQ+gbj7zZC7kvZc0Ky8vh9frRWtra4FBk0o+f+8YoLW1NS0PWyz3ADTtUzYDlTq+pPp4NnUq1B5uBJPylgAIyUPu9eN1eb1e1NbWKg+3pBXNt1QqhdXVVQQCAa2spH3ETqezwPPC+0NhwdPT06ipqYHH4zFc532g9jU2NqK7uxtTU1MFUSSyrcC90OzJyUkAQHd3Nzo7O1VkBX+W6Mf3ipLB4/jx45iamkImk0E0GjVd9+S48TlAZ/tmMhmVoLS2tlZ53g9SOPgkere3t8Pn8yEYDGJpaQmLi4tYXV1V4fg6mprpBLwPsvA6dnd3kUgkkM1mEY1GEYvF4HQ61fFXBFz5czr9gl+T6z69R9ceGifdlgm+3tD8pYROyWQSS0tL2N29dzQYARBKUFdsTEstnMbF9Ili98t7io0N/03qT+RE2NjYUJ5pu92utmFQnh9yOOnyKZjpPsX0E50OUmzd5WBZF4Ukozu4bqED0fK9XC7o5Ivu2f2KpLuu/2bYRvcb6VTUXpLplJPJ5/OpfqytrcHlciGdTitHAa0RFE3Jz0n/MEU3H+4HoJuVn2oAzUupIFrHZPuBP7NnpOWG3yfDsWtqatS5hG1tbQiFQrDb7SpBB4FrUlKoLTI8mxiUh0dzcEDt4cBb5/WU7SSBT++XijMpSrLPXIDKMBoz0EjKna5wgcIFj1ysqJ06cCqVTt24yjbKPnBwSu+gZ4j2RDMq0gsklTm5n5nTNpfLIZ1OY2ZmBm+//TZisZiyznGwLN9nxvM6C+r9lvuZW7oFVHf/fnNNRhLQPKmursbhw4dx+vRpFepKVlN5ZA5XMHVhgbu7u4bzkznApvlbVVWl6M1D+CizsI5W1F7JK7u7uyqj7/DwMG7fvo10Om3IvMrnrJk1vFiRgFnSk9putVpx/PhxHD16FGfPnoXD4TDNMm4GFHn/OaCiObqzs4NEIoFvfOMbmJiYQDKZVIukBCc6ICgBLCUMe/bZZ/HEE0+oZEt0P+8jl1NEU9rjOj8/j7/6q79S9JeeVPlu8np7vV586UtfQl1dHex2u2EuS7lD7xkaGsLg4KBK1iULRSORZ5tnjOYyhdq3tLSEt99+WyUIlN4/CiH2+/1obW01VczoyBKZOIvTm2934IXXwfe5yXsohJb6QRFH5GmiRErpdFqrnFKSms3NTXWmKedNSjhktVrVdgfeF/Iaj46Owm63w+fzKd7gc6u8vBx2ux2BQABLS0uGrOYSXO7s7ODHP/4xtra2VIg8n+d8XbJareju7kYwGMTNmzexuLioEnzp1ini07W1NYyNjeGb3/wmvvrVr6Kurk7tYwegjIhkbKfotL29PVRXV8Pj8eDpp59GQ0MD/uqv/gpra2uGLSXFwCatjTs7O2oNevvttwEA/f39OHXqlGG+Sj1FVycfN+J3h8Oh9uh3dnbizTffxK1bt3Dnzh2DoUnn3S4G7OR3OY8oEWMul0MymcTY2Bhqa2vR3d2NT3/60+p4TzPQTCCBv4vPK7nO8PlEuoQuzwz/D0AZ7GisI5EIenp6kEqlMDs7i9u3b+P69esqNJaDGK4/cZrtt47IZ3S0lG2W1/fjL13dOj2N+JDm8MbGBpLJJGZnZxVAo2zRDQ0NaGlpUYYmogeP0DDTi3h76X1meIDrgdIYb1Zkn8zu0emoOr6Wxgaz/hTrr04HJ/2Hv7eYgVhel/o/8SNPQmi1WuHz+Qx9IYfR/Pw8pqam1EkjfBudzogg36srZjyuu3ZQfflnAkCbEa4Uxb+YAm+mPHJBJ/cEUEbs2tpahMNhOJ1OOJ1OpaxSWDZXUvlnXj8PNQU+2JfAFyHZXt1k58CQg04dyOHMyfda8M868Mzfp6MXv0ce6bSzs6OMB1xw6bxIvH9yjwmnARdsOiWIK4kcPPNCSsz4+DhisZjab+z3+9HV1YVIJKJdsOhZOQb8++rqqrK4j46OYnV1Fevr6yq8hSxy0stcrF4+jpJupQBgs1LKs3JsihWpiEi+57zNoy+qqqrw6KOPorGxEQ0NDfD7/epIJdrrT3ujSKGXCfVIkBMf03+aayT4SVEnRY+SjUneJIBIfdF5tzn9Z2ZmMDExgR/96Efq/Fd+Bqj0TsnP+42PmTzgdKTM5JFIBJ/97GdRX18Pj8djSLyls5LzcDQJmnlbuRFgbW0NV65cwdWrVzEwMGCwNhdbEHX8QOHTra2tOHTokALP3JjI6+EGLG7RzuVyeP/993H79m0MDAwo40UxgxTxSF9fH5588klEIhHDmcokW2XIeDabxRtvvIFLly6p8FQ5XjQuNpsNjY2NeO6551BTU6NAHue9fD6P9fV1LC4u4saNGwXJznh9dXV18Pv9BiDAZd7Ozo7yYEtvGb+PIqX4OkK0JoDF5Skfu729D46x4soZf19FRQXcbjfi8bgBhPBoAdrCEgqFCtYWol19fT0mJia0XuidnR0MDw+jsrISJ06cKMi0TKWsrAwPPfQQbDYbXn75Za2xg+pLJpMYHR3FhQsX8OijjxrWAvpMa1RlZSW8Xi++8IUv4OWXX1bGFN36SfXv7d2LNFhaWsK3v/1tnDx5Eo888ogKW7VY7iUOo3cQcOD6A0WS/PZv/zaef/55LCwsqPHi7+T/pfLNx4K2moyOjuIzn/kMHA6HYYsH7wOvi/MEHzeS0eQ9PHv2LA4dOoTR0VG88sorKnyf6xocFOwnG+U1LieoT7RWbG1tqWO8Wlpa0NLSgjNnzhgcG7z9XGfga79OHnMa6XKgUOHv4GsgRURYLBZlNHG5XCrR4OjoKCYmJjA+Pm4wVumcEPsVHT8UA5zF6jjIdTPdhdOL6EE8X1ZWhvX1dcTjcVitVrWlIhKJoLOzE8Fg0JADh7+Hr806PZtkD4+O0QF/HeiVRcqkUouurYAx0Z2O9+he6gfxOYACHYW/i+6nZ3VnVnOe5zKP17Mf6OY0zefzqKyshN1uR01NDRobG9WaQVtvKHkjJSjTnZleCt6jotNXDwqegZ8RAM0LB3b0XV43+65T5Ok/V+KdTqc6RorCBklJp6Ol6HxLu92uzlgja74Er1xh5W3hgosziJy4OuAnJxxXcLgSpGNAuUhJRVynJMnCx4BPOLomQ/HonXzi0++6xV6n/Mix1YFieZ9u0nBhQV4J2h+1vb2tEhVtbm7i6tWrOHToEFwuV0E9ANQ+Hr5nmRK0xONxxONxw15Q7q3RATAdLTi95Vh8WPB8kFIKiNbNSz6WxJ9kaAqHw/B6vbDb7aiursbRo0cRDocRCASUt5T++LFDkjd5/ZLn6DrNQ5rPQKEHnN9LdZiNESXMomNJ0um0Opt7ZGREeWF1e9g5TWU/dAv3fjTl+5E6OzsRCARQW1uL3t5edQQe779U6ooprvwzefNpj+j09DTu3LmD4eFhg5dXLn5mPEKKNoEkOjKqo6NDgUOdUiPbRfuGc7kcbty4gWvXrinDlVyMeTs4P9TV1aGtrQ29vb0FR0txWtHYb2xs4PLlyxgZGcHi4qICRZInyUhDGYIpdJvaznl5Z2dHbeugo6t4ndwo29HRoYx8vND92WwWc3NzRfvPjU+8fklbXbgqB9m6rNZ0f3l5Odxud4FHhIPJWCyGeDyO2traAuWvrOxett7Ozk7Mz89jY2PDcJ3am06nEYvFsLy8jFAoZNjewUskEkEikUA4HEY0Gi2IlKBxzuVyWFpawp07d9Dd3Q2Xy6UiIfh6S22sqqpCa2sr+vv7AQA3b940Ndzw+ZbL5TA5OYnq6mrYbDY89NBDyuPLE4BK+W+x3NsS4Ha70d7ejpMnT2JychIzMzOIxWIGxbjYWkJtIaMB5Q4Ih8OIRCIIBAJoaGgwGNbMQKssXHcqKyuD3+9XmZfT6TSWl5eRTCYxODioIgKk/iT7vJ8+wq/zdZa2UFHIcDKZBAC1xSUUChkML7wuszWa2qRr60EK8SnpNLRG2u12OBwOVFZWquOfqA/xeFwZ4wlAmekIZuC/WHvvB3DI9+rq0r2T66ZSfhLQonViZWVFnadO0SZEKzK4y73Tkkd16y2/TxpKLRZLgaPmw9DHTK+guSh1GbOi05N5v4rpwqW0n3urdViF12Omu3N8RccScsPWxsYGXC4XHA6HcmLRmkNry9ramjqRgK+zxfTiUvtYrPxUA2gzxjADdnKh1CmcdB9Xbng8v8fjQWNjI2pra9HY2Ki8NjzNO6+XvvNkBnKh4e+i30oVIlzRp2elR4jTo5hnie6j38jCxM82lc/Lyc3byCcIhc/QHykvXChwaz+3bHFFifeDKw2SD7iQkWCAt133HJ9cpJjx8aBFdGlpCd/85jfxO7/zO3A6nQWhLzSx4/E4bty4gcHBQeXxIa8Pz1ooBbXZglzsd50Rwex7MeFRTACa3cfbYCaMza7RPCMhSvtmzp49q46C4XsxCSRIXiQ+5Um+5KIrC+dXDiR5vyXd5GIrx5AUbNr3e+nSJYyOjqpQVJ5ZW7dYmhWzMZDt4vOUol+CwSB6e3vxi7/4i/D5fMpzLxc+qkvKBt433m+6Rkr2+vo6pqenceHCBbzzzjvIZDIFR3CV2h8ClzabDX6/H5/97GfR3t4Or9erPaaKjyUPKaYMr7FYDP/n//wfLC8vaxOY6RZ1Mpz29fWhr6/PsKeYt5cKhaTF43F8+9vfxtzcnGG/N3+G3lFdXY1HH30Ux44dU9EPXObyeq9fv46BgQF19JRunausrMSpU6fQ1tZmGF8ar93de0cyDQwMKFmkK3xrkVw3qF3SMCDHloxEUqbQZzpnmr+H89rOzg5mZ2fh9/tx5MiRAjlbVlYGt9uN48eP4+rVq1hdXS0w0OTzeQUqRkZG1LnSOoNRIBBAY2Mjent7EY/HC9pO/7e2ttQRc0eOHEF7ezuCwaBhTeLH5FVUVCAQCODRRx9FXV0dxsfHkclktAYMajPRdWVlBdeuXcPMzAz6+/uV3iG3WvFxpDWXQvk/8YlPYHR0VIX+872GxQAE92bm8/e2yBC47e3txbFjx1BbW6tkpzT+6mQ+jS0/pmt3d1cdWURh3ZlMBouLi1hcXFRHc/G8CZKXislPs2t8XpBxYG1tDdPT07h9+zba29vR1dWFRx991KDvcf3FbP7wvvJx2a99unWc5hvnL1ovXS4Xuru7FcCIxWK4ceMGbt68aQAXOr1CNzZcDu63Jun6UKxO2Vez/u+nf9B3AlJUstksYrEY7t69q7LTV1dXIxwOo7e3F5FIBJFIRHveN6+b6Gu2/uv0tVL1K/6MmT6hqzOfv5fPgcstjie4Ts7XGLqXMsLze+hPRkbwd/JC8pCuHUTv5Hwl6yb+JrxBUTVWq1XlkaC6aMxJFs3OziKRSKjtSCQjpKyQjsGD8Lau/FQDaN3A8cIZUzKp/J0YkUJjmpqalBc5EAgowU7KFIFqqoPCSojh5cLMlT2amFS45wcoPMOY7tEpuLw/cvLS+6UHiScc4YxE75eWTt2+0WILIg9fo3GSbeL1cVBLE4d+l6Ca7pNt4ELHTKHg7eR05UYOqocDeElrChP2eDz4oz/6I+WZ3tnZwcLCAqLRKKanpzExMaEUFX42MwdbcmLz/pQyuXWC3Kzcz0J40Of2W4zlfKPPpOS1tLTg8ccfh9frhdPpVJ5/yZO8DgCGsB4ABQYr6gdXeqSSV+ycY1q0AOMxYxI403FFs7OzeOWVVzA5Oan281CSKt1z+9FZtmc/Wcb3fdtsNpw/fx59fX04ceIE3G63gTYcAFP9usWUg0bOr3t7e8oLkEwm1dE0i4uLyGQyRY1Eso/0PvJKUXjvuXPncPbsWXR2dqpjtWhe0n1yHy7Rm5LRXLp0Ca+++iqi0WjBHmxeOG0oq3EkEsHnP/95NDQ0KLnM6U6/0cI+MjKiAM/6+nrBu/b2Pjhj02q1KiW9vr6+ABTzENP19XXcvn0bo6OjBccGEd0qKyvhcDhUMjhpKAWgvIkEoKXspD+r1WrYzkBtpzGnfYlSznL6UFQNP1KQ6Ebe46amJkOSLF7y+Tyi0ShCoZB6L7+HlOdIJKIyx8uM3TSH4/E4Xn/9dRw5cgQOh0ONGQ8ppCPKPvnJT+LmzZsqeoHaQm0ng8bq6iqef/55PPfcc4Zj1HRr5d7eHpxOJ1paWvArv/IreP7551V0gi70XBoT8vk8/v7v/x6PPvoouru71Tyh+2XEDPEwgfm+vj40NjbC4XBgeHgYs7OzSrbxNcdsXeHyK5VK4ebNm5icnMTo6Cg+/vGPK4MNDxflfeH7fvn8lXLZYrkXnk7K8+/93u/hvffew9WrVzE3N6eNZOHt3K+YAThOB5p3d+7cwdjYGC5evIjjx4+jp6cH3d3dhuz73KDEeZ8+S92OyznqO8/dodNb5fgQ3ehIMYvFgpqaGjidTng8HjQ1NeH8+fOIxWKYnZ3FSy+9pLaRyGMUOd3NaLgfAJb37EdvepfumVL0H924E++R3N/a2kJ5eTmy2SzS6TSmpqZQVVWFqqoqhMNhtLe3o6enB36/v0A2mRnfuc7MAZrUVXmRRj8d+Nat6fx9HFRyhxS/X0cTObfNaChBuBn9OcaRbeX3yDaZ8TGnCacx4Supd+TzeUNCZpfLhXA4rPh6b2/PcCTa9PS0MiLJiK1i9Cil/FQDaDMwp1u8+KJCe7pofzIp6gSSrVarCvWw2+1qD7NU3vl7JZgFCsOd5XOlCCEzJqQihR7/r1NEdMoyr0fSj4Nb3f10jd6nsyjJemkSSGEFwGDxM1PeJV3khOTt5XTi98nP0uPNFzq5UNO7KeRraGgIyWQS6XQaqVQKyWQS8XhcHTVhFqYr2yDbq/udv9/suq7owMpBim5hNZt/umuS/8lLZrPZUFdXh56eHgQCAfj9fjQ3N6swPvKQyrnDFQgCLXxvrRS+nN9ofPl+fqpT8junHVf66DtXtrLZLN5//33Mz89jcXERIyMjWFlZMfAA56/7UfwOQlufz4fa2lqcOnUKvb29CIfD8Hg8BXu6OJ9LvtMt5Fw2AFBZYaPRKN5//30MDw+rYypkOJWZHOPfudfX6XTi2WefVYo/B89c6ZZecW4E293dxbvvvoubN29ifn7esOdXyklOF/IMRyIRfOITn0Btba3ajsNlPDf00fvm5uZw/fp100Wb2k8JJh955BH4fD6DB4H3hxTsqakplZXarE6bzYaGhgY1d8zGdHNzU4WBmxU6Q103/4nOdH66bi0h/tDxABXaky890PxvbW1N7Z/n0SW879XV1fD5fIjH4wX7fOl+Ogt4YWFBzRFpLLVYLCoktqWlBfl8HrFYzOCJ5n2lveTj4+PweDw4fvy4ARTyQhEHDocDLS0t6OjogMViwfz8vKmCzfu6ubmJsbExdXTWoUOHtMqoXDupzUSj06dPw2azwW634+7du9rokGLrDPWbvD2jo6Ow2WyIRqM4fvw4bDabAdzvp2Rz3YTLdqJXJBLBiRMn4PV6MTg4iJGREbUlSnqYdPQwK5JXpYeK5Nf29jY2NzcxMDCAeDyOiYkJdHV1oa6uTm3f4muMrpDuKeU3jY1McqlrJ/VJ6jdUSH8iulHCTTp6jMK6x8fHDcfpcfoXo4+uXQAK5Bbv337FjOf4dzmmZu2S6zznKTKkbmxsqC1flGPA4/HA5XIpMEYgldeho7t0TklcwPvBPcW8T8VorMMC8h28j/J3OR+4068Y3eg/raM6fCP7IcemmL5oNi9lP6RjicsG3kbCbtQPq9VqMMBR1F8ul1O5hlZXV5HL5bRbJkstP9UAGtAzrPRQ8X2SFIpttVqVwu73+9X5yyTg+N4vGeohQaIZc/Fn+MLAi1SWpEKvu89ssklFUrc4kFDgApNPGM6cMjzDjPG5osqfMQtVAoweQlkX1cNBEKeL2aJnRh+dks3pJZU2+Q7qGw8bIevm/Pw8rl27hvn5ecTjcXXmqdk+ZqkgmYEondJrJpj49f1KqYva/Tyr41s+bnxRdzqdsNls8Hg8OHToEB588EEVVkkeHB6VwevSvYcD6L29PUNiPjmWNJ50H6ex5BEqunEj/qE9c7FYDBcuXMD09DTS6bThTFPd3NTVez/0ps9EX0pYRAr6s88+C5fLpZIYmtXDZZkZ6JLydnf33jFDU1NTGB4exuuvv66SovG+m9FT1kn9qKqqgtvtRmNjI86dO6eOzjGLEODvIUBbVlamwA0dE5ZKpQpAvWwH/dExMq2trTh37hxcLpeBH+VCTn90PM7du3e14bl8baJsyadOnSrIo8DrzOfvbQkYHx83GCZ0ddpsNrS2tqKqqkore2hOkNFHejE4DRwOB+x2e8GY0WcyIkoZLPsh5wAvZETQrQfUbtrXmcvlCtrDFcNAIIDl5WXEYrEChTCfz6tzSKPRKGpqahQQlXxOkRttbW1Ip9NIJBKGtU2uIevr65iZmYHT6VRh5rp6ia+qqqoQCoXQ1dWF7e1tBdDN3kH/Kcrp7t27sFgsaGlpgc1m0xqYudJO38l50Nvbq9qytLSE1dVVbG1tlbyOyPm2uLioti3U1taiubm5IHmTbB//L3lQAm+Xy4XOzk6Ew2HYbDZsbW1hdnZWGam5V5u/Q/K8fD+nr+45alc+f28rwdTUFBYXFzE+Po7NzU1sbW2hvr4eLperAJzo6jUz7PPrxeaSDoTJ57nuR8DC6XTC7/djfn4e8/PzKlpoY2PDEL2lWwPN+iP7Ucp98pliZb/1r5g+JPU46hf32tN567Ozs7Db7QgGgwgGg9jZ2YHH41ERaTzfhZlhndor5/1+/TPTNyUv7zcW8rrZ+3S6vHyW87xZPWallHaZPS/nq66NdE2Hu4j23HBE40o6QS6XU06uhYUFZDIZ5eCg//S5lPJTDaB1Ib2kdNNC4fF4EAqFlGerpqbGkGmW38/BJQeBUvDxzzwURjIGD+vhC47OWsc9sNKaxYUkD6vmiWa45ZKUZIvlniWdFubKykpsb28bgKlceOhdPMybK4D8GbqP056s9DwcZm9vT8uQfALw+6mPOgVRKi7UNn6MBlfUSHBS+3joF1fGefvpHaSk5vN5ZLNZJBIJzM/P4+rVq1heXsbq6qpS6oolR5Kgi7dzv0VJfi5FUP4kihToskjwwceSz0uXy4VgMIinn34aTU1NaqGy2+0GQwkZsPiix+vl1no6joRCUS2WwhBCyVPcc0h8II060tgkwSB5YH784x/jzp07GB0dRTwe12ZP14EYTttidC22CHHgTIu9z+fDF7/4RZWFlKzp1DdubebzhMsq/g6SL1wJ4ck7vvWtb+H27dtYWFhQXkKdRVfXF94nGqOqqirlcfr85z8Pj8djCNnmeR84YJbv3NnZwfT0NL7//e/jzp07WFtbU8dimIFa4j2i5ac+9SmcPHkSgUDAwBecH8rLy9X839rawrvvvouxsTFtdmv5vnA4jO7ubtTX1xvmipT9lIn6pZdewsrKijYhGa1jgUAAjz/+OBwOhxpPCvemMSaDUzFFwWKxoLa2Fm6327BuyHWMjmSSvEmFxob4lK85RO/q6mqDd44Xav/GxgZSqZS6l+cdoXHo6+vD5uamysYtZShlDb9x44YyNEiDOOeBJ598EltbW5iZmSnYP8jXGTq3eXNzE4888ghqa2tRXV1tMFrztpAX+ty5c3C73Sq5IE+ESO8gPiB+W1tbw+DgIGKxGGpqanDmzBl4vV7DuiYVTOJR4hO3242jR4+iqakJNpsNr7/+OqLRqFbOyTHVrWu09zaZTGJychK/+7u/i6amJhUmz+XyfmuYVPSBe1tjSJ976KGH0N/fj+npafzgBz9Q3lTqn6yLfy4F2EhgxiOVcrkctra2kM1m8corr+Ddd99FfX09Pv/5z6Ourq4giRynE69ftxZQKLYM9+X0KGbgpDbLPtOY19TUoKurC+3t7Th16hRisRimp6dx7do1xbtmURayD2ZATKcH8/vNeGq/+3XjatauYmPM9+8SkCbjXDKZxPj4OK5fv47q6mp1ms6RI0cQDAZRU1NjeKfMacHBM18zzfqn4wveL16f2f30x/lDYg75jKQn5x2SIYDRQCzbaFbMQC//Tn0z00Go3Vxn0/ENtZfrdXJrKslyupcMSbu7u+jv71fr9s7ODiYmJlSSyZmZGdM+8vJTD6ApFJuOYfH7/epMWALRtI/LbrcbQBMHmlLh54yiE0y8DbrPwAehazIUhAQlYGQmvngB+gPOeTupyLZxAwCfkLzP3CotJ6fuO2d2/lkKTcncvL268BUpKGWfuVVXPi+t4Ny4wIUA3c/vpfGRgoO8zJubm5iZmcHS0pKydGezWWSzWcTjcWV93i80m/et2Gfd94OUYs8WeydgDtLkPcV+57zEF23KAtvU1IS+vj54PB7U1NQgHA4bzjCV+4+orTovH1fEyVpIY8H5AEDBYsD5sby8vGAfqY5PAONRaDs7O7h16xZmZmYwMjKC6elppFIplRBIhmrr6F7qWOsUBE4n6gcluerp6VGZqmk/qE55oc+cVlKpk++mvhDNx8fHcfv2bVy+fBkrKytqry/3NuoUb8kzwAd7nq1WK5qbm/HJT34SHR0dyuAp+y0VAL7w0oK4sLCAkZERDA0NGZI16RQLSc+amhqcO3cOhw8fRl1dXYHclbzBz5R94403DMfJ8P7z+VFRUYH+/n489thj2nBXPkZ07B3PGq4rVVVVqKmpQV1dnZL13DBEf5ubmwVJpCQPlJWVIRQKwev1auch0Xl9fV0LCqSMprZwWhCPkAfPzENHkR5LS0sIhUIGvqH7dnZ2EA6HVUIyeY4wj5SKRqNYXl7G5uZm0T3LVqsV4XAYHR0duH37tgHg8jWLvBvxeBwvvPACnnvuOTQ0NBSMu6zfbrejs7MTn/nMZ/AXf/EXWFtbK+Av3Tzc3NzEysoK3nrrLTgcDnR0dKCurk7RT5fDgCISaGytViv8fj8eeOABRKNR5PN5LCws7Lte8DHmc5zGKpFI4B//8R9x+PBhnDhxAo2NjYbx0tWvW18430i9ze12o62tDZ/73OeU8XJ4eBgbGxsGEKDrRzFdRxapoFOf6Y+MUN/+9rfR1NSExsZGHDp0CA6HowAkcF2Mt5EbBKVco9/lPDLT7/g6Kh1BFOJKPEJrcG1tLRKJBBYXFxGNRjEwMGDIW6Gj1X4gSf6mWwfk9/3uKQbc+H1m46trB//OszpTqO/q6ipisRicTidqamoQiUTQ0NCg1lauR5u9k36T7+ZzkcsSLivlWi95gPQhXd90Y8X5Wbc2UeHRo7ocSNRuydfFxoEXzrP8N95/s6O/JK7QzRn+neuAvF3caQoA7e3tiEQiWF1d/bcBoGlPmtvthtfrhcvlQiAQUPv8uIdZFv67mWJGpdTJu989kvH3WzSkJ1q2tdh7aKLIhUQnjOU76LuZYNMp5LwOCR504S/SEi3bq/PCSOVMgh3dvbzdss18Icvn7yVFof0R2WwWExMTWFxcxMzMDNLptDqCyszDphMiOjrpxr7YIl5qkeN1v3XK5/cTUPKPDFc+nw8+nw/BYBAtLS04cuQInE6n8iDxvAK69+vaIu+nUHoJBKRg1fGqrEvyGBfU29vbah9mLBbDrVu3MDk5ibGxMWQyGUMCC10Uglk7ZNlPhkgDRUVFBVwuF1paWlSCm56eHsP5rGbvlMoXb598jhuXyCM3ODiIW7duYWlpqSA7rln/pazlfaGw7f7+fhw+fFh58YrJad08ooiRsbExjI+PI5FIFD3nWbbD4XAgGAyqI9No/yAv0tK/u7uLdDqN0dFRZVAxMxjSe6qrq1W4K+dXXZ8oERDR2Yy2DofDsG+ZeyW5PM1ms1hfXy+6FpCnknuydXTgIdw62cYNmpK/aI7xBH6y0H0EoPv6+gpoRfU6HA6l3OZyOcM1vlZkMhmkUil1trTZXCGPfmtrK4aGhkyT0Ozt3QPw2WwWo6OjWFpagsvlUl4r3biSrPR4POjs7ITP51MGCV3hegF50ulIPIruoT36urGgceVrLGUnplByCnGUx47x/7J+LvPob+T/J+9NnxvNrvvgH0gCBLFzA/d9a5K993TPdM8+Gi0jjRzZsRSvsh3ZSWxXpZLKv+FvKSepyEkqfu1YXrTZkkajkWZGPaNZe+/mvu8kCAIgABIEF+D9wDq3z3Nw7wOwZ5RUJ6cKBeBZ7nLuuWe75547OYmjoyNUVlYqg5dOUJA4MAEfD86nyalOCSYdjuP97/l8HuPj42pPPtcJeHk6A8eEa/6bv8f3DlPSwGQyiVQqhfLycoTDYQSDQZW1m8rhDh2dcS7r1jmu7EBnzNB1jkOn06kcr7TSWl1dDb/fj4ODA7VgQLLNTqc6CXwSPadUPVz3DpdzujZw3kZjSgkS0+m0ygZNSWEpR5LL5VK5BOSJFrIdgNlRRN92dFds7uTzDxccqCxyntLzxXT5T6pDmmjUNG46PPGx0r1H8qxYHbr/3C6hRRiaG36/X+W9KhUeawP62rVrqK6uhtfrtYR1ceBCmYQCKc6EOK4wAPoV3JMa0KbBy+fzBasNUlHVvQ88JDaZbEIX5sDvkSCRK3MyU7Fk3MWYDn9PN/GoXsInD4fnK758VZz3jZet2+Mk28JDuKRwl/il+7SHL5FI4M6dO1hYWMDq6ipisRgymYxlZVMyOjshXMyAMjEmOQ7yWbv+l8Ls7N43XTMp9nzecDryeDyoqanB1atXcfbsWdTV1amkYATcu6pTajjz5LRFq5E8fJs+3BvMV7U5/XDGKwUIpzu+KkvKO51n/P777yOZTKrEFHxVU2eQPCrolF+ObzruZWBgAN/4xjfQ3Nys8jjYHZUit37o5i49xzNAZ7NZda71//yf/xMrKytqr7fOoWTHNzhN0b5tv9+Pzs5O/NZv/ZZSPCmiROfw1PHKXO44jHplZQU/+9nPVCi1aVy4c4+M+ObmZgwNDeGZZ55R+JTtl3zl6OgIi4uL+O53v4t4PF4QiivHr6KiAn6/X50xK50DnJYPDg4wOjqKGzduWI4/k2WXlZWps3kJF7rnKOnb5uamVtHmNFZTU6OMQMrWzMePDGiT0s6NeKItLlc5rfFtBrIsclBMT0/jhRdesNACH1uXywWv14tQKKQywEulkVYOI5EIRkdHleFJtMbbX15ejo6ODrhcLrz55pva6BIql+bJ5uYmRkZG4HA4cP78+QKFluMGgDIw+/v7kc/nsby8rC2ft5/K29nZwbvvvovNzU2EQiH09vZaIuv4+zo+7nAcZ7t+7rnn0Nrailwuh7t376poEnpXN7Y6/YDatr29jZGRESwuLmJ7exsXL15Ux7/xsjifkqvZ0nik8eDzw+v1YmhoCJ2dnbh06RL+7M/+TO3tNSUKLCZP7Ywd3hYaT3LYke5w9+5dDA8P4+zZsxgaGkIgELCMPcepTqGn+6Z8D9LhLHHK9Vfqh9Rx6T3ivW63Gz6fD11dXbh06RLu37+PmZkZPHjwwBJZROXr8GeSeTo5zn8XK6MU3dsOJG5MYy75El2neb2zs4N4PI6xsTEV0drZ2YmWlhZ0dHSohISyLqmDS/5p0p9523Q0K1eSZb/y+Tz29vaUXSTpSeo4urYTULt12yR43VwXMtVFz8n3+L1cznrULQeZRNIu1xLHE39HAtVfVlamzRNjgsfagCavJt/jpwuxk0QLWAdO3gOsA60LK5OEwa9zJZ4LGVk3/y8ZnFQy6VtnTEpmxBVkrvTwNkqcyDZyBi8Va10/pMCX5Usll+NOMntiODRZiwk0AAXGj87ApfcpS/bY2JgS8Ol0Gul0Wu1xMu1pLmYA2xlOEne6Z3XMtBR4lHd0oKNN+pa/uSFH2Suffvpp1NXVIRgMqvnJHVtUBmfmulVg7nSh94imaFxorzHPcl5sRVsychIKUkElxTsajWJxcRHf/va3VWbpZDJZlD4+LeC8weFwKFx6PB4MDg7ixRdfRE9PD9rb2y0Ch+OCzwfiCbxsnZIJPHRO7O/vI5VKYXJyEpOTk3j//fextramHAhc6SvWfznPSWA1NzfjlVdewcWLF+H1ei0OPk4rOscL8NAhSEeI/df/+l8RiUSMxr2uLS6XC/X19Xj++efx0ksvoaqqqmA+8IgVgqOjI9y9exc3b97E3NycJTRax8Np5e9LX/qS2oPLFWNO/7nccfKwtbU1LC0tGbMlE56GhoYwPDxscY5yuqB5MzU1hfn5ea1jgX5TKDvlJ+DjQDigyAxd9mBuNJKhwed8LpdTDrHDw0OVNZVn0ObtphVXTr/8OQpTraurw/nz57GxsaHq5mMAHEeULC0toby8HNeuXbMoWcSriNYok+sTTzyBBw8eIBKJaI+concymQw+/PBDZDIZy3FHhDeuoxA+3G43Xn31VXg8HpVvg57RAR/LVCqFiYkJJJNJ/P7v/z4aGhqU04MvGnBeyusmQ7Snpwdf+9rXEAgEMDU1hbm5OYsMlgag7jf9J556dHSkHFm9vb34tV/7tYL5zPkU5/t8zup4Op9TPp8Pbrcb//7f/3vcvn0bY2NjuH//vvG4q2Kg0wdNRpbD4VB8kPjl7du3MT09jbfeegtnzpzB2bNnLfviaUy4PkbHvPG5T3Xr9CjO56UOSe3jIaq67RpS/paVlSlaHxoawvPPP4+FhQXMz89jYmJCZe3nPOpR5J4Oh78s0Bmlujp1ujrf5ke/eTbnZDKJiYkJuN1ueL1etLW1obm5GW1tbWre82PGJC1zetLRqNQtdDo6/030Q7TjcrksdXPbgH/L6xJ0EUT8Gp8bNI/5ogqf25J3SBrgjtRioHtOylEOtI2B9AX+jrRLSoHH2oAmgakL1yaC0Rm0HCRhcgbEmbR8h54lkAaRNAq4x0VnuOqMCV6ObgJJ0JXJBeCjKvdyoso+2LVDXpO/+XOckQBW5wUncALpMaNvmtyUcTUSiaiQxb29PWxvbyOZTGJ5eVkdeZLNZi3CVjIMneFcqhFtR0PFrpsEjIkG6ZvTiqkuqYDalceFNGV5DoVCaGpqgtvtVhlte3t74fP54PF4ClZCJIM14Yb3kcZT9oHGVx5dRVn25b5ZaRjLOUHf2WwWyWQSS0tLiMViiMVi2NjYwNzcnMpWKrNLF1MmJT6L9Vviijsq2tvb0dzcjMbGRnR2dmJgYAD19fWW8DFevm7sTTxQCvBc7ji7cCKRwI0bNzA3N4fl5WV1jvJJQrZ5n4gXl5eXo76+Hm1tbTh79ixOnz6NpqamgpwRJtrntEEJw6anpzE1NYX19fWCNuraRTgmI+nFF1/E8PAwamtrbQUp8Zj9/X1sbW3hzp07GB8fV1mt5bjzfnu9XjQ2NmJwcBC1tbUF/aP/VP7GxgYSiYT2aCZOJxUVFaivr0c4HC5QLPj45HI54wo0x4nT6VRzid6Vczmfz6sVaBNII1an9JAR53a7Ldc5HVDSOooMIv7ClUAKie7t7cXbb79tOXudl0UGeTQaxebmJurq6lToHl8tIrx6PB6cOXMGm5ubSKVSaq+yLJfaub29jYWFBbz//vt46qmnLMef6WSnw+FATU0NTp06hYODA1y/fh27u7sFkQwSN2REp9NprK2t4cMPP0RfXx+6urrUudm8Dvmh69THcDiM8+fPo7q6GvX19bh165aKwiomTyTvoGvxeBwAsLe3h0AggLa2NtTV1aGpqalAr+Dv2/EuyRvIAdbU1IRsNquSVS4tLWFrawubm5uWUGQp3+VY6K7JtvJv3uZcLqfOnU2lUgCAdDqNcDiMcDiM9vZ2dSICn+u6dknjRLZRN89Nup40niVOeSQZzUWv16siJGpra9VCQyqVwuzsrHIc6BzJJj1Qx5dOAjp9wO6+SZc36dNSJ5JznI8Z7Zcmxzol0otEImpbCm1n8/l8Cq8mGuP1S+NSR/skh/j79JuPp6yP62CSjiUeZBt1eDTRFZXLnaiA9fxz2X9T/XJcZDSh7ncxPYvA5KgsBo+9Ac1DNWXoJQedMk2/+bN8xYbek+Xxe2TkUZnSu0Rl7u/vG1dcTXXn89bziU0giSSXy1k8Sry/pgllZwxL4uKT1zQJ6D2d0Kax0u3lM+2NJuWT90W2mwxfMoZ3dnZUSNX6+rpSfuiYKapfriiZJqNJoJ9EsTBBqQyslPJ0tG96RyrE/LpU/MlA9fv96O3tRVdXFy5cuAC/3w+XywWn06lo1kSTujlK7+iAr+JRuD8Zwtls1pLMjfYh0aq3zsECWLd18GQp+/v7SCQSmJ+fx/Xr1zExMaEUIZmQiNpdTMmzG5diY8FXaCk09fz583jiiSfQ398Pj8djib7hoOMbnBdI4cuVfwJKVETZbre2tpTxUsxw1vVNGns+nw+9vb24du0annvuOdUXaj+g3+/ElURypGSzWdy/fx8ffPABJicnLYasXB2VxjOttHZ0dOArX/mKygxv4ok058kIm56eVqvP3GCTQP0mR9PAwIAyGDlfJt5IfZudnUU8HlcZxE24dTqd6lhGylCto1cK4Y5GowW0yttAc1pmo+ftJRxIWtApySZeQ8/zvdvSYAGg9v3u7OyoI8XkKh4pq319fWrPom4/L8kJOoKNwli5zCE+UV5eDo/HgwsXLmBqagqRSESdfyz7QPil1fLXXnsNZ86cKTiajxvcBG63G2fOnEFjYyNGR0cRiUS0+8elfOSO3zfffFOtXgeDwQJFlfdLR5s+nw8XLlxAZ2cn+vr6sLi4qEKipezVgc6YPDo6Pn83FotheXkZV69exdDQEGpqaiyJzbghoAt1lzQojQqH4/gM9P7+fnR1deHixYv48MMPMTExoaJoZCiynezW8XGTjJaGFfV5b28PY2NjmJmZQTAYRG9vL15++WXU1taiqqoKbrfbMr4mI5fzbGkQcrzx96XuZsej8/mHWwuPjo4ssrqtrQ0tLS04c+YMstmsOo2EcsZwGcx5M8eL5AnFDBv5zic1unU8qVgbTDaAHBeCbDaLdDqN5eVlpS9RqHdPTw+amprQ2NioEibKlVbZPqm3y7p1OpPU9XSyU2cDmHAq57sdznT6kHRykyNOtktHG7r5ydvN+8ojMfizEke6RTiarzxCp1R4rA1o4CFCuaAgxElFC4AtkiTh0bt8IPgkkoyf/5Yhq3SclAy5oXdoIHm9uhBwThxygusMFwoZyuePQzfJ68n7xPGmI1RqI00+rjhwvPN35V4yGgNSzOQKPX3zFUIqR8f8uNHrcDjUvselpSXcvXsXm5ubKiSbr0TJcF2dkSFpwU6Rls/+MkDWf5IJrntH9740mIk+aG55vV50d3ejr68P165dUx50MjQkvZBCxlf0TYxRzjOpAHBa4ccOUEQBZeEmJdXpdBZ49+m3DL3M5XIqs/prr72GiYkJxGIxdeQRVwRNyk0xvOvmr25sJO7JIGhubsb58+fxmc98Bu3t7XC5XBa8U/tkJnOukHEhRv+5cs7HjQy3999/H++//z7Gx8cRi8WM2Z9NuJB8iWjJ6XSiqqoKv/M7v4OBgQG0t7dbjjHjCiXxS4l7PpdXV1cxNjaG73znO2ql1pRoi7eNcFxZWYmzZ8/iG9/4Bqqrq41bb3ibyEhaWVnBf/tv/w1ra2vY29sr4INyHlVVVWF4eBi/9Vu/pVYlpcCnZ2l144c//CEWFxcLHDi8fDrih3INcPnHDTtardzd3bU9wqqiogLBYFDR2cHBQUEiMqInCpPnwB3L/JqMAuPjUFNTowxjLov4/Ds4OMDa2poK95YKGslNj8eDuro67O3tWZylvDyKUHrzzTdVhl3Ox6QMc7lcuHz5MjweD7773e8aDR6Ol83NTayvryvHo1SWuTGUz+dRVVWFxsZG/Ot//a/xrW99C+Pj42oPv6RnqX8cHBwgmUzi5s2bWFhYQDAYRFNTkzpKisaDK4uAVdc5PDxUTh6Px4N/+2//LX7wgx/g7t27SCaTql47PqjjdXyl8t1338Xo6Chu3ryJb3zjG5ZEa3bzR/eRsoNHDVRUVODZZ5/FhQsXEI1G8Td/8zfY2NhAMplUCxqy/ZI2dUaBnT4gDRhyzNLJHolEApOTk2hqakJPTw8+85nPwOPxWKI8CLguxIE7jWSou2wfNxAk3jh/1i38SL2X6JOy/Pf29mJjYwOLi4v46KOPEIlEtAlWdXgpJjMkTou9pyun2LM6Hm+nZ+vu6/rkcDjUMYF7e3tIpVKIxWJKL6mqqkJrayuampowNDRkOcLP5JznfILLSS7fub4jdS7+LtezTf0sdUVW9z59ywUMaqsuElgCp9NS2mBKQKkrV9pfcr6cRL9+7A1oAqmkSmWcgIiKGAt/hiOPCJgbt5Lx2IFcfeWhyFS+rIfe44LRxDwkgfE9ZrQSSBOFgJ+zaScEeb+lcSTxzOtJJpPq2BneTgn87GzasyHLljgihkHfFH4Xi8UQiUSwtbWFRCKBRCKh9j5SuC0P3ZL9LsbU5TMnmVzFwMS8OHya9ekYhqRR+k1KVDgcRmdnpzpLvaamBqFQqGh4kGTOwPFZnuR15Qqcrj0EsgwSTBQeR2PMFQU51jKqg545PDzEe++9h7W1NWxsbGBqagqxWMyidMuyitGLTgEodTy4ElheXo7q6mpcuHABZ8+eVUekyONRJM+S5dE4cEGrawM3UpaWltTxVHSEm1x11q1s6PrOja6Kigq43W40NTXh2rVrGBoaUgnm7PBJ9cmV5LKyMszPz+PBgwf44IMPkEgkCkJ2deURnsmYp2gKomup9ElhSwrS5OQk7t27Z8nyLevmTsqysjK0traitbUVNTU1Wron+qQImq2tLbXNRK4u8feoH5QxWz7HnagbGxuWxGr8eaInWsml9pMzjIAraXxlXCcjOW1xfs/Hsby83LICbeLFR0dHWF1dVdn9eZs5TsrLy9HV1aX2KZqS5R0eHio5kk6n4fP5CnDLZVU4HEYikUAgEEA8Htcatnwcs9ksPvzwQ+zv7+P8+fNax4Kcn06nE/X19SrbON/LqzOU+Hwkx+LW1hbeeOMNfOYzn0Fvb6+F73LeAVgdBZxeHQ4H6uvrcfXqVdTU1OBnP/sZdnZ2jNsieH/4byqLnF4UHXJ4eIif//znGBgYQHd3t4U2ZN90Cx86PHD6I4cVrQS+8sormJubw/z8PO7du6cNPdYZTDr9iINsE72jmwf5/HGCNXJkpVIptLS0oKmpCX19fQU6mtS9dLjW8TqdzJKrcbKtpv7JaCbusCPneigUwtbWFjY2NrC2toa1tTVLgk3pNC/VODK1SaeTFSuvlPqK0XSxsadvqf+Qw66srEzpptFoFOvr6+rkgHA4jIaGBhX1Y9c3k16qe47f0zkSTfIb0B/bKPsvdQKdrcBtIL69Tj6j0/mlbDLhQM5/Pgd5HVIX4m3jv0uBx9qAlkxWDgQfJElsEqn8umQ88lu+rwNuqHPjWQ64TpDy/3KV2PQeGaXE3Hg7AOvGfJMxoMuIKfvK2yeJme/XMuGGh6SQkJP18TIBqHAoCh/d399Xe5jX1tawuLiISCRiSQDGmYPJe18KU5ZwEuZfDBcnhUctT6eoE3Dlk8IYKSNnU1MTWltb1ZFCtOpcLOuhqY2cduyyRMvoEcJ5WVmZOnczm81aVhr5O9IDLsvf2dlBJpPB9va2MhK3trZUuKc0hHS8QCck+H35W4cfnaJOERo1NTVoa2vDlStXcP78eQQCAQvupVAxte8kysXh4SHi8Timp6fx0UcfYWxsTAl7boDo5hPvl07JoJXepqYmDAwM4KmnnlL7500eac6PdXP54OAAMzMzGB8fx+TkpHFftiyPOyko5LOzs1MlDZNCXOKJaGh2dhajo6MqnNeEY6qTjLrW1lbLcUNcMSBHAe2jXVtbU44iU38cjuPV0a6uLng8HmO7SYmj/eE6I4jaSnuJuQOEkhxRO6mtptByWbdOCePGnN/vt+CFjwGf27QVhzu1eVnAMX9pa2vD0tKSdo7w8ii7biwW0x5ZxvHi9/vV/t10Om1MJsbxPTExgfr6evT396Oqqkore+lDbaWkXtlsFrOzs0in0wWyR+Kc8EGJ3e7du4f+/n7U1dWhpqZGPUfORm7MS6Oa/nu9XvT19cHj8WB6ehpzc3OWc7+L8T5de0mR39/fx61bt5DL5VBVVYWGhgZtO6RexMuyWzHi87yiogJnz55FMBiEx+PB+vo6tre3Ldm6TbyyFHlv9z5gDWUlukin02p/djweh9frtSTGNdVDbaJypZzk7eC0pjNgJa/TlcPfpd/Ez8vKjo/9q6urUzqZ3+9HeXm5ylcgIxekkWOCUvWcYrzHVI7s70nLLvYcv8b1W9JhaLGHTi1Jp9NqLtDxbzxak0fwmHTZYnJUzks+t0pdxS21/3Sd6udbbmU7THyEzxkepaGT73b1y7KJ9/F6+Hep8Fgb0ASEJFMcu2TAJKhMngb+rFwxPgmCSeHgIRdyQGU7dUmOSABwJUrG/PPQzPLycksYH8/EqWOOHD86pZX6IJkfr7+8vFwlxOH3qb0UksiJnu5XVFRYwtu5UHA4HErBGR0dxczMDCKRCGKxmDoTlScokONsYiw6YW+6f5J7xcovRj9SqOgETbHydEqldIQAD1d+aC74fD6cOnUKPT09uHTpkjpKiD+jq48bw7pEEZymZL84nUslhPeB6qc9V2S0UEZeYsxEPxSiRwKLyj06OsLt27cxMjKCO3fuYGtrqyARimTQOhrS9YWDaYw4PuSHVkRra2vxpS99CefOnUNPT49lb6Yd8AycvP1yTnH8Es+hcOHvfOc7GB8fx8zMjFrNNYWV6fon/xNuqF9f+9rXMDw8rFZgecIw/g53OnJhR8ZaJpPBwsICvv/972N1ddVy1Eop4WdlZWWoqqpCR0cHPv/5z6Ozs9NCr/SMbNfBwQF2d3cxNzeH+/fv48GDB5b9f/QcxwUZpB6PBy+//DJ6e3sLhHdZ2cN9z2RczMzM4M0337SE8Eq80rh7vV5cvnwZwWDQ4qTkfJyMxfv376tVWR04HMdZodvb2wucCoQfWkGkfBJ2PKmYwkNl1tbWIhAIGA0Rws3S0hJ6enoKnuEyzOl0YnBwEDMzMxgdHbU8K5XHTCaD8fFxuFwudHZ2FswRPkZ0bvLnPvc5y/nnuv5SezY2NjA5OamO9pPyltpOeRsI/wMDA6iqqsLS0pI6TojmhokeOA3F43H84he/wPb2Nr7yla8gm82q1Vh6h3Qmzis4rmil0ev14o//+I/xH//jf8Tc3JwK/z+JIsvHiHDw4MEDLC0t4ebNm/iTP/kTeL1etS9aGvNUBu3v5/eo7XzsuNwgp0R/fz/a2toQDofx5ptvYmZmxuIAkyuldiCfs5MDvD08v8H+/j5GRkYwOTmJDz/8EE899RT6+vpw+vRpC35lu7j85LxdZxRI/Ov4rczezB3rfN+qnG88gW9lZSXq6upw9uxZZLNZTE9PY2ZmBu+8844lQkc60nXRTMVAN0a68eC4t7vP3y/FYVKsvXb6JscpHY8Vi8UwNzeHjz76CFVVVQgEAhgcHER7ezsCgQDcbreFb0gexXV8ohVdxKlOVku5BzyMSuH0wK9L4Pd5PUTzgP7IOpoPOiDeJG0NiU9uC+nwLXkU9Zk7hPmzpvbo4LE3oHVGMEcmH0DdyhRX4k2GrQQ54ag+01EePI09fbhw4IyFCzDucTo6OrKE0fFnabLQJn3ar0aTSU4QHbOl63IiSZDKB79O7ZA4yufzSuBSf7lBwHFycHCA7e1txONxrKysYG5uToVmJ5NJ7OzsqFVoncGjU9bk5DExk08TTEy4VMYs39EJZp1Q4HRP39IoIFosKytDIBBAc3Mzurq6MDw8rJSlYDBoCcXnTFC3Csr/65Qbu/+SFrjST/OKhDwfX+7V5ckE5WplLpfD8vIylpeXcePGDaytrSGZTGJ7e9tiJBajHRPo6IjzFDkW9JvGgpSPjo4OlVSrpaVFJbPi48VxLdsrlTR+j89VErZ0LR6PY2FhAW+88QYmJycVXkxJYUz9JOBtJGdebW0t/uW//Jfo7+9HdXW1Ugj4OyZ6kEdPHB0dYWVlBX/1V3+l9h7zTM+mMaI6Kioq4PV60d7ejm984xtobW1VRoWcLxyIt+7s7ODb3/42ZmZmVN1SpvB+0WruhQsXEA6H1X5vaUzwz+7uLtbX1zE9PW0xUKXcKisrU1nw6+vrtdFHHM8HBwfqqC2d8skNRcrmzQ0XKo8cuoD5eBwCnbzQjY/P51PnMdM1SW+5XA7xeFwdJWe3Xcjn8yEQCMDv9yObzRbcp/YcHBxgeXkZVVVVyGQylnBnSaMulwuBQAD9/f3w+XyIx+MWfsXbQddpFfng4ACnTp2C1+tV7SYllycCJHw5nU40NTXhy1/+Mra2trC2tqaiZHS4IbzT9cPDQywuLuLg4AA+nw/PPPMMgsGg1jjl7SUDldNYWVmZcuzdv38f169ftzgP7PikDi/0ITrMZrP45je/qQxIOpOaOxjkuEkccOctlyM0dk6nU/GAwcFBlaX77bffxuLiIjKZjCXJmGy/qV+lAm+PxDvpbh988AFGR0fx3nvv4ZVXXkFtbS28Xq/ledL9pDEs+RY3gAk/kr9xI5zwJHHIkwhSfVwHIB7Hx8PlcqGvrw+NjY0qGd3y8jJmZ2ct2wDI+OE62UnwajKaePtN9yWeiukvpUIp70uZSnigfdPpdBrb29u4f/8+PB4PQqEQurq61OkncjWWflOYuE43M9k+9Ju/x0HShOwHn9e68qhvBHJ+mYx8ThcSdPoGlSHLNOln/DdfICwlwpLgsTegAWgRbqesE8MweetM5cvfVI8si+4BxQ9ul/UUm7Q67zMX9lyQ0z3ZJl0bTEQslR+7NkolWDIv7qXizJ32Au3s7CCZTCIWiyGRSGB9fR2Li4sq6Y1pXypvp/ytm/AnFXw6+KRMlkDiX/62Y/q63/RfZ0ATc/D5fPD5fKirq0NtbS2amprQ1taG3t5eFSbMFVOgMEuwFHZSEJfSRrv/vP/cuOUrxVy5o5VyHoa0u7uLVCqlwvxXVlYwNjaGnZ0dtXfaRE+lQjG+oRsH4OGcdblcKht1d3c3enp61MoTV/h0io80WuR8M80Teu/o6AhbW1uYmprC9PQ0RkdH1X5nnfFs6rtJcQOOFamGhgZ0dXWpkG2iG85jdCD7Rv8XFxcxNjaGhYUFtXqkMxZle4he6DiwM2fOoKenx2K0mdpBeNve3sbc3BwWFhbUXsZiuKGEXGfPnoXP5ytwQMk6jo6OsLGxgWg0qkKVJV8noMiRuro6FVJpUhpp1SuZTCqj3KRMUZtNShXvo53jgstBu7nlcDhU2KJUaDl+AKisv/v7+5ZknZKeKHFXdXU1YrGYRY5x/kUr8/F4HFtbWwiFQsrBo+NhVG4oFEIsFsP29rblvsQ7ndW8traGmZkZdHZ2WvbAE11KfNAWg9bWVgwODqKsrAwzMzO2IceyX+l0GpFIBCMjI+js7AQASzi3fJ//5+2i393d3Tg4OMDW1hbGxsbUmefyfTt+zoH2iR8dHWF6eho+n09FmRBNyzHg5euc6PSMTg8i+UD77X0+H5LJJLxeLzY2NrC+vq6c88XazkGnZ5jazO9zZ28+n0c0GlU6UGtrK8LhMOrq6tDc3Kzkga6/urLtIhWoXXa826RLS5xK44p0PTqbOxAIoKqqCsFgUDmdtra2kEwm1dYEnayxM5xM+H1UvcxubD9JmSbdn8rTyWZy1NIpAZWVler87VAohFAoBI/Ho47E4qdXUDm6OmQfdXL4pPqPiUfazQcdXiQedO2U7TPVpZMf8jmiUT5/TOXZwWNtQEsBJIW0DOeWXhBpQJsmig65ROw6w4HKN4FcPZb16oiE6iODQRoRPFyDK2i0Mm1HoHwFXUekPEEZXwUjIAWKh2PKvvA28RWwbDaL1dVVzM7OYnFxURnMtM9VhmXqGKypXzp4VGZ4UtCN4aOA7l3dNZ0ziBvN3GBra2tDZ2cnLl++jIaGBpVoRa64yMz2OkHN75sYkq6NnCFyx4tk/nzsHQ6HxYnCj5mhI3copOzo6Pionunpabz++utIJpPIZDKWvZ92BijHpYkRl6pQ6Rg0tTkUCqG9vR2//uu/jqamJrUHjht8shxTO0xKH81dmnskpHd2dnD37l28+eabmJ+fV3s6TfNN9kte0xmqfr8fp0+fxoULF5DPH680UZ+4cszphivF3NinzwcffICbN28W7Fm3A96mqqoqXL16FVevXlUZgDmOeHs4DnO5HFZWVvD+++8jFovZZvvmvNLtdiMcDuPZZ59Ve2xNyVxobEZHR7G4uGiJtJHlEx2Fw2GVhInoQNINV8poBchE7w6HQ4XuUnl8flM7CeSqnaRL0xzjY06r3lyOceD8gjIa7+7uWvZMS15VUVGBuro6dHR0YG5uzhL5JOsgx8Lc3ByGh4eVAS0zslM/XS4XWlpaLEaALhSVcE8ZmN955x14PB7U1taqZJ80jjy5JmBdNX3xxRfhdruxsrKitqSY+A9dpzFPJBK4d+8eGhsbsb+/j1AoZOk/xwe1V85lKrehoQEejwcNDQ34z//5P2Nra8syP+yMHtk+qpvep5wUMzMzSCQSeOGFFyyOBhmmyaNSqFwuw/i4SblE41tVVYVXXnkFvb29uHfvHt59913E43HLtjCOG9m/kxgckqfQN19YyOVyir5//OMfo66uDq2trfjiF7+IQCCg3RstZSdvczF9hxsbJh1X127O3/L5vJYmKRN6ZWUlqqqq1NFi6+vrGBkZwfj4uKJnvgXPjrbt8KozzEqR1RLsnIafpFwJuncl3ygrK1Nh3ltbW2oLRm1tLTo7O9HU1ISGhgYlS+k93k4+P6jdfAWboluJfnheGcAqT2QkiKQv3be0PeQ4SZ1Pl9RQZ5dwvsDL1dGxicb5M3ZOdBM81gY0MU/OSMmbSQmRSMBKBQAwe175fzkwnCB0E1a3UssZArWDe5Fp8Mgw5nXp/vO6HI7j5C5VVVWW/Uy53MPjE3jYrk5B5O2SZZPhRe9IxYsMFmL8fMWMBDGVf3R0pI72eP/99xGJRJBIJLCzs4O9vT21ssAFMh8Xk4HA8Uh1yfu69z4JnITJy4n/SerTGVCcPvg1Gruamhp1NmZfX5/yDHu9Xsse/fLycu1qEtEYpyGTsOWMmLdH4ormAAALwy4rKytY0SBlhvaMEV15PB616lxZWQm3262y6v6v//W/EIlEkEwmVbinLsGUTqkvBYoZz7q5RTim81Y///nPo7+/H93d3erIIFKY6flcznqmO+dhOoNGKlOEV97ebDaLmzdv4saNG7h7964K2ZahuFSe5Jc6GubKNhmpNTU1+Df/5t+oTNtHR0dqxYpwwZ00OqOSh2anUil885vfxOTkpMp8zXmxaSxoHlDo9q/+6q/i8uXLaG1tNdICtQ94KGcymQzm5ubw7rvvWvZNyvd43U6nE+fPn8fFixeVLKKxkg5Y2oueyWTw3nvvYWFhoSBvhMS10+lEX18fnnnmmYKwcN6e8vJyJBIJS3ZcHa7oWQpVJoOV5it3oPIxksoKL4/GlhRluk6KGfWHO8K4rOVA7YnH41heXlaZ0+lZol8a89bWVmSzWbzzzjsFRxjKMhOJBN566y20tLSoI6eIF3G+R2U///zzqKysxPLysuqXjhao/L29PUxMTKCjowNVVVXo7e214ILjA7AqhnV1dTh37hzKy8vxne98x7L1xFQvlUuZua9fv47NzU0cHR3hiSeeULyaQkfz+Yd7YTn/IaAQdjpu7E/+5E9w/fp1fPDBB0ilUpaw3FKBzx+ut7zxxhuYn5/H6dOn8fzzz6u9+HKcTfOe8z4JRMs8b8bAwABaWlpw+fJlvPbaa5idnUUkEkE2my3QmXTfpYIuFFaWTzhMJpNqK8fMzAy6urrQ0dGBJ598UslurivlcrmCRJNSL5JywW5c+G8qi/MAXjbRDfWLz3PgoTHtcrnUSQzPPPOMcu7Mz89jamrKIoN0DikCifdiY/Co+pq8LvWZYjLRrly7NnF80zfhPpPJIJ1OY21tTfHLmpoaNDQ0oK+vz8IT5b5jnsSLj6XUuUoxJqV+x2mL6IHjh9sFdjo9779JP5ORGFSHqZ0cB9KOo2d0jtVi8Fgb0HxiE+OlzIoejwd+v197Tq1OqS82CPI5/t9k1ACFSXAAq+eGfxOB65QRnbDghKA735iIVbaVCyuuXPPfnInZGUK6lQxKLrO5uYlEIoHt7W117iidizc3N6eyNEoPpOyvTumR46HDz0kEW6kgx1saG58mSAZrWo2UBholR6qurlZ7Zurr61FTU4NwOAyXy1UQ7izrsFv1koqxjj5oTsoQZHpG0iJXyk3KBd3jhhqt3MzMzKizv7e3t9Veq2w2W3A2JS+P16GDUvkCf0b2lxRuOtO5paUF/f39GB4eRn19Paqrq7Urb3wuckXb1BY7Jfro6AiJRALz8/MYGxvDzMwMFhYWLOc76/hSKUBCmMakp6cHbW1tymnjdruV0prNZpUxy/Gk4yvUnkwmo0LMJycnEY/HLWcum5QZohMyNJubmzEwMIDz588jHA5rw0NlW7hR8N577+HBgwdIJpNFV9wcjuMV0NraWgwNDWFwcLBgWwQfNxqndDqN6elpbG1tFRxdxcumvgUCAdTW1qoEjqYQ7sPDQ6ytrWFubq4g0ojPOWq3NGQJ5Mqz7nglk6JpkkUSZ263W2XulWWQTEokElhaWsLg4KAlxwd/tqysTO0N93q9llB/Xja1bX9/XyUGkzKb2sihurpazeXx8fGCbOTScCFDdmxsDA6HA83NzSr8UqejcP7hdrvR0NCAw8NDhMNhbG1tYXd3twA/kn45/SSTSczPzysnXUdHB+rr6y18lcsSHf7pXkVFBdra2nD58mX4/X58/PHH2NzcxM7OTsG81OFCB2Ts09yam5tTkQbXrl1TZ1PrypVyUsc7OX6knuZ0OtX2iieffBJdXV1YX1/Hxx9/rLLgm5yLOtnHQbZXZ9Tq7pPTl+YZOY62t7cRCARQV1eHlpYW1NXVqXd1ziz6SINUp7tIGSLnP4/IkLKI44PLc14WXSsrO07i6Ha7AQCtra3o6+tDMplUxzvFYjHFqyTudbRugk+qB5ZSj2xPKXqDnS6pu88jIug4T8rZkM1mkU6n1XYEkrHBYFDNG+I1vFyTw5XrbrrVZ95GEx3pntXhSveMDm8mfiLbwunWhF+d7nCSvc8Ej7UBLRkC7TXiCUaCwWCBcODAkWhS4uUg2E0KHbORjEYyde5N4Yq0HcPjdeXzeZXQhZfPiYyMcy5cqG28vZzR8tBsadjLdnElhJIgzM7OYmlpCaurq4hGo8qYkVmPTf3TXZP168DuvhR4pRhGOkZXbIKX2jZT/VLAy998CwCFP1ZWVqqw4IsXL6K1tRXNzc3qbFNSfPgc4DQq65ArIrw+voomvZxSePJ3OZPj13TGtXxXzmEybFKpFEZHR9WZvHTcGffM87J1Y6ETAnYg55eundRWCmOrrq7G0NAQhoaGcPXqVWVYEpjClaivXDnheON41c2ho6Mj7O7uYnV1FTdu3MBbb72FdDpdkARIt5ql67euz+QgoJDtM2fOqFVXXh6FIPJVDNleajONXTQaxa1bt3D9+nVEo1FtJIGprdS2qqoq9PT04OrVq+o4IbllQQpcwjspKu+99x4mJiZsz5rmdbpcLrS3tytHAp83OiU6nz8+I3ZkZATpdFp7dBWvp6ysTDnJ/H6/ai/hkeP08PAQ6+vrFgNah3eHw6FWiUwGP5cPuqgFCTpjRnff4Thesac96XIlkyvu29vbWFpasjh6pWwvKytTCXiCwaBy1urwQzI0kUiofBuy/3JueL1eNDc3Y3h4GLOzs9oVbj4vHQ6HSih2eHiottDolD1pQBP/cDqd6OrqUk5qMrLoHR2+qN17e3tYW1vD9va2co74/X61d15XtwTOf6qrq3H27Fm0tLRge3tbrZKRYS/HV4KO/mksc7mcilBbXFxEQ0MDOjs7tfuidXOYzzVeh6kNxKc9Hg/OnTuHvb09RKNRrK2tYX19HalUSiUM5O+WasTxunQ6iKRHh+Ph6iM5FrLZLDY3NzEzM4NgMKj2o7tcLrX9gfpKwB3YEudycUTikr/PQW7p04HUM7ncoHkOHOsffX19is9GIhHMzc2pzPl0NCl3mEo8lQImvUKCDk/8W97TGc3yW74v21WMhiS9EHBnCS0erq6uWlb7w+EwOjs7UVtbq5KSOp1Oy/aRUtpqZzxz3OqcjnzceH8lv5P2iK4MnV7I20Lvy+27ujH5NOCxNqClok4hgmSkyZBi/qxEPM9wDcBiyOoGgRMFHzTdqh61jYB7nHmoFFf2ZVt1yoFsC9XLiYf2QNN/3m6n06mUKRI4XJkg2NvbsySwICBFMZPJIJVKYWpqCjdv3kQ0GkU6nVbhmjxZk8Sj7tsOPskEMAlQO6Zq1zY7wfMoYDKWuSJF/wn3ZJydOnUK58+fR1tbm0oyQXSmy9hIq6ImJUPukZGJj3ib6DcZ06bQHRnVQEDzhuYv1cPbTnURPWezWbz//vsYGxtTWbVlJINk8BxKHS872jAZzjJcu6amBl1dXfid3/kdizeYA5/7LpfLcq47V1YkbrnQ4MYTORdIMfn5z3+Oe/fu4eOPP1bhx6UmULNzZtAYuVwuNDY24ktf+hKuXr2K6upqVFZWWsokQ4DaSLRF/IfaTX2nMMb/8l/+C5aXl1XSLjvjlUDujz9//jyeeuopXLlyBS6XS9XDQ8ipXBo/4l2xWAw3b97E5OQkotGocfWZj7/L5UJ1dTV+53d+B21tbWrs5HzjPPng4AAbGxt48803kU6njfuU+ar6lStX0NLSYsGHlG1EB5ubmxajUzdHgePs1cFgUJsZWtJWsfnFeQPRIvWZRyGQAVxVVYW6ujqsrKwYjW2ii/X19QIHmZTZRHOnT59WySh1ZdIc29vbw8zMjAqx5seocPyTo6G1tRUejwc///nPLVvIOD44vyMDc3l5Gd/61rfwu7/7u2hsbCzgzVK2EC17vV785m/+Jv7xH/8RH3zwARKJhFG3kUAG/tHREd5//31kMhkkEgl85jOfKTBwCCecbnVhux6PBy6XC7/7u7+Lt99+G/fv38ft27ct2yt42+zax58jWqF5+pd/+Zc4c+YMzp49i2effVarlEucSacABzn3uFOWwqArKyvxx3/8x7h37x4mJibw/vvvqy1EcpFCAr+nM8JKBaln0sojGUzj4+M4d+4czp07h97eXhVpIWWniTcQ8EUcAJa5z/HEnTV8XlA4sK4und5CwLcRVFRUoKmpCeFwGBcuXEAymcT09DRmZ2dx9+5dy2kLxXRHHb3ZGbEcihm0JiOu2Pum63Z1Sf1Uyn7CHQ/1Jh5bVlaGZDKJhYUFJaPr6urQ1taGvr4+BAIBbfSO3LIp28OdwLwd3A7ROVZK1S9kGVJOmd7jOhK1m9txutOQeLv/n1uB5vuxyEhzOByoqqqCx+OxJOPRCRdJjJy5cO+cNMD5/mW6phNidI0bsdRurmjzdhEjKiZkTKtqso/cK04ERMAVIFqx50qxVPjo+VQqhUQigWg0isXFRaRSKezu7iIejyMajVoMZ52CXoz5yb7KPunu2z1j9w79fxTh9klBxwx0CiD953TjdDpx6dIlNDY2oq6uDjU1NerICzr6CCjED6cdqRDpvPacjrmyq2N6kvZlhIGO2dLz3CjhziROow6HAw8ePMDKygpWVlawtLRk2R6gM5xl20qBk9IUxxM5Jmgf8NNPP42Ojg60t7ejsbHRMjZ8nvNx1h2fw/uh8/5zvkR4oFWUn//85xgdHcX6+rrlvGSd8VMMT5In0uruxYsXMTw8jIsXLyrjWWd8maITeHhtWVkZ9vb2MDs7i7fffhvLy8uWBGc6XqKbSxT6WldXh5deegnd3d1q5YPPAw5cacjn89jd3cXKygp++tOfIpFI2O4f5jih5HCU4MXUTq6YrqysYHFxsWCMdHWRY6Cvrw/V1dUWJUAarQCQyWSws7OjDQuXZQeDQUuiKU5zBKS0FcMHASn/9C5gPReU2kMrrZznyHmczx8fi8iTuJHyyPetE8+gM5VHR0dVBIOU/Rxf4+Pj8Hg86OnpsfSbnIPUXwo3p6gLSoqkazfHAzkKl5aWMDMzAwBoamoqMPg43+M82uv1quiOH/zgBwCgNSpkWfRNoeTT09PIZrNobm5Ga2srvF4vAGBnZ0dFAsg2cH2K0zut3FZXV6O8vBx3797F7u6uZRzkWOtA1+9cLodUKoWJiQnE43Gk02lcvHgRdXV1BfyEj5cJn/wa8VFuPPCcHB6PB6dOnUI4HEZbW5uKgiEHl9T7dH3U1XtSkHTKnQtjY2PY3NzE3bt30dvbi97eXrUPVhrGvD1yTHTPSd1Xvsdlkc4okfNYpzvw/7RQAwDBYBD9/f1oamrCqVOnsL6+jpWVFYyPjxujgIrJL928L4YX2U4TT5b/i7XrJHqnrm0E3KDl31yHogSSdEzs8vIy3G632uLX2NgIj8ejFtVku+X80el4/B2yNbjcl3yjWL909euA640EPMKNz21ps0mcyd/F4LE2oKWhSAKUkoeRAU3PmgZKPiOVVMkI6NtuUHVtBApDagikkqBTkO0mJSc0bgjJZziRyUQPcnIQUGh8NpvF3t6eMp4pucXu7q5l5V+uiOnacRKDRlfGp/F8KePHn/0kYHqft0FnrNJ40koKHQnh8/kwNDSE5uZm1NXVqdAcvqKmU9oJ7ISZjrnwa3JciwkU3djz9/jKKhe0nPFns1kkk0mMj49jYWEBKysrKguzbjXsJELVrr2lvMcVCMo87ff70dTUhLNnz6KtrU1lr7UrQ/7W4c6ufRxvtEK3sLCAW7duYW1tzdZ4LhVHkiZdLhe6urpw+vRpDA0NoampyXJ2tWyfSZGQzpaVlRVMTk7i3r17BXsQ7fiHNGTpzN6enh7U1tYa94DRu7wNuVwOGxsbmJubw+zsrOXMZ7u6y8rKUFdXh56eHvh8Pm0otJQfudxxhu/V1VXtXlreL6IzOqvZ6/UaeTe9T4ka5YkMujbR+cmSNrj8ID5ghw8JOicyLx+A4nGm0FB6nrYL7e/vw+12W/ZmyjIrKirQ2NhoDA3n5eZyx6HDkUgE+/v7FocXxxEphWRE9/b2YnNzExsbGwUJQnl7CG+kyM7OzsLj8aCxsdGoE/A2OxwPV77z+Tw++ugjbG5uYm9vzyjPZN0Oh0MdRZXL5TA6OopAIKD0JRlxZKdccnpsbGyE0+lUuRZoRf5RDBwOudxxfptoNIrd3V1UVFQgEAio/eDFtpdxeWjSd3RGCPG3mpoaFZWxvr4On8+njpmTiwylzIVSDCc7Q45wQvRKx92tr6+rc4DD4TBCoZByRhG9ynLsjNmTGowcdzypnjSY+DvSQOK8mxYKQqEQmpqaUFtbq850p+z3dCSlnPuyPru+fBqgm3um+cjprRRa4KCzA0z3+DNUHznPEomEipKqrq7G4eGhSi7rcrmUMS1XZYvNZWnH6MaX/vN3dPdMtCrLlHYN3eO8WtIhf1+25yTwWBvQBJS59ODgAJWVlQgGg/B6vSpzIyFJEoNUSnTEQcKQwkz5e9zDwgdRxt/TNRMjkQokvUveUKm46EKpOXBicrlcBas79AyFMMpwXl7e0dER4vE4bt++jaWlJSwvLytc6/aZyjLslN1SoBjjOwnhm5i46dlSmJt8rpQJKSexTkHjRgoJ8vr6ely5ckWtaBKDozHkHx7JIB0xBDoHim4+mBgQv6fruyyDaIzoTpbjcDiUB5TKyGQyWF1dxfz8PN5//32sr68XTQx2EoVNB3Y0IXHAcUyrgv39/RgaGsILL7yAQCCg9p1TH2leU1gk95TSXOdjwP9LxYSvwNDvg4MDzM3N4Y033lBnO/OsvY8yJyVd0p7nUCiEr3/962hpaVFHcHFniIyUkdEP1CYeHbO7u4sf/ehHGB0dxdramlLCdSudvG30m7evo6MDv/Vbv6X2j/KQeEAflUPtpdD3W7duWZwPdrih+gcHB/HFL35R7TXlZUvnAhlUt2/fxt27dy1HV+mUCHKmkUJJ+9moLI4Pwu3m5qYK3TfhkNpWW1uLcDhsWYkjo4uvHkvjgYNO4edObh0PpCzp9fX1FkegbCOnmVgsps6PltsdCCoqKhAOh1XOAV0UBMcfRVLFYjHU19erZIVkKJIBTxFbLpcLV65cwcrKCubm5iwKvY5fUtuz2Sw++OAD5HI5nD592nLuO992JSODnE6nMoyef/55vPnmm4hEIpaM9SZDlNpDq+DRaBQ/+tGP0N7ejurqarhcLpWBPJfLFYwV7wfnWYSLhoYGvPTSS5icnMTU1BQikUiBfqPDCb+ukyc8/JxWXPv7+/HVr34VNTU1FicsvcPlgZSpNAbEg/f39xWt8Og7uRXk137t17C6uorJyUn88Ic/RCaTsUQ/cn7NQcpZHR7kuJnoh9/jcyGTyeDGjRsYGxtDfX09zp8/j2vXrlkyduvqJXnEeZhua4vUQYHCs6D5fY5/nZyiZ+W85vdIv6mqqoLL5VJO6fn5eYyPj2NiYgJbW1sl59ThurNOZytFj9ONpTQWTaDTjeyes7tm11ZOOxynRJvkgNzZ2cHq6iqmp6dV1ElNTQ2Gh4dVtn1duSb8yv5JWjHpirp5Q3PTBFynkPaV3Vhy+SsdwgCMMlIHj70Bnc/nVZKBXC4Hr9eLQCCg9hlKZOiMRBPB04QzDYQU7nxPIU1+eo4f78OJUKeQE6FxIUrExBkab4fp/EwS5iT8eb3csKb6yDs1Pj6O9fV1xONx7OzsIJlMqoQOdsyK41cyFTuGYfdcMcakUzJLec6uLaUwQx2Uwjzpt5zsXHjRCtPAwAD6+vrQ3NyMQCCgVgp0GYS5AS37IxUxKYgBa8ZWKeR4Wdzg0x2ZwfHMBax0MBEt7+/vq/5QOVtbW1haWsJ7772HeDyOZDJZYAjqPP+lGM+PMrbyWR5JQspVTU2N2tMYCATg9/st2yIIOE+ifpgiUyS+SImkNpFiSUrU7Ows7t+/r46sodBnud/ZDj+y31L5pP4ODQ3h4sWLKtM2P8qEeJasSyat4zSRyx3v0/37v/97lRBO5ygxAad/p9OJgYEBnDp1Cn6/38I7Zb2cj5Iiub+/j5GREUxMTGB1dbUgVFnSEKeFYDCImpoahEIhS7vl3OSG1MbGhkqaVKqRe/HiRctqvy5knup48OCBOsJIxy95+2nlip7TZfbd399XjixeJ39G4jWTyRQo3LzNuVxOrYoUm5u5XA7ZbBaLi4vw+/1qFV6nOFK/KMmiTM4mZen+/j7W1tbw3nvv4dVXX7WMt8SZy+VSBld/fz+SySTefffdAqORA5/HlDvkRz/6Eb74xS/C4/FYxpLPPT4PKLri6tWrKmx8Y2OjpNVQThu0Ev7DH/4QS0tLePXVV1XEBMefND5l+SQXaOvKV7/6Vdy/fx/vvPMOpqenbSNIStUNeH6LjY0N7OzsYGNjA1/60pdUlA/nP9I448f3yDlSUVGBg4MD7OzsqIUXbliSU9rr9aK9vR319fXo6OjAhx9+iImJCct+fJ2hoOsP77/8zWlS9z6XldQnigihpIfxeBwPHjxAe3s7+vr6cPr0aUtuE3K8m+S7NGylrKJ73GAmkBnv+fYNPjZ8LKgsE84outTlcqG3txctLS146qmnEI1GMTExobZ2FTsKS9ahM4hNYNL9S9UlTqKDyv86vc70X4dHrp9x45T0iLKyMuzs7CCRSGB9fR1utxs+nw8tLS1oampCKBSyRDvRuwQy/w21icsDbqjSfe68kfxB4tuku9npdDpd19R+u3mng8fagCZE83NF3W433G63xSNtp1zzATIZD3wiEgFIA0iWxQlYrvzonpdMRBrNVI7JI1OKUaCbcLR/OZFIqJAYSjwQj8eRSqWwv7+vEjTpBKBOudU9UwqU+hyHYgL4UYGPUzFj7CTlAYWJNbji39nZiUAggGAwiM7OTrS0tKCmpsZyTrAM1ZZCgAtYWa/OQy4dRTrliIAr1JLpScVZV55sD1fmUqkU5ufnsbq6qo7doT3OcmXORF+fJi3o5jiNF/Gc6upqNDY2oqOjAx0dHQgGg5ZVManM2dVlwp80CgDrEUvZbBajo6OYnp7G+Pg4VldXVciuDmcmJUW2k/eXVgOcTidOnz6N06dPY3BwUGW0prGUqw+6vvF+lJWVqQzIFLpNzhLJc3TKjxwbOn3h1KlT6OnpKdj3rHMO8TJpy8qNGzewublp2Tes43USR729vWhoaIDL5TKONbUll8up84ETiYRaCdPVQ3WRkd7T02NxisqxpWtHR0dYW1tDOp02rhjTOJSVlaktUFKmSP4gt+zo+mjiAaY5SpmQ+bwx0erR0REikQh6enqM+KJ2l5Ud7x32+XzaRGK8jWTYLiwsqBBxnVEGPHQ6lpeXo6GhAT09Pfjoo48sMl/WwXWK/f19xGIxdQYujxyStE3zihxqZWVlKrN/Lnd8tJfJsWiqHzh2si8vL6OqqgojIyMYHBxUtGuSMTrc0fPl5eVobGxENptVZ9bGYjHs7OwYnQqlyFjeBnKkHh4e4vbt2+r40ra2tgLjUldHMV6o6yuNAemX7e3tSKfT6iimra2tglwcJkNG9o+3WYdTE05kGQ6HQ83Jg4MD7O3tqQ8ANDY2qmzMpr7b8R7dglKp9KEztEsFSV+U44gWyxwOB2pra9HY2IiNjQ0kk0nE43FluHO5pCtXB6b+6HQZPoZS5km+J/mpXZ9LnXOl3JNtk/TPHTDZbBZOpxOpVAqHh4dIp9PKUUmh3hTla8KLnLd2802+ZzKQ+XMEXJeW75je08kiOxligsfagKYBpwRYZEDTeWeAdX+lTsHQhbdKrxzPHKo7+oRA54Eh4Pu/eBnk2eSCj088blBzRiWVXN5+TqyUwIwUA3qOFLfl5WWsra1hcnISGxsbai+zbqXPpEDqBBy/zsFOUJigGKORfT6pgC5WH29vKWXoDG+dAUb/+bEDXq8XTz31lGXfLNGjDLPixqdk5LwuAvLCAw+VZb4SxJ/lWTXJQ0/l03wAYFmtODo6spy7zr3A3HChecfxs7+/j0QigeXlZfz4xz/G5uYmksmkRekqlQ4lHuzGyA7kM9JQoiiBjo4OnD9/HkNDQ+rseRpTOyEshQBXnHWeXKnA0Era3t4eNjc38eMf/xhLS0uIRqPK6JPz1wQmQSP7TCGeL774Inp6etDc3GzMXimjfeQ+Veo3cDz+KysrmJqawsrKCrLZrG3SMF4ulUPKVWVlJZqbm3HhwgV1fBS9K+eyrt/ZbBZbW1t45513sL29bQnJNfEWwpHL5cLly5fR0dGheLusjz5kAKTTaXz44YeWc091ddB3RUUFqqur0dfXp8K3pdHEV9oPDw+xurqKdDptpAHqA4VLkmJEPIMnV+Jzlo6XkSBpVxp2puekAS2f5XKRzrbmZw+bImccDgdqampQU1ODSCSi5c28rel0GgsLC8hkMkpBl7yXK+fAcSIwWqXkx0uZgHgm7YXe3d21HEckTyAgHsojUsrKynD58mW43W5MTk4qp4apb/I34TEej2Nqagrl5eVobm5GTU2NctLSHOTyQuJWOlWrqqrQ1dWFmpoarK+vq7Zls1ltm4rJVTn2dO3o6Ph89uXlZcTjcZWo0U6ZlvOQ48rurHYps30+H86dO4fm5mYVsbK9vV2w79uuT6XgQadDyL7oDDnSjXd3d7G+vo5IJIIrV66gt7dXnRvPdRFeh9QlTToFPUt8QqeX8v92hpUdniTvkCvpgUBAOdkfPHiA2dlZlWhQrqDb1ftJdAY73srvF9NNdM+SrleK3lJKm3T3ePlEO/v7++rUANJ3WlpaUF9fj5aWFstijm68CaT+x+lLLgpyBzynPx1P09XL6+D2Eq9LxwtKwZmEx9qAJkW+vLwcPp8PTqdTHZMiFRGJfEIsGR988suB5wyJDwLtg+Ll8/dpsvKkHNJ4kvsDpGCj/ZNSueYMixsjcl8rhdjRngd+NjNl5aVwPHkEEMedicB0zEHikD9bCvO0K8MO7JjxSSaF6f2TGF06gSPDfsvKjvcytrW14eLFi2hra1PZEGncOXOSjhcd7cixkiFtcoVDbi2gNnOFWfafl5nNZi20LcvhoVwUJkSKGNWRSCTwrW99C0tLS0gkEuocd1IwpXFQCq0VGzO7ezo+IHHm9/vR2dmJy5cvo7m5WeUaSKVS6l3a/0pzmfas68La+TziRiONAd/nzvudTCYxOjqKv/zLv1RnrZtCtnnfdf9NQpBCMz0eD/r7+/Erv/IrGBwctGTt1B33QyAdg4SbfP44eohWYH/yk5/g3r17Kruy5DOy3VIw0h7a1tZW/Omf/mnBmbH0LDd8iIdTu2lf6nvvvaeUYdO+Ulm/2+1GbW0tnnrqKYTDYcved0lPNC57e3uIx+MYGxtDMpm0TcpFfaytrUV9fT2qq6sLVvLlfKG9rnz7g45/E9A+OLmycHR0BKfTWbBKwbcZcWWH0xLRNE+OJhUYLofJiJRONnqeK3mrq6sq2zMfZxlp43a7cerUKezv72N6erpgnnF8kOKYTqcxOjqKvr4+tLS0KBxLWU1KvNvtRn19PV5++WVcv34d6+vrBQafBJLL29vbePPNN3Hx4kX09/cDsDrdpTzguAgEAhgaGsLv//7v4y/+4i8s2eJ181+2JZ/Pq5Xwe/fu4R//8R9x4cIFXLhwAfv7+wV8QWeA8nYRHVKSu69//ev4xS9+gVu3buH27duqbVy3Ms1vacjRb24Q7ezsYHZ2FtFoFBUVFbhw4QLa2toKeDyfFxyHxL+Ix3L5xsO4yQjg+CgvL0dLSwt+7dd+DVeuXMH4+LhyvJEM042/nQ5lgmI6iNStuE64v7+PyclJrKysIBAIoKurC88++6xKQkjPSl7Nf8tzpinyk89fKQOoLdzpwx2uumg2qovrD06nU+myPDdQPp9XzurKykrkcjlcuXIFZ8+eRSqVwr179zA9Pa2SaPKcQlJf+aQ6IoGdHnqSMnQgaeCkOnKxd3j5JJ/5lrHd3V2kUim1Z9rtdqOpqQktLS1ob2+H2+222EQ6nYL4A93XRazRN7e5dHYJySOT40v2W8cD5DMnweljbUATQisrK9XA6UJUdcYgHyhTSCsnJq4U6IQJvaOblDRw3ADhRrhkyLxdsk38N19loDYCxysDkUgEW1tbKkMnKQW0nzSdTluOhuEMSYczCY/CdHSK+6MwG5MCaFeO7rmT1m0n6PlvE804nU74/X40NDSgr69PbTegYwQCgYAlay/RANGVPKtcts0OH3ylma9EcyVL5yGkdyRj1eGF3+PX+OoJRT7Mzs5idXUVsVgM29vbGBsbU5ne+YqfSQksZdzsGKHOSOb35BiWlx+fwVpdXY0zZ86grq4O4XAYLS0tlkQbLpdLRcDw/vPVaKlscK84Fy7cmJIJgnZ3d/Hxxx9jfn4ei4uLap6fZNWZQLcCQX0mw4CcPD09Peju7lZ0Ko16yQ85jyLnDRd8a2trmJmZwXvvvYfp6WmkUimLoDTxGWkskRP18uXL6jgdnsCLb3kgfsxpnozCmzdv4v79+5ibm9Pme5A0QvVTZuSXXnpJ7X2XiqSOhmdmZnDnzh2L00DKI+kkGB4eRk9PTwHt6sZ6d3cXm5ubqi/8OUnjZWVl6lxf3aoCx4PD4VCnMtj1ka4TfnV8igOP7tA5Y3g9R0dHynjm+zl1ctrhcCAcDqsVSm6cmtq7v7+PW7duwe12o6GhoUC287IBKAfO6dOnMTk5qfYT0jtcdvD/udxxuO39+/fh9Xrh9XrR3NxswQnvk6yfaL+zsxMvvvgiHjx4gKmpKbUdgPdLB1ym7OzsYGRkBDs7O4hGo3juuecU7+LnptsBV5wdjmMD/+zZs6ipqUFDQwNu3LiBaDSqwp0lPjhOdW2XuhTPA/Hxxx9jfX0dbW1teOKJJ1BdXa3kJm8715lkngpu1HEnsqQr4m+0Gt3c3KyS+0UiEUxPT2NxcVEbRWWSO1K30fEMnSGte4/jkuYrOdQovJ5ydVDSKJ/PZ+HfMmRbynqd7iB1SakXc/2Xt11GxJGxbQr7ljigfpL8JV7Z3NyMZDKJbDar9GJKhitlpYl/8X6WojeWYoTp9KlS6J/PLztdVNcPLgNNtCbHmMsJwhc5UMm2iMfjWFpaUtsMnU4nampqEAwGLbLYJAflddkPqRNIPYV+Sx4i69LZerK+/6cMaIfjOJEHCX3dQEiESoEmlRb+LZmQVDpME8k0EeU3Zz5S6Ov2m8j+c4ImpXRnZwdzc3NYXl7G/Py8WmWWZzOXoqjya3Zt0b1TTFmSZekEQyn1FHtHx2hl3cXetZvcOrrhhhclVgkEAqirq0NXVxeuXLkCr9dr2StLH12yEwBGhdxkDEr61NE9T+7BaYALMsn4TGGS8l3AGrabyWSwu7uL7e1tPHjwAGNjY9jY2EA6ndae68jL0jF9Xqf8z9tlwpOOacpvMloCgQDC4TBaW1tx7do1NDQ0qMygLpfLglseHUDAx5U7MEx9MK0g0yp3JBLBxx9/jImJCcRiMcuZuBKH1B+TsJXCkvpAToNgMIjBwUE8/fTTaGlpUXsAOZ1zj7KkExpD3j4KXV1cXMSdO3dUpmu+cqbDi2w/tdXpdKK5uRlnz55VIa2STiVN0DjQPNjd3VUrFpFIxBi6LeVAWVmZWvl+6qmnCla95Rhz/ru0tISRkZGi/aY6Kyoq0Nvbi7a2toLn5NzL5/Mq0VKxc6V5P3RRVTRm/DqFTJoUTw4ko6TM07XB6XRajo+Syh2VV1ZWpviGHBc+H+keKXNVVVXK2aQbG1IUDw4OMD09je7ubuzt7anQYK4vSB5SWVmJ9vZ2tLS0IJFIYHt7uwAXUkGlshYXF1VkQWNjY4HhTHXooggqKytRV1eHS5cuqaR0sVjM2EfdNXIaLC0tIZ1OY3t7G0NDQ+pcd74apJO5UkGnj9PpRFtbG+rq6uD3+7G1tYV8Pq+MaIkP2TYd8LrIyUVJFNfX17G4uIiamhp0dXVpkzlyZ4D8mHQi3XiT0ed0OhEMBuH3+9Ha2opIJKJWRFdXV9XJJTpZpaMLXkcpMk/HZ0y4otDmra0tVFZWwufzKQcgrUjrQoblgg2fYxx3Ujcx8UD5Dq+TL4TRHNE51CR+OM8oLy9HW1sbmpqaFO7n5uawurqKXC6H7e1t7O7uKtmpmyt2Ov6jgGmcTlrHo+jK/D07OuT/TbyCgJJgxmIxxbvpaL/m5maEw2EcHh6qqEr6cL3SFBWl45GyLZK+7Pot6VLqhfy5UuGxNqApbIOH31Dsvgx75giUE5ILQx0jlx4OXYgKlcONAK4ky+fom57TCSVeDxnHvDxihslkElNTU1hdXcXy8rLytsnEX/Qe75tpRZPX88uCRy27mAEs7z8Ks9EJMl0Z0mgGHhpLDsfxXrBQKIRLly7h0qVLCIVCKkxSTmoaU6mcc+WV06IUMHxVWRfSwpVDTv80V0yrMlJp5Oery8Q3fNWU0/vh4SE+/vhjjI6OYmxsTO0t5WFuOsXlUQQL/zaBVIR0RhEAZUR+8YtfxJkzZ9DU1KSOBaFx5nOX8xoePSANZrk/kv7zFRUu7Oj61tYW3nzzTXz00UdYW1tTZxPrVp3tBLSdMOLJwuhIri9/+cvweDwFPE0qNvw/lctXFqhvBwcH+OCDD3Dr1i3cuXMHOzs7ltXeYnObt9XpdMLn8+H3fu/30NLSosZHvkd0zlfmiP5SqZTKvByPxy2GoaktfLW0u7sbp06dUnvC+Qo3pwfCEfV1fX0dMzMztgYutZ/Cmzs7O9UKJZddkqYODg4QiUQwMjJiCZ/mNMrxScc98aMPOS/jq2gUScJXoOUYcZArhXxFkPpG+KJ92HzVQgd8JSSbzcLj8ag6qA1Ey1QfZZVNp9NaXgUUrnCvr69jbm4OQ0NDlrnOcc/nntvtxrVr1+D3+7G0tFTA3yRQXZlMBvfu3cPW1hYuXbqEyspKhQ/ufJM45POtpaUF586dAwC8/vrrlj3qEpdSJ6HfFKmWzWbx93//9/jsZz+LU6dOqXbm83lLtJ/kNxUVFUqO8XlI+6K/9rWvYWRkBP/wD/+A7e1tY5SHbmzkfY57h8OhVsR2d3fx3//7f8cLL7yAwcFBnD59GsDDsHi5Gs2NN45fPk9MBhw3ogk3LS0tqK2txZUrV/DWW2/hzp07iEajFkeZzmAr1n87Giqm4+h0DTrK6Ac/+AF8Ph/C4TB+4zd+Qzkd5JZATkNS5+BOeG7IcmOY5iLxKukkk3yb6xVUjy63AHf40zcfUxrvgYEBdHd348knn8TGxgZGR0dVEjpuRBfTHe1o8pcFxeaD1HtNzphS9WGTLkXv87kHwKJD7u7uIh6PY3x8HE6nU2Wvb25uRltbm9rORm3i85KA8ySiVxmFaxobaZhzB5KMopE0exJ4rA1owHqeKPBQETB5HCTCOdPUET8fQP7hxhJ9S4bLCY3XyxVKIh7y3siBlUw2lUphe3sbMzMzKrMlreplMhl1LqEUALwPvDzeT7vJL/sl8aMDOWGLMQDZJp3g1xnPJzGWHhV0Bhf/TYKivLwcfr8fNTU1uHjxIurq6hAIBBAKhRAMBi2KhyybFEJ53Bj1UY6lzumj+y3r4SukPIpBB1wwkuDi56LK0C2Jq4mJCSwuLqrM0Nvb2yqzuzSYio2pnM+m5+h+KcKM41A3jgMDAzh79izOnz+vjhCjvaDcSKL36J5sM1fC5PgT8L14ZAjQGMRiMSwuLuInP/mJJVGYaaW6WN85HnV9r6qqwjPPPINz586hp6dHHVPF20rvSMeLVHBIgaEImO3tbUxOTuLnP/+52sNqUqJ1wJ0SlLX+0qVLaGlpgc/n0/J6Kej5/6OjI8zPz+NHP/oRkslkyUdnEb7IYDp79qzFaUv1cgOavinsjaKDTPVxmqmsrERjY6Nlm4dO4aR6HQ6HymrPz7A28WHKJF1ZWWmhV87reB1kQOvkjE6OUQIpruBQWdJpFAgEsLW1ZWmvDiiSIZFIwOVyWRRpvh2K9IJgMIhz585haWnJEkLMgcvdbDaLhYUFeDweDA0NFeCPGwgc6uvr1QrM2tqa5bgvXZ9Ih8lkMohGo/jZz36GJ554Ao2NjcZEdPSf8xS3242Ojg44nU6MjY1hbW1NbYvQgWwHPUcOl8nJSXi9XiQSCVy9etXIz2TfqL18W0Iud3xMWV1dHc6cOYOqqir81V/9lWW/MC+rFCNF6gikT+Vyx4ngPvroIywtLWFxcRHPP/+8OqLq4OBARX7JtuvGxjTO/D5vC63ClZWV4emnn0ZPTw/m5ubw05/+tCB0vRiPKRV0eplJx5PO952dHbUy/bd/+7doa2tDS0uLcjzQOMuQdu5E4v2R81/qJfy/3Rjwb8JZMSeuxJ80qmkVlPLNdHd3IxqNYmZmBuvr6+pcac63S9GPPwkU03ElD9bVaTdnSgHdXJJ18mftZCzdowXNg4MD7O/vY3l5GSMjI+q44fr6enViBefXvN9cP+V1yAUKcq5IXPIFHt3ip0m+lQKPtQHNFT8aUIkg+TyBTjHQvcNBCi+OcF4WZwj0bCmDopsQpKTw8Nd4PI75+XnE43FkMhmVOdtkNJvK/t8BpRoynzbYTX4JpRhj8pt/SFiGQiHU1taqc2CHhoYQDAbVaopupZKXp2s7NwYkM5dGvan/UvBzz18pwIUXYDWqdWXQOZS0+rWwsICpqSl1JALt5+Xz6dOiETuc6K6ZjMfq6mp0dXXh1KlTGBoaQn19vWXVmbebe0qlY0QqlXaKLDF7aaiurKxgeXkZk5OTGB8fRzqdVg4InUJ9UnzJ/odCIbS2tmJ4eBidnZ0Ih8PqKCgCrrSY+gQUnvO7vb2N5eVl3L9/X0XLlLLyzNtKv8vKyhAKhdDe3o6hoSEVfsxXQgik4s+vUwjazMxMwdFZdm0pKzve+9zQ0IDW1laV2dZUL/WRlIqlpSW18lEMyIBub29Xx4bJeSllDK0S0/FG1B7ZPolPHoLOFQ9ZBkWQlALkHNThVNKuw+FQK2Am4HhNp9NIJBKoq6uz1Kfbx+12u9Ha2moJEberI5c7Ph6KzgKXShgB58kOx3GUTk1NDbq7u7G1tWVJtmbSS8ixsrOzg/HxcXR3dyMUCsHj8di2k4AceD6fD01NTTh9+jT29vawu7tbEo+VcoaOlpubm0N5eTm6urpQW1urHBWcd/AyqE/SqKI2UrI92o6wsLCAzc1NhQOd7D6JrKJy9vf3Lau+jY2NaG5uRm1trUVZ1/EEDlJvpPLlM7Lv5AhvbGyE1+uF2+3G6uqq2hfNc1bo6j6JMSQNVF0/TP+504HC4Pf29pBOp+F0OlFfXw+/349gMKitV9KArnz+LOfPJqNPGje6Ok0OA0k/VCcvj7bVUULQUCiEsrIy9TuRSGB3dxe7u7uWqBZep6y/GI2a5okdHkzvP+pzperDsr8m/VJHb9we4wYwnTiRSCRQVVUFv9+v7Bc6Pcnv96t8VjxprgmkLiqjIky5MXj7iumMdvBYG9AyTJtPTp1SJzMByoHnRCMnvcnzQaATHHx1jwteel9672hfDj1DAmBjYwPz8/NqP7MuPFsKSNNvgmJGo+l5+fsk736Sia0zfCQUU3jthJPsn6m/nBmTweHxeNDQ0IBz587hiSeeUEcZcUHBQ+0A655jKRA4vcgJz1f++DuciRBtce8cGWf0LOFLp4hLkAo+MUP6TUCrjGQkvfbaa1heXlbebb4CJ+nVJIB0zFl3vxTQjSvnIRQi29jYiCtXruCFF16wjCUfE/J4Sq+naTsG5zEm5YArjzTWe3t7eOeddzA+Po7p6Wl1lq9cubdT+kz44zyJaNnlcqG7uxsvvfQSzp8/r5JK8age6Q22E/4cT/v7+5ifn8eDBw/w9ttvqySGpizXurHjfN7pdKK3txfDw8M4ffq0ZUVJ8mYeocTvkVEfi8XUuaF2K+F83lPyoLNnz6Kurk5lrtYpEtx4ptXYjz76CMvLy7Zzj6CsrAw+nw8XL160HKtkcthUVFQoJV2ev6tTIEjhD4fDykCnZ3kIMRnBDodDrSxw/m7CG40/d5ZQyKtUqh0OB6qrq9X5ujo5TWUeHR1hc3MTa2tr6O3tNY4ZAZ16UFVVZZmnpnbn88f7yOlYvWAwaDmqD7Ae+Udj7XQ6EQ6H8eKLL2JkZERttdDxL64vHB4eIpPJYHx8HOfOnUNNTQ28Xm+BjiJpi88Lcth++ctfxubmJiKRSMnRHbwPAJDJZDA/P490Oo1QKITnn38eNTU1RXUg3RjwUGfiNZ///OdV1vtMJmOhS5N80PE2knu8HeRAOjg4QCqVQiKRwLVr13Dt2jXU1NRYxk+GjvJ6+XV6jjJBy4gPeod/qK9+vx+NjY343ve+h4WFBWxsbBSc+y71Tx0eOS4kjnT0XIqM5Lw8lUphdnYWy8vLGB0dxaVLl9Df349Tp06pfB/0LHdS8Qg0ro+YDGjdOPOwa9lvqePQM2VlZSrCg9ql0+d4W7jcc7lcymlOR/Pdvn1bRS7wbVKyP3Z41hnJumdle2Ub5XVTfTp41DaZxsGubv68xLeMRMlms9je3sba2po6Pcnj8aC3txcdHR0IBoOKvnibeL08rF/iitMLnxeSj3CafBR4rA1ojlyu2NAEy+fzFg+5JB7pCaNnZcIJPmFJaeGEp/Mg6iYqB/kOZcmemprC0tISNjc3EYvFVGKdvb09ZYToDBD5uxRhaSfwTM9y0Bk3pglaTFGxa1epgl/XNl6mnYJneo9PMG5weTweVFdX44knnsDAwACqq6vh9XrVGaYE3IkCWLcc8NA7nYLDhQyVJRmBzsiWxhUvm/Y1yZUruZdOrixJBVy2JZ1OY2NjA6+//rpSNmOxmEVplgaiiW5Mz3wSkEyUKzdkODc3N+MLX/gCOjo6VAZJ4gX7+/sWZ4OMJuCOMlNfuKLL8ccVVuDhvvKlpSX89V//NRYXF5FOpy3HcMhxlaDDm06pAB7uE3W5XHjyySdx4cIFXLx40eIEom0mBBwXdmNDPCuTyWB0dBSvvfYapqenLUc2lcqveN2UGfnVV19FZ2en9uxXiQ9qq9xv/v3vfx8PHjwwhiNL3AEPFa/6+nr8yq/8Cmpra1WII83rsjJ9XoGDgwOk02ncvn0bGxsbtuHr3LgNBAIYHh5WyYl4mDKAgnm9ubmJRCJhCY/WKbTEYyoqKixnz9P4kKHMnRO0P5iyYOvwTd+Ee5mFm88XvmWhrKzMcryObrWP17O+vo7q6mr1Lp+XNM5UBs312tpapFIpRKNRrTHC+0nj9dFHH+HSpUtobGy0OGToXc5THA6HSixHKyqS/0lckSw4PDxEKpXCz372M0QiEfz2b/92AS7l2BHwfvp8PgwNDals4lI26EAacVReJBLBT3/6U3R3d8PlcqmTB3iZvG6p6OpkXEVFBU6dOoVQKIT+/n785V/+pdqCxp2SdroOB74aRWND7To6OsLy8jJ+8pOf4P79+/ijP/ojFbEiaUzOD0kPsk5etwQuayorK1FTU4OvfOUriEQimJ+fx+uvv650PCkHTH0txvN53cV4qxxvLstI7/zFL36B27dvIxQK4cknn0R3dzfC4bByInCZRiD1bopgkngyrb7b9ZO3m37T3OG6v04+6eQvALUQQkf4Pfnkkzh//rw6MWRiYgILCwvqjG8Tz5DXOF6L9aeUa6Xc1xnj8j3ZplLbV8pzOjrk9MEdLcRf9/b2kEqlEI/H8eDBA7jdbvj9fvT19aG6ulrpYrq6ZH08ZBsoTL4r5YPE00l0kcfagCYlhcCOMPL5h5vQpVLEmQYNMk14Lhj5Byhk2LwdvHwJ+Xxe7QkgQ2NnZwc7OzuIxWLY2tpCKpXCzs6OJbs29xLy/urKL2acEHAmxO99UoPlJET4SesylSMNcNO46Awr/p/2zXg8HhUyGgwGEQwGlTChLIM81JUzCimMqT2cXrPZLKLRKGpqatSqn26lmt6VHndpaHPlgZ7jNE5gomN+Xyc0jo6OkE6nMTc3h2g0ikgkgtnZWaTTaXVUhm61lJdh91uCSSEoRj8cbzJipbKyEq2trWhubkZfXx+6u7tRU1OjEvgQyG0ZPEqAKwUmJYa/y8dGCpdcLofd3V1MTk5icnISCwsLSCaTxpBtWaeOxiRNc5yQ8RwIBNDf349Lly6hq6tLhY3a8TDTCjRXZmjfczKZxIcffoilpSWkUimLR7qYksfHi4zGmpoaPPvss2hqalJt5e2Q2xYIeL2ZTAYLCwtYXl5GPB639EfXHul4aWxsRHd3t8XRwg0bk0KfSqVUpmNTWLMcq6qqKvh8PrWHUxpw/B2qe319HfF4vGiIOOGVHIO6/dWc7mnMDg4OClZ+JC0Q8NVqbohLI4lw4fP5FC+V817KrN3dXRWZAVjnuM4ocTqdaG1txfb2ttpnLYG35+joCNlsFtPT0+jr60M4HLbwBp2hRTRC2WgpmkxnIOnk1NHRkTpuZ3Z2Fu3t7WrFntchjVJuVJeXl6O7uxv7+/uYmZlRiRuL0YPUoSjZVCKRwI0bN5DNZnHx4kVLqL/JAaRrGwfKHu5wOPD0009jZGREnZ9djC+Y2s5/c1mYzWaRSCRwdHSEd955BwMDA2hoaEAgELC8K8dDd43z/mLzl2Q1/aejtSorK7G7u4uFhQW19xYojOwx6Ze8nlJlYilGErWB8EenZGQyGdy/fx/RaBQNDQ0YHh5W+RikbOd9lzJQJsPloFv953ICsF+Z5fSvw4OOx0vdh8K6PR6P4m/ksKWI0J2dHWSz2YL6TWNzUjouFexoVLZD3itV7zLV9yhtlNels4N4DTlngWNZ4PV61Uk2Xq8Xfr9fq0dxfgQULpLyb/m8TkcvBo+1AS09CFxpIeCe9KMj64HbnKnR4JFiwIUV1cWFP6+Pt0HXNvpNez8PDg7UgeTr6+uYmppCPB5HKpVS+8p4hlCdEqAzRIqBnTArxqQlmCakiZkXEzLF2qx7TndP91wxAaNTfrhxUVlZiaqqKtTW1qpjjGhvWmVlpXpP7rPhXk5TWC/RpMNxnNhkdXVVhRdyA1p6TCWupZDijFuGU+k85aaVRCm8AFhoeG1tDdevX8fa2ppKZEfOnlIMPjuaKUajOjApOvw+GQsVFRWorq7G0NAQTp8+jcHBQTUW/CgfHXPm5cgVad5eGdrJmT7950cp7e/vY2NjAx9++CFGRkYQi8UsqxPF5r3JgOEgtyB4vV40NDTgypUruHDhAgKBgFKKOHAexA1+qSBKnkrRCR988IHav2238sCvSYcHzcf6+nq88MILCIVCKkxcPi/L47RGRv3du3cRiUTUSmopfI9op729HadOnbIkf9QZ0PzdXO54T+3U1FRJ+62pPp/Ph1AoZJFfudzDkFId/15dXVVGm2l+cbnGEx8B1i1PnGZpXLkBrZvTEvf0rMQV7w+V4/V6LUel6fgAXecGNOFY5img9/jYbW5uYnZ21tagpH5ns1nMzc2phFc8jJvwJ/ktbTPo6upCOp1GLBYrUPBNfTo6Oj6OMhKJ4MGDByoHg+RnEvfSkdfR0YGysjLcuHFDhaLqeDqnC0mPtCqeyWTw8ccf4+DgAF1dXairq1P0KFfFedu4sSn5M/Efl8uFl19+We3ZpsgJk6PAbrzsjAWac2+++abCRWVlZYEDTIdbKWNlkjqTPsJlCABVHyUbvX37NsbGxpDNZrGzs1OQ8O9R9KdHNdikDkG/ybAZHR3F3Nwc6uvrUVdXh3w+r82Yb/oNmHNm0DjTb2lA03Wdc9TOocj7Jmlb0iyXi5RsjPbN9/T0YGFhASMjI4hEIkilUmpO6bZnSDxy/Or6bjdmpZbzaYCO5oq1z1QG/0/l8P+68SZ+Q/vwSQ8PBoNobm5WvJDmLL2v08F0kUJ0nT9P4ycXZYvBY21A60JPpZHAJwwNDACL0kUKFSXbqKqqUiGLhGD+XwplzuT5hOQEkUgksLy8jJWVFRWSSXuZ5Rm4nNikolkqEesEIYdiingxKFZuKc/q4CQTtZihYHpWKnA6ZdLhOM4E29DQgKeeegr9/f3weDzqjFKu0HNnB6DPcs0VCYfDYQlZpG/K9Eqrz7zNPPSbt53TDNVBZ3bKqAquiOgUMXlMAL3DlcPDw0Osrq7i3XffxdzcHDY2NlQImk45kzRo+q0bJ50iplNSdCAVIW40VlRUwOv1or6+Hn/6p3+qEifJPZm8DN0KPeGWP8vHnRQPnQHC+0CK4traGqampvD3f//3SCaT6kgWEz6lkmHCiQ4P3Dn0yiuv4MyZM+jp6bEcVcXxzWlDziXqIw9bJqVib28P169fxzvvvKNWf3S8zjR+HK/E7wcGBnDmzBnU1NRYzpTkCjpvLw8HJeOPVoF/+MMfqszbhEcTcPrx+Xw4f/48rl27Zsmab1II6N7BwQEWFhbwxhtvqKO77HBA/e7s7ER/fz8ODg7gcrnUM2T8kUHLDRo62pBHoJjmHIWk06oi0S7RTEVFheV0B+pLKUnEuALOI2KordJwoUR2/Lg8ek4H/CgrOsJMymMegg4A/f39WF9fh8vlsvBiXpfUG9LpNJaXl5UyLfvI6yJcl5eX49lnn8XR0REWFhYK9vtLXYLTTzabxdraGl5//XUMDg6iubkZbrcb+Xxe0RwPl9bpCw7HcRKrf/Wv/hX+03/6T1hYWMDu7q7WyOTvSTxQufF4HDdu3MD6+jr+3b/7d8qBxd+lXC40X7lOJvkg0VZ5eTk6Ojrw1a9+FRcuXMB//+//3WJM2rXXrv38P3f6bW1t4Y033sDdu3fx5JNP4urVqwgEApYj6Gj86DdFUNBHLnLoHBvSEKXnqIxQKISrV6/i7NmzmJubw+uvv67Ojaa5JcvQ6UgnNXBK0Z047yd+Sjw9lUrhm9/8JlpaWtDV1aUWFeSxVjoDVbdXmt7hvIfjl/MiSZMEXE5KeczLoGfleff0LKdTbgM4nU4MDQ2hv78fe3t7iMfj+OCDDyyRPnay7aS6tsnW0M1P3XjajbGcT7JcXdtLnYOPYlNIfHGbiv5nMhlsbm6q7WbhcBj19fVoa2tDbW2tJfrTLkIIQEHUxKPCY21Ac0bMJy4RA1cWgcKwPvksP55Gp5xypUJeBx4SIa3ORaNRxONxRKNRpNNppFIp9U0GB1+pozJ5++wEnImgT8pM/0/CJ2UypYBUwrjCwRkk7YMJBAIYGhpCa2srampq1H48rhTwck2rQDyLoImeuJCVK1my/fx9uzBIznSoDbpydbiWnm96h44gWFhYwIMHD1QG5UwmU3Dsj2T6xcDOgNDdL9Vo1BlfLpcL586dQ1tbG7q7u1FfX285k1BXh1SO+H+dN10KIh1eZJjzxx9/jKmpKbXKJRMu6crV1WtncBAu6Pgnv9+Pz33uczh37hyamppU5IOsQ/I5qRxJQ5EbTD/+8Y/x4MEDRCKRE2Vel84LUrTD4TAuXbqE06dPW/g5d/Lwfkv8kTF09+5d3L17V2VZ5Y4uU1sIf5WVlXjyySfR0tKiQv1N84rTByW82tzcLEjsxd+TzoPy8nK0t7djYGDAkj2aGxacB/GQ252dHa0iL/tHZ9NzxzMfV65cEq4pPN9uDOk7n8+rkMdSFDt+rIkOr7wMUuq3trYKEv7RO5RgjmjA4/GokPhMJlOAGx2PpjDuqqoqZUDzceI0TdcODw/h9XrR3NyM/v5+3L9/30j/km7JGE+n0/jggw9w5swZnD17VrWPjz+nFaJl2kZzdHQEj8ejjMTbt2+rsZB91uGYz3seefT666/jwoULOHXqVEFSVimrJG74Kj21vaKiQmWy/xf/4l/g9ddfRyQSsZxlLemgGJh0Jcp2vrGxgY8//hiZTAY9PT0YHBy0GM38t+QDsmy7+ul9GSFAjiuHw4HOzk587nOfU8m7FhYW1HFi3PEtcXyS/vPrvE+lvsN5fCqVwsrKioquaG9vR1tbG9ra2tRReLr3OUgDm4PUY6TuRu/Js9/tcEHP8ggriQdd/0n3IzlECylXrlxR2y1nZ2exsbGhHMU6fUziWOLCJA/kvDTxQtlf0zOPomeb3pH4KjYfirWX81LJW8leOjw8RCQSQTKZxMbGBnw+Hzwej8o74fP5LI5mubJMZXPntkmPt4PH3oAuNkm5MOUMjJ4lICWCMzbdxOZCiwQK/1AYZiqVwurqKjY3N7G+vo5sNqtWZnTGhkkhtoNiBC3BxCBKmYwnadenAaVMRv6sXZ+lUcFpoaqqCm63Gx6PB263G16vF9XV1Th37pyaiLSqZlJwqX4+GWWdOiOIgDMKp9OpViT5PW4smIwknRIn6+XfdqEq+XxeHTGQTqexs7ODmZkZTE5OYmxszJKZUud1LUXh0Y0bV1w5rnX9NeEAsM57p9OJUCik9s6cO3cOnZ2d6OjosOzjMwk43XwxCTupINjNccp7sL29jdu3b6u9cPx4E4lTO1rnz8g+cePZ7/ejuroazc3NuHTpEpqampSDyATSmOCCkAsiACoJ0traGm7fvo3V1VUVYluKEJbtJyXT6/Wiv78ffX19aGlpKcCvBF30zuHhITY2NjAxMYGJiQmL88fUb/6hBEqnT59GXV2dFme6eZDP59Uq5OrqqiUrPX9OVzcZFnLvrQTKgn90dKSOPSQFXOJYgsvlUmdo8z5wWSdBrhLZAfWf1y/f4+3iZ81LkPOUQqwjkQjq6+st22roGX50HzmQfD4famtrsb29bZxnvIzDw0OVsCybzarVYKngSSWxsrISDQ0N6Ovrw+TkZMG81vWRK4vZbFadx9zW1oZQKGTEHdEjT86Tz+fh8/kwMDCAw8NDrK2tYWVlRZtgVZYneQ45K/L5PO7evauOo2lqatKOlx0f5cYo1eF2u1FXV4eLFy9icXERbrcbkUikYC+/ybiwAzkPaA4uLi4inz92kNBWrcrKSkvG6ZPIIF3f6b9OtlEUDe2Lrq6uVmO/vb2NVCpVkLxK8ncdPiQN2+GkWD+kUUPvbW9vY2dnB1tbW0gkEkin0zg6OoLP54PP51O6FZUj22PSAYj+ueNOx4skffE+S17Gn5cRZbLfOiOVjDBql9PpREdHh4qAoZwHXq8X+/v7ap+0LvGYTtewM7B17fs0oNhY2F0vVm4xWU+/S6VPPr4URZZOpxGPx+FyueDxeOD3+wEAgUBAbUdyuVxwuVwqmaMsn2jt/0kDWjeZSLF3OKyeK10mTBoUEqrSKAIKPSJU9/7+PpaWlrC2toa1tTWl/JIhLUPDdMo1/5bXTSC9MsWe/TQno8no1tVhmow6sFMm5H279psMLmk40x4KShx1/vx51NXVWVboiHZoHPlqFwk94CEdckOCmKzOuKTJqgtfkpOYR0nIjy7Mm97ljIGPBVfw5NFa/H4ul8Pk5CQmJibw8ccfI5FIYH9/37I//1HpVzd2OkWr2HtSEaPfMkw5EAjgxRdfxPDwMHp6etQeNL66QPiT88rE4Pn+PB0/4f8Jn3I1cnR0FA8ePMB7772nEmuZwuDtcGNSBKTxRwraqVOn8Mwzz+DSpUtq1ZGHWwKF2VKpDB4GyXFG7cjlckgmk7hx4wa+/e1vqzNw7fb6mvgTn6t0Lvcf/uEfKmOfQrMJV3w+SZyRQrqzs4Pvfve7GB0dxcbGhvHYKp2ST8nLBgYGcOXKFbjd7oJxNQGtCr/++uuYnp5Whq3EiaRlUsooQ6yujfLa/v4+VldXLdl97fBbVlaGYDCIpqamAieddDhzXMskYrJNfC5Q/3n/eKSXVHrlcXB2coGUqXv37qG3t1clmOFt57RB/Lu5uRlPPfUUVlZWjM4q3m+e2GtlZUWdJ82Tk3I5QWVVVlaip6cHNTU1ePfdd9XqMOHABNS3/f19zM7OqrZ/4QtfUIogX1nh0VFkePN519HRgUAggHA4jL/4i79AKpUqiCAwzU8aI5ovR0dHmJmZQTQaxZ07d/Af/sN/UOfqSkNGzn1pOHL8kmysr6/H7/3e72FmZgbXr1/Hz3/+c+VYPClIfizl9OHhIaanp7G0tIQPP/wQL730Ek6fPo329nYLXdJ4EP3LvkhewGmX800qk0KiSRc5PDyEx+NRzt0nn3wSN2/exIcffoiNjQ0jr9HxEAK54q3DSymgk/FED3T008jICCYmJvCzn/0M1dXVuHz5MgYGBtDX12cJwZa8mS8qcTxTG+kdwuP+/r5lbldWVirakDoNpznassTpgPMiLtM4H+TjxXkI6YlEu9euXVPJgbe3t3Hr1i0sLy+rM+R5HXI+yN8n0fEJpC5lN76me3ZGvOk5nbPhJCDHQndf95/kB/HInZ0dRKNRLCwsKN3P6XSiubkZ4XAYLS0tygktcfQoxjPwmBvQHCTRAQ8Zl1SC6Hm+V48YPz3DBSpNqGw2i1gshqWlJWxtbWFra0udtZnNZguOmdJNFl27i10rlahLwZGuzGLtOcn9Ys89avuLTUqTUc0NRfJGDQ8Po7u7G729vSq7Hx1pwdtJdEORCSQ8OaPitCXHSYbYcTqQDJob4xxHduE/ZEBwpkvvyHtSMZRMj95bXl7G0tISbt26hWg0qs7P5Aq/LvS01PEuhbkXAzsjkcbC6XSipaUFnZ2deOaZZxAOh+H3+9W+ShpP6dnWKT3ceJTtl4YbTybCDSSqz+FwIJFI4Ic//CEmJiYQi8VUNmad0WxSfOwUIp0zoaKiAvX19Th16hS++MUvquOK5JF9vN20b1T2hxvXfBsKKe3/8A//gImJCSQSiYLwfl2fdP3hThC/348nn3wSzz//vGWlXDfvJBDeDw8PEYvFsLy8rJKzcePZRL/SAdHX14dXX31VnVHM2wsUOhaIZ1DG73g8jkwmU0BLfP7y9ysqKtDR0aGMQrpH7/OVVZI9Ozs7GB8fV/XocML7VlZWhkAggMbGRqV46MZFKpw05lSmbm5TO2lFVBq2nE/y1Wzi13Yr7rxecmbzc6m57JdRabQqTPvG5dyR/I2+KZv2u+++iy996Uuorq5W48FphcaTEhE5HMc5NT772c/iF7/4Bebm5gqcoxJ3/Pr+/r5aNX7xxRctMo07Y/niQSAQUPvsKysr4Xa7UVNTg7KyMly8eBGTk5Nqj3wx3UDKPTJkkskkFhcX8T/+x//AF77wBXR1dVnGTpbFjRyK7CJaImOe5HRZ2fHef4/Hg5mZGUQiEXV2vBwb3kYdj5Z9kTimPh0eHuKdd97BwsICuru78YUvfMFSn+T79JvvV6bnuJzRGYY6JxF3QNTV1an8K3fu3LE4/XjbpXFXzPAqxi8lPuW7unJ5NBotHr377rsYGxtDf38/Ll++jOrqalRVVVne57TH5ynPLUPXiIfQ6TTkEOa80q6vMgKG803O2+RckAk1uezjPOrg4EA5PF0uF65evYpMJoOdnR1MT09jeXkZ6+vrlvPOdfz5pIYzgRyvUuwIOb6l2COma6XcKwUkHdNvu7ZwnJFjyuE4diYvLi5ifX0dk5OTapU6EAigs7MTPp9P5QwC9Llu7OCxNqB1g28ShIRYncINWFf6gIeJSTKZjDqWZ39/H7FYDGtra8qw4J4lk8Es/0smVGzApGD4NKCYwHzUsh4VSmmD7hk+3vI3CRaaNKFQCPX19ejv70draytaW1sLhBgXqLws7i3XjYVkwDqliP6TASJplZdlR0M6JUun7OrKlEDCP5PJYGZmRnlMp6en1QoWOZp0feP9kr+LgYmJm67x67p5TEqJ0+nE8PCw2o9FodoywgQozD6u4yGybp2RqxszyQ9yueOjhRYWFjA2NmZJwKYz5Oxwydsmf0sckRHa0tKCM2fOoKWlpWC/qyyH2kt8k6+wScFPym8ymcTY2Bimp6cRiUQsYcrFFAJdH2jP+vDwMPr7+9HU1FSwKq4rh48FV87X19dx//595RDSrTzz/vNVJlLqQ6EQmpqaLM9xnPPVCyqbVr7Hx8dtE4fxsqjOiooKdHV1wefzWfrIeZEct729PaysrFiSWZnaS+XRufZyfpjGjY+pzkDRjY1utV/OJdlH7iCQ79BzZJhwR5Rpqxb/T+H4tILFeRzvP+cVFB6/sLCgVt8lD5GrkFRGRUUFenp6MD4+rjVcTXig/u3u7ir9o6mpSYUrSsOW94/q4Ikpg8EghoeH1faRVCpVkvyVeMnlcsqgmZ6exvj4OACgq6vL8rwOlxxXnEfweURbrBoaGnDx4kWMjY1hYWEBqVSq4J1SlHyTcSF/09ngBwcH6OnpQUNDg3K8mhx2Oh2Pf3PlXjpq+Tv8eZfLhZqaGni9Xuzt7aGiogJLS0uYn59XfMQU1WinL5rmZymg4yVS5uXzD48Mo732dHJCbW0tmpqaLFm7pa5FoHOeEc1lMhm1+kv5EhyOwnO6TWAyHE0yn7dVh1upN1AiRL/fr/iw3+9HbW0t4vG4OrpW7u/X4bUUI7cUKGWOcDDplI9Sv52uV0qZprlsJ5uAh/yFMtynUikkk0l1mgItqlRVVaGurs6ybaMUeOwNaL4vgUBOPK7I0H0icq5o0XOUYCIejyMSiWBmZkZlxaW9zCRMefn8t50ibDKG7KBUJcUOijFVu/Y86qQ9KZgmhk7Q0DM6xwitpNDKW1dXFwYGBnDq1Cl1bAYPWQXMKe8dDoflXHBp7EjPp8Px8FxxXb/kKhWnX26syBUKucpB5eXz1qQYkrZNijZXPCORCL773e8ikUiovc8yuR3vs45eSqERO8NY975OkHADg/6TsUF7Yb70pS+hoaFBnSfL8cpxyEOxuZHI6+bvSF4h7+vGi35ns1ncvXsXt2/fxvz8vOWMd4lXnSKkE2byvzTAyAhtbGzEwMAArl27ps4S5rQoaUoavkTTnEfSe2RUrKys4Lvf/a7aylLKCq+uP0S/TqcTXq8XL7/8Mtrb21FVVVUQUcTLlsotN56z2awKBz1J23hdtIfe7/dreTg9y+c+1U8ZW5PJZIHhZKJ7Wik9ffq02vcq8cRpmsrKZDJYXFxUe+9M9XBjxefzqfN4dQobrRzK8kqVJ7QyRavWOr7Bebc0oO3Kz+cfnqJB8pkSyPC5I2mekkYGg0FkMhkVZWNnkBGtLy8vK8WYwnAJuJ7B2+B0OtHZ2YlwOAyfz4dMJqPFnWwv4Y+M1dHRUbjdbgSDQaMyDxzLJdp/SjzQ4Tg+U/zKlStIJBLqUyd/KgABAABJREFUTFuqo1RFluictjdtbm7igw8+wPb2NlpaWiwZ1vmqKtEQOTm4Ac3lIT1PfXjllVdQVVWFvb09tU2Oh85zWrAbPzsjmtqxt7eHSCSCnZ0dXL9+Hc8//zwaGxu1Rh9/l4NOTgOwRHcQDuXzhFdy2peXl+PUqVNob2/HysoKfvCDH2BtbU3hQZbBebbspx2YDCY7kHiQPPDw8BAzMzNYW1tDXV0denp68NJLL8Hv96vkabw+ztNN854inYgGKHqQVh4lEF3J3DK8Xp0jnd6VZer0RPk+AEsYcVdXF9rb29X2mpGRESwvL6tjKk1OJB2PleP0qGOte/6kNkUp8Ki2g917pns63PDxocWieDyOtbU1VFRUoKqqCuFwGOfOnUMoFDoRDh5rA5oIVJ4XSMyZmA8nQh52Rs+TUFxfX0c0GsXs7Cx2dnawv7+vPnyVWafQ8v+PSjAnhU+rnmKT8ZcxqahcO6HGn9N9yyM8iB7cbjf6+vrQ0dGBM2fOIBgMKg88P6ZFF5rFmRdXuOTKF9EC/ZZOG7liZzLWJdPkYcVcwMr+cvyRUOHKlmwvxxmF3yUSCbz55ptYWVnB5uamCmuV2Z95OyX876J5OS7csCHjub+/XxmJlOCJPydxyqMKpBJmCueWeJBzRRqfAJBOp7G+vo6/+qu/wsbGhjrCzrQ6a/ptmocm45kSJQ0MDODVV19Fa2trQXZUUlwBFPA3jm8KTwNg2feayx3v5/zxj3+Mu3fvYnV11bJXsRTjmfeDt72trQ3PPvssuru74fF4jPyWt0Wn2B4eHuK1117D/fv3kUwmjfueZTvoN7Xnueeew9DQkDZUULafz9tUKoXNzU0sLCyo42l0NKcbP7fbjf7+fksIN73D+0z93N/fx+7uLjY3N7VH5ZnaXFVVpVagdWPH2ygNH16WNIa53JT9lg4mPkdJ8eSGGO+HNPTz+eMVw1gshurqatTV1WlDxqls0gEqKipw+vRpZYCbVsj5f1LCksmkOgKP8xFuTEsjqrKyEpcuXYLb7cb3vvc9AA/DWHXKHwG1d29vD2+99ZY6QzgQCFiUfV4nd0YQ3yej1Ofz4bnnnkNrayv+/M//XGWF522VbTLdy+ePz+Ken59XyQK//OUvIxgMKv5CMqWsrAx7e3sWvs1pmO9h5f3w+Xx44YUXcOrUKfzN3/wNFhcX1R5uHe50RrSdHsMdc1ym3rx5E8vLy+jt7cXLL7+Muro6NR5czkq5zfm6pFOTAc7Hka+EkSOtrKwMvb29+KM/+iOMjo5iYmICt2/ftoQE8/q4oSfnsQTdPC9F9pgcsBxHpHNnMhlsbGxgZGQEPT096Ovrw6VLl5RjYn9/3zg+ABQ/oJVnmvOks0jngeSRXAeTWx4k/6V+SOOZO8Xy+bxqM3cMcZxyHJLDrqurC01NTdjd3cXGxgZu3ryJaDSKZDJpoQNZlt3vUsaqGMj3dLzvUco20ZwJ7OwO05y2o1ndPAQe5onIZDLY3t7GysqKshNKhcfagJbGDUc8N3A4kdGk29vbQywWQzKZxM7ODnZ3d7G9vY10Oo2tra2CY6YIZHieiRnZDeb/KSi17mKKqul5u8lVKkPW3efGE/2XhlFVVRVaW1vR1NSExsZGFS4UDofVfipdZIKcgKZ+y/HWCUrZbp0A44zbTqmVNGvHvLiyT89Kw5vaQ8ctRCIRrK+vY2pqSmXStAu51fW/FDjp87q+6QxEUgQrKysRDAZx7tw5dHd3o6mpCbW1tZYjDPi7sk/yuvyvw78cd1kOVwjn5+exuLiIqakprKysaEO27XhJqTiU84GSZ7S1teHq1atobm6Gz+dTijQvT9KvTuDpkmyQ8fzOO+9gfHwc6+vr6vgtE/3o2s3rpXFtbGxEb28vhoaGUFVVVbByQ/VzkPuXSMGJxWKYmppCJBKxGHHF+BrxDFoJHxgYQGNjo2V8STHjBhSXF5R5e2pqSs0vjg/T2NLWk4aGBpWciZdJIJ2Ae3t7ttsCdEDGKu0Fk4oklU1ylfMvTv929UhllfdZjid9kwNB4sZkkBwdHSEajaK+vl4ZOlLuyu+Kigp0d3djbm7OGPYtjYt8/tiInp+fR2VlJTo7OwtoUfaLj0M4HEYqlYLX60U6ndYqzCYc5nLHSfomJibgdrvxzDPPWPQcnSOX3pVyyOfzqURqt2/fRjQaLdiTKuuXuOc8j87GHR8fx7Vr19T4cUcOGclES3Tt6OjIsiIpo69IxofDYbz44ov46KOP1KkFJho8qc4leRsA7O7uIhKJIJ8/jvK6cuUKampq1JYK2S+Jb6knEI/mdXKa1L1DQA7fQCCArq4ueL1e1NbW4vr162rOc96g06FMdC2vPaoOqJMj5DyjKAriMclkErFYDB0dHairq0NdXZ1lDnA8cWc40QnRDX9Hx4dMBrLMucCdB7JvnP/x+6YtRfIdGS1HcsXhcODcuXPqKKzFxUWlj5GjmvNdXo9uPuqulwKlzpVS55KpfFnOo+qFpYDU22SdXBbzBIa6rQMmeKwNaJpAdudFEpC34fDwUB0Ev7CwgK2tLWxvbxfs9+TEKD2zsg5dfSdlQDqwU0pKUVhO6vn5ZUOpk8WkvEnDmc7ic7vdCIVCOHXqFAYGBtDZ2Qm3221csQXMXinTRNfhkRgbTUQ7A52XTR55OblNxkspCo2kT24k5XI55Wnb3NzEvXv3sLS0hNXVVbUixgWRzsCwo+eTMEG793QCTP7m2y98Pp86junpp59WZxlT6L7Ekyxfhz+TgsjL4DjijjoumA8PD5FOpzExMYGxsTGMjo5a9r/Kj04QFsOtDjcUdRMMBtHd3Y2BgQGcP39e4UXOLV4nGYPyujSe6DcdV/Xhhx9iZWVFre7KvhVrv1RIXC4X2tvb0dPTg/b2dsv2CV2bTXM2l8thd3cXS0tLWFpaKjgKh/fP1D5qT11dHdra2lBTU1OwogpYo0M4zyADemZmpmDLj+yP5G+UGZufDy/7zQ1e4PhoNDpKRirnOhxR2/nKDlf2ZNsIr7r9l/xZiVuaK6a5xOmLyiXeblLupAGXy+WUPNfRuY4Wy8rK0NLSAr/fb6s4cVxS/+fn5xEKhdDZ2VmwAslxwftF4xoOh1FXV6cyZZfCQ7mhOjc3B6fTicuXL1vCs3V8TsdPyRAJhUK4dOkS5ufnkUgkLHO8mF7DnyHjKJ1OY3FxEUtLS3C5XGhoaLDUyXmMLgKBrtN/Tg/E85944gmk02kAUEfZmNpdiuzkbePvUqRWPp9XmZWrq6vR2dmJ8vJybVZ8nbKu49O8Lt5mPv91UWqk4Dc0NKC6uhotLS2Ynp5GNBpFOp3G7u5uyXJbtv1RQOpUuv7z+Umwvr6Ora0tJTe6urrU0WHUfwCW73z+YZJfLn85jng/+ZjSPZ3zgtdXiozRyWedbklbFzi/k7QQCoXg8XgsR2Gtra0hFoupYwjlaT46sNNlTfP40zRe7eqyA7t263iQSQ7yskxyQv6XslHafqXAY21A80nEPUj8HhkOiUQC4+PjiEQiar8TecN0Cp+OmX5aYBJOnzYUmyTF2mFiGnbPnfQ+nyymicT3RtE37Sfr6enB2bNnEQ6HVfZDrnDKdnMGKpUOrlwTs5ZlcIbLaYULeQLO6LmSxOskBYvGQrfvRacUkONItp/mAlfWo9Eo7t69i/HxcUxPTyujmYeycg+n/C42vp8WbZgEDT1HIfqkvLz00ks4d+4c2traVEZpAFqFlP7zDPtcaQMeCmkpUAnfJmFIyg7hPJvNYnFxEf/0T/+E2dlZS8i2XI0yfRfDn04po4y/Ho8HX/ziF3H+/Hk0Nzerc3GpXh4CRzghvHHge4rlecKUlGtqagozMzOWfcU6WjK1n3/TMSPhcBivvPIKurq6lAHFFSXeLhlCyIXhwcEBFhYW8Nd//deIxWLGCAudMk04LS8vR0NDA/7ZP/tnCIVCahUom81id3cXR0dHCAaDFty5XC5lUPDz0wk/OlzwD9Xb3t6Oa9euGRUJHU9YXV3F4uJi0WQ6vC46J9OkRMp3ABhzJMjnCWh+ULu5wSnLpvI8Hg9CoRAWFhYKxlcClbm0tISGhgYA1m00JkW+rKxMJfupqqoqOPZLGgKc7kZGRhAMBnHx4kULL5bPcd5D/Ke2thavvPIKvv3tb6sjioopvFTewcEB1tfXAQDT09Po6OhQWxxoLsttBLwPNIcoD8jg4CCamprUWb4y1F6Op+4en3c7Ozv4u7/7O1y5cgWvvPIK6urqLCs8MjKLjHnp9JG80uF4mGn5ueeeQ09PDzweD27cuKGyc0v5aYdLOba8b3x+kJ64v7+Pf/zHf0RnZyeGhobw0ksvKYOWtobxdnOc0W9Jw9zI0kUH0W+5FdHpdMLpdMLj8eAP//APce/ePYyMjOD+/fuW6BOJQ7lnXIIdDZ7USNLhF3hoqNAxeO+99x7u3buH1tZWfO5zn0Ntba3K1k1jQfODtk/s7u7C5XLB6/Uq+Sa3Z3K5TcB1LeqPLvye2i9lA88OTvgkOuE4l/okHz/O82gcySH77LPPqm04s7OzGBkZQTQaVbKG45a3tRSbQo6f3Rjr7kt6Kab3lXq/mJ1yEjgpbVJbgMLo4lLgsTagyQiQR3mQIIjH44hGo8q7k0gklOAngW4iplIN5pMg+9N8nxOdaSLYCY9SJtwn7Ztd3fxbd40LMPp4PB50dHSgpaUFXV1dCAaDCAQCCIVCFi88T8DBlQYS4Lw9HA/c403f1BaudOvazZ/T9UU+ywUnKTSA+Rgr+s3r4Imc+Iorec5jsRgWFxdx584dbGxsqIyr/MgJnTHxSWhShxcdSNqVRik3TjkdhMNh9PX14cyZM+jq6kIoFFIhrvxZXZvoP6+b45croFLp5mVJnBHkcjlEo1G89957mJmZwfz8vFqVlY462TbTvLQTctLgcrlc6O3txZkzZ3D58mXU1NQUJGqhdvJ2SMHMv3X0eHR0hJWVFdy+fRs3btwwGs+mPuicG9SH2tpafPWrX1WGv1QS+OoUjTdd43XTsVXRaLTgOC073i75TiAQQFNTEwYHB5WiRuXQnjxZHuEim83i/v372Nzc1Ibt2+HB5XKpFSbuQDDxfOrXysoKlpaWtHkMdGPgcBzvL6U9l7ptMtReiqwgeWqXTVzWQ9e5cSLnoVT0fT7fiZK65PN5JBIJpFKpgnHmx7XpnGg1NTVobGxEMpk0li1lSSaTQSwWw+rqKtra2tSzpJADx7TCj8kCHu6F7OvrQ21tLZLJpFpRLVY3lZnNZrG1tYUf//jH+Of//J+jtbVVKfEygkCOByn3dN3lcuGZZ55BKBTC66+/bomqMekZ0pjmNAoAiUQC9+7dw97eHr72ta+piDCdUU90z8uQPFAmZqusrERjYyNefPFFlJWVYWZmBouLiyrs1TTHSgWOay4HKKIlnU4jnU7j/PnzaGtrM0ZBynkreYBcZTfxJpPu5HA44PV6cerUKdTX16O9vR23b9/GxsaG2hutK6dYv0u9Zydf6b9JhjkcDuWcIF3+Bz/4gdp6d/HiRcWbaFx3d3fVKQputxuVlZUWOSF5ic4olhE0Ol5EHx7hKnkAf0dnqEsnPKdzXhe1gSeNoyMTw+EwEokElpaW1OKH6cjLUnQHOYd1ZZjgJLRhevak9KW7r2tjsfZLHkrP6vjESfTfx9qApg388XgcwEPlbmtrS6WK39raUp4pnrHQpMhy0AkPqdBxKMUotavvUZ8zwafl1XnUek2KlMmA5oyMVplDoRB8Ph98Ph+qqqrQ3d2tzvcl7x0psToPm07Q657hwkzXH8kcpYIp69ApMSZ8SFzZ/ZZMm8riq2J0tjAlLqIzYYtFXMj6fhnAx16HD51xSJm16+vr0dHRgYGBAZw+fRqBQMCYdMZOEeErzfw6NyD4dZ1Sx9/N5XJIpVKIx+OYnJzEgwcPsLy8rPYxSaWpGI5N81Y3X/ge3a6uLpw6dQrDw8NoaGhQAlkC749JqPC+8//ZbBaxWAxjY2OYnJzE0tJSQUZru/7JPvCQ/NraWjW+Xq9XO446PsLbSv3LZrOYn5/HwsKCSmpWbA5y+iGFpqOjA729vSrBFjfw6Hx43cotJc0ZGxuzrOoVA8JJdXU1qqur4fP5LDjQyRiuOMbjccTj8QLj2cR/HY7j84L5udYmBYUrn3Kl1tQ2/r5pZU4H5DCVydNMZdOHVqf4edD0DHeo8hXa8vJy1NfXq3BYzmPt8H1wcIB4PI7Z2Vm0tLRYkhRR2ZzXcIPU6XSiuroaHR0dyGQymJ2dVfgx1ckNuaOj42OtZmZmMDs7q3Ie0LOlAKfz9vZ2HBwcYGZmRkWU2CnjxRw52WxWJbIbGxtDa2srampqtNuq+EeGLhPI/bD5fB5erxdtbW0YGhpCZWUlKioqMDMzo5LKPopibGeE5PN5dfb13t4eAKg93u3t7XC73QV7oIvtp5Q8SbaZt0HHrwAoWvJ4PHC73djb20MwGEQymcTq6qrR2fUo+HgUsBsH7sja3t5GNptFNBpFLBaDz+dDIBBQkSgul0tFk/LkcTreJuvU4ZS/r9PjdHjX8VX+fLGFNzv9h88ByksRCASUIzyXO85hw4/XpWzkOpq1GztTO37ZYGc/PUpZEnTz55cJj7UBnUqlkMlkMDU1hVQqpcKy+fmXOoKWExgoHNhHJSqTYSDr/TRACmYdyFAuaaiUquya6rd71mQU8fs6AUpGk9/vx9WrV9HX14euri4Vpsr3xXCDmxtP3CCSiptkvDrlQK5ycYYrj0OQtMa9yrxdfN8z7y8AS3innXFNYZA8TJtgY2MDi4uLuH79OjY2NtTZ5TycWwqAT5MmdQK+FGYpQ+k5HdAqYFdXlyWst6KiwhJ6JUPaTYacif5pzPmeUjmuvDwSaJT5eHJyEnfv3sU777xjiXLRrV6XgjvdfTl3KCTU5/Ohra0Nf/AHf4D6+np15rXkc5JmJeTzeRXJwNvO51Q0GsW7776Lt99+G8lk0pg0TAe67RN8xfXChQu4ePGiOrKJ5pnOQSJ5Cs1Lei+VSuGNN97A+Ph4Qfi5Hf55m9xuN1588UWcP3/eErrncDjgdrsL+szxRVnu33vvPRX1IevT8QKqe3BwEC0tLXA6nRY65woC5ylEu9FoFFtbW7b0z+mI9lMGg0FLojagcCsEx6FUyk1znfNHnuSoFPkTCoXQ2NhYEOptol1aIUyn09je3kYgEDC+w/HgcrnQ39+PsrIyvPvuuxblXFcPfR8cHGBpaQlvvfUWrly5osaOaIXGk+OFrhPNv/TSSwgEAipqgMrW4YfXTbwnHo/jjTfewObmJr761a9a3uNzXhoIXG66XC7U1tbC7Xajuroaf/7nf64SZxVzepj0G9oPvbe3h7/8y7/EZz/7WTz55JPweDzG+Uv/dTK7srKywMFA95988kkMDQ1hfX0df/Znf6bCXeVzcv6Uyov5+zwZ1tzcHNbX19HU1ITf/M3fRGtrq4rkyOcL80kQvnV8VQKPkqD3ePt430jukcHV2tqKnZ0dbGxs4Dvf+Y46kktuIZHzgtdVzGkn2yLxaXdN1se/aR/35uYmZmZm4PV6UVdXh2eeeQYtLS3Y2dnBysoKfD6f0vWz2WwBjyDgix0Sv9RX/i7vE81lqQtwfm3iRVLWmUDXNhp3es/lciEYDKK3t1flcpqfn8fU1BTW1tYsuQvofWpHMb1C4st0306XklCKXXCS8nT3dfqbzrEhn9fpqCdtB4fH2oB+9913laefe7J0Ci//bxL0xX6f5F4pdX4aUGyS2K3EFWuLnUNBN/F1oCN6wJpVkSusra2tOHPmDBobG1FXVwefzwe3262MJhrjbDZbkGCG2qgTXARSGZUGFP3mRjCF4PHyibnpspbm8w+z+vHyOHDjmv/mSgtn2lQW3+cLAMlkEpFIBNevX0csFkMqlcL29rbl6DXeTzsaNcGnYWTr6F+nSJGThAzDJ598EmfPnkVjY6M6MoYfzUK4BmAxuLhixg0VagtX1AhMZ85KRae8vBwHBwdqNeLv/u7vsLS0hK2tLctROHZG5Un4gcQZN7R8Ph/6+/vxG7/xG5aM85JmeCIu2R9ePs/qDMBioN25cwfj4+P4xS9+oVYBZFi0XX+4gibn/aVLl3Dx4kX09/crA4TGWPJzGlNdoqyjoyMkEgl861vfwsLCgjoLWSoYOv7F2+T1enH58mU0NjaisrLSYlRJg16WDwBLS0sYGRlR+QZKdVwR/V+4cAFtbW3I5R6ev2xnOJIBzSOtJI+TfSX8NjY2Ws621m2FIFzRWJDM5e0oJl/5ffmh9vBVYVqBls5R2X/+++jo+Fz71dVVSyJJh8OBRCIBAMqwpnoAwOv1orq6Gl6v12JomHCezz88ziqRSGB1dVWd70x45UYqvcdxUlFRgbq6OrS2tqKjowMzMzMFR8RJ4GWRIbe+vo6ZmRncuXMHZ8+eVXNd0jmnB66gk/xxu91oamrC5z//edy9exd37961OJ9M+NDpURx/iUQCb7/9Nubn5/H1r38dwWBQyXLqE6cZGmc5z7lTVbbF7/ejoqICX/nKV/Dhhx9ibm5ObZ3hz+p0GTvFW+KN2sZl68rKCv6//+//w9NPP43u7m709PRY3uPOFDlnZNk6GSR5FTnPOa44T6JjytxuN77+9a9jfn4e4+Pj+OijjwqihYrhoxTZbzdHdM9JXYu+ZY4Eou+dnR3E43H4/X6EQiF1okRFRQX29/exubmp8t/w7RKcvrg+J+WQDge68GudA8BuPpj4oHSm2slOzncp2tLlcmFgYACtra3q9KDR0VFsbm4iGo1adB6J+0cB3XwotcyT1Guad7prcs7qyipWt64fJuPeBI+1AZ1MJgsI0k7wSSgFyY8KpsH/ZUApk/iXASYCpGs6A4l+0z4Pl8uF5uZmVFdXIxQKIRwOo7OzU4Vuk0LLmR3w0JDkSpl8xtRObqzpku1wpkr0xcuV3k4pBAlMhiu/Jg0ZSTc6IUSChZhmLBbDwsKCOorKLmz4l0kPOjAxJJ3hTGNdXV2N1tZWtLS0YHh4GO3t7fD7/ZZ97rwMeca2HAeTB9iEC50hQHin//F4HBsbGyqJViKR0BrPnxTfJjyRknTu3DkMDg6ioaGhIBsv73epvEjiMZ8/DltcW1vD6OgoZmZmCs5SPomCzftTVlamzh8+f/48mpqa1Mou76uuXVQGxzMZzysrK1hYWFArUXa0wdvFcevxeHDmzBmEQiHt/kZTOUQnkUgEExMTBas+Jnrg9VdWVqKmpgZer1f7jLxGeKAVGS4D7eiP3g0GgyqjsOShun4STZQiayU/lvOSG0r8ej6fNx5jxeuU92gVOhqNoqOjQ5Uloxl428gAcTqdqKurs5zVbQdU7t7eHmZmZlBZWamON5LyTocX4Hgvb319Pc6ePauSv5lCuaVsoXZns1lEIhHcvXsXfX19Sl7q5r/d/KTkjD09Pdje3sbq6qpKVmZaKaUy7ebCwcGB2sf50Ucf4dKlS6ipqVE4KibzTHVyQ4hw2dfXh93dXVRWVmJ8fNwiY7lhwdt8Uh7NcXl0dIS9vT1sbm5ibGxMZU7u6elR/JgD76tOT5GGG78nr0s+SEBzuKKiAvX19QCOxzadTmNlZcXi/OR90rXtUXFjmvOmMnX0TrybHIO7u7vqJAsAaGhoUJEJ3PHEnRCmfsjxNxlqdm2XfbQz9krR/U1Gr9SlqWxyelHyw9raWmxtbWF9fR27u7vKefyoup8d//k/AXxMi+kZpVzn9x9VT3usDWjdwevSa2tCjt01O4SfZDLIdugIspjy8Wko4KWUUUqfdMzEpCDpJjs9S6tObrcbgUAAFy5cQHd3NxobG9XRVLrVD/pNBpPOMJbhOHZ9k6Fisv1cMadypTItvcrS6y+ZID1Dip2kJ+oDN9g40MpnKpXC9evXsbm5qcKedMabiXmehLHzd+yeNwkr3XhIQ4pWSd1uNzo6OvDEE09geHhYZT7mThTeFq4E69oLFBrY3BCWSoNOqeDv5PPH+yxphfGdd95BMpm0nBsv69eVJwWlHc3yfhKu3G43Ghsb8dxzz6G3t1dl4eVKmI4OZR12od1E++l0WmV43djYUBnFJY0VA94ucpb4/X60tbXh0qVLqKqqUrQv+0z16MaO2nJ0dKQyg0ciEUs7dXiV16guCpk7f/48vF5vAU/hc0fHX3O5HDY2NjAxMaFNHifr5B/az077krmBx3FB7eDRBplMpujxUrLesrLj/dbcgJb9lMptPp9XieNMY28yHnkbeAQO4Y2eOTo6shjQJmOLA9HCzs4O1tfXC2iUR69wmqd6Kysr0dbWhs3NTZWAicsB2X56d39/H6OjowiHw2htbS04HYHTiqTfiooKhMNhPPHEE/jpT3+KbDarxZXJ4KP6o9Eobt++jZdfflnhTe7J1vWBjxHNyfb2diQSCXXUEB93uwgA0zUyMqPRKH76058qw6eqqqqAJnVOOd5GXqbU1yoqKtDZ2YmKigqEQiEsLy8jnU5bEovx8ZDXdPXpeDjd57xnd3dXnfISi8Us0XPyXckHJI0AhePF9QyJI6lLSD7b1NSEUCgEALh58yZyueOcHXLbmMSFSdaXwu9PqlvwdzieON8/ODjA3t4ednZ2FE+kBKJUly4niqk9fAx5vySP5G0oJkt04e9cxvJ67f7z/lO5sj3Ub5fLhaqqKmSzWaRSKdy8eRPRaFRFInKnXLH5W0wv0T1reu6ktoudbC71einlmXShR4HH2oCWhFnqxAYezTjVGUOP8r7p/0nBbiJKZf2T1iXL1LWF/5ZKqVROX331VbXyTFkUSYGUjE+GbgGwhIDRc8Qg5L4VKXw4TnSKMWDd/2dS4Kk8iXPedp491BSKKBUHLgDy+bwSCul0Gu+9955KjhSPx20zPJ9kPujG8pPMFV159JvjlXDi8/kwMDCAZ599Fn19fXA6nSqRBr3Hs2Hm88crbhSJwO/xsaP/klaAh/xDF14rx62iokLtOXzrrbfw8ccfY2try3i2swm/OqWnGN5o7tAqGSVT+4M/+AP4/X41f+wcL2SUHB4eFiSM4ooUp+/Dw0MsLCxgamoK3//+9y1J0XQGtB1v4AYb4dPv9+Py5ct49dVX4fF4CpQEagufD3KM+Gdvbw+3b9/GL37xC7VHt9RVUr5q09fXh3PnzsHn81kcZqS0UVi5bvU0n88rRSaZTGrDzHW4ojYEAgEMDw/D4/FY9iSb5jW1g47s4mdA64DzKBqHUCgEt9utVfR0of75fF4dG1QMr7zdfKx0eOB0Re2jsMVSZBnVkUwmLedu07hyR4jcqlBeXo5AIIAnnngCU1NTKtxb13fOo+l4o5mZGQwNDWF3dxcej0flZJAhpYRTzntcLhfC4TA8Hg8ymYxKUGVnvHGcORzHe+7j8Ti+//3v46mnnsLly5fVfM/nHx5dxw0NWQbV4Xa7MTw8jHA4jPn5ecRiMeWcKVUW6Iygo6MjbGxs4G//9m9x+vRp/Pqv/3pBeLtODsqTM2jhhMokneHw8BCVlZVobW1FKBRCMBjE9773PaysrFhW4+RcNLXbdE0aMlQ3rT7H43GsrKzg6tWruHTpEkKhkBrznZ0dJdOJtqmPnOcR7RaLRtD1QfJRila6dOkS+vv7sb6+jtdeew1LS0sqSofzSbuyqe5SaeBRjWheP5dNNN/GxsYwOzsLr9eL/v5+DA0NqTPHdWNnwh/XR3SRO/wezRMetchlm7zH+6OjIdkeySd0Cwb8Hbqfz+fVUYR+vx81NTXY399HOp3G2NgY5ufnEY/Hsb+/r100ku19FNDhlgNv+yexvUzl2+mxds8V012KwWNtQNsNQrEBKvZuKZ6XTwPsBvCkfdBNsk+rLXRdp/jJ+1xRJiWtsbERnZ2dqK2tRTAYRHd3tzqigCuKMuRJCmAuGHTtkMo3bxcXypI56xijqZ9SkPJrxd6RzF0qxLL/2WwWy8vLWF9fx+LiIpaWlpBIJFQCJ+mN1hll/N6nSbsnAWkMkkFMDpUXXngBnZ2daG9vt+xRlG3mOJOr0rx8Lgz5HjHdOEgBSkBKDYVp3rt3D9PT0xgbG8PW1lZB7gU7xcwk2IuBnEcdHR04e/YsTp06Bb/fr46pkgY0x5tcweQKszw7k9p5dHSEtbU13L17Fw8ePFDGs2lFtRSg8kl5fOGFF3D69Gn4/X7Lc9zIo//yQ8ANyHfffRezs7NqhcK0msXxz+cbhU8TjvnRcJy38mOKeJtIwVteXi7YI66rX9ItGXGDg4OWPeu6dyUt7e/vY25uDjs7OwV9pPIlEI5p/yD1T/I0TkdklFFmc1MbTUDjwuvXtZXTPRlIJpCKGeUmIDrn20OkHOBOGnJO8TwCpfQtlzvOybG2toa5uTkMDw8X8Btqhy7hHjmWBwcHMTk5iZWVFYuBX0zZpXEhJwqdUlFbW2uZ03z+UZuofllPZWUlamtr8ZnPfAbvv/8+5ubmtI5G3W/dmNL8oNXyqakp/OxnP8Pzzz+PqqoqC48G9GG4snzedt07HR0dePbZZzE5OYlbt24peSlXCWXZdoYj7w9/Vhpfm5ubuHXrFmKxGK5evYpAIICysjIkk0k15yjDPNdXZN26SDw+ljo9SPJ9apPT6YTf70d5eTmef/55LCwsYHl5GVNTUyrign8eRZeUY/8oOoednKTyaGX14OAAU1NTSCaTqK+vR1dXl0o0Kt/j866YASud0fJZjiNuPMt+63ipbIep31I+0DYUeR2AZaEBOF5gqqiowKlTp9DU1ISdnR1sbW1hfn4eOzs7liz7JjnxqHaEDk6i++hwU4wWTbp2KXLDVGcp8Fgb0AR2ioIdoeoYc6mD9GnAp0WgOmage+aTtKUUYUZKAinItDrm8XjQ2dmp9mr6fD4VTkfv8Y+ubfSRBiavW2dIypU+kyEjr/NQUjs86GhGMlZpYMk+8XqIEdNRBbSXcm5uDrOzs8hms2rVmSdIMRlvdoaOaa6U8qwd6Bg8V9YcDodagaSsoZcuXUJDQ4NKBMININk205yWY1LKu/SeNLrpGTIYFhcXce/ePUxMTKhzfXmmbZ1RU0wY2fEh/iHDjhKGnT59Gv39/RbDQids5FwA9OHssm20mjszM4Px8XHMzs4WGM+lgo4/0B7fs2fPoq2tTWU05/goxYDO5/NKiUqlUirEXOYAkPiXbeKGRU1NDZqbmy3n6sr3THMsn88rI4aOTyymuPE2UFK49vZ2rfEu6+L3Dw8Psby8XHD8kG48+IcULYfDoaJ35POSjnK5nMWALgaS3mQUj11bybDV7SU11UXJvXgUiTQseBZeag+t1PEoKKks83r4vYODA0QiESwsLGB4eLjAwJHvHh0dWc4Qr6ioQG9vr8qtwI9iKoZbGpPDw0NEo1GsrKxgcXFRHb3G26uTs7poGNoPff78eayuriIejyMajRZEcJUK1MajoyMVYn/r1i1cuHDBslLPeV4x4P3g8oXmTnV1NYaGhlBRUYG1tTWsra0VZII/ieIs5wLvG/DQiD48PEQ6ncb8/DwSiQTC4bA61z6dTivdR0aw6HQBXrfst07m6WiUG3gkXwcHBxEIBOD3+5HJZLC+vo69vb2CHAqy36XCo+rSOp1L8m6aP0RPm5ubSKVS2NzcRC6Xg9vtVjkkdFtSTO3R4VBXv5zb/Dk7x4wsS3edfxczIPk1GZ0JHM/hyspKNDQ0YG9vD5FIBAcHB+qYU8rMXizRXiljaccfHxVKsWt085dkmekdOzipfvPYG9CfZIB0UArCT8J0P2lddu+WSlx2dRUrx8TEgULvKIXJVVVVoaamBs8++yxaW1sRDofVHjs5ybjAozKl0kIfEjj0m9+n8vhqm3yO7x8ECkPXTH3nDIKXIxVjeV3iTie4qW4CEr6UVXViYkKd/cePZ6P2cyg2F+zoTfduKQpusetSKaKP2+3GE088gcHBQZw7d07t2bMrS66ccpCr0TLslxR3ek9mgZd1UlsODw+xtbWFb37zm4jH4yrBEJVpMmgeBTi98VV6iuA4c+YMfvVXfxVVVVUqJJP6apoPEhf8WX6flBIA2N7exvLyMv7hH/5Bu4+KQyl95Ximvnzuc59DZ2enShTI54vc0ycNYXqOVni3trYwOTmJmZkZteexlLkglW6Xy4UXX3wRfX19qKysLOgjz4bNaZHje39/H9evX1fnY5vqlu2gvBCBQAAtLS1wuVwACjO0SgOGDAIewl0q/VGdZWVlyjFHR4hRHXJVhT7cgDYpkxI3PISbgNMwzWFuZJNTIZVKqb7aKWbcmMxkMvB6vWo7iFQUiRfxbTB0BBxt2bADvsJH+AeAL3zhCwVH6lGf7JyCFy9exPr6Oqanp42GnqnPVMfOzg7u3buHWCyGwcFBVFZWWqJOqCzddgkab86z6+rq8MQTT8Dj8eBHP/qRepbPw1KMfALOY/b39zExMYGenh40NTWpecDlLdGNSU+RMojTTWVlJZqamuD3+9HS0oK/+Iu/QCwWs+RGMBkwxfpB/3X6B3cW7O3t4Tvf+Q76+vrQ0NCAuro6NDY2FvBeXXt4n/lvfjJBLpdT+pPkldIBuLe3p4x3r9eLrq4utLa24uLFi/inf/onzM/PY3193fZITd62Yvgqpj+Y9E6Tfi3nC6ddCqGPRqO4d+8eTp06hWvXrqGhoaFgX7TJSNLpbjRP+Lzl28UAvROa6xU6hwSnGw6mVWyHw6FkPne86PRaaiO/73K54PP50NzcjGQyic3NTXz88cdIJBIF0Qc6sNOTTU4D3bM6PEnc2OkYOjrR1VWKA06241H0tsfagC5lgIpdtytbBycxsE/6XjEwDbId8dm1zySEdPXKb/6hFefq6mpcu3YN4XBY7cXwer2orKy0HAXFVwDy+bxlJRqAUpby+bzyIvKMjNLIBqyTWBrRgPUoA94vLih096WCwZmibtJK5VCGGEthyZWEVCqFubk5fPTRR9jc3MT29rbaR6lTvk4i7HX3pCJfinEk+yJpR5bJQ4crKirUCt+LL76IcDiMYDCohDofM27syfqI5mifoaQFLlzov6QFrphRHdIoX1xcxIMHD3D37l1Eo1Hs7+8XhOXKcTD9NoHd3CLj+fLly8rRQElTqB+A+RgMnUCRK+Zc+SZFZGJiAj/+8Y+RSCQsxjMHHc8xCTo+/l1dXRgcHMTFixfVHmM5PlxBKLbKmclkMD09jTfeeAO7u7tqz+dJxoGUE7/fj7Nnz6q9dLL9sjz+TQpcJBJRSgndk8+b6JIyz3M+JJ/lBibh5uDgAJlMxnLedDElxOE4Tj5D2ZCdTqfFKcOfBR7yO9qDaMJ1qcDnKMevnPeUlX9zc1PbF3mNK9TLy8sqAsq0PUfydZfLherqagQCAXWEk46+uQJPdWYyGZW9uqGhQTmN+TFG+XxeOQt4eaTkdnd3I5lM4t1337XIClO/5TyhbMWbm5v44IMPMDQ0hHA4XKCMc0NBZzjQN7XJ5XJhamoKc3Nz2N3dLaAnu/nG66CxJQfHT3/6UyQSCVy9ehUNDQ0W+uPPmsL4JY+QeHU4HOp4rt/8zd/EjRs3cOvWLaRSKQsf5PR4EnrW4YHjMZc7Ttg1PT2NeDyOU6dOoaOjQzk25FGAUm/h40UgjTnZD/k+PUvOMgLSycrLy/GZz3wGkUgEKysreP311wu2hxUbY36NPysNJP6sjhblM/Qe32bAy+T6H8nyRCKBkZERrK+vo6WlBf39/Whra0MgECjQJ6iN3Gmrk6d8jujGWwc63YW/q+sPr4uPlSnKTYdvyRO4k9LlciEUCqGqqgqBQAA7OztIJpOYnJzE5uamci7pQtd1YMcHSrHN7OSUjo+cBOzawu8/qvEMPOYG9KNAsYldyiDZDcYvCx6FGE9CcCbil8YyMVy32w2Px4P6+nq43W5UVlaiuroaAwMDKjEY7W/WZUaUAksyAXpeJo6SgoK3nZerY7gcR1JR4Ea5zljQKc38txRcsm+yLFIMaO/c7u4ukskk5ufnMTMzo46kkkqqnTL1KDRYTAE4CeiUfVoJCIVCaGlpUR74vr4+ZQzq9nlxXJr+y1UeKUTs+gpYBQsB7Z9cXV3F7OwspqamMDs7q1bc7EKDS8GP7j3eZ75fkxKrnTlzBp2dnaivr7eEOvJ+SWeNSYnRCWLqVzabxcTEBEZGRrC0tKSM51JoT/aTvqlPTqcTjY2NGBgYQF9fH4LBoHaOSoWer/Tq+jI5OYnJyUkVnqkT/BIPOpyHQiGcPn0atbW1qKys1Co8OoGbz+dVmH88HsfY2JgKjSsVVzTebW1taGtr0/IzKov6zT90FigPXS9lfJxOp+U4IdO2FTkutMVERxsmsFNO6b/uWnl5uTo3uBhwnnt4eIi1tTWEw2GEw2FtnyRtAce8oLGxUR0PWEriLM7P0+k0JiYmLBmYaW5S+VzW8JXxiooKNDQ0oLe3F7du3VJ5B2TfJB3KOUEJhEZHR9Hc3IyamhoAD1e3ZBsk3+Q4obD2hoYGnDt3DrFYzHJcWilKqHyG86DV1VVMTk7C4/Hg3LlzyqFKeJMyn+OC95mPH9Eo1UkypqurSzl+bt++XZBJXodPApO+qLvG++lwOHBwcKCOXF1ZWUEoFMLe3h5aWlosUVcm/iTr4tEEJt4odSSiNYknmmONjY3weDwIBALY2NjA5uYmksmkmgOSTky40LXHBCfRM0zjIp8BHsqzTCajIsYSiQRCoRBCoZA6X56DSW6YZLaubrt26WhJd1/yfFM7dPJN/tbt9edbYoi3hkIhFX1EYfx0LCd3BJtwoJv7j6I/mt41lfWodtij6Mkm+H/OgNaB3UT+JIbE/ykoVr9JWTExcKnY09mVbW1teOaZZxAIBODxeCzHT/HQIkmwpDRwhscZCB1vQYY3zyZqap/O8OKGBdVzeHhYoMDwd6RSJVcAeNgeF946zzFXdnlZFN61vb2NtbU1vPnmm9jY2FAMi3DDmfonmfQnEVLF3jMxN914UFhsXV0dhoeH8dnPfhbBYBAul8uyoqATFlyQcPrj+xqpPtluUhJNhi4XKoRrKicej2N8fBw/+tGP1F5nCvGUxomuXokbO0HIn+MfOsqttbUVv/3bv42amhpLNmIeVkY4lIo+D/MrLy9XKx18PnC+d3BwgO3tbXzve99Tx79w2qXni9Ehd0ZwnkHnKj/zzDNoaWmBw2ENF5UhV3zFk68qUfb9XO44cdhPfvITzM/PW7LJ2o0R4Zu+qX2dnZ348pe/DK/Xq9rGw+AkLXKlkgyK1dVV/PSnP1UrwXbziY83KTVDQ0MYGBiwjI1Uinm9xBcTiQRWV1dtk5bxOgmqqqpU6Czdl8YE/ec0k8sd74G2y/bN8c8/dhEFvB18q0U4HFYh7cWA08b09DRaW1vR1dVVsD2Er0jLLM/9/f0qskEaVfSMqc7t7W28/fbb6O7uVoYrf0eupPKxdDqdaq9sOBxWY1pK/fz74OAA6XQaN2/exNDQEJqamlSeAaJ3+lD/dGGgJB/J0fLZz34W4+PjlpMHdO3RGR064w4AdnZ28ODBAywtLQEAzpw5g/r6eiUjaX5Q23k4OqAPH5VZ3um9YDCIy5cvo6+vD0tLS9ja2sLu7q62XXZzyHRfvs/nMGXn3t3dxfLyMgYHB/HMM8/A7XZbMsTrDGf5W+cspY9uNVqWQ+PD8VtRUYGqqirU19ejsbERIyMjmJqawo0bN9T2Drt+27XZDn+SV8uyTOWYjHmua1Fkzvr6unIEnTt3Dp2dnejp6bE47zkdmXQK2R7O03SLLpJG6Xme+4DGjEBuPaPfxehS3uP0QCCjLUnP8Hq9qK2tVbrO7u4uHjx4gJWVFWxsbFjkqozEsuNLEk7y7KcFXI6VapifBP6vMqB1BlYpIAdWN3l1E0iWYSKKR2mXXXl2z8uJZseA7AwkHnpbVnZ8vEpDQwPOnDmDnp4eeL1euN1upXDK90xZNCVODw4OlEeMG53SqODlyX5wQ0HuT5F7PjmT5kaGNHip37wOjltuuEh8Uxl88lJfKczznXfeQTQaRSKRQCKRUB59XaKm/13MhuAkNErf3BjgjpZf/dVfRW9vL+rr69XRPPxoF3qfjyPHs1RudV50+s2NBy7w+ZjogAyC+/fv4+c//7k2izJ/X+Kn1PGR88GEt6qqKrz88stKmSSlmysJNCeoTXyLhFSe5NFBHA8kMGdnZ/Gtb30Lq6ur6sgXnQOH8xk7HsKNU0oa9iu/8isqbFsmeOJtpr7xemguUj82Nzfx1ltvYXV1tUCh142JxD3nUx6PB6FQCPX19Za5Lo1neQrA4eGhmrfRaBQbGxuIRqPaMH8d3VBZFRUVqK2thd/vV6uWnOa4IkR45XS+sbGB8fFxi5OxGE2WlR3nqmhubi6IAOFjIh1RRKfFsnBLpY/zQDIWOXAHEDdu6ZxkCnnlz0m5yp2buVwOm5ubak+4pGE+FjzEGgBaWloQiURQUVGBg4MDy9zTKfySJuLxONbW1tTqDm8Tl080tnyliMLqX331Vfzwhz/E7Ows9vf3jUq97Au1ieb1jRs3sLe3hxdffNHyDNGnrN/pdFqinqiNFRUV8Hg8+PKXv4w7d+7g9ddfV+GeOrzwcTEZXdROGvMf/ehH2NnZwdDQEDo6OixtAB7mKuDGI+clVB/xDlq9l+McDAbxR3/0R3j99dcxPj6Ora0tbXSRjsfpjDzdmOj6ChyfqhGPx3H37l0sLCzg2WefxalTp9Dc3Kzmmy4ShI+XTDDI8cENQk6zJDv5Nb5Kz8fN4/FgcHAQHR0duHLlCl577TWsra1he3u7gDY4j5Z95mV/UmOFzzFdPfQM/89l9+HhIfb39/Hhhx/i3r17CAaDuHbtGpqbm5XDhpeh40VUHzeM5X35bDabRSwWQ01NTUG0neyDlDm6Z3T0KZ3iHDg9yaSzvA4K766oqEBlZSWeeOIJnD59Gul0WoXDJ5NJSx4ek3H6qPqqHa/gz8jrn4S2Pqlu/X+VAV0KlGoAPwpBfBrGsc6wKKUdJmXWrn12Cj0plj6fD52dnairq1P7V+vq6tSKmFxx4mXIdusMaclQpNDQtZHK5IxchqvocCz7yZ+T7+raKg0HztS5siEFMYXHjoyMYHNzE5ubm5ifn0c6nUYmk7HstePvmZRhE21+GgzFDuzohRtM1dXVqKurw9DQEPr7+1FXV4eqqiqLYk7vyxUFACpKgPqk+03/OY5l//k9O+OZjge7f/8+lpeXlaJgOrLJjsmXyuAl3kiAeb1ePP3002rlSHeOLG+7nEdyXpiu0fWDgwPcuXMH4+PjiEQiarVBZwDytuv4jY4uKioq0NraqrK+6hQI3hfCB283bwOtuiaTSYyPj1vOI5bjpGsXbx/RKyXT4auccuzkyi5XuHO5HGZnZzE/P18Q2lpsftK4t7W1FZz9rMO5rl/b29uIRCLa1WcTDTocDrW1ghvJuu0UVA5fHeHh8jrQKdBc6Ta9I/HlcDjg9/tLCuHm7xHPzWaz2N/fVwZ4MZwAUPumA4GAxUi0q4/Pr729PczPzyvHDAfJ66gtnA9WVFSgpaUF1dXV8Hg8lqROpvp5H+g/hbH7fD5sb2/D7/dbxprPYenI0iniFA3Q0dGBvr4+TE5Oqm0esm4dXnXt5P1KJBIYHR3F/v4+/H6/mg+l6EHciOTl8mvcKUenAHg8Hty4cUPxfOkQ0LW9GOhomH7n8w+dG0dHR3jw4AEymQxisZg6WYHq1a2O0j3diievQ84lnTEur3OglXGPx4Mnn3wSq6urWFpawtTUlHKCcZ2L60F25eraU8p12UfTfR2t8LZRQlY6lnJzcxNNTU1qnz/ND52ckrwM0IdJ8+dJj+a6MZcdJnlo13/ZBol33h5dYlZTW+n5XO44kzmtUPf19aG+vh47OzuIxWLY2NhQ2x/4fJF6AW9TsbHjZdj19aTwqO+VCv9XGdCmyacbSKlU8fsmpJdSfqnv2RHFp2EImZQD+V8azRSyxVdlrly5ovbImLIX60KKeF9MbeDvyWd0K9FSSErDlZdjKpcbvgR88lK7OJOUnkbJTHk7eNvI85lIJHDr1i2srKwgHo9bjqPSMcJiRptkSjpasTPqdHgxQakGIB1N1draiu7ubnz2s59VCcJkG3Rjz+/TShOvyw4/XJDLsZVMnkMymcTExATu37+PycnJAgNSp4xIRl9MydKNg6Rpwl1jYyOee+451NbWWpwOPDJClslXuDhupCHH5wvhOBaL4c6dOxgbG1P7A7nDQUdjJiVZ9o9W03t6enDu3DllBPGVCz5eMkGgxCF5/Hd3dxGLxbCwsGDZ8iDxrQNJtxUVFejr60N7e7tlRV+CDrc8seHMzAwWFhYKtpoUA4fjOJlXZ2enRdHihk4xWbG7u6tW0eQcscOB0+lEMBgsoGU5R3g7iP50e0d5GbI+Al1CumL48Xq9JSmCnEfk88fOob29Pezt7SnniE6Zk30mw6GmpgbxeNyy6l1sLCjJ2sLCAgKBAM6ePWt5htM4vUOKNF9pra2tRTgcxtraGlKplKWPvD6Jb8n3otEoPB4PNjY2UFVVpWS8jp/xPup4Fe2ZbGlpwfDwMJaWlizjeRK6l/XncjkVNr+7u6ucWtRmHT/g85i332QgEo7JQBgcHEQwGMT6+rqKDtMZ0RKKyVpZN6cbKpscD5OTk0ilUojH4wiHwwgEApatcFwH0c1LHS75h2SG5N3ceKPfvBw63g4ALl68iJaWFoRCIcRiMSSTSbVXVifXZfs+TbCbe8Xq5kdfHf7/5P1pbKTZdR+M/4pkVZFFsqq47zvZZHez9+np6RmNRprRjBRJliJrgRDHiYMgcGLHgGE7AQJ/sYHAhv0hCeC8tuHAsB0bimM5UrSNlpE0mrWnZ3pfue87i6yNS5FFVv0/EOf2eU6d+1RVz/jFf/weoFBVz3Lvueeee5Z7zz334AAjIyNmvzcd6cUT3nKwjQlAd6LpHoWO82tSV2tt0Ma2bbKClyPx1nCzPcvbQ+Pd6/Wiu7sbh4eH2N3dxcLCAjKZDBKJBHZ3d00uDBnNIMEmN/PZTvI5Wxts/7V38tVTDN/+o3KgbVCIk/AP8a4s43EEis0JLOY9rRz6T84NJQZrampCX18fnnrqKbOvmfYkayDPb5RGMa9Pc5b5eZyak5ROp43SpxA4PtA1wSkVF89UCTiz/BJeXq/XEeLCHThelzT8y8rKHFmyydk5ODgw+7smJyfx8OFDEwKjhYvZhJzWZ7bnuMOpCeZiDXsbDpoTQkeXfeUrX0FzczNCoRAqKyvNu1o0AYHX63XUJcOv+YfvDyfDitNOGgI2ozCbzWJ3dxf//b//d3OOJD/ehJ6xKapClJc27jndCF+v14u6ujo8++yzePbZZ1FXV5ezFYEcHgpLpBUhXi5XllLZ0vgi+tF5kH/6p3+KtbU1k7BIttfWZq2dhBeNC7/fj4sXL5rjyqTM4QYc7W2WvFpSUuJIpJTJZHD37l3cu3cvJxN0PqUqaUUO5MWLF9Hd3W3q05xQmkSTdaXTaUSjUczNzWFlZSWHd2zAx05VVRUuX75s+l1bldBCM4GjLOTb29smM3KhRgLxUygUQkVFRc44IiBZxTPWkwEqHRU345Y++/v7jhUsmQiQ5DXtQafjV+goqkInKIjHk8kkIpEIgsFgjrNK9fM8CMARf9bV1eHChQsmmR610eb8c2fl8PAQCwsLCIVC2N/fd4Tl85MDOMg9pn6/H5cvX0YoFMLf/d3f5TiGhA9/R/YBOaXz8/P427/9W/zbf/tv0dTUhMPDwxy9LYH6ga8AZzIZBAIBk9GYJo3ozHO+xUFbAZblc7rR/Z2dHczNzeGv//qv8c//+T9HR0cHqqurDR8SnbjdwGW+DNume3SuNh/71dXV6O3txb/6V/8K3/jGNzA5OWnGsLQrtDZo7bHZSVyu8bGUyWQwPz+P9fV1zM7O4jOf+Qy6u7tNm3k7ZFn0m/c/f47bOdKe4fpCbk2RiyRlZWVobW1FXV0dhoaG8O6775pEk1wfS9kpaZOPhoWAW5+4OdHSFiWa7O/vY2NjA5OTk2hvb0dHRwcuXboE4NF5ylQmj3SUuoXkCNezdF9GFckIKzkOedl8Uo3zGPUttwOoTTS+ZX4fwtFm28lrNLYIXzpmsb+/H7u7u4hGo7h16xYikQiSyWSObizEYeZyXz6nyZFiJl+1+uR12/9C4UPtQBcy60DwuATS6iu2PJtB+rj12+q2Gez8t9wvEw6HUVdXZ8I0gsEggsEgQqGQI4kXn+W1AQ9L4fXIQSCFBQlgaVQTjiQY+GwqH/C2sDipUCT9pDCVbdNm/Ejp8dVAbmTu7+9jeXnZZNNeW1tDIpEw515ygyGfYyJBUwj5nuP4255zc8wlrYim9PF6vWa/VE9Pj4lUIIdIMyzoOp+F1cLVaOKDRyJQWXxVgu+D0wSsNDiSySSmpqZw48YNLC8vmzB6PrGh0TFfP+WTR5KGNGlVW1trDCeenVpOEEnjmL6JHnJll7eF6HN4eHRm8N27d3H79m2sra05Vl6kEiwUeNvKyspMYpKnn34a7e3tZh+3dLb52Jfjmjt1NEZjsRhGR0cde37lh/cBvavRPhwO49lnn83Zp0rvcmdH4k5G+dbWFu7cuYN4PK4mMbPRiX77/X4Eg0HU1NTA5/PltF8b81wWRSIRk/CtGDlCPEMJbYguMvKD05XLPp7cqhCeofvkPGvGLn+fG6TyJAe3NvGyDg8PEY1GsbKygv7+fsezVJYmNzyeo1Xv7u5u0yeS/vxZXj/RaW9vD/F4HFNTU+jv78/ZHsB5UmvL4eEhampq0NTUhNraWkQikYLPN6cySCft7e0hEong/v372N/fR0dHh/oO4FyxkvSkMumEgOeffx5XrlwxGcNtvOCmj/hvHkmSSCTw2muv4cSJE2Yyn9NNo4OMEpGT3pwuxO8UbffMM8+gsbERt2/fxvT0tHUyMR/YZJBsMz1L8jibzWJtbQ2vvvoqenp6cObMGbS2tpqJDplwUepETgNej8RB1k8ygNNMk530TE1NDS5cuIDW1la89dZbmJ+fx/b2toP+NrpwOuSzZeUYc/sv2y/bKMvl8pxHXM3PzyMajWJ9fR2dnZ1obm42uou/L8cCgczP4hb5JvuC8NES4Gnt0CKUbGOC18ETmEm68PZJXczrpQiJsrIyXLhwAfF43Mi6RCJhbCk3v0zKFnlNe69Q2VfIO25lFzPmP9QO9AcBmnDXrhdT1vtx1h+3I6XRQ7/lAKVZfb/fj1AoZI75OH78uEnWQsaKNqjc8OaCBchdDXQrw2Y0SuEg26YZIvxZN2dGo5fEVypiiQsJvb29PSQSCcRiMczNzWFychJjY2Mm1EmGhuUzMuR12wSBG7wfXubvc4VDQp0fY3b8+HF0dnaaVTwS0gcHBznHLml9w2evZciZbeZd+09gU+SHh0dnbc/MzODBgwe4e/eu2UMrnedC6FLMs/Sb0zAQCKC+vh79/f04efIkQqGQcTRtzoK8TjgQ/lSPHIv0bCaTweLiIsbHx01G3XzZm4ttF50JPzAwgK6uLnOWu42X3fiYj5l0Oo3Z2VksLi5ic3OzKFkpedjn86G6uhrHjx9HIBCwGnZuTk4mc7TfdWpqyuxptCl/Gz6VlZWoqakx4fq8fM0o4v16eHiISCSC7e3tnP4rhh5a+ZwG0sEhw79YoPds0Tb8OuXXICNVTsraype8tbW1hUgkklOXWzk0sUHHMVKUkaYnbPqHji6amZlBV1eXw4GWq0o247qiogI1NTXo6OhAIpEwq6i8HW40ID7hiQIrKyvR2trqWAV3c2g8ntycHh7PUfRCT08PVldXsbq6isnJSVNfPt7TdDGnJx3vOD09Db/fj/b2dhw7dsyh77nOkG2gMjWdIx0Ecgg6OjoMv8RiMSQSCROe+kGAZtMQ8K0gMzMzSKVSqKysRHV1NaqqquDz+QqSnZL+sk4OmuOm4UbXyGEqKTk65q2yshKRSAQlJSWIRCJmgidfJJ3tv+wrNye5EHCzO/k9ztvxeNyci5xKpbC9vY1sNova2loEAgFzvKHUq1Sm5uxyG1IDTY9q79jsV01/anJS2hT59IUmH+kayWOKMguFQkgmk2ar4s7OjsnvwyeVNV1TKOTjC1v/as+8H76S8KF2oKXyeT+Oa6H12a6/HyflcQxXNwangUKDhiuLsrIyNDQ0oLW1Fc8++yxqa2vNPiO596MYZUjv0aqBbBsPBZN9JpWnWxu5k0Vt5atvUtFr9cm6bUYygQy743XQasPq6ipu3LiBmzdvIplMGsfZbUUzH9gMjWL43K1Om1KVv/m+THI+6uvr0dPTg0996lPmmKWSkhLs7e0hnU5jf38fJSUljjNced9qM8Uejydn8oYLfn60kFQwMhsrD++m8pLJJO7du4fvfe97iEQi6sqrG7jRS+MzSUO6TnuL2tvbcebMGXzqU58yYZ4EhLfcvyb3A/J7fOzZDL/Dw0N861vfwvz8vDnTtRjnWeMRLl8oacrg4CC+9KUvIRgM5vAt/eZGGzfU6Tdw1I+0X3Brawvf+ta3sLKyYsJqNcPZDU/Ckc62PX78uJnwIZ7iMpN/OJ9QGPP29jbu37+PRCKRk5HfjW6ES3NzM/r6+qwrJ5x2xM/02d/fx/T0tAmhLaTviP9otYTC/fiYonZqYZnkuLsZdLZ6Sb5TPdwQ1QxrukeGmjwCyq1+ej8ajWJpackxngrhdYqiqKqqMsah5F+b00nt3NzcxHvvvYenn35arYPrMS6/yEEtLS1FQ0MDXnjhBczPzzsSmhVqNxCv7u3t4datW/B6vRgcHDRRF1r/ctmlRVwBR/KsuroaZ8+eRTgcxv/4H//DUQZ3Jmx63IYvcMSX8Xgc9+/fRyQSwX/4D//B4UhyXOk9OYaIriUlJTg4OHBMlEoH2+/3o7u7G42NjTg8PMTo6CiWlpasesFtEiAfj8mIOcKptLQUW1tbmJ2dRSQSQTgcRmdnJxoaGkwdbjYAd6D5eObvcVx5H/Nxw1e7qT0kr/b29uD3+1FeXo5PfOITGB4extjYGF555RUzyaPpE8mv79dBlqA5UPnsJCnzSLbR/ujJyUlcu3YNTz31FPr7+9He3m7KlaeDyPGhnaZCNqTcO85B2j5Uhs3XkTzBI4r4O9w+p+dIh1Ib5DsSJ94WHoXIz4rf29tDLBbD2NgYJicnzTncbtFtmm7MJx9sUKwv9X558EPtQBfjHPxD1KsZDf+Q9eZznrUPGbT19fUYGBjAsWPHUFFRAb/fj6qqKrPiDORmwpV7LDUgA4ye4fsxJB40iGgfE/BoINI7dI3KI5ykEKGZLSkkPB6PI4REroBqikSG2mgGs3YvlUphenoaV65cwfLyMqLRqLqiyevg9bgZYBJXDWx8aHuvWIEh+6+0tBSVlZV48cUX0d3djbq6OoTDYcND5NzxpBLU18RTGh/xFRmurHmbJM0kDWRyHl4nHV8xOjqKBw8eIBKJGKesmJU7t3HvBrxNJSUlqKysxOnTp/Hcc8+hra0Nfr/f8ZzEn8bO3t6eUfakuDh9+HglRUqG2cHBAaampvCzn/0Mk5OT2Nraysn+LuldCHAjixydz33uczh27BiqqqpURa7xuww3l9Eac3NzJlO4nNmmct1w5vuuvV4vLl68iLNnz+Y4ZRp+BJlMxkSTpNNprK2tYWFhwXoGtWyjZph0dXXh1KlTjokR7sRynLhxQSuLU1NTJoEYp5cEaWByWa1tX5Hv0PMUgs3zPtjq1IDCVfmWDXpX29NPz1ZUVKC8vByJRKKgeqjs7e1tcySdPDqL00Jru9frxdDQkClHi2zhsoDKov6jI2xokkpbhaITB7TtGuTYtbe3o7Gx0RyBlC/SQcOTJnvGxsbwve99D1/96lfNyroM25bOr5yE5ziGw2F0dXXh4x//OG7cuIHV1VWDQ6E8IeUvdxzoGLK33noLAwMD6OjocHUeAacclZOqkk68jRTO/bGPfQyNjY0YGxvD9evXHRNKhRj2bg63m67nTlcmk8HLL7+Mvr4+DA0N4dy5cw57iN6hawTSVrLJW05r+Y6cQOTv8UgKv9+P1tZW1NTUoLe3F2+//TZmZ2exsLCQcwSkxE3WLfF3c4ILda7y2eV0n08U0nMkX9PpNK5cuYKJiQm0tLTg0qVLJlKMytDsWklfwMmLNr1tA6lf+EKCnEjiNOR6Rfal5tDyZ6k+DT9OK5JfhEd9fT2qqqpw/PhxJBIJRCIRjI6O5tgcsu8L7Vc3H6sYG1fK28eBD7UD/TggmSjfc8V23geFW75n+LNyxdnn8xnnhpLEhMNhtLe3o62tzWFM8r1lmqDT6pIOpwynIuAzmXLGjsrSnD9Zn2bcawYEx9cWMiPf5b+1GWwu5NPpNPb29rCwsICtrS0kk0ksLCxgcnISsVgM+/v76r5M2W7tt5vCoGceh79sCkq2UX5Lx7mtrQ21tbWor6/H4OAgGhoazFEXHHw+n8PA5sJStoMLXYmLhq9bn3M6AUe8HIvFsLm5ifn5edy7dw8LCwtYX1/P2e+sKV43WhciN3gbiR8p+qOtrQ3nzp1DW1ubIwuybI80YvjYo9lyjo8N58PDQ0xPT2NkZATj4+PY2tpy7EXVaKDxjbzPecTr9SIYDOLkyZMYGBhAU1OT2T/KxxDnB1tfc/lCYcqEP81o2/B2w5X6oKmpCZ2dnWhvb8+RW/JdPklHq1gUYUGh8Dx0MZ8i5vxBM/c1NTWOiUKbQcPfzWazJmSOzmS2vUf/eRm0okttlKuzUhbQc1RWobSXz8gVTZue5XwAHJ1NGwgEcuqSzgB/n4zaVCqFnZ0dVFVV5Zyhyx0o3kbgyEjt7u7GysoKZmZmrGPC5jAdHBxgd3cXa2tr8Hq9jiOt+ESYJpOpfMoIPjw8DABIJpOq3Monr0h/RaNRTE1NYXJyEq2trQiHww4jnLcpm83dR8wjBzyeo0mGyspKDA0NIZFIoLS01LFyazNobQ4Nf54mrHZ2dnD//n2jf/v6+nKcL+5MEH1l+6le/p6U12VlZQiHw+jp6UFZWRlisRiWlpZMkj6JrxvN8/WL9jy1IZ1OY3193UwAHxwcoL29HTU1NaisrHQdNzZ94oaTlC1cZnL6SX6g/bBerxcnTpxAOBxGU1MTlpaWsLm5afZHF+KgFOP8yDYV+pytP/i457I4k8mYI862t7dNzgrK8REOh3MWjWR50v6x2aC29uTzQXh/SR3iVrZtHGg4yXEjy+P1e71eMxlFn2z26LSIVCpltjrSIgbHwSYr8tknbvRxg2L5TcI/Gge6WOeiUOVTSF1u79sEWLEdpxk0XMiRM1xWVoZgMIhTp06hv78fbW1t8Pl8xlHmoa38XeDRbDgfRKTEZYggX92i38CjlR7gaLWBh3nY2kPlkcLmwFdjpBDioBlDsi6qRwIXatwQ5SHte3t72N7eRjQaxauvvorl5WWzZ0bODkrjL5+Ss/GCm8LWFEIhv+m/dp8LQeozEoRnzpzBsWPH0NnZiWAwmNNOwsfv9xuhSCHb0rgBHvGJx5MbymujiTZu5L4egv39fczNzeHu3bt46623TJZpOcsv6akpDv47nzLTaEmTEBTaPDw8jMuXL6sr8nIMcINGHrNEoWBUhhZWRith165dw8OHDzE/P289qkqjt7wv+YbwKi8vR0tLCz772c+ira0N5eXlObPfbquq0lDLZh9lSZ2amsL9+/dx79497O3tFSU7Ob40uUjHVjU2Nhq8OC6chtxwJAd6f38fu7u7GB8fx507d6xh8DajjWQiZZiuqqpyRFBIeSRlJQBzrAjt1XQzyGS7SkqOchiUl5ebOuQqgjSkednFrPxzOhDeWkJIvkKrTQ7RflDpdLvVTzKIVm5pP3MhfUQ82d/fj6mpKZSVlTnkmdY2qWfIgZ6amjJ7BaV+crMd+N7vZ555BgAwOTlpzUSu9TVdJ1okk0kcHBzg3XffxZNPPolQKJSjv2WIPuctzos0vgOBAI4fP46DgwNUVFRgbW3Nke3XTabb2sD5LJvN4s6dO9jY2EAkEkFXV5fpR8nvcnLfxqec/+RkRiaTQWdnJ+rr65FOp/HWW29hZWXFjDObHnZrn9Yn2ntEt5KSEpORfGlpCePj43juuecwNDRkHBQqU7N3NPsin82ryXZZjsSX7EMAOHXqFAYHB5FMJnHlyhWMjIxgZWXFkaPBJl9l3bKOQninUFlkG8OafUn8QDkNVlZWTOLP4eFhnDhxwkzM8bHB9bjUazYesj0LPDoFQhvfPHIPgGMl3FYPvcdpotFR4wN+X8oEKpPbj1VVVWhoaDDycGZmBuPj40Z3cXlm4xM3Ofm4wHUtv1YovwH/iBzoQolcjPFVzLNuZRSCl80Ql/+5wUmDhmbKe3p6MDQ0ZPakkkHNs5jyAckHEBlV/D8/N4+Ar7ZIQ4tnTpUh4AcHB46Vbz5geBulwchx8Hq9OQOMO2EkYLgRII0VOevPy5O4ZbNZY3y9+uqrWFpawurqKpLJpMMZk86z7H/tfz7jj/C1GUr89/sRLlIJ84mWzs5OHDt2zByxQzwlBSbHQe7j4+FN/F25X5f4DXCGH0tDXhobki6k7P7qr/4Kc3NzJktxoZEBEtyes9GdOwY0qRUIBPDlL38ZfX19aGlpcRwRI4EfVUVlkKFCtATgSGrCw+aJxzOZDDY3N/GjH/0I7733HqLRqOPscc1wcGu/bDfh5vP5cPnyZZw+fRqtra0oKSkxcoJ4RDoXmUzGHF/Gxykfl5T86OWXXzYGLDf2NdCMQJJHdGzT5z//edTU1OQY6XyCQsqYbDZrJhIPDg4wMzOD9fV1YxzKyRhtjHJalJaWor6+3iQwo/7iq7O8PdS/VH8ymcTS0lLePfzc+OE4hMNhBINBxzF8lPSP6LK/v++Q2XQtlUrlHUeSdoQjraZRm3hCGl4G7wfCNxwOuzoikt5UbyqVwuTkJKqqqszEDr1Dv/lWE04zn8+HyspKBINB7O3t5cgh6SRK3DKZDN59912Ul5ejt7fXQV+iAZ9klnKPyq6urkZHRweGh4dx7do1RxnS6LY5TyQbs9ks3nvvPYTDYdTX16O2ttY8z1dwSSYTz3KZTUDH5ZSUlGB4eBjV1dWYm5vD9PS0GhlRCMjnqQ8XFxextbWFqqoqXLp0yTEBJicEiW/4hJCcwJV18npLSo6SPD7xxBOorq7G6Ogo3nrrrYKPb3PTyfl4h/ct2T4kx2/evIlLly7hwoULqK6udtTFdQT95/1n6wveBtL9dI3nLQFynTOiLdVLkS3PP/88zp8/j9nZWXz96193bJnSaOGGkxvO8jtfWba6uQ7UnucyMp1OY3d3F5FIBNevX0dnZydOnDhhxrdN52nt0Wwaek/SSuNZus55hvpa5u7hC2QEtkgNLgfkIpl8T9rQHOg5r9drtngNDw9jYGAAu7u7iMViuH37NuLxOHZ2dtR2S5p90OAmw/PBPxoHGihuVTmf82K7pyns9wvS2OD/6Zt/SLi3tLSgtrYWTU1NqKurQ01NDerq6owjLAcwYD/nVKOdXP3lQlYaZrwMbgBIR10OMm4kSOBKhH9rz2qh3m6CU7aJv+PxHCV6GBkZwfLyMlZWVkyKflrJ5EartpJXiDPiJvC134VCIY45ffNPaWkp/H4/qqurcerUKZNUhXhKGvMej8ckduF04EKavnmYE13Xwu20SAd6T1uh48omnU5jdXUV9+7dw9TUFKLRqHpWsOZsuP2X9LT1CVecxPe0h3F4eBjHjh1DXV0d/H5/zjjk44IUIm8rAd9ywcMp+YodKbvZ2VlMT0+bM8gpdN3Gp/lkm1S8tIp67NgxE51AmVo5PQCoxhO/xldUiDcikQhu376NaDTqSKCUDzf5n3i7rq4Ovb29xnHUDHW5KirHB33u3r2LtbU19TgnDTfeNnLmBwYGUFtb65iEkvKR8zfv662tLcdeQ4J8hgaVTyu6AHImNrkDQmXSmE+n09bjlOQ40Zw5uX+Xy3Q3eVhVVWVCV7VnbeOTnP6FhQUcO3ZMxUu+w8eB1+tFfX09Ojs7sbm5qfKgLEs6bRSymEgkcsK4+fuyTZwXysrK0NzcjPPnz+P27duOFV43/Pk1ev7w8BDb29sYHR2Fz+fDSy+9pLZJ8qPm6PGxUVFRgZaWFjz33HMmz4RtTPD35TVJE+KT/f19JJNJPHjwAKFQCHt7e2ZPNJc1NhnP7/OxbuuDkpKjfBWURT2bzeL69esOQ1+z17T2uIHW7/w66TbKCn3r1i3s7++ju7sbx44dcyQB5HSV35wGkra8TptTxXlB2k2c54luZWVlKCsrwz/5J/8Ed+/eRSQSQSwWy3H0ND622Yr0TKG2fj5ZoYHkHUlH6g+SxdnsUXjy4uIi+vr60NzcbPKauMk0LsvkJGg+mSB1jrSHaExy2shEuGTfy3o4P9B/yVsSJ1kGx08uuFHCWa/XC5/Ph1OnTmF3d9fotFgslhPtoekWXr8bnfPZ5bwN+WxnCf+oHOhCIJ9zUmhHPE59btelU8N/06esrAwVFRWoqKhAKBRCf38/Wltb0d3djfLycseqNOHKnWA3RaYpXa6UOHAngYDPUGkhRRrDy0GpXef4SaEq28RDALVnpGKVgjubzZoQzVgshocPH2JiYgKrq6smcZGW4CifQ5IPOB6agNKez1e+xq9S0VMf0ndVVRXC4bAx1Nra2lBRUWH2OXFlSQ4bd6D5R65Uk+Jxaydd4ysdMkJBOhT03t7eHjY2NjAxMYH33nsPa2tr5hgSt/4qBLgy0Ogs8eMrSpS878KFC2hpaTErNlQuD53UjAZOA95f/J40MjKZjDnr+uHDh1hYWEAqlbImH8rHR/I/N5r9fj8GBwfR3t6O2tpaa8IR4hnbzLXEYX9/H+vr67h7927OJIjER17X5Cet+A4MDBgFbqODTUfQb9pTHovF1IzUNvpxI7asrAw9PT1mVVUaP5os5CttOzs7WF5ettJF1s2hpKQEwWDQONBanVIm820ZFCEh65JGnVa/7Tg/PhY0CAQCqKioyDF0bOOSl3twcID19XWDN8knwH21g/qppqYGbW1tuHPnTl7ZzNtN9e/s7CAWiyESiSAYDOZERXE6U70St9LSUpOsyev1GudU4pwPN/qmSYXS0lI8++yzZlKP1y9/y/6VE04U4XH69Gn89Kc/xfb2NnZ2dvL2VT5akoyj/ezz8/Oor6+Hx3OUsIicFaKnjSaaHZLPMPf7/airqzM6kPJoUHIzW122axJHt7bz3/R/a2vLnFO9v79vFlCk4ynHHx/P0rHhtKGxwWWh1DEarnLynJxnv9+PJ598EqlUyiQgSyaTjm0cWpsLoZHEW7un/Xezg211c7pyp5+c6Xg8jtXVVaNrQqGQ40hYKlezZ/jkqGa782fJBuDlSBlm42u5kOVGB83Ols9r9HKjIceP7CDK6E7h3ZlMBmVlZdaTbNzK1HArxkYulOc4fOgdaDeB+UGWTf/dBmGhjo/8T8wpZ0SlQV5fX49z585heHgYNTU1JryCJ4OhsA0qQzMQtBVh2TbpbNFvHhZOoZo87EcaOGR80TuSfjSYpLFIdXGhIvGUYXd88oDjwQcgD4+Vq1B09uTY2BjeeecdJJNJs0dDOmz5eO39Ks/3M7g14ShpJ3nL7/fjiSeewNmzZ9HR0YFAIOAI5eI40PMAcpwyPmEjV1j4LLXM/CsnXbiRzRU4hXoS73k8HmMMfuMb38D8/Lw5dob3mZtxXgxd3e4RPWlMVlZW4qtf/So6OjpQU1PjyHpMbZDKkNosacbrsUWTEKTTabz55pu4efMm5ufnkUqlHPuMClEutrbTuCTlFwqF8OKLL5rQWK1tGi/ykF1tVXJhYQHj4+MYHx83zn8hRzXxOnh/VFRUYGBgAB/96Ecd8hFwru7ysE+Z6ZRWfldWVrC+vm4UPuFdqBFHK/cnT55EbW2tarTysDxpLB0cHCAej2NqaipnNdjmJEh9QqG7PHJByh25Ik170imEm4MbT3EaUAg3N56pjdrEKzlOgUDAkdW9kPHM8Y5EImZVg94n3uB8pRmjTU1NODg4wA9/+EMHHd1wkM7qzMwMrly5gu7ubke7uc6XjjXnOwBmP2FVVZVJqOV2pJiNHgAMDy0uLuLmzZsmARSQm0tB4sd1uoSysjJUV1fj9OnT8Hq9GBkZMW2VTp1NT2nAx2g2e7QKu76+Dq/Xi+HhYbOdhdsh0m6go8hoDPBypZNAfUMhuV6vF9XV1SgvL8e1a9dw5coVM/7lxMLjgs0JoLJ55vvp6Wmsra3h/v37+JVf+RVHfgDpQHG9T+XKSVm5v1bSjtOe7suoMvpN2+2oL0KhED7xiU9gc3MTs7OzePnllx1Hw9lkifZf9mshtLTZ8YVENHH8pHzk8pmic9544w3cuHEDvb29OH/+PBoaGlBRUWGe1+QsffMTY2TfSxnOdRN/ltvAtoUzfl/K4ELoqtnw/FvSi2/lo7r485SLo6KiApcuXUIqlTILWHLyX7aXg5selP1a6PV88KF3oD9op/mDqNPWwQTyOhd8fBbY6/Wira3NZI2lfWDBYNCR4RbIDdHmDocMReSDWBO4brhKZcGdUD4wuEFI92zMz+9JQW8zWMhAl/i4DSp6j4QFnYO3ubmJyclJPHjwANFoFPF4HJubm2a/qHSeZblam2z0LHRQSyFrA9u7Gj7SiPZ4PCgvL0dnZycGBwdx5swZcywVKUK+Qi0Vsawzmz3K9MpnXSWv8bYRSEWmGZL0jtyDNTExgenpaeMsaiH2nCY23POBTVnQb77qXF1djfb2drz00kvo7e01K2fS+KBrfHWf7hOPciOFjHFJG25crq6uYnp6Gu+88w4ikYiJnJCK1NZmzdigb95OOk/2/PnzqKiocLSBTxTwLRxS1siJLbqeSqXw1ltvYWxszLrv2Q1/jjP1ycWLF9HX12eyxHMnQR6fJGUq/T44OMD8/DzefvttNRw+Hx0Jn/LycoTDYVRWVpp94LwuyRM8VJ/omkqlEI/H887Oa3xbUnJ0PjtfgSaQY56cXcKfDEVpzPB2uhnAtBdSi2LiePL96DQB4vf7VcNWe5/XTQnXeDsA++qzXIGliK9AIOBwYtz0DpVF9W9ubmJqago7OzuoqKgw41/Tmbw8ohHJgoqKCjz11FO4desW5ubmckK5Ob2lLqVrZPBTpNVrr72G1tZW1NXVWWUEp1k2m82ZXOXtLSsrw+XLl+H3+xGJRBCJRMx9PuFUCHBa0DuHh4fY2dnB0tISfvrTn6KiogKtra2ora1VbRq+5Yi3h9sVsi18UYDLr5aWFjzxxBOoq6vDyy+/bCYneT+6ta0Qna7RgANNXlBuj7//+783ST4rKyvVSRk5QcV5V44LKZulzpN6nJ7XjmkCYJJM1tfXo7KyEqFQyJwIsbi4mJNLJh+NitHXvK35ytDGS77yiX8If9ITY2NjWF9fR319Pbq6ujA0NGRWpHlbNZvXRneuB6Tslf2nyWb5X9vGJOslmS/pI//b7G5pM/JJalkW6eGysjKUl5cjEAhgaGgI8Xgc6+vrmJmZyVnQKnYscV4o9l0NPvQONAc358nN0XAr43HqlQOW/mvGN+B0oGkPaiAQQDAYRFtbGxobG9He3o6KigqzGV+GcrrhLVcCbe9wprcZBYWATRDx1TQ5C2XDR17TwlzkfZvjxMtLp9OIxWKIxWJYW1vD5OQkxsbGsLu7a/b5ydlprTyJrxQcbk60NAw0cOsD7V4xDlBVVRU6OjrQ09OD/v5+NDc3O5wJLXxfE/g2BWAzsGV58j9X6LwsEr7ZbNacgfvw4UPMzMxgenracT6wZqg9Dk+7KXNJ29LSo3Oyu7u7MTg4iMHBQQQCAXX8ScUicZP4SydLQjabRSwWw/z8vOO85EKjJ9xkmOSd0tJSNDQ0oKurC/39/a7nWMoypIMr5QNlT5+fn0ckErFmHC4Ef8LZ7/ejv7/fJB3idJATjpoRwg3EeDyOubk5NRQ5H36ETyAQQHNzs5kEtY0B+i3bRquP5MRLHPI5lx6Px5yrTGONy2ZuxPKIHQDGgeZlStloG2PkzHDZrckOrS8p87Amk2QdXH9RmW57xTUdxI1WMujC4TD29vbUEHatLKonkznKhJ9IJLCxsYGGhgaTPA5wnkMraSHxLCsrQ19fH+bn500SOc3JlO3U+vbw8BB7e3tYWlpCLBbD7u6uOXJGjlVbO6ksGW7a2NiIrq4uDA4Ommy7mqPqhqu8x501OlZoaWkJY2Nj8Hg86lFn3LGxhQtLIDnHnSPCq6KiAo2NjSgtLcXAwADm5+fNkTyS74pxyLRn3d7nk6ITExMmR0lfXx8CgYAjp0Qhek8bh1Iucr7g4Oas0Tc50bTvla/wUzJGTY5ouHMa29qRTxZp7S4E3HiXj2ea5KQjI+kYu6qqKpONX6OZm4MndRLhb5M5vL/c+C+fLOS4SbtAK0vyQyH6W0bFUgZvytXh9/uRyWSwvb2N3d1dxONxa04Xt3FIeOdrQ6HwoXegixkAbsxZbJ35jFD5jJz94988y25tbS2GhobQ0dGBzs5OEwpjWwmUA0gagJRZVT7DFQRXbLw8zmQy/JTu83K1rMI0mGm2S2ZcpnZLhSWNLNl3pLTpnpwF5HjKsz8PDw+RSCRw48YN3Lp1C9FoFKlUynE+MAB1cGq/CwFuzBX6fCHlFVIGN95p70kwGERPTw8+85nPoKamBn6/3wgpqTxtCpX3i6asJX/wsEkbLaTxxlcOqE/T6TSSySS+9a1vYXl5GYlEwqwEUBkc70JoZaOd/C3/Ew9S2HZjYyNefPFFHDt2DFVVVTkZMnk76V1aEeV05pES8j3ePk6byclJ3Lx50yS6kYm7iuE/+ZzkoeHhYQwNDaG9vT2HPtTPtIKprTZKA51kQjKZxM9+9jOsra09VhZfXi6fKDp+/Djq6+tNyC5f3eRbTHjbif6EA4W9Li0tmQk2bSbdZuAQTnV1dTh+/HhO5mk+brijSaux1N9bW1sm0qIYw5zqJyfe7/c79MPh4WFOluidnR2z8gkcjT0K4S5G93J9JMNHgUcOATdCOW18Pl/OKQAazTWcuD6wGaDSmef4Uab57u5ubG1tmX292iSwBuTw0dFn5eXlqKyszHmGT7RxXcahpKQEx48fx8OHDzE5OZmTqKvQPiGdf3BwYJL31NbWoq+vz2qcS9tA1slXyj0eD44dO4ZwOIyHDx+aFW8eLkzl8G834LKcr1q++eab2N3dRW1trYn24StdXJ4SvqWlpWYiRI4vqX9k/ZTN/XOf+xx++MMf4v79+zkTNDadk89utLVbvku/Dw4OsLm5iffeew9TU1P4uZ/7OXOGNdFBc7L42JM6XMpcKdPksxqfynwXHIeKigocP34c3d3d6O3txeuvv26ix+SiheQTGx3ddLQG79dxsr3D5RZNUMViMUxNTaGjowN9fX04f/58QRF9Mos2l2HUBjkpxJ1nrb0aHW0RgJq9oPGgxjc22aitPtu2etFWp3A4jOrqanR2diKZTGJzc9Nk7iabnW9BcHOebfSw0ScffOgdaJuBLJ0uepYTTPtdLPAOkp1hG9TckCkpKUFjYyP6+/sxODiIUChkVpr5TChXUtJ5kYIfeMTA2vl08lmJfzabdRiTPGyWrvHyufHBlb8N5GywPOKKhx1RfVr/0BELMkxUO96Inp+dncX169cxNTWFjY0Nk6BIOt3aCmAxYBu8hRo4+QxUqeDcflMflZWVIRQK4dlnn0VXVxeampoQCoXMfdkvPGTIzZCS1/mzXDDawsk48D08ZPjwc4vn5+dx9+5dXL9+HUtLS9aQHvlbo5sb2AxSaWDxFaqGhgb88i//ck4mfM6fhBcX+HK7A+dDuborQzaz2SySySTm5ubwne98B+vr6w7nuVCnWfKblDfUzqqqKrS1teG5555DY2Njzrm6hQB3Dmic0cpmPB7HnTt3kEgkHKHC/N1CoaSkBM3NzXjuuefM/lm5Rxt4RGO5Csvl3uHhIaLRqNm7pyVkk7KYA13zer0mSZ9MtMcNIP4+d5Sz2Symp6exsLBgjbLQgNdDyX148iX+PjfUaEWP5CMlL+LtlXrUzZnjjrJ0OKQu5U436SRK5pQvGkPqIVqxpBBqTicersuPQKRyKIz7/PnzWFlZwebmpjoObZDJPMqifOXKFbS0tJij7LjulFEHVDc5pcAjXj19+jQ8Hg9+8IMfqHrSZvhyG4De29/fxxtvvIFYLIaOjo6cMW1zmnl/yZVw4OiYvYaGBvz8z/883n77bTx8+FA9S5vjJfvP9gyXH8lkErdu3cLa2hr+3b/7dybUnx+lR33L8aUy5eQFtYVwlTKYxnFjYyM+/elPY2hoCF/72tesk2o2yCfLtPtST5CMpwmKr3/96zhz5gz6+vpw6tQpa6i9dDC448UnE2gLIH+W8yvnA75IIrfIkEyh8uh4x8HBQTQ2NmJmZgY/+MEPzFGLtmgRXr+NftImyUdHCZpNb3vO5kOQfKDtAwcHB5iYmMD8/Dxu376NgYEBtLe3o6+vL6cubYzxMc4jVkhGcN2h4Ubvchkt7WRbxKEbLWj8FKKXbfas23ghPU18Q4kKGxoaEI/HEYlEMD09jY2NDTNuOQ20qJfHtSc0+NA70EDhg8HtXqGOTb7npWKRxrbP5zOZEynDcSgUQmNjI5qamnIy9/FyuHElDUs5SLhxWKgAsTlGvF5ZD1c+5PDw97gRoO3BoXJpxlJjbi4k+D1a3eJCnwshCp1bWFhAIpFAIpHA2toapqenEYlETHICOeuptd8NpMDT+uUfCqRSA5wh+yUlR2eotrS0oLm5GTU1NTh27Bhqa2tRXV3tmACRApc7UbydNiAjl+gow2Plb4m3RnsqI5lMYnp6GiMjI5idncXy8nLB/fdBAR/H3Klsb29HR0cHent7TVZYaXjJdssxzukv39NWEWjMJJNJLCws4OrVq1hbW8P29nZBYc90X44rjitvL2UBbm9vx4ULF8xxXHx8a/SSdfIPf+fw8BBjY2MYGRnJaUO+PtXkLZ8wGhwcNIkWZTi9zdDgvEz89eDBAxO+XQxwnEKhUM7+Y81x1FbpCJaXl7G+vq7yu0Zz3lZafbbJJW2Vg/+n8HEJbsYsr0s7yUAL5ZZAxnwgEEA8Hlfrdmt7JpNBLBbD5uYm2traHDqUPjSmtLJp20JVVRV8Pp919V+2l5d/eHiIWCyG1dVVtLa2orGxMecdTe9q5Tc2NqK3txe1tbWIRqOOSQ034EY0/afJIUp0dvHiRZPYR4uco/e47NDCo8ne6evrQzweR0lJCe7du2f6Q+KSb0JCoxPZAXQu+jvvvIO+vj40NDQ4nEe+Mq61h+tum/MOOPeNlpSUmCSAzz77LO7evYt4PO5Isqe1jZdZaH/JaxyIR/b29rC5uYnR0VHE43FEo1EcP34coVAIlZWVOXJLJovTHCFpZ0p5Qt9y4l3Dk98ne7C8vBx1dXXweDz4yEc+go2NDaysrGBpaclkOncbB4XquXxQSFn5yrb1NZ+Y4BOQGxsbiEQiqK+vRzAYdBxpmE/n8fZrspP7HTbZkg+oX/lkoVt9+exe7ZpcLHPzycimKik5OjHG6/Wa3BjJZNLQdnl5GTs7OzlbbTRcH3dcEvyjcKAJtA7SBNDjODWaEyDLsgkWmjn3+XyorKxEX18fjh8/jtraWvj9fhNWW1pa6ji4Pp+RI41qiS8fAHRNDgL+XzMqCTQnUZvtshk/3CDk7/PZSm68cKeZ18kFPSl/KVwzmYzJFhuLxXDt2jUsLS1hbW3NrM5pmX95W23GqxvYhEshYBNAhfCv5lyRsPH7/Whra8PZs2dx7Ngx1NTUGKdZc+Lkb057rT5NuUpe4fdtCth2HBAljFlZWcF7772H27dvm6gBmRxLU/YSChWOGj35bwrZrqiowNDQEM6dO4fBwUGzqkczp9r4ovuShoQbN0xtfEC8v7q6ivHxcbzzzjuGt7nRbqMDL8em7LgMoYSGJ06cwDPPPJOT0Ek60Ta5pK3QZDIZpFIp3Lt3D9evX8/ZSiHboDlM0mCgVcOamhr09PQ4aK5NxkkjkJ7nK+R37tzB9PR0Tjiwrc0cF/o0NDSYMWgb21SnjOyhOsmB1lagNeC8V1paajL2avXzyAiOCz2XTqexu7vraoDYIJs92lMtHehsNqtGMsjx4vP5DO7F1E1jJRKJOBxoah8fL3Kil8ovLS01CTwrKirMWcAcV228SV2XTCaxvLyMxsZGNDY25kQ9cGdPS95DdKurq0Mmk0Fra6vJdVBMlnpJm+3tbSwsLODVV1/F0NCQI3JNjgvNNuCTsHx1lyYYM5kMKisrMTExgVQqZdpSqFGv6WTOn7SF57XXXkMmk4Hf7zfnvQNw2BmabpOOiwaajKD9xi+++CKSySRmZ2exsbHhMN7zlWlrL923yWj+LM/9QRPM4+Pj8Pv96OrqcuyJJuATCvQu70sNF/ovbQBN72vh7zS+eGRFeXk5mpubzWTQyMiIWYWmrP1Uho0u2piTuNrsAf7c44LNBuH3eBTP7OwsFhcXMTExgcHBQXR2dsLv95sIGzf7l5fJr9OHy0e3tstyCOR2B+19N77VaGmrn8sYrveIXhIXKoeOSausrERdXZ0Jlye5HIlEzES8lvTycex7Df5ROdAS3JhGDngNbEzAmdpmaNMgCAQCCIVCuHz5MpqbmxEOh+Hz+dTQZ2IWzjCkyEix0nN83ySBFExSkMgByOvmNOHKhl/X2kqhFVQnJdOgFR+OH8/KS6vHRAfCjcK56V3eZimUZf9Q23d2dvDOO+9gcnISc3NzZr+gLfFPMUpcq1szntwMa1vZbkLHjUflh8Kj6urq0NfXh8985jMm86tcPaV6pKPHjxDjToDH48lJIiT5h9NEGn9UD1foMgSb+OHg4ACxWAzf//73MT4+7jg6iHgjn9FTKHBDwkZvogE5z+3t7Th//jyef/55Y0jxtspVD04PylZO9LMlZuKrBpx30+k0lpeX8d3vfhcTExOq8+xGm3w8ycc3Rc188pOfRF9fn8N5pvL5uAYerTRy4I4q78O9vT1cuXLF9LEt830hbSDe9Xq9OHPmDIaHhwHoqy1ET+04FuDRkXf7+/uIRqNYWVlBIpFQlbH2W8rOsrIynD171iRe4wm6OH5er9eEgwJwOAH7+/tIJpPY2dlxjIF8QHTx+XxobGx08Cqni8z6LuXv/v4+dnZ2HGPPZsRKx5D4ljuGMpSe9w3XCdls1si0mZmZghwe2QcLCwsIh8OGJ4j2fFXcNnlFMqutrQ2bm5uIxWI5tM/n0GezR+fV37lzB3t7ezh16pSDBnLChvO31Hs+n8+ER//P//k/TZ/ko4umY0iv7uzsYH5+Hjdv3sSxY8fQ0dGBg4MDY9Tv7e05nFC+D5l4lHDj2dvLysrQ2toKn8+Hy5cv49atW9jc3HTgWGgEi+wX/m46ncbKyorZU/vlL3/ZgQO3o6TtRdf55A6XVUDusW4EdFb4l770JYyMjOCHP/whVldXHTTgEyUcdxu4yWfN3qDffNym02l885vfRE9PD06ePInLly+bNhDfc/y4c0LlyQklubeZywCOC3d6pZ3MQ7j5ZIvf70djY6MZo9euXcP9+/cxPz9vts1wPZ1vvLnRjYNmE78f0PwEeT2TyRjn7s6dOxgZGUFlZSXOnTuH7u7unLO9AedJO9Qeuk8ykstT2XbubGt2jqyHt0HSjdfFdamb3OH8qeWy4GVJm5SPfT5u6T1agAwEAnj22WfNlpmpqSmMjY059tdrE/PF8hLBPyoHulCnRTo/+Z6R1/i3/E2rNaFQCD09Paivr0dDQ4MJ2SbHgQS4dLjJcSFhzg0dOTNIwkwa6VzoScElw2tkOyUjudGRK1M5uysNKxmWyhUur08TDtyQc2PymZkZzM7Omtk9CtuWh7FrSlATEDZwc3RtzzwOuLXXzXGurKzEhQsX0NraiubmZgSDQUe/k8LkkxW2MrV22Ixmfo8LTAJunBLv8nHD+yUSiWB5eRnvvvsupqamEIvFHOee5nMQbWB7njt3Njpz5/ncuXMmkqSiosIYaNLg4gaHtp9ZW+2SSk7e293dxcbGBr73ve9hdnZWTb5ia2u+McTbS5kww+EwPvnJT6KtrS3nyCqtHi2ihNOY6EQOYSKRwLVr17CysqImgrO1QZNhNA7Ky8tx/Phx9Pf3qzSU4eMEfPabPtFoFNevXzfHxhQjNzg9yQGrra115G/gTrZNbpCRtLGxYcaBNjOv0YoDhSLzSRD5LDdceN1klLudA83xISOLP0OrAdrWIr6yz3GjSVq/349wOOya9Z3XJY22RCKBWCyWY5jxPpKGmqRxa2srEokE7ty547guaaDhQ3y3tbWFjY0NxONxVFdXm2eIVnyCiergfEl1lpQcJaRrbGxELBZDJBLJO6HiZhAfHBwglUrh2rVr8HiOzr+mjMmEF3c2pezm9OA2AdkxoVAITz75JNbW1pBOp5FIJAy+Npw0/Pk37yePx2PCmD0eD958802cPXvW6D8+CcxxLWQvqLTz5FgpLS1FdXU1+vr68KlPfQqvvPIKNjc3sb29XVBkgM0esz2rGf7cuaRntre3MT8/j1QqhZqaGrS1tSEUCjlCcz2e3OMheT1SvmrOjdu2FlkG4BzrUnbQVg1KQreysoKbN2+abOdy7Nr4pxB65pNj2jP5ypW4uDlpNIFMzvS9e/ewuLiImpoaDA4OmnwqmmyW5WptsekVbqe42UQyEkyzffPZYZos5ZNYtvGh4S3HLq+X57Eg26W/vx/hcNjsl15ZWTGTMbwNvOxibMp/VA40B23QArlOsPydD3inSsO6srLSnF9WW1uLY8eOoaGhAXV1dY4QNa58ZNly5RewZ6njONgYW/63tVUTxDbm1d6lOmz3NHzdnidcebs1xUYGXTKZxPj4OMbGxjA1NWWEklzN4rTg/wuBYgdYIc4KL0/rHzcBIh3Q6upqVFdXo6GhAcPDwyZJmM/nM4YCL08m+7D1FeHmJmh5e/PxGHdgNL7d2NjA7OwspqencefOHTVk24ZPMYZIPuC8SjOcfr8fTU1NOH78OLq6utDS0pKT5Z6/D+Se0c7x5itO9A7RRzoBwNHMPp2JeP/+fePUuRnObka+lINSpoVCIbS1tWF4eBjBYFDlFzkzTiCVNK08EGSzR3vb5+fnMT8/j62tLTU5F3/eJpvoGk1gNjQ0mLNteVlaiC4vS+J7cHCARCJhjrgrJupB8k9FRYU5/9kNeNl84iudTiMSiWBvb68oJc9pRic92JK/8bZp33TE3+MC8SoZ8Fqdsp+JBnSsiZwEtoEcPzs7O2ayyRbCbludpN/hcNhkc89nvHM8eNv29vawtbWF9fV1+P1+c5wYr1c6SRqUlJSgsrIS7e3tSCQSiEajrg6pho+UyQcHB5ibm0NLSwvW19fR1tbmeEfqZ0lDm8Hu8XhQXl6Orq4udHd3I5VKmaOLpB4sVs/y52glHQAePHiA5uZmlJQc7ZnUHA6ui+iezTaUdp8cp16vF7W1tSgvL8fk5CTKysqwsrKC7e3tgmwB6bxpjpebXpPl0wQlTT6Pjo6asmgLAOHO39e+tXptctqtXVp5mt1ZVlaG+vp6VFdXo7a2FrFYDEtLS4jH40gmkyoPF0InN7tTw/NxwUYviStfFT08PMTy8jI2NzdRXV0Nv9+Pvb09hMNhx9FXUo9q4GbfamPTZkvJiTytDqkPpYx4HHCzpzQ86T7pC4qwpMmYZDJpjujb2dkx4d7aMZ/F4PyhdqA1QQ24O3JaR+ergwNfISWFR3ubh4eH0dPTYxLsUKi2NLBtzJ/NZk34Ez2jOY0Eslw5QyydDbmvAcgNWSX6aCtx3LghY0qugPO2cIaWM9b5ZmWpLpkJV+7b2djYwMTEBF577TXE43FzjrNm5BbiRBRilD0O2IR7PuXDf2v/SVj4/X6cOnUKAwMDOHnypDl/mIcJE39wI4v3izREZJSENG75s9zQ1Z7htKdZTXqnrKzMOE7pdBo/+tGPMDk5aYwP6VQV4sDYjJFCgDs+3AHy+XxoamrCF7/4RfT29ppkTJoDxvGgurVs9kSP/f19R1gbpzUfe9vb27h69SreeecdJJNJ67YEm2zkbZTtpd9cAZ0+fRrnz59HXV2dI8RWhvR7PI/yHPCtGlwe8XppYmt8fBw/+MEPzH6lQlfQJP48vL6yshIf/ehHUV9fbxxFwlnKD/pNuHLaU7/E43GMjY2ZY7U4LoVASclRspyWlhbHCQtaf9jCgjOZDHZ3dzE6OmoceTc8bAYI8bDP5zPX5SqrLI/ThpKI5TPCNP4i3uD0tTlL2eyjvZjk7NJWArfkfG6QSqXM6rncJmRbzSe8iX9CoRBqampQXl5e0BFS0lmjPZCxWAxXr15FOBw20QBuBqKUKyST/H4/Ll++jIqKCoyPjzsSa/L3NZB6iPDb3t7G6OgoAOAXf/EXHbypnepxeHiYc1SkjZcCgQBeeOEFNDU1YWlpyWxFoP7m+Np0iIY7XaMoie3tbUxMTJgcFZcuXXJkgJf2mJzM4TzL69T4hOs+n8+H0tJSfOELX8C7776L9957D5OTkyrfa3ym9U+h41ujEdV7cHCAt99+G/Pz8+jr68OnP/1pgzM/alCrT+oUzXaUR/Lxd7n+LoTP6Vna3uf3+/H5z38eExMTGBsbw9WrV1WbtlAH+HGcukJ9Bd5OyZe2Muk52kpCeSZef/11VFdXo6OjAx//+McRCASMo83tObIruL4lkItvHCe+/VLaeG54Esgy+bZSN3ks/R85jjRaacB5wBY5SCek+P1+1NTUoK+vD8lkEhsbG7hz5w62trbU86QLhQ+1A11Mg92EAgfOLFxR0Dd1ciAQQH19PYaGhkxW1WAwaLLDcQVSyIwRn4Em44ZmhLXVOr5fgGY/6RkeHkd77bjDxPdJ5BPaUuDxNmkDRYbhcQeOlyGFMAlaDrxsvmqxs7ODiYkJ3L59GxsbGya7qrbibHOaPwhHOB8U8pwUtPy67TcP96+pqUFTUxM+9rGPoa6uzpxRScCFLRlWxB9yX510BHk/cQElcZaOlfzN26DxAhlt4+PjuHLlCiYnJ7G9vW0Sw3ADtBCacrzp/+MA0Y0SLz3zzDM4fvw4+vr6zAQFN55kvTxEjmjKcZIKIJs9mkDgR4fQ9cPDQ6RSKfzN3/wNZmdnEY1GHVsTtCiLYtpOuFN7/X4/Lly4gFOnTplzRfmznD84b0hjVAI/auLOnTt4+PChCenkbbH1B28Xl8ekLAOBABobG3Hx4kVHeKwEPh60RIRUB+2hoozvvN/yyQLCjxJQPfXUU44kWLwNUi5zQ4QMpP39fZOEqZAxwXmPGxS0Ak3v8XByaXxJ3iI+lHW70YGXYdurp+kbWTZfgabnipEJdBbz5uamydKs1c2dRF4+6fFAIIC2tjaHQy7L4e9KmUfy7uHDh3j66acRDocdhq50sPIZ79XV1WhsbERnZyemp6dzMoRLOtnKo/op0sHj8WBmZgYtLS3mTHveLl4mP4qSP8OdVpooDYfDGBgYwOc+9zl85zvfwdbWlqm/ELC1g49J6muKHAGAixcvmskKt1Vn4NEpCVKm8jEh28nL9Pv9OH36NBoaGvDKK69gYWHBTHgSjpo804A/XwhdJD2oX3d3d7GwsGDspWeffdZsLbSVI7dWSRuUQEYKUr18opye406SZm9zPGhSOZPJoK+vz9g7r732mjlSULP3CgHOR3K8FFuWrWy3tmnlk41LjjJtq4hGo+jo6EBbWxva29sd5cnj8Hif8z7i/Ez15wujJpB6SmsD38YpI3zkszb7lpcvecUWuWvTJRIvStZcVlaG6upqhMNhE706MzOD1dXVnPDufPChdqDdoNAZI7ff1FlcsVZXV6OmpgahUAj19fXo6upCIBAwKws0awbknmMsnRGpMLhRyj/5wLZqQXVrZWjGtgb5BDdX+Jrxw2elbM/IwcUFP7Xv4OAA8Xgcm5ub2NjYwMzMDKamppBMJrG3t+dYDXicVaJCjJX3I1BlOYU6y/Kbr7T19fWhqakJzc3N6OrqMhnd5Wycm+Cy9QG/L5W9bfVMKjE3pcadyoODAzx48ACjo6OYnJxEPB53OFQ2RyEf32pt5ve08cWdMqJzeXk5Tp8+bRLrVFZWOhSWRgdt4sFtzEmHX4YSRyIRTE1NYWpqCvF43GE4vB++lLKOZvzD4TBOnDiB1tZWVFZW5hgZbkasNqHAHQQKLRwbG8PCwoLJ6lxIO2w0J/wbGxvR09PjMPgJtIlMarOkJdF9aWkJ8/PzjokcSQM3PMmBrqioQGdnp2Pll8qwOWB0raTkKDkbhWO6nY/tJr+IpysqKlTnM9940hyFYoBoqk0Ia+NByj9ayXdbLctX9/7+PiKRiGMlW+pbiReXgR7Po1Bk2luq1WXDgT60NSAajaKmpgbhcDhHd8kxp4HH4zEr80NDQ1haWlIjdmz4aHTMZDLGaH/w4AH8fr+ZMNRkjjYZL/mayxefz4dwOIz+/n4EAgGjvzXHUra1EB6l3wcHB9ja2sLq6irGxsbQ1dWFuro6E8op9RsH22SnVqekAxn+VVVVaG1txcmTJwHAhOdy2V5ImyRtZb2FONZEDzreJ5vNora2FltbW+jq6kIwGMx5L5/9aRuDbnpf5j6Q7eNjnS++eDweh97d3NzEysoKIpEINjY2crZAyd/56JOvffns4A8K5DgkO4gWh3Z3d7Gzs4O6ujqEQiHHYgnhXKheKETn2vSt7ZqNL6Vcs4Et4lbzD2zvuNlW5MdRQsp0Om2OlCwvL8fW1pY5Aq4Q+FA70HLQuT1ju2frcD7LTYmDAoEAOjo6cPLkSXOOLk/yxWdgpaPIZ+KkwuEzHvLoCqqfA5VHZcnjfHi9PDyHh2rwsriCy+ekcCVH92mlTc7a8lVjTlNJawm8HSREaDb5zp07WFpacsw+2hytQpRMoQL2/QhPzTDgZdrK1pwbCq0tLy/Hs88+a5IS0T5nrR/53mfOS3K1kIcCabOV9NH6UeMb7T3etzTDurW1hZ/85CdYWFgw+1K092X5+eidD2yTFZzOXq8XwWAQn/nMZ4zCkistHLhxJGdGtdlbGjec1pyfPR4PUqkUpqen8YMf/ACbm5tmltTNsCukzfI/4UuG38WLF03SMG0yReNbclKpHZxWFA2TTqcRj8dx+/Ztk9RDjtVi+o/L6b6+Ppw7d06Vc/x53hZu+HLaHx4eYnp6GjMzM657s92A+KiyshIdHR3w+XwO+lGdfMVZylYap6lUColEIu85327yhGQHjT8e+UTP2BxkGq9awiCbbONA7dHCBolWVJaMeKH70mAsBLg+2tnZweLiIrq7u01UBfG9m/MMPJKdlZWVGBoawrVr15BIJFQaSNz5uKHVpVQqheXlZQSDQQSDwRzjP58DQ8+VlZWhoaEBly5dwtWrV7G3t6eGJNr6hOPHde7W1hbefPNNNDQ0oLGxEX6/X024peEqJ0p4HwJHq+bt7e2oq6tzRBpxnGztdQPpgOzv72NjYwO7u7vo6upCf38/Ojo6HOXR6jn1DeCMAKFypR3D/xNv8LFD20kuX75s+ikejxclPwoB3nc2elA7ifcikQjeeustLC4uorS0FIODgyZyUrM7CLje0fQngZQRJOPopBYOcozQNa/Xm2NzVFZWmnDciYkJPHjwwIThyjB8aXNpdLHRk+Ml9YUGhdqH+WxSKf/5pPPi4qKZDDp58iQGBgbMHn/NUSa85WQ/l0Gy3kIdZje7Q+LCZQHgvi21UPpy2SLD1DkOAHLGNqcH+XW1tbXo6OjAysoKZmZm/r/hQL8fx0YKdM5A1Cl+vx/V1dU4ffo0GhsbEQwGTTw9dxZ5h3ABLIEUtSZcqF65T4crKM6I3PnxeDyOMG0NDxLgUrhoH4mTFEJSyUvFZ3MMOU7ymAOt3JKSEqysrODOnTu4efMmotGo2eOsZcPNN6htTg9BIQbG4yg/zTlw41vZHzxku76+Hn19fXj66afR1tZm9lPyviPelDiQ8SqdGhIufDKI94U0bKWCBZyz79RGbW8V76PFxUVMTk7iJz/5iUmOJKM2ilV+hYCkvWwTGUQVFRU4c+YMnnrqKbMHGAD29vYM3SWdvV6vI1PowcGBmfGksS9DzuRqM+e1dDqNr3/962ZPuDSObRMLhfAq7ztqt9frxcmTJ/H5z38+x3nm/KhNxmll80zjdKbn3Nwcvv3tb2N9fd3QSva7bJtNsVMfeL1eNDU1obe3F/39/Q4caeyQ0SBlKQHhSob39PQ0Njc3c/Yc56Mtr7OkpAThcNgkkuTGi1ubeH20Dzsajar7tWQ5mnFLzift2+dHEPF+5cfKcFx4v8tTDTTQdAHVS444H3dywk4aaYRDeXm54whIKdNlvdJxpa0i58+fN+G8/EQIno9B9ifp+kAggK6uLjOZpsmpfOOQVnmvXbuGbDaLgYEBhz7n/afZErZjrfr6+lBSUoLV1VVXfShBGu0kuyKRCK5du4ZUKoWPfvSjDlw4DjyEm49nXraEiooKfPnLX8bbb7+N119/Pee9fLjbxgDvc75l5JVXXkE0GkU2m0VnZ6d5T1sE4fLLBvK4J02vkGy6fPkyWlpaEIlEsL6+7jjOjcrQ7IJi5LjmREngdkAikcDo6CiWl5fx1FNPYWhoCN3d3eq4ot9yQYTkwMHBQc7ReHI7H5+E0HDXxpxcraeP3+/HsWPH0NXVhbNnz+LKlSuYnp5GMpl0OFfaRJ2kp80ulA49v2675gb5nGftOWm3UiTSzZs3MTo6ilAoZE6bqKqqcrXZiR7UDzKiRMPJjf/c+o7XK9/XIsHoWckfMlqJJkr8fr+xK7jtqW1LlLYslSm36oTDYbN48PDhQ7XNEj7UDnSxII0KLihIOQeDQROm6ff7TdbdqqoqEyJLkMk4zz+UzpF0hIhB3Bw1zRji13mH85UrGgi2VWbAfeZHDiDpZGvPSsPa9qxsFxdk0sDZ29vD/Pw8YrEYNjY2sLm5ieXlZayurpp9iFoYWSGOrnaNP6vRwO35YkGjhexXSUs6HqO2thbDw8MIhUKora1FY2OjWc0CnKs3Gp9z54w7udxw5Q5hPgcpH33ow5VoaWkp9vb2kEwmcePGDaysrGB9fd3hPGuOlFaXTeBr+Niuyw8Pca2vr8cTTzyBnp4eEx7P28ZXrYh2vM+kI8xX3mRbZOgfPbO5uYkrV65gbGzMOE/FhGcWQhfebq/XiwsXLuDkyZOoqalRDTN63g2k4cT7dGxsDGNjY1hcXMzZV6zhaDN2OO60qvrcc8+hu7vbrFxIkCvNHOg/3dvd3cU777yDSCTiCJnmHwJJH4nbwMAAhoaGclZVJf9QWUQ/Tpv19XUsLi5aTxUoBPx+PyorKx2ygH+ksUL9R3iS8+6Wq0ID3mf0vmZwcTpqY4ToSXq42Gzg2WzWhHDLRDzcYbKtlvDJBp4MrlBjmF8jekejUayvr2NjY8ORaVc+T3LaNk6ILhcvXgQAEypcqL6ShjrRIJVKYXZ2FqWlpTh27JgjMV8hIFdrAWfW/sbGRhPi/PrrrxseIzwKBclPXE5TCGwymcTY2BgODw9RU1ODQCDgaAuXbXIMEL5yQpjrV9lHnK8CgQBaWlrw8Y9/HOPj41haWjLjWYI2HrT/vK0aLTTbkdtcfHLh3r17ZpvQs88+axaJKEEklaHltOH12vgTeKTf3JwtzX7hZdO7hEdZWRlaWlpw4cIFdHV1IZFI4N69e0gkEo7IJq6LpVOl4WujoQaF9FOh78j6OfDxnEqlzAk0mUwG6+vrxjbs6ekxsomXw/WenKS10YFws9nFkt85f3F7k4DrOVlvPnuO2q9tzZI42PwRGuO2CS+So4XCh9qBtg1k2zXZWRRSQkSrqqpCc3MzTp06hXA4DJ/Pl6NgeeY6rT43fLQQAg7EBHKVUDKhW30kpDRwE242Z5QUgwaao6bVR2VwOvCBR3si9/b2EI1GMTIygoWFBczNzTmOMLI5V7a22QSZm6Fmg2KeLeR9rtT4Ne7QlJWVGZ7s6OjARz/6UbMqyMuUTg2/zuug2WObA8YdaDe+kL9lm/g9HmmQSqUQj8exvLxskoCkUinH/nWpuCSeNiEraesmjKXjzGkeCARQU1OD/v5+PPvssyZLLq9Dhr3KMEbuqAGPHCHptMk2cQNsZ2fH0InCdqWzWcgYsLWfvqndPp8P1dXVOHv2LPr6+lBeXq5mT6W20mqqTBimGR+E8/7+PsbHx/Hw4UOTBM3mjEpcOQ68LsI9FArh4sWLjoRMHHifuTmA2ezRqn8ymcS9e/cQi8VywuVtdJZjjnRMZ2cn+vr61PEo2wg4V+2pPjoXvZDQfc3w8XiOJojJgeaGjqSpZnTQM5oDbQMp84hf8q1e07O8DM6rtAqt1eFm9FHfxuPxnMy10lCnsrRIHqKl3++H1+t1JIaSeGjtok8m8+hM6KWlJRPGLYGv2NjCLmmb2YkTJ0yYJ4XKanLZBnLMptNprK6uAgCmpqZQWVlpVrokcDpqvC37pKTk6OhF2gt9+/ZtxONx7O3tmXdtskHyrfYM/Sd+29vbw8LCAra3t3HmzBmTHI3jbZNfUrbz+7bxwsulhJ9PPPEEKioq4PP5kEwmEY/HHRNXbnaMrMMN8ulq4NFk0eHhIWZmZrCysoLZ2VkzUSK3S8g9yVo9RG+KErFNVGr4Snml/af6eNRUMBjE0NAQ9vf3kUgkkEgksLi4iM3NTUedVB4vV+vDfOMkH+3d3it0DNrw4TxJGbu3t7extLSEcDiM9vZ2BINBBAIBR7QO8MiB1qICNRtZ9rW8z9+n9nGwbfege/km4rW6pF70eDw5DjR9a2PabYyRHC1mgrAoB/r3f//38Y1vfAMjIyOoqKjA008/jT/4gz/A4OCgA5Hf/d3fxZ/92Z8hGo3i0qVL+H/+n//HzDICRyGQv/Vbv4X/9b/+F3Z3d/HCCy/gj//4j9He3l4MOjmgOZY2gpLh1dDQgJaWFpw6dcqsOvNjRrjTy0MG3LJqU10yDNrGMHzVyc0A0AQ13eOhuHyQSGPLVgaVww19TjO5OqEBr4NW4eg/pwUvL5vNYmtrCw8ePMDExAQePnyI3d1ds9dOOtv52mPD63GEnqZMHwckL/Lrkj/5LBjtvW1ra0NNTY05Pzabde5Xpmu8zznIME0CuWrNhRJXfhq9pXHBy6T+5vVnMhm89957GBkZwcTEBOLxuMOYLsSo5vUVo/AINHoTr9IK7NDQEI4fP24mKyhzI/DIEea0pI9tZZloT0aw3KclcfN4jhy8K1eu4M6dO8bYf9xVR5tM5G2nhBqXL1/G8ePHEQqFHPyk1Ud08Hq9ZpWCyx4CbryOj4/jwYMHmJqaeqyjI6RSpwnQxsZGnDp1CqFQyBFGqMlSwpmuk/PDFfvm5iZmZmbMGdtuOGr04df8fj8aGhrQ0NDgCH/kWbDJGNLoRs/Q3qx8DoMNRzI06+rqVBlAz/Fwbc2B0ZKI5eMRLrPlvlEpz3k5NietoqICfr8fW1tbrg6HpkMpyom2Avn9foOX5C9ptPNystksGhsbEY/HkUqlcgxzSQ8ND4/Hg729PSwuLuKNN94wE1caHYjmcusWh7KyMlRUVKC3txdPPvkkXnnllaJkq9ZG4Chscm1tDd/+9rfR0dHhyG7P8aL3+J5iGVLJ2+TxeMwkcWtrK55//nm8++67mJubcxzHZesDCflsExrLkUgEX/va1/CZz3wGx48fN0mE6DlyKrntJ9ur9ac22cLHAHB0zNXJkyfR0NCAtrY2fPvb33ZE4uQz9m1jQqORfMdWLrX14OAAe3t7+PM//3O88MILOHbsGBobGx3PaXvDgdxtBl6v11Euf5bTRiuP60FbO6Ve8/l8Zj/rz//8z2NkZARvvPEGlpeXc7accBtXK79YsPFdPrvTds+tPAJpo6dSKayvryMWi2FychKtra3o7OzE2bNnc+Q95weii0zuxvGX9o30E+Q3AKObbbSWJyBoQLKO8JURHrY+lDwlcZf+CV2XPl8hUJQD/dprr+FXf/VXcfHiRRwcHOC3f/u38dJLL+HBgwfGuP/DP/xD/Jf/8l/wl3/5lzh27Bj+83/+z3jxxRcxOjpqBO+v//qv4zvf+Q7+9m//FnV1dfjN3/xNfPazn8X169fzHveUD2yOM30qKytRW1uL1tZWNDc3m31hlBCM7xkGnEYwV6qyfFm/HKz8Oc2RJuaQg0cLIeOdzXHQmJWHk3Lhww1erR1cIUjHV4ackqIkAStXSKUxCBxNoqytrWF2dhaTk5OIRCJIJpPY2tpyzcBciCK1XbMpH3n/cYSoG0h+AaAKNXLGjh8/js7OTnR2dqKtrQ0VFRUOw0mWqzk60mmWxlg+B1Q60Vy58PZoBpKsc3V1FTdv3jQrj8lksmjnuRDlVqhC4vxJgr6yshLnzp3DhQsX0Nra6kj2dHh4aBxpLoC5E8DbzmknxxUBH4vcWdnb28PPfvYz3LlzB4uLizmTSPlWsfMBl2OEf2NjI3p7e3Hp0iUEg8EcGcjppjkKJSUlxjjl8pvLmJ2dHfzkJz/BysqKatAUC9QGn8+H9vZ2PPnkk1b+IxyB3G03NK44faenp3H9+nXrESlyLHCceH1+vx+dnZ3m6CrOJ1yWSwNEyr3Dw0Mkk0kzbtyMZXqf9zPhRltBeHQTp5M0cKXusa0eF9p/Wtsl3eQ1ags39GpqaswxS271a2OC2rG+vm5WashI4/SyOW08jLe3txfb29tYXV3NaZMETf8QLba2tjA/P29kqbZSpJUHwOzZpmtlZWVoa2tDJpPBm2++iWw2m3OslQ2kc8LlF51dvba2hurqaoRCIQed860o8X6VbSL5e+bMGUSjURwcHBjZVwzYxqLUfYeHh4jFYrhy5QpWVlbw3HPPOcK5OY78mlx9ljTlEUd8ko4/R0cE1tfXw+v14sUXX8Tdu3fNpIFNrtjGXD6HOx+dZH9TP1+5cgWzs7Pm9AmKwrJFAfKoSbI5uX1pw5Ge0WSBtEelHUjjhy9oZbNZVFRUoKenB4FAAJOTk5iYmMDy8rIjpFtbHed12nhJo2E+uyOfTCjUhs1XJo90W1xcRCwWw/LyMjo6OlBfX4/W1lbVbsvXDtuEHf3nOp/w4hNCBNRXUjdLcJN7XE7b9tNz4DJM1smv5cPJBkU50D/4wQ8c///iL/4CjY2NuH79Oj760Y8im83iv/23/4bf/u3fxs///M8DAP7qr/4KTU1N+NrXvoZf/uVfRjwex5//+Z/jr//6r/GJT3wCAPA3f/M36OjowI9//GN88pOfLLoRmjPLDQSv1wu/349QKIRQKIS6ujq0tbWhqanJGMJunabVRWAL6ZFCir7d6pBCWrZNOruaUnIrX+LEV71t9cr3NAUoDT5uJMln6CiF1dVVLC4uYmpqCtPT0yYTJzniUlBKPGT9+ZzjfFCoA2IrV15ze0byKymA8vJy1NfXY3Bw0Jz5R3tv3fqHwK1uGx6FOq5uZdoM72w2i6WlJUxNTeHhw4dYXl42/SwnSPLhb2uz23U3oPFOBnlzczOOHz9ujvTgbZD9VcgY0HDTxhEva3t7G+vr6xgZGcHKyopJiKKVK8ujMjVDRNZH/7mT19/fj6amppxEMLIMCYWMLQqJplVdLaN1IXwo21JSUoK6ujo0NTWhqakpZ6KI46gZSxo99/b2sLGxgYWFhZxtI/RtU8gcP9I77e3t5pxV6ShLI06jCeFOq0OaEVmo3qqsrDT7bDVnR/K1TV+4yWEqh5fJwWaMaXTV+Nvj8eScda/hq7WDcKcog8bGRjQ2NlrHDJCbC4I/29TUhIWFhYLHhcZv2eyRg0t7NilDug0njSacj0pKjrLoU9TD6uqqibKw4eWGH9GAsobPzs6isrLSHHskDeR87ddoRWOloaEBPT092N3dxfr6eo4DVoiOtbWJ05TasrCwgGw2i+7ubrPFgp7jhjWBZtdpOEhbUvIlJagsKSnBsWPHsL29bSYNtBB9W502KFQfyvKJ1nt7e1haWsLOzo45wqyurs4ctUbvapEonH68/zheNpvOTfa49Ym0qyhvDNlOwNFEyMrKirE/JD42cBuLGhTrhBUiJ2z3NN6gz9bWFnZ2dkwUFR0VWVNTA5/P54iA0uwZGy42J5o/r02aEHB5amunNnmoySatbzj/FWtj2NrkBu9rD3Q8HgcA1NbWAgCmp6exsrKCl156yTzj9/vx3HPP4e2338Yv//Iv4/r160in045nWltbMTw8jLffflt1oPf29sy+GADm6AhpCGhGaVlZGYLBIJqamvDEE0+YlWYepq0JOOoImlmj5/iKBT1P92wCj77dGIfuSeaRxohmhEvc+SpFOp3OCZeQQtBGR14n4c9DPTRlw1cKOF1ImFIij9dffx3RaDTHoeLvaHSUoNHXRlvbf9s7bnUWW5e2ms9DgCsqKkySkcHBQWNI2Wb1pVDiM8CclzSgSSOPx+MIkeH8kE9AyVA23mec93784x9jfHzccX6tm1NIZWn/8/WbhqukGd/zSKsBp06dwpkzZzA8PGyUrsRRW1nlwGfc+ViRR3Lxujne2WwWU1NTuHHjBu7fv+8YF240ke2U/SSv8WiHsrIyhEIhPP300zhx4oQ5Cs1GO8JfC6Vy49NkMomVlRXHcSM2I0riLq/Th4zuM2fOoL+/32EscZrSbz4TzVfspNG/ubmJSCSCaDTq6E+NVzWDjuNJ+AWDQTXaR67myjHNx4rt+CjCw21scMeTjGAuI7gO4LqHGzuEr7YC7dZfEk/iFXkiBOc7rkfk9ZKSo6zmgUAgb/0anQiHhYUF1NfXo6enx4GbDGWUycZ4n7e0tKC+vt4kW7LRnsrneHB8aHIkHo8bh0WGQ3IcNdoSEG0rKytx4cIFvPPOO9je3s55J19/SXxpv+WVK1ewv7+P/v7+HLvCpne00xiAR/lk6H8gEMD58+dRU1ODhw8fOrZxSVvDDfI5A0TzZDKJubk5vPLKK6ivr0dDQ4NjjPEte0Duqhpfded8wu1H/s0je4ge7e3tKC8vR1tbG77+9a9jb29PzSuh6RytvYU4hW60ocmS3d1d7O/vI5lMYmNjA8PDw7h06ZLjHYo4JKDkjVJGyEkomW1e9pctEofLfjkO5H+KJu3t7TX+xQ9+8AMsLS1he3tb1atcd+cDm52n6c9C5VO+ujT9o92jiV+P5yhR3Pj4OGZmZlBZWYnz58+jtbUVTU1NDprKcrU6+D2SCTKTNcfBFk3M72l2FJUt3+f10H0+LjRbFHiUh0eWJ+Uw569C4bEd6Gw2i9/4jd/ARz7yEQwPDwM42qcFAE1NTY5nm5qaMDs7a57x+XyoqanJeYbel/D7v//7+N3f/V0rLnwgejweEyLT1NSEgYEBlJeXw+fzmcyZbgOEOoccbBlPLxU830OnlUudkUwmjeMuHVSqlzpRZurmhg0JKH6EgjTCpLErDTd6T/sv93RKYSZnkDThDTizmabTaYyPj+P+/ftYWVkxYbwUyimN2EIVZaFCSQq1fMZDIQKUK8d89RFwI4JCh8vLyzE0NIRz586htbUVoVDIOAMaHrZjRKQxwmnKn6MJFm40E73lsRycHsSTND54SCy9T/UkEgmsrq7i5ZdfNgrLlgSrGMVio2s+4GONDBmi/Ve+8hX09vaiqanJkTRQRpZQm0kp0X1uOEuFphkK/D2i58HBAa5cuYK7d++aHAB8/OQzmjUnTHNyCEpKSowM/oVf+AV0d3fD5/M5npOro1LR2fY3SWW0v7+P69ev46233jLGYb5+t93jNCwrK0MgEMATTzyBtra2nAk7Oj6M5Bm/J0O/KOplf38fb775pjn32bbiauND3s9erxfV1dXo7OxEIBDIG96qGcjc0Kdsq49jiGWzWbPqFQgEHCuS/BnqGxmqT/e0s1YLqVsaYGSkS6eIyyQ5scfrpCMlizF0ZP2kh/hYlnrc4/GYSSUp72mlNxgMIhQKGTkg+ygfnxM+6XQa77zzDs6ePYuBgYGcFRg5HvlkKZcpxO90/vDk5KS6slmMLKVnKfR5enoa7777Ls6fP2+cpkJsGsC5918uRGSzRzkD2tvb8Qu/8Av4+te/jrW1NcckZLGyn7eB8zRFdezs7GB+fh7f/e53zZGF0tajvuU6lsYUx4v3mQxp57Sh54kWDQ0NqKysxL/4F/8CP/zhD7G0tGQSwBU65iUdNZ3gRhf+X07eTUxMIBKJYGRkBJ///OcRDAbNFieeH4RwttmFmg0pceE8zre9yO0kWtt5XRy3iooKNDU14Ytf/CLm5+cxOzuL9957z8hUTb/a8NOgGGf5cZzpfHwv+56/w/2U/f19XL16FbW1tWhpacHZs2dRWVlp+LoQPHgfaVF6sp2aPSG30MkJI21hU/7X9KW8R/Vrjrz046isYrcQP7YD/e///b/HnTt38Oabb6rIcShE8Lk985/+03/Cb/zGb5j/iUQCHR0djjBM2stcU1NjlFptbS0aGhocmeikoOP4SoeSrmkKVFPuvA7AOaPF6+OrzIU4dZqxoq0O8Dq0fQmyzbJtUpDKwcghnxLOZrPmGKqNjQ3Mzs5ibm4OsVhMDePVyrXh/zhGZCEg69GEnRRS/Hn+jLzOjR2Px4NAIIDm5ma0tLSgv78fnZ2dCIVCZkbP5jxr/UT8JBW/JmC0vWoaXeVvvoKnOU4ES0tLmJubw9zcnMN5zrfqrIHtOdtYsSlA6cCWlpYiHA6jra0Nvb29JuOomxLgKw38Xj7c5BiTk0VbW1tYX1/H/fv3MTc3l7PPtVBj3A14+0le0pnJFGIsFZ6cOONAvOZmyJDSnpycxMLCAjY2NlTnuZg2kYwlB6Gvr8+RJZ3aSs/xPteMNu64kQFIR+g9rrNKdQYCAYMbl8VyXGqygsuXTCaDWCxmPd5HGsya3CCe93q9ZpJIynapA3m50uHRDDatbs5Psk1u9JX0kXgEAgHHhI+bAalBNpvF9va2MaBtulnKeUkfChVtbW1FNBq1JsxyA2rX4eEh5ufn0d3dnRPRwZ0Z2/v8HY5bdXU1KioqHBNy+XCz0S6bfbTF4cGDBzh+/Li6p1H2Gaej/M+B23Ktra0YGBhAaWmpmQDgMspWBr9mG+8E5ESnUiksLS2hqqrKnMDg5hwA+p5JimDgNJD4yHdIp5eUlKCjowOnTp1CIBDA+Pg49vf3HePHjZ9tbeTv2saqjaYkw3d3d5HJZMxkaFdXF5qamlBTU+Mo03a6gYafZvtq+MlvTX/Y+IHrAYpcyWQy8Pl8yGQymJycRDwed6xIa3LYRjsND/kuB60thYKbLaSVx3HmTiLZF+l0GmVlZaitrUUwGERjY6MaNi3byOkt5Sb/zufv8WSSHLT33Non+8hNtkk+4bhqUU+FwGM50L/2a7+Gb3/723j99dcdmbObm5sBHK0yt7S0mOtra2tmVbq5uRn7+/uIRqOOVei1tTU8/fTTan10HrMEWonw+/2ora1FfX09+vr6UF9fb+L8+YozdwI0oU/f0sDgz8kZMu4k04Al4IpNhoxLBrT95uFL3CiUgkj+l4pNMj4pK83Jtw1+KcQ0w4JWGg8ODjA/P4/R0VFMTU0hHo8jnU479jjbaPw44DZgPwglxMvRBqnbwOeOW2lpKXw+H+rr63Hy5EmcOnUKDQ0NDsPWprDljDbN3nElwfuS+FOuFkojUb7LnyV6UGZVeo/PJpIBuLe3h5GREeMMbm9v56zkfRB9bTOQOG3keOJ9QOHydJQJ0Z7KluOY2llIUhs5liTOnBbpdBrRaBR3797F/fv3kUwmTaITbcJBlinHvY0W/HdJydG+556eHly4cAE1NTXqiiPHW5MdmrEk7+/t7eHWrVuYn583e7DcDF8byDaQc3D27FkEAoEc2StloIzekf1AhjQdB5JIJPKGmefDt7q6Go2NjY6EXbwPbE607ANKeEX00+jNQdMrpCd9Pp/hdd5+OZkrv+m3loE7H0j+ockKHpor+4jjJMvJZrM5DrRNb9nok80eHalHERFuYeucB/hzVG8wGERvby9GRkZcx6eNNkTPw8NDLCwsYHNz0xi3XGbYaErvUn38m+d92dnZUVf3NJw47aTtk06nEYlEcPfuXTz//PMm8zenHekHzUaQ5Umaka0UDAbNyS20j1vD0w3yPcNxpKR0mUzG5B6hiCy5GCENbq1Ofl+Go/KxwI9SLS0txcWLFxEMBrG6uorNzU1r+flAjgm3cqQe4RPypKdInr/++us4e/YsDg+PztK2yQOuw6RupXq4HJQ8bfvW7AeKWOFl03M8yWdJSYlxGFtbWwEAc3NzSKfTji2iNvs337V8fSPxsz3jVq6Gh1u9UoaR7N3Z2cHGxgYaGxvR1NSE8vJyc+yVxu8cd14m/837Uj5ji2aT/FOITQM86nOqT+oYm53J+YhHqXG7oBgdV5QDnc1m8Wu/9mv45je/iZ/97Gdm/xBBT08Pmpub8corr+DcuXMAjo5AeO211/AHf/AHAIALFy7A6/XilVdewVe+8hUAwPLyMu7du4c//MM/LAYd1NbWoqmpCRcvXkRVVVVOyB7hTEST1zlIp5WHs/L7XEnwsrgy4GHQdL+8vDyno2nQU5gYCS56jw5KJ6OXhC3fPyCNKplR1Ov1GuFgG4gkXOgZ7UPPcYEmjUMAJinY/fv3sb6+jr29PTVUu1hDzAZug4yDm2HwOPXYjDa6x3mBaOXz+cyRaRcvXjSGIN8zxYW9FFZynx2PrJAGKBdovL22fSD0m5xkciroHb6/SfJBOp3GyMgIrly5gvHxcezs7Bily3nUJtTcaO4mBCUPa89xx5na8dJLL2FgYAC9vb2OsG2NHhwPGT5Pxh71i5vjTDSlz8HBAUZHR/Hw4UO8/vrr6sqzm5LVcHSjA9HA5/Ph/PnzuHDhAoaHh02/2trMf1PZ/NxbLrfoGjmja2treO+99xCNRk0CLF6urX3aWONjgmbOL126ZPaZS3nEn3ejH/XLxsYGbt++bc6d5xOXksZuY56c1e7ubly+fNnBX3LCUm6FkCG6BCMjI4jFYlaHRzNw5EfbvkT8q4E0bMmAdtuHzWmk0Yaeo9V+bTsV0UOG5PMPHVlTVlZmxp5Nn2v8TKtpOzs7SCaTqKurs/INnyiS++5KSkrQ0NCAs2fP4sc//nFOlEAxsi6bzWJ3dxcLCwsYGRnB6dOnXcMJiT9lBnk6lgs4cqAvXbqEqqoq/N3f/Z15xs3pkfST18mJTiQS+M53voOnn34a58+fd9CPT67y/5ImMlST96Xf78fQ0BBKSkoQjUZx//59h/57HB3O28XlWTabNaeCbG1tobKyEqdOnUJvb2+ObiD+4DaenAgg3KS9ya+RLkqlUo7IstraWpw7dw4dHR34sz/7M8cxhrbVvcelhQbc4SGcSI8fHh4iGo3i6tWrmJqaQiAQQEtLi0nox9+RY57LObJb6BmefdzmbAOPnL/9/X2HLSz300r+43Tip2e89NJLmJubw8jICN59913rlsJigevLYmUAfWv8VKita7NBOB2pP+fn57G0tITR0VH09PSgra0NfX19ZoJS6wdZD9EVyJ2A1EBG2MgIMamjZLka8Kg4Lg9tMpRwLlZOSyjKgf7VX/1VfO1rX8O3vvUtVFdXmz3LoVDIhAH++q//On7v934PAwMDGBgYwO/93u8hEAjgn/2zf2ae/df/+l/jN3/zN1FXV4fa2lr81m/9Fk6dOmWychcKp0+fRk1NDaqqqoyDKY17KfzcjCAg1xHhs3EcSJDaDE7pyLsBV9KcuTKZTI6RIZ0sWTd/hs/KUXnSKOQ4cNrIjwwR48/t7OwgkUhgbGwM09PTiEQiiEQiZtZbzgjJQan9t4G8934EVaHgNnCl08SVB/EArXpeunQJra2taG1tRTAYdIRr5zP8+YDXwmXkXnzJH3yVR65Ec7rIKA0bLcihTyQS5uzO+fl5bG9vOxRRoQLKzUnRjGE34DQkunm9XtTW1uLixYs4efIk6urqjPPIZYPsT14m51WZQAewH43BnyNjbWlpCdeuXcPMzEzOSj2nWz7lmU9Z8r6sqKhAbW0tLly4gPb2dscRLQRcUWlOmayHfnPn5PDwEEtLS7hy5YrJLqytqBcCsh0Ufl9XV+dIHCZ5lvhPi9rRyo/FYrh37x729vZc+dYNdyqrpKQE1dXVaGhoMHvduYIn/OibnG7unFICpXQ6jZWVlZwVfA0nTWbQp6qqypF/g9NEcyo4r9NHSwAn37P9l3jzUFdu2Gm8JiO9yHl20682PUGQyWTM9gnuQMt3SV6SE8DHMXCUrKiyshLl5eXY3d0t+uglKosc0+XlZYyNjeH06dMOHDjQxAvPZcH1A29jOBxGc3MzQqGQiQKTBn6h45HbFel0GgsLC5ifn0dLS4vjiBw3+Skj3vg4kO/7fD60trbi0qVLmJqaMrJF469CgY8V6fCl02ns7OxgdHTURDxq4dyaXWgbS9LmlP0jHQngaOKjpqYGly5dMgmgtLOUC2kngRu9NF1rq4tCujc2NvDqq69iaGgIra2t6OrqyinT1nZ+TW6JkuNL08dSv3Ody/lD2u3cXqKV1paWFnMW+fj4OFZWVrC9ve2we220cIN8NortHZuuL7Q8ruc0v0DyJ42pTCZjti+trKygs7PTZF63Ra7wcSBlkNShGv5cV0v8CPgCjMYHvJ3SXtIWi/LZS8VCUQ70n/zJnwAAPvaxjzmu/8Vf/AV+6Zd+CQDwH//jf8Tu7i5+5Vd+BdFoFJcuXcKPfvQjcwY0APzX//pfUVZWhq985SvY3d3FCy+8gL/8y78segN3V1cXKisrTcY9LcQKKDzcR4aoSmOHg1aP/F9Ip0inheojh4eMXBmGKCcLpLCg5/jeIS6wNZpos/6yPDJm9vf3sbu7i1QqhUQigbW1Ndy6dcsYexTKzcvjZfHftnuFwuO8U2z5hTht9E195ff7UV1djUAggKqqKpw6dQqNjY1m5Vkrk/pblstx4DPfHGQIqw0/TbByB4jaIHmK3js4OEAikTD9fvPmTWxsbJjMnTZnSftdjOAq5FlutFAbKDdCV1cXzp8/j+bm5py9qbx8ubrAjRyNdvSOBE1u0JFO4+PjGBsbw/r6ulmt5+XZjBxbv9poweVIMBhEf38/ent7UV1dbdpCskRL3KTVI40WqVCj0ShmZ2dx//79HIf0ccYq79OysjI0NzebxGGFGBvSmOM4U1uSyaR67nY+2aT1B02YVVdXWw0wPp61mXKKUtjf30csFrNGERVCT3Lo5YQD1SMdAdk26UDzNrgZ4xp93Axj/i53puX44yGv+cA2PjKZo7PJ19bWMDQ0ZHVy8gHt2Q2Hw0b+aY6CBG7sERwcHGBzcxPz8/PY29tzhBHLd6WxyPuTtzEQCKC2thadnZ0YGxtzPdLKNj4kvsSb0WgUCwsL5jgwnpE3n1ySxi93eOh/WVkZwuEw+vv70dzcbI720+ih1WG7J9/l8iybzWJ5edlENLa3t1vHjTZWNP3K/0t5oi3OlJaWIhAI4MSJE8hkMkilUlhfX8f+/r5ZrZV95SYLNBlVKF208U0RRg8fPkQ2exQ54ff7EQwGDc9qOLrpfPkst0Oofzif2Ox7zj/aPaqLygiFQmb8ZrNHiVSj0aiZ+OWr47IcDf988s/2vtvz2ru252wOs3ZfRoZsbm4ikUiYI+RoiwsdA8zHN70nJ6FkXRo9bLhzWSBxtLVZjkGNPhrvcXsXcGbcL8YmLTqEOx94PB78zu/8Dn7nd37H+kx5eTn+6I/+CH/0R39UTPVqOfw8SG3QEk42wnAmsoVuEfAVJu6I8gEtlT2vnxtl9NFCgOhZj8djQgD5Po9sNndfDXewaZ+x5mTRXmzuDFE6ek4TGizUPr7/bWdnB3NzcxgdHcXdu3exs7OD/f19s/JoMzx5f9gcBUk7t2fc3inkvUIGCsdTDlapNKXD0traio985CPo7+9HOBzOEfwEMhNhMYpH42s5a8dnXvl1Xq+8T2Xz9lMI1dbWFn70ox9hdHQUkUjECFq+gupG32IMVJtQlM/ID99v3t/fj09+8pPo6+szkTK8/bZQL16nNIj4igCnMV0jevFJjUwmg83NTUxMTOCb3/ymybadz7ksZCxovMl5kQyyX/zFX8zJ4C+jS7Tx64YDfyeTyeDll1/G+Pi4mRx4HKePP89D8CsrK/HCCy/gzJkzxsgmWgO5s9n0X8o3/ntrawvJZNJxRrUmq2z0lpEegUAAgUAAfr8/py4ZxUO48okGukYJjmhvvNtErvab8CkrK0NXV5eZxOZ10CQrgc1hI4fTdlyT9o6b8UhjjD8jj7Yi4Dq3pKQEe3t78Hq9KC8vx9bWlmpk2Yx/gsPDQ5NZ+JlnnnEYUBx/qd/5PeK/QCBgtqzRFgDNfnADj+doAiuZTGJtbQ1zc3Noa2tDVVVVzuSclNE2uVhSUmJWcb/61a/iT/7kT7C/v2+cfDda8bq05w4PD7Gzs4Pbt29jaWkJvb29qKmpUc+x5vjxsEk+ccRlJtVJkxOlpaX44he/iJ/97Ge4fv16zvF+mhPqRmdbO0mHbW9v48GDB1hdXUVHRwe6uroQCARyHAbu5GWzWXVCR/Iz6Q6SaSUlJTn8QnzV29uLtrY2XLp0CX/5l3+JjY0N7OzsqHs/pWzgvGobi/loIx1R+k3REslkEjdv3sT9+/fxs5/9DF/84hfR3t6O+vp6h73Lo+PkmOf9r01c8m9pExPO/HnaJqPRnreT8KOJuPLycnz84x/H/v4+4vE4fvSjH2FxcRGxWCxHRxdKS40nNVyKuc7LKcbRs5XBv6lf9/b2cP36dXNy0eDgIPr7+9HQ0JBTBvEw4czHMfU5XZNyTFugoOscR83+4LpS207hZjNy+cPrLHYBF3if50D//wvwhvMZdcnEXBEAzmMUiHk4Q0iQ4Qq8LAk8vEpbXeAgHTHpyMvZOFK2fKVabvznAoU7v/weMTkZLlQe3+dFz+7t7SEWi2FyctKc65tIJBCPxw3jcnq6GS+FGNTFGNmchsWCZihrZWmOL12nfiGDpbOzE8eOHcPAwIA5okLO3hFIhcInRqTRxg03rqDoHS4YJL50jyssbqzIfuDOH5W5t7eHzc1N/J//83+wtLSEZDKZY/hL3rb1u9s1anshwJ1mPj7KysrQ1NSEzs5OvPTSS2hsbDSr/vQs0V+CzFQujWEeUipxkM8R7TKZDCKRCF5//XXcvXvXcVSVTdE/DkjnmSYRPv7xj2NoaAherzeHP7jCk8YLN5o4aE7m9vY2JicnMTs7i0gkkrMHnt6T5VAZWluIjiUlR5m3P/axj6G5udmx58oWKcTLptBV+k/vZTIZ3LlzB+Pj4yq+NpB488mKnp4e1NbWmuv5gJfBndpEIoGlpaWcVRA3o4qXR78p6zpPuKa9YzPaqG10ekI+Xs03dqk8+bzEn+rhEz40ceXz+VBVVWWSP/F25TN0qd8pFJVWWfh9wkMm8+J6mffb0NAQ5ubmMDU15dp2DbjMpgnKd955Bx//+MdRWVmZQxdODy73uB7gY7ysrAzV1dXo7e3F4eEhFhcXVSdF/uZ1SrrwSLRoNIrvfve7+MQnPoGuri4HL/GoNa5r+H1uCPP7RGO/32/O8j08PMTNmzdz3tVoKkGzNbgjTP8pRD0ajeLll1827aqqqsrZuiNlCq+fj2UNCH+phwlKSkpMgtwvfelLuHLlCiYnJ41s1fCw9aVmB0s6uF3jukEbb4eHh/jhD3+Inp4e9PX14ezZs4422sYilUM8JbdxSJtG4qXZOtyelQn2CFeNJjyH0vPPP4/V1VXMzc3h5s2bOYsEbiAdRptNrNGBl6GVy58vpKx8jiTd0yZ6adJ2dHQUi4uLCIfD6OnpQWdnJyoqKlBSUmKi58jW0BbteP02HaPhJu1XaZPyNpJekHSk5LfULrovceTlFjP5+aF2oDXnh67zgakZuDajVa4GS5AOrpvh4VaXFE6yLNlG3i6JAxdsbsKKt487ETbaETNtb29jYWEB6+vrmJqawuzsrAnT5itMso1ug0Qabra+LAbchEWh70qQA1/yFQlcMuhoxrq7u9tk89RCTaXC5NENtjbx50nokaDmfaCtKBbSZuk4cSMnHo9jZWUFs7OzmJ6edoTp2wxqN8Vhw0sTnPS8Vob2KS0tRWNjI3p7ezEwMGBCtuXEGh8D1E75W9KE37MZ/hw/Cnfc2dnB/fv3MTU1hZWVlZzJpmJ4XpMdGj1oZr2lpQW9vb3mZARNHmrGklvbZPsPDw+xtbWFhw8fmqRhGj8X00b+8Xq9qKiowMDAgOMMYLn6aHOepHwhRU+nBVCfSCimX8iI6OjoMNnNOX4azhJ3XiclYpO5LGR78oHH82gPtBvPaThwSKfTOc58vnfcIJ/O0owuqsPr9ZoJAQ0XXr4NaIWfDGMtCV2+thF/hsNhBAIBk9jscfQY8eX+/j4WFhZMbgTpMGtyRv4m3uNyoKenB9vb21heXlZlbLFAhmsqlcL09DRWVlYQCoUQDodzntNAGu5S13HZHAgE0Nraip2dHYyPj5tcG5x/HpcP6R1eBiW6W1xcxPj4OLLZLAYHB12jAfi2Om7zcT7kelnaPfybP+PxeNDR0YGNjQ3jtCQSCUcyRxu/2WxTN4fKRh/tP486o5xIBwcHJgeEHKP0rGaPu+Gt2fNu7dXAzbbm/Obz+Uxmap/PZ8bMxsaGY4uPGw5utHwc+7TQ9wu1q/Ldo346ODhAMplEKpXCzs4OgKM+DwaDCAaDJqKP+pRHC9lsV94GG04228RNt2v/tYivfPUVAx9qB1pzvDSlrA1WOZNUyIoTlUVOk1QAVDbHj9fHr0vn1bavg6968/e5UtWcfi5kbGGEtBolacFXdFKpFGZmZvDWW29heXnZhKhxGj6uI2CDfANEg8etVwqcQgw53le0Hy8YDKKrqwuf+tSnEAqFHKH3shxZH69TGhSaQcd/E29KnqVyysrKHJEKvM2cFySfcDg4OMD09LQJ10omkw7FSe8X0geFCKp8BjX/L42tkpKjzMInT57E6dOn0d/f70jEp00waOA2Cyn7Re4rlJMZu7u7WF9fxw9+8AOzn5UbV+8XpJwjetBxT+fOnUN3d7c5NlAqNC2DJm8LlcdlIH+fjOi1tTW89dZb2Nrasq6aaoaRrT30u6SkBOXl5aitrcWJEydMhlDCmcqTSZRsDhg3Dvb39zEzM4OVlRVXWV4IzUkeHD9+HM3NzYZmPEJFrshRGZIfstksEokE5ufnXSci5Fjh/cJ5obq62sgCXp8sQ+sz+s2zcNsMcxuOXJ/xPpMhd1wfcjkrnUfac1mInJDtIdlJK420h5PkBI8m2N/fd9BS2hZ0j8L2y8vLkUqlcvAoxIGh59LpNFZXV03oPg9ZJZA2gbRluJyjZ8+cOYNUKoU7d+7kbEGRvMjLtRm71I90tNXk5CTKy8sRCoUc7ZS2k8Z3VI6MIiJ+8fl85sz6a9euYXl5OWcSUtPltrbYaM9/UzTA1atXsbm5idbWVmuEIuli+hBuXKbyviD89vf3rRNr/AimiooKnDt3Di0tLUgmk5iamnI4NJzGhcrWQsGtPD6Wd3d3sbi4iI2NDcTjcXzkIx9xZHSm5/hY5pF0si7J03xCSDpn2uo/1wn0vJb8kwMf+xS50djYiHfffRc3btwwNLe9b5MPNrD1VzGTA5r85M8/jo0h5TVN7G1tbWFxcRENDQ3o7e1FT0+PiezjNhM/cULDXUbZ8nq5nNf4mj+j6VD+Ht+SpMlQrfxi4EPvQGsOJ93LZrM5s7ea0aopCG2WjMrhQsA2+GUZ0mji5RHzcUcAcIaKZjKZnP3LHLgzyxUQx0UaLhx3PgCy2SympqYwMjKCmZkZRKNRbG1tOfY4y3ptoAlEN0HxQTgUBFyYaXjIa5qDJv9LJ8Xn8+GFF14wR7hVVVWpxjXgFBTUz/LMT/kc8GhmWzpmhThgFMJCBgHP/E3XuPHPyz84OMDS0hJu3LiBGzduIJFIOEKPOQ3dDG/ZH4WA7A+bo8D7orS0FKFQCJ2dnXj++edRW1vrOD9e9ncxoTpSYXNHjBvkUi7E43HcuHEDP/nJTxCJRMyqfaETD4UY3tLIpazjzc3N6O3txfPPP4/KykrHJAPhzhUdGYEEtiRrnIZk8L/99tu4c+eO2ScrJ1i0tri1mXiejJkTJ07g4sWLDuOJ9wmfUKI28hBJ3kfAoyRSo6OjSCQSjiN0ChlXEjwej8nITIkCZUZmOUGh8TPh7vF4EI/HMTs761j14M/ncwi4QU/9z0PaiG5aSCP/T45mMpl0jTiyjW9p7PB3Od9qvO7xOPMN0DOUUd4tRN6mb6gfaOJndXUVfr8ffr/fcVSVFk4qJ8IJ6IjC3t5e3Lx50+EYaHTV2s5tl93dXYyMjKCsrAwXLlxw0NwWrQTAwXP8nXQ6jUAggLa2Npw+fRo3b940kwNuYOtTueK0u7uLd999F7FYDD09PTnyxhbayelhS2JK9Pd6vQiHw/iFX/gFfOMb38DY2JjJTq/hqeFdiDzlz9G+9NHRUfzVX/0VfvEXfxHhcDgnV0BpaakJZyXHn67zumTkIJdnbnZANps1Mp32g09PT2N+ft5MPEj+lO3N51zL6zYZqDkyVC8dWzo2NoaNjQ10d3fjS1/6kmOSQDpXnE9sMpH4nstzus6PkaTTDLh+5WOY+FDuOefRJ7zdZWVlqKmpwUc+8hGcOHECV65cwezsLOLxuGPbk3zPjfeKtX/z8axbP2l1ybGi/QecuSeIXpQHZ2dnBysrK7h37x4GBgbQ39+PYDDoWHzT8JG8Q+Xb5Cq3M9z0hfRJpJ/ExwZd4wsplJegWPjQO9D8W2M0PoA0ha85ybxMwL7/T37oWSkINNw4M2gDUDOQZH18NlfizgcBn9XlIbfccM5kjrLnbm5uYnV1FQsLC1heXkY0GsXu7q4xiiW+UtE9jkAoFIoxwAnkgLOVkU+hcEetpKQEVVVVCIVCOHbsmEmwUFlZqfKTRh/ZvxwvvjpK/cUnWDQ620KRpVCQikUTQhR5cP/+fczPz2NychKxWEw9xsbW34UaKhJswlw+w/uDFGBLSwu6urpw+vRphMNhR6Zzm/FeSIiPrU22Z6m/UqkUrl69ipGREWxubuZkeNbqcAOJo2Zs0ERCRUUFjh07hpMnT6KiosIYcrZJA03O2NrHn89kMlhdXcXi4iJWVlYce2Ql3WyySv7nY47GWmNjI9rb263laeOOr1pwY42uEY/LY8RsfSNpxP+XlBwdE9bU1JSzYsgVtUYHTZccHBxgb28POzs7rjJU4iGBjEp+wgTfF+i2Iijr4yvQbnTSZJxNZ8j+4TSTzisHv9+PyspKtX4Nd8KHXyO9t7y8jNraWgSDQZV+mgzh17LZI0eooaEBHR0duHPnjquzaANOE9qrHAqFcP78+Zx6bWVqdgvhl81m0dDQgNOnT+P+/fvqxIytDrc6Sd7t7OxgdXUVd+7cwfnz5xEIBNRntf6QK5HyebpOx9gNDg4CAO7du6fadcXYCvkcGjq6aXV1FdeuXcPAwAC6u7utSYdkZJcEt3ZzR1ijU2lpKYLBIE6cOIGKigoAwNzcXE52bjcZbmurpEc+mnKbiuQKXUulUtjc3ITH48Hbb7+N48ePm8zmkh9kRJhmL9lscHqO6yNt7BViV2h6hWQmTQgNDw+jpqYGq6urmJqackSTudHVVlchExZu92Vfufkd+eRjofWSDUhHLU5PT2NnZwcNDQ3GDtZySvDyNN9F0x+2CXi6p+FuW92WEXQS3CK9bPChdqAJ8jnQBHJg2AS5XCmQoBk88jqVa+ssjiNnBGIu2Ta6p4X4SiXPhbI0RPhqAxmNNKO0uLiI2dlZjIyMOBymfCuOHwTYBMAHVW6xoBny5JwEAgE0Njaira0NzzzzDEKhkBEYXBFKJ1kqN8mfWogspz0vg5cjr9M9jfekkJDKh/Z+RSIRXLt2DQsLC46zfGUkg6zzgwCb08zx1fqkp6cHQ0NDuHDhggkbsxkEfGxIJ1pT4Hyc2sY0H3MU0vzuu+9iZWUFqVTK0O5xFK5si6QNp0dZWRnq6+sxNDSEEydOGOeJrwrzdvPVAU2GaXjSMwcHB5ibm8PS0hJisZh67EexwPu6tLQUdXV1Rjnb+FwCrXTI8HTqR74CTefV2wx4W12SF2mFT8tkra1I0XXuRNInnU4jlUqpBpoEjSfpN0UjcFx51Am9y1cbbCCPsSoUNCeFX7PpW25cSyeDjgh0G4saSDofHh5ieXkZXV1dhmc472uOnY0Ha2tr0dHRgdLSUtU5zWfActwODw+xurqKmpoaR2iz9i7XyVqEBvCI72pqajA4OIhAIGD6U05wuI15SUf6phDPaDSKW7du4eTJkw4HWiuH3uVhz/noU1ZWBp/Ph2PHjgEAJicnHZmp3eistS/f8zQuiFbXr1+Hx+NBXV2dI1Sdr7xx2epWBz0nJ7xJrmo85/F4zMkS5eXl2N/fN9tP8unjx9E5tudtkxScj0iuXrlyBdXV1WhpaUEoFLJmK+ft1Gxsm2MlHSY3m4j6X55AotlhvK2UbX9gYAD19fVYXFxEIpFANBo1x11pUUJa2yRO+WhZDMjybLZPPv8m37s05jOZDBYXFxGJRNDU1IRsNov6+nrHZAm3awlkhK+UY/lowG0tCTJMX/KPxEWOw2JWov9RONCSiKQICbTBLxUvPWObheD72KjjiJnkLL6s303Bc2GrKRpuZPDBDzxKIS/DvrnSLysrczhhpGDJMabV5nfffdck/ynm/Dtb+/g9m0IutAzb88UKmHx1SKdZGsiUKOznfu7n0NzcjHA4bI7toH6RAj9fWBIXRhK0QU+hJnwyBDjaz877mSsUn8/nUPC8Lp45saSkBPPz85iamsJPf/pTE7Kprc7lo70mxN2ecXuO3+cfvv/88uXLuHz5Murr63MyntvGl+Y4aMaMFMR8fPMxSvd2dnYwNTWFr3/961hbW3Nk8OT9k88x0hQYv86/aSLB5/MhGAziX/7Lf4mGhgaTLZPwpIke7mBpx3TwCSBNoZLBkEwm8c1vftNMuGm8zPHUZJycMJRj7rOf/Sx6enrg9/utBr6UjSTfJA7U5rW1NeP0y6O23PpCtofzYUNDAy5fvmy2DeTjf84TMoRwdXUViUTCMeliw4f3G79PjmYwGEQ2e7SCTNfoPZn1n0csSf6nSKR8BpikkQZUBv/YnAzN4aKz3SXvuI0pWQ45fYuLi0gmk6p84+XzrQBy1SyTyaCqqgoNDQ3w+XxqsiHbeOb4ccN0e3sbkUgEU1NTjr2kvG5pa3DgPEWTJj6fD9XV1Thz5gxGRkawuLjoqJv3TSH6lb9DCYdGRkawtbVlnCXeLimbpeyUtKB2cDnt8/nQ3NwMANjc3MQ777xjokg0kHQvhH85cN23urpqJkW/+tWvOrZEEchoMT5BxNuVyWQckyPaRBGnDbcV/X4/urq60NDQgNnZWSMvbA6km1Ok0Up7VrbBRkPiT5pIXl5exje/+U309fXhqaeeQl9fn+qk8IlEbSVZjl9OJ+p77gjJ9lNfyMlVm/0FPBpDdN/r9aKurg7hcBh9fX24du0aZmZmMDs760hqJxc9NPntZktJOyWfTMt3TdZdSNk24M+TDKVcEnSGemtrK86dO2eSyJH84Vuz8uGXb2+0ZgfL9snyNF+Jt4l0YqHwoXagpUDkQqtQAakZzrZn8uEBOIWMrSO5sSodbd4WLqh4m7iw4B3OVwilsOF4UjKABw8eYH5+Hpubm1hbWzOzrFJ4aUZJMYOu2AFqg3xC54MonwMNsJKSEvT29qK9vR19fX3o6upCeXm52evkdrQFH6C2VQS5N1r2PVcIVJ4c5HKlmoDvN+KrXQR07+DgANeuXcPU1JQxKDk/UBseR2AXI/w5aBMP3Njwer0mhP7MmTOOvWnSUOF1apNO3KHk45PqlhMImiFCz73zzjsYGRnBxsZGjvNcDP/mM/Sks1lWVobOzk4MDw+jvr7eTO5o9CTg4bykjDQcOU1I5sTjcSwtLZmMuPn20hbabo/naMaf9hPTebiaYcT7wbalheNPbR4bG8Pdu3etYayF4Mi/vV4vqqqqUF9f73Cw+J5aGmcSHykXstksZmZmsL6+XtDKmpvz6ff7jSNDY2N3d9fk06Cs0fQ8zyRM1+hDUShyQsRGGwmcr4hGnAZSd5ORy5/nYz8QCDho97g6IZlMOrYe2BwHrqtlwjqir9/vR0tLCxYXF60nFNjoI+XywcEBotEorl27Zk500GQTB1kflw303+/34/z580gkEib7vIZTIcY171PCeXd3F3fu3MH+/j76+/tVOcp1mbRveHn0nJy48Pl8qKurw/nz5zE3N+dwIDXcNDoV4mDy58jhjUajyGQyePPNNzE8PIyWlhaUlJTk5DzQjprissBNtmsr07wsuhYIBPDSSy/h1q1bGBkZQSQSydF3VHex8uP9AOkI6u+trS1MT08jlUohFouhq6sLTU1NDtsCcG470CJTeF/Qf95eeWyVdLaJn+g5Hp1F9ZIu4dFL3A4imVNeXo6TJ0+ira0NAwMDZiJH5tP4IGhZCM+4vavRQYIb79vKluWRvUNRrTU1NSYyhydp1Mrh7ZSymPSP1+s1x43loy+NN5JvfMFRo8njwIfagSbQBpk2gGyOtRSktkFL96VQsjnNkhE1YSaZRDNO3DqYBA39thmxxNBbW1vY2dlBIpHAw4cPsb6+bhKESeVsq/+DFrbvFyRtgfyrP9o92Q/BYBCBQADV1dXo7+9HV1cX+vr64Pf7TZ1yRYbPtBUTCqKBm8Nge5YDnwHXygKOBN729jY2Nzfx8OFDzM/PO8L3CwkN06BQHsmnEGSfkDFYXl6O9vZ2HD9+HL29vWhublaz1XJcuKHGBahWZz6ZocH+/r5Jvjc1NaWe9czxKRRsMovTpLS01CQNGxwcNPuepaOXD9xkG33TysLa2homJiaM0pRt1IxWjr+UfbxdZWVlCIVCGBgYMFntZdl88lP2pzRAOe47OztYXl7GwsKC6zFsGsixSHjQ8T3l5eUOOcoNQWkU8DI47pnM0ZEwsVjssfGi7/LycoTDYYcTImniNr453nySRN6XIMuQ9fFVKkkLIHdSgd8n/uBJNW20KMQB3NvbM8mPeLQGf1/2kVYnre53dnZic3MTOzs7BTsnmu1A+4pnZmawvb1tjsniz9vGtSxPGpJtbW1obW3F3NwcVlZWHDgWynOSTtSX6XQaExMTZqsThXLzsqWtw781fpTygbbttLa2or+/Hx7P0VnvFDZsawevQ9plbu0kINmXzWYxMjJizoYmJ1o6YjLaK58c1saj9g7hXlpair6+PmPDlZSUIB6PG5ms0VCjQ6Fg43+b7Qs8OhIsFoshlUqhoqLCJCasqamBz+dTJ65lOVrf8Xtu12UZbnTJZrPGySY5Je2BbPYoqVtDQwOCwSBqa2uxurqKjY0NJJNJxGKxgrYk5LvnhrsGxcg+rf2FgiYjyc7hpxskEglsb2/D5/OZUwqqqqrUld9C6iwUNw2k88xtYzmZVyh8qB1oKXiloyD39vHVK/4OkBvKSO9qGZApFMDNWeZlSyblzHN4eGhmZvgAzaewqXyP51GWUjKk5bmhh4eHiEajGB8fx3vvvYetrS2kUqmcrNqP6yy9H9AMlULqzScY3erS/nO+8HiOQl2PHz+O/v5+nDx50gh5udosQwhjsRjKy8sdR6zQs9y5puflXhw+oOkeD3sr1CDjK9lciVNIP+EVjUZx48YNXL16FZFIxDHT+jgrc5wWBMX0k+Zc0G9a5amurkZzczP+zb/5NwgGg+Z8W85DRDs5iy37S4aNuT3L+1w6cbRa9Kd/+qdm9Z47ztJRKBakASlpUl5ejpdeegl9fX1oa2tzyCe3SQVetnSAueEgHULa6/jaa6+ZM581A8hWn82AJr4vLy9Hf38/vvKVr6C8vNzc5ytY/JgXnjGZQHPOKDnTwsKC9YxlN+B6hMotKyszskJGNHGcJS5yrzQ3Pqanp3NWkzjY5KakZTAYRGdnp5Eh5ORRXalUypFsj28Rkdt9+EQJ1cGdkEL5mlZ05DWJOx83si9pbzetRtjkopu85DRIJBKIxWJoaGgwbaH+4TwnP7ys0tJSVFVV4ZlnnsHc3BxisZhrZBt/l39zmqRSKSwtLWFpaQler9dkHpfyjrdX9odcYfZ4jiaHT506Ba/Xi2984xs54eYSn3x6mb+TyWTw4MEDHB4emuOXSOfRBKjGK+SASjnLQ7+5g0N202c/+1ncvHkTP/3pTzE9PZ3zvtYGrX5JIw2I/zOZDB4+fIhIJIK+vj780i/9kuFbjb8lnxJetPVKbjkBHkU5ZDIZx7YACYFAABcvXsSJEydw584dvPHGG1haWgLgtEGLcVY0KGSiQXNQAZjTJ9LpNK5du4b79++jtrYWn/3sZ9HR0YHKykqHfsmnn2QEGR8LUhby+9oYI/7itpfHczQhE4/HUVdX53hHrmDStqkvfOELmJubw+zsLN544w1H3hhpy7tNEkg+dfMBJEjfQ9oNhfShLKsQkPTNZo/2wO/u7mJtbQ3j4+NoaGgwod2kc+SqvuZHEZAdkM8ulfYWB14fgTbZXih8qB1oqcw587gdwUKKkzOXLXTRNovEnXL+rDQCqDzJmNzQ4g6THGwcZ8lgNiag2bOdnR1MTEyYLMDJZBKJRCInG7DW7v+3HOli6rHhV+ig54NSOhdklJEw/OhHP4quri6zqsTDefjqMqf7wcEBfD6fI7Sb+FKGVXHjhsrl+GhhScCjc+14GJJsu+RvDvROLBbD+Pg43n77bUQiEcTjcYeC1mbxH4cH3o8DTh9u0Hd1deHkyZM4f/68Sd7GDS8+ttzGIMePxhyXG3xVUxrLsm3pdBo3b97EzZs3Hc6zXHnORxMb79qMPWpfbW0tTp8+jcHBQbMvVPI5r5s7m9LB4zJFGl9Eq729Pbz88suYnp7OcarcxqV2TxqtZGCfOXMm58xn/q4Mq8tms+aIJo/HkxOaTf2xu7uLV199FQsLCzlRN4XyOuczCicdGhpCX18fSktLHWe7kpyWkxj8GucVOloplUrlHDNkc244TpKmgUDA7MuVE8rAkVFCE3vUFsKHJmYpJE/qDc3p0vhNOg0a/trqnDSE+FglB9fv92N7e1vppcJXNQ4PD7G+vo6lpSXU1dWZvpGr0TS5wMcKtY3bA7W1tSgvL4fX6zX7IovBB3jU1+Tgv/fee0in07h48WKOI8Fx1PQHyU6a+KdPW1sbPB4PqqurzVFuvL/c+E3izOng8RxluKeQ3aGhIQQCAYfepGe5k8jlNj9vnNt1cpHE7/ejpKQEQ0NDCAaD+OM//mOTsNFNzsp7NsdP9p2Ul5ubmygtLcWVK1dw4sQJR2Z4ub2A6xkCvh1P4sJlPPEWH0ucFqWlpaisrMTJkydRXl6OiYkJvP3220YXyXblA9t4tv236Vb5m2i3s7ODg4MDfPe738XJkyfR2dmJoaEhQyPNvpH63Q0nzQbi44YvjGm408JWTU2NqruoP7ju8Hq9aG1tRTgcRkdHB65du4alpSVsbGzkRCHZgO4X47zSexoN+H2bnNbwcbN3tP+ybDmBnMlksL6+jkQigcXFRTQ3N6OxsRGdnZ2mr3nYvJxIkBMCAHL4n+Oh7W/ntrrmMD+OrfqhdqA1Z9UWNisVk1tZ2rvadbcVK67o3eL1pbC0CQMSCBwnrnT49a2tLaysrGB9fR1zc3OYn5/H1taWIzkYx8fN+C12IBcK/9DluwE3Nrgh3NjYiIaGBjQ1NaG7uxs1NTXGeZbhohy4UcXDkWz9Y3MepPDUhJ5WPy9b1iP5OpPJmKzJ4+PjWF5eNvt28q0iFgKP+x7HUTrPJFgrKipw8uRJ9Pf3o76+XjVuJE3pWwp7jS78m48JN2VyeHiI0dFRjI+PY2ZmxtDR5jy7gSajuDErP7QKEwqFjAFJq/FSAbmNM1v7ZL3kgK6srGBpaclMush3+H+bvJVt5mPR5/Ohu7sbLS0trjSUToIWFsZ/k3O6uLhozbxdaH/xPvD5fAiFQuaoE7cJDF4Px58cVgp7k+OxGNw4fnQ2tTYuCKRTw41dwJnsrJgVVds9Xgbvd44bl0OanKTfJG8LqVvDhfg6Ho9jY2Mjhxdk+KbER/YP0TwYDKKyshK7u7t58XAbmzRRtLy8jM7OThwcHDiOiNHwkn3EHTD+HoX39/f3Y2xsTN0y4DZ+JR1439EEPq0+dXV1oa6uztH/nN+4fZPPGZP/aeW/qakJLS0tWFtbw9bWVl7Zo7WDl63JYdne/f19JBIJjIyMoKamBk1NTaiurgbwKNGRpHs+GuazQflzMtKosrISbW1tAIBoNIqxsTEzoSAzrvP63fSdjY4aPWztlO9RRMv6+jomJydxcHCAcDiM2tranKOuOB5uuspWF70nxwpvl022aQ4d/Ze2UklJicmN4/P5MDAwgOrqaiwvL2NxcdFsgSlmjH0Q9tTjlJHPZtCepzo1vqCJdzqe8fDwENvb20ilUqirq0NlZaXJaSHLsfkqNie4kPZq/Po4vsiH3oGWTrTmQNPgkEdUcELLGVAC7gh5PB7HzIZcyeEJm+hDzpdUHDYDi6+myRlMWimg/3L1m4TkysoKbty4gcnJSWxvb+eEk+YzGosxKB+X8R4H8gkEm/OkPcP5hUJgBwYGMDg4aDL+cgUlVzWlEiJ+koleNIeX86LEUwoNWZd0GuQ7dF0L4clmj85nvHXrFiYmJrC4uOhIciV5Qyrtx4V8/KH1ETcQKKS3rq4OTz31lJkVJn6XM/S8j/g44YawzQjmDgSnHVeY9JtWh65evYqpqSkTElzIRISbU14InYgutM9weHjYJA3LNyY5fWX7OB6cDnQ/Ho/jwYMH2NzcNHu8OQ05fdzapPU5tamqqgq9vb1obW11jB9tPHDg++g4ToTP/v4+kskkIpEIdnd384aCudGPvmnlp6KiwsgMqWcIF6lzeLg0AKRSKWxtbWFtbc0xEWMDNz1CfUZZl23yKpNxhi+m02kTLks8TnSS9JJts9FJ1gk8koGcF3l5vD6b3vZ4js5njUajOffyAeeRw8NDxGIxrK2tOaJQOL9JOa4ZivxeXV0damtrsbGxURA+kmZSJq2vr2NjYwOpVConYzvHR07KUF9q287oaJ4nnnjCJOHSxrCNfrLPpXGbTqexvb2Nq1evwufzoba2NoefC7HBZDvpWfrv8TyaKDp27JjZf2lrh+yrQuwdqRO5jt3a2sK9e/fQ0NAAAGbCip6RR4vxMvgpGJz3NLxl2zVZSEcYVlRUIBAIYH19HZubm9bj8DQ55fbfRhfbf60f+Wrs7u4uZmdnsbW1hUAggHPnzpnzrWVUim1xTOMp3lZNRmo632brcJtCtlPqSLL3S0tLceLECXR0dGBxcRHb29tIJBKmH3jZmk1XLOQbL3StmPI1+j2OvpT28MHBAdbW1rC5uYn5+XkMDg6ira3NTAxKOSXL4vwPOG02bfJQRuUQLjy7P409mw9pgw+1A02E0DLvEXg8HuuMliyLK0mbYQI49+Zw59pmXEjHRjIBKThu7EulR44eN2joHY/Hg+XlZUxPT2N0dBRra2vY3d117E0k0AwyDfdCBormaLk9Z6NnsVBoGZoBR7QkutbV1aGnpwdPPfUU6uvr4fP54Pf7HUqPh35wR4qXS7/lCiaBDNHS6CuNTFkOz+hL96h/+X5K4nnOa1tbW1hdXcX//b//F5ubmzlnzErji9dfbJ/lM6zd3uN9RAqpvr4eAwMD+Kf/9J8iFAo5+kAKU/rN+46XL3mW70GXK3HcKOVCncbd7Ows3nnnHdy6dctMVMlVFJtBYmu/pvg4j5FyptXnl156yYQOyr6Ujif9thlFXA7RO3zlIplMYnp6Gq+++iq2trYc0Swc3Axwm+NM36FQCJ/61KdQV1fn2IPKDRiZDZnKpOynBHL1cHZ2FtevX1flok12a/hzHq2qqsKZM2cQCARytmNwWvB2c5rysvx+PzY3NzE2Npazr5zqlnyl1UN1eb1e+P1+k9iM+pb2zXN+JnoBMFEFtO+S+NrW3zZaSaOUnjk4OEA6nTarx1KGypMDNBoSvnV1dVhfXze0KcTxo3r4tXg8jkgkkhNmzKO+aL8qjQ3u0EiZQ+Gok5OTVlxs+HG5Q+2mvdB37tzBk08+6Yi44/0ns4PzM781vgwEAjhx4gTefPNNLC0t5axS5qOlZrhzQxkAHj58iJaWFoTDYRM2Lh1JkmcycaWURTR2pB7MZo9CaF988UUARwkd19bWzH3bRJQmpwvRW/QMtTOZTOL111/H0tISPB4P2tvbzRjjcknmUMmXaIpw4u3kQDKbQ2lpKaqrq9HX14evfOUruHnzJq5evWpWomX5bm2U7ZVgs3P5t1Yef2d3dxerq6v42c9+hsXFRQwNDeHUqVOmn2VkkQydlvKB9wvZQfQet+P49f39/Rz7i9uKUp/yZ7lu4n6B1+tFOBxGIBBAW1sbJiYm8PDhQ8zMzDj20vOyCumX9wMa/zzuu7KMQnHPZrNmT/z+/j7u3btnkg4ODw+jtbXVsRWCA5dxcuJB80dINmt+lxwL8plC4EPtQAO5oRTSseEDSyMOH3SaA6OF4NLzMs5emxHUlD4vh+PMZ4wl3hLPbDaLRCKBeDyOubk5M9MYiUTM/hLbqqIss1AoVLFo7ZZgE67F4pSvfClYSVFXVlZiYGAAHR0daGhoQENDA7xer2MfuiZQ3crXDDhSbhRay9/VlCT/L5W5ltBO60++3+3w8BBTU1OYmZnB/Pw8IpEIUqlUDn/YgCsot2ckzvxeIX0qnQnqp8bGRpw/fx59fX0mRFarn5QtV0pS4dpwomf5RBzhIYUs0WN0dBQTExMYHR11hMDLZ211yr638b+UY0SbiooKHD9+3IRG8mdlObJPbLJOPkuGANH09u3bePDgAba3t63yRWuf1i4JpBhpXNL5kZKGPBkRXbMZobzOdDqNjY0NTE1NOfb6u7XfzRmjfigvL8fg4KBJcKKNF81A0ngSgAkx186mLta4Kisrs54GQI4SOYJ8tZs70pwXOA62fpeg8T3Xl/wagaaj5Zik37RtQT5fjDGXzR5lGKeJAm40Z7POvadu5XP9Ul9fj9raWuvebjdjVNKMnIGNjQ2MjIzg4sWLjhVLHnmjyRUbrnSdVodDoZDZr1kM/XiZhC/xN0XpjI+Po7S0FK2trQ4ayFUk6ZxoNJMh+5w3aEKgtLQUP/7xj02fflAOCucBrmcoJHV+fh7vvPMOPvGJTyAYDJoz1wlsskqWz2nD7Qq3vqR3eL82NTVheHgYfr8fr776qpErfGKqUDkjdVS+ceZWDi+rpOToCLDt7W3Mzc2ZsHhajebjmzu+HBcgNy+RdL41fcztBbrO7T8qV4Jm/3G+pDFAH8rfUlFRgfr6ekxPT2Nzc9PkucgnDzS62nSqbKtbP9lsW0032aCQZ93aQWM0nU5jfHwcsVgMNTU15ug+rr/kYgaQ66NJWa3xC5exxIOa3ZYPPtQOtM0g5UIVcC71S2FD5diMT3qfL/XzFZNCiC7vaTNo3LCylU+Dm0KjIpEIVlZWcPfuXcTjcbPHWYYqaMJDw09z7GzvaHSyvfNBOcX5QHM+6JvoWVZWhnA4jIaGBpw4cQJdXV2orKyE1+t19DE9r5WlfdNvG225YJZ9Sv3shr8E3qc23qOjyyiR3OLiogm7LZQ3igE3IS0NQ61NfBxS6Gl3dzdOnDjhmNF3q1fSWdKIj3NZBp+d1vqeG0rj4+MYGxvD8vJyTtIwN1oUC9KBJtoEg0GcOHEi55gYm2MsnSOpPPgz0nDIZI6OfhodHcXU1JS6PzcfyL7XxpHP50NlZSVaWlpynCIOMkpHGt68TsJvZ2fHnHdvc/zzyXCJN20taG9vd4TPy/ZKoHJkTots9uhIJcqGL+t3w0sDylItDQrAaeBJnLnzI8eQbUxJg43fl7TT9K9so9TNGpSUlKC6utqVVzRaacYlrYak02mHIUz35cquDYh+1dXV5vg1LTKlUHwJMpmjfdrz8/Pmuk1eyfdt/UDv0kRlY2MjNjc3zfV8OOXDndsri4uLAIDnnnvOHLGnPW9zziSv2fRHaWkpOjo6UFJSghs3bjgy2bvhbuNZNxpIp2t/fx+bm5t48OABjh8/bmgLOCf8CtVhfIFGG3uavcDpQxEyXV1dqKqqwq1bt4ydWIiecrOvPyjgejedTpvouFgshpaWFjQ0NKCystJx9i+BnPzjul/jc83ukveLsePpPf5b8ykIz/r6epMbgaIzpKx3q8NNB0hc3PDM13/F9m8h9Wuyl4D0DJ2QsbW1hUQiYY68Ki8vN9ujgNwk0VSujLDh9zh+bv1cjE0DfMgdaD5TTkcaENCMBu1JlZ0rr2mGpPzNr/HZJU50PnDkLB89Q+8RHtT5UlDSCiJXmPF4HOvr63jzzTcRjUZNqLZM5qN987YWAzbGtz2r1ZkPbCv9stxicOACjGYBa2pq8IlPfAInTpyA1+t1GF9SYcmQft5v2mDU2kBZojkf8BA0TTHZlIAUEraZWDoSY3l5GXfv3sVrr72GnZ2dx0pMVCyvyPdk+VJxAbnJ3MrKytDe3o6+vj585jOfMUcekCHLV8s0HDkd5aSFZmxS3/Cjr/jzZWVlJhRye3sbV65cwdtvv232lklHQ6NDPjrZ7kmHzev1oqmpCX19fbh06ZLJbivr1sJ/SSbJ1TVpuBLwlYGrV69idnYW0Wg0h0aS7vlA1kdjs76+3sw6uyk4OQa48c2NSG7A02QH34P2uEYh8WtFRQWqq6vNnkfOR9pkCndO5aoHcDQTv7u7i62tLevxWjZZzNtOOFRXV6OioiLHYeRGHfEDrdZQ1mgqI5VKmfBt7rC5Oba8Lu0/H5eS36QTQCAdCBqXDQ0NZvJCjnONTlq5tMK7v7+PjY0NNDU1mWzkfKzwCTwZcSYnJT2eozO4a2trHZOWNtq40Y3w3N/fRzweRzqdRiAQyEmgBsCxn12WIx0GOpaxpKQETz31FAKBACYmJhwOZyG6X/IxN2hJhiSTSaysrOD111/H008/jbq6OlWO8zHE+8emPzl9yBHx+XxobGzEZz7zGXz/+9/HysqKI5S9WCNZayuvl9tqZIt985vfxLPPPosnn3wS1dXVOdFNQG54KV+o4fV5PB7HMVeabSTtEfpfVlaGyspK+Hw+fPKTn8Q777xjjvqyORyy7EL5QHu/EJD2L038f/3rX8eFCxcwNDSE9vb2HFnF+1LKNc2G4+NTTnhrctkNX0kTzvNcrxIQv5aWlqKnpwetra1YWlrC9773PUSjUSNf+Xskn91o7KYLCoHHte9sZbnJXze+5ZP1GxsbiMVimJ+fR2NjIzo6OkxCtkwm94g4ihri/8lGoahSN1y5vajh6QYfagea9lJxp0aegywdUOloaIKHhCFd5x0thRwfuJLw2qwwB14Xd6ilM51Op7Gzs4OHDx9iZWUFa2triEQijhVnm1NU7ACxGR28LJuwlW0rBh+3Mgtpg3SauTClUKaenh4MDw+jqanJrNrlc6xIGGqrdDLUjyt6AromZ8x43VwY8/c1gaqtGJGgpTL29/fx+uuvY35+HktLSybkVhpxWv9o/2394CZobH2uOWrcifJ6vThz5gxOnTqF/v5+E8ornUltvPExSxNqPOST3pXt5mNNU15U98zMDKampvDWW28hFovlJOdzo0uxxoeUOUSfYDCIs2fP4ty5c2ZWlvOpGz8THtyY1PbiAs5jn9bX13HlyhVsbm7mlTfFtJFPnPh8Ppw+fRrnzp2zKmIpo/n44IYQAcfzxo0bmJ6ezjneqhi8eZ+UlpYamaKF6dqcIOlkcd20tbWFZDKphm+74UVl82+Px2Myg/PnpHHFZQc5pTwhJZVZTMSBTZZLI5nLL8KDxhzfG811umwvrU7xa/K3pJUGmczRmctzc3PmeDxOM3I2ed9Jp1niWF1djTNnzmB9fd1MTBQiG6QOofcog+3y8rLJ9kzjnsCWFV/2HXdQSa40NTWho6MD8/PzeUNL3fCX92iCYmtrCzdu3DBJOgOBgONdLRSTrnObS25zk04GOY29vb04fvw4fD4fZmdnVTpI4A6jW1s1Xcj5O5lM4ubNm4jH4/i5n/s5x0S6bJ+mE3mbqWz+m9OKH73I7QC+HcHr9eLYsWPwer1oa2vDW2+9ZWShW1i51IGF0E67zmknr9M9fp/45fbt21heXsaJEydw/Phxk+FcvsP7hes0rWwuZ+g6d3B5+TRZw9vHZRR3vOkdGclFIFenW1pa8OlPfxqTk5NYXFzE3NxcTp6JYmjuxrc2KMSWzwfcBpHl5qtbGw80jg4PD01G/YWFBXR0dKClpQU1NTWOMrgM4PJQRh5LHShtvceh34fagdY6TBqDNmbWlDvvQF4mJyx/hgivGVDyPX5NCkDZoaQsd3Z2kEgksLOzg2QyicnJSXNmr5ZZW9JE++92L99ALQQ+iAFZzPuaQU6CsKKiAnV1dQiFQmhpaUFXVxc6OzvNmahS8HGDjpevOV+Ac0sAb7ubkWRTRDYhaFNIUvBQdEIymcTm5qZJJkcrFjZHr1in2KYMNbzkPe0/jVO/349QKITm5mYMDQ2hu7sbjY2NDqMjX1inDSc3I6CQ8XF4eIiFhQUTwry6upo3EVUh5Us8bd9kAFVUVGBoaAi9vb1obm7OiWLhdWpGmcbfGv40LtLptDnubHV11axG2uSNG2/Y2koRBy0tLUZBSrwlbgRyckRCNnsUEh2LxbCysoJEIqHKTA13qWClTCAHur29Pece/y2Ne163pH00GjUr/IUY+m73PB6PSWCTzyGQE0yy7YAz02mxY18CGe2aDKRr2gq9Nu4rKiqsWzvcQLYvmz2aeFxeXsaxY8cQDAatddpwlhAIBNDZ2ZnjjLvJSJsM4WNycnLSRD9wvVWo4U1l0fM0cVlTU4OhoSGsr68/1kST23jKZDImsdf4+Dg8Hg8GBgbUtmuyizu2tj7h8oCOEuvt7TUr4JubmzmLJhr+j2PrSLtgf38fkUgE2exRvoyOjg5UV1erE+n5+EvT3dLuIcdBax/J2WAwiI6ODni9XmxsbGB+fh7b29s5uiyfjpftL6QNbiDpSDJzf38f0WgUe3t7JlqwubkZzc3NeZ0dPiYk8AUyeR3Ijd7S7B5t3MvxpwF37srLy9HW1oZMJoPy8nL4fD7EYjEkk0ns7OzkJEfm9b8fcLM/Nb1byHh4v/a+xIO+d3d3sb+/j62tLQBHYf7JZBI+nw/hcNjskdb6issMt7ZI/VJMWz7UDjStytCg46sSZLzQjCwPt7YZkSR8bSs3siP4YKc6pIFExhZ/j88UUkbUbPbRsVh0huL4+Dhu376NaDSKnZ0d4zRLvG3/3eD9DMRCGKxQ4VpsufxZ6dxS35WWlsLv96O1tRVPP/00+vr6cgwt7pRRX/HD3DkfaMKYKxxbohjiQ8AZ7UB9LHmN/mtOucavvP3pdBojIyMYHR3F/fv3TdigXB2X4KZoeL3FGn0SZ/6fvqmttAIyPDyMF154AXV1dY7wRMKR08ptcozuA49mmzld89FSjvW9vT18//vfx/T0NDY2Ngp2nt1oIe9p44XzMyUf+fznP2/2VvLVA14+n6DjckiGyEoe5VEKJIOuXr2K9957zyh0N/mTDzhNeTKw8vJyPPXUU+ju7kYwGFSVmHR8M5mMI8MqL5vLczqjNRqNOrLQFoKj7T5NaPT09ODEiRPmeZoM4EmL5GQpbwOXCZlMBrOzs5idnc1Z2dRwsPELH1tNTU0IhUJWBwuAQ0Zks48iN+QRU4U49W705MD1psSDrnFdLI9g4n1YVVVltnjINhYKhE8qlcLExAQuX77siC7iz0kcJO1J3lBCvL6+vhz8CqGRjV77+/t44403UFtba8JaCUgeEO6SH7gs4FEOROvGxkZ88pOfxL1796wyzq0NbkY5Of/b29t47bXXsL6+jo6ODvh8PsfzMis7L0eTXzyahuoh2UJRLeFwGAcHB7h+/TpSqZSj/2QdvJ0aFOookqG/u7uLv/u7v8PnPvc5DA4OIhwOm7ZQeLuMbqPfcjWUr3xKetAzfJzQNWoP7XWvq6tDR0cHvvnNb2JmZsbse9fGTqF6S9Otkia2d7XnaRzRZMTdu3cxNTWFwcFBfPrTn4bf7zdJEvl78sgwPh44fpz2fAWfviXPaavWMhqRfnNaaPqElx0IBNDX14fu7m6cP38eDx48wOjoKObm5pBKpfLKs8exs/mzhchK6ZQW+h49X6htqTnBZJOk02lMT09jbm7OTI498cQTZgsPHzvF4Cj9t//POdB8RocGDJBrUNIzBJIp3MKtOVFlWBu9R+dn8k47PDw0g5zqkAOCGybpdBpTU1NmxScWi2F3d9dh2PL33QQQp4E0mt6P81wouA0cDSfbfe0Z7T+F2JWXl6O/vx8XLlxAc3MzAoGA2SNHz3I6cKVECgjIjUhwC9PUjF3pmEl68AkfADl8zJ/RDHG6TxkrX375ZSwtLSGRSGB7e9u60uZG60KUZ6HOsqQBf47GAimv8vJyfOELX0BnZyeCwaDj+CL+jlyVsgl1bliRU0P05zPPWpm8jGw2i0gkgtnZWYyMjGBra8uRgEW2sRiBrYWgS4OX+Lq8vBwnT57ESy+9hHA4bOjDjSVeljSWeQgax5vzGadnNnu0Gvf9738f4+PjDufZTfa4gRx/Hs9RuHBFRQVqamrw5JNPmlU/DeRkFseBO6S8fZnM0fm5P/3pT133FWvt0QxCzrONjY1mhVfqGs4L9A4fu7RHizsCFOWwtLRklSWaA6zRl/iitrbWhDxyQ5JPOks5QUm0JM7FhJXbgN6nrVc0Tgk/DTiPc0OYZDUP5+V0KBRXaWzHYjHDJ9w5A3JXxW0OKp8cPzw8dJzuIOvVcJG/OZ9kMhlzZvXq6ioaGxsd5cqJD2nz8DIlb5OsuXDhAh4+fIjx8fGCbA5epvzP3/d4PI5syz/84Q/x/PPPO8aQ7EvpyMh+4I4LAHNkGx+7HR0d+NSnPoXl5WUTEuqmF4sxoCXwemkBJ5FI4Mc//jHm5ubw5S9/2dzjDpsGUlfZQomlI8uB8x1foa+ursanP/1pjI+P44033sDq6qoadVDsOJLA5ags1+2a5NV0Oo2trS08fPgQm5ubeOGFF9DQ0IDq6uqcI/k4/0sZS8nIyOniCwy8HZrtXFLizBFB1+k3n/CQk6P8WR6mTXYdTcqeOnUK3d3diEQieOONN8zZ77w8SfP3w6+FyEvNlyqkzkJ8gHz2v8SPZHM0GsXbb7+N6upq1NfXY2hoyCyS0cSIZh/ZZLDkmULhQ+1ASyHqNvD5qq9UBhrRbEYyr5t3kJbIRzP6eHn0vbW1hY2NDayurmJpaQkrKyuIx+M5CYo0oS+ZwHZP+/8PAZJGEtzwdStPc8KkMd7R0YGOjg50dXWhvb0d1dXVjr7lilUayORMcR6xDSitL7X2aEqCg4x4kDynOQX83ubmJpaWljA/P4+5uTlsbW2ZlQPp7OTjZ60d+QS01jf8njQyOT0pbDAUCuHkyZNobW11hLjZBKjNCNQMPemkyrFvGx90Lx6PY2pqCnfv3nUcVeU2HvNBvvHB20UOwtDQEI4dO4aGhoacKApJA87bvC3ymqbc6f/u7i42NjYwOzuLeDzuOM7IDeQz2hiTxn19fT2OHTuGqqoqs/rJ33EzaPhkqcbf2eyRQ8idomIMQm3cezxHKzm0Wq6tUtK3lCdSofNnacV/d3c3rzFaCHg8R2f80j55ojfha6OFhh+tHrpBMeOAG6wEMnrMbZxLOaJNftv0vBtQO21Gohy7slw5cUXjt7KyEn6/3zGOCjFcCfj4pUnTpaUlTE9Po7GxsWAdxD+aTqStNP39/djc3DQ5A/LhKPWApLusL51OI5FIYHp62vAV1S/xpDbzNsi6ZZt4f1A0WigUwpkzZ3D//n1MTU3lnHet0U7S0Y3GEh8CigqIRqNYXFzE6OioiUqwjQEAjkkuabfINtJ/KfvpuozSpPLD4TC6urqQSqVw9epVs2BTaDh3Pprle6YYmUGTEbu7u1hbW8Pdu3fR3t6OtrY2tLe3W8vTeFLaJlJXarKf86G0Cbmc1OrVeFazMbPZrFnsKS0txalTp7C8vIxIJILFxUVVzxQjR9zAxtNuMjAfuI0L7ZlCyuF9tLW1hXQ6bfJghUIhBINB1NbWqna7m/5/XPp9qB1obpTkO1+PntcYWzNq+T2b8JSznzYcpLHEjat0Oo319XWMj4+bVS5aceazYlIp5Wtfvmf/3wZNiPBvmxKk35rAIYOwrKwMwWAQx48fx+nTp1FXV+dI2sETq2g4SDwlrjLMOp9DSXjKlT2tHtm2fDxKfHNwcIDFxUXcu3cPIyMjSCaThmfcDOTHAVvf8ftaG+X4oLHK+6ytrQ3PPPMMamtr1eNoChHsRGstnJcb5bZ7snxO39HRUdy+fdsR0ihnq2WfFaNkOE7SwaTQ7dOnT6Ovry9ntdONToU6ECRDCQ4PDxGPx81qqLZyy3nV1mY5XuU9j+do0qu5uRlnzpzJCdmnbzmhxe8Dj1ZYNOORMivLLMhuhrgNOA97vV709/cjFApZn+eKXrZbrgIDRyu8dKJCIXi4AdVBZ6hKvpLZfDl/aDQmPSV5QPtN5Wi8wZ0dqStlNI5GNw1XnpG3ELpwnDkf00dzciX+Whu1dhCPh8NhxGIx7OzsOPBxG1M2uUc4zs/PIxAI4OLFi472SVzku/SRK+L0PGUJXlxcREVFhWPbmM1YtzkcNnlDRwEuLCxgd3cXVVVVapQQjQ/uoHCbj+tE3j5+j2jg8/lw7tw57OzsYHV11SRJ09rzfkGWd3h4aJIx3rp1y2ytkP1t26LkBvnsEU4PGXLs9/tNUqaVlRV4PB4jMyU/Pg5IHiikPI3/uRylbQB37txBLBbD3t4eGhoaVBlgkw1Szmh2tuR1jbck3lrbNDnJZTGvi65Rjp7Tp0+joaEBc3NzZnJDbnWhcrWxWWz/udkJvEy3dtnesdG1GJx45AnfapZKpRCPx1FXV2eiTinEX4v0o/+afCwGN+BD7kAD+l4WLSunZsTJ/SdyxdjNkSFFxkPdbAJPKulM5ijh08rKCu7cuYO1tTWkUin1vEjJqJpyt3W4G7MWy8jvBx63Dil8+YeUfU1NDTo6OvDSSy8hFAqZMyY5fWi2V4Zi834BYM6CJgNDw0W2hSs9bshTefQOr1vjB85z2n4aLui3trYwPz+P73znOyYbNA8LykfvQninkPsc8jlL3OAl5/mTn/wkTpw4gVAolOPkaitRVA83AvP1ixS8HC8KsZR761KpFFZWVvC///f/NudSylV9rf2SFlRPocDbTbx96dIlDA8PIxwO59BEGpJyBYeA86VmmPHswQcHB5icnMR3v/tdM5mnhW5r39LosbWR2ldbW4vu7m4MDw8bmU3vEk40bjSgkDpZH9GI9hSn0+m8K9A2XaHxb3l5OY4dO2b2M2rOAp/ck3VwR4Ama3ioHj3L8S3UuOHhgBQ6TKGLXM5oqyV0XdaVTqcd+/E040nDjRvh/B6FcGv6knhVhmXKcGppjPK9ihpdJK4ajtQX+/v72N/fR1lZmZmIlXKeO3J0TdsK4fF4cObMGWQyGWxubuZMvvHfbrKWP3NwcIC1tTX4fD4kk0kTuqg5C5KHiFZcfvL7h4eHKC8vR1dXFy5duoRXX33V0MZN/sk+cbtHEzLb29u4du0aTpw4gYGBgZxoK3JyebZjwBmmC+SeC6/ZcR7PUVK98+fPIxwO4+///u8dsu39Oou29gKPJqCi0SiuXbuG8vJyDA4OYnBwMIf3uI3AJ/04/9GY5rSQNgI95+bwlJQcnX7g8/nwhS98AXfu3MGtW7fw4MEDB142B61QOjzOu1xW8jFG17e2tjAxMYGlpSUsLi7i4sWLaG9vz9neJGWWDIuX9Um85YQYfUveI+B9JvUIlav1Ke8/arPf70dHRwfq6urQ0tKC1157zZHLI58sfr/8bNM1+WxMWfcHMa40Pci3QGQyGaysrGB9fR0TExPo6upCc3OzORNe6zuOL5XDvwuBD7UDTcTkAoWu83A1At6xZAxpyksqR8A5yymVqUZwLjjo/u7uLpLJJCYmJhCJRJBMJrG+vp4zs6QZTra2y7YVKrAeRxBSPcXc49cLMQK1+9JxLisrQyAQwOnTp9Hc3GxmdMlIlH2nhXpyh4nAtpIl8ZG8oDlLmuHI65Z75vh9KaA4H42NjWF+fh6Tk5NmBtYtrFgz7iU+kjZu7xRynwPvt5KSo6QZNTU1eP7559Hb22v2PHPFoeFG33ys8b6WCkpTnrKfuMCka9vb25idncXrr79ulJV2dFM+kEZZvrEh93pSlskLFy6gqqoqZ+KH05Z+a0YAf54MZN7Pkufj8ThisZjDeZbl2ejgJqu0MXz+/Hn09vY6xoIsh48jyRvym+N6cHCAkZERjI+P///Ie9MmOY8jP/zX9zVHz9Fz34OZwUGAAEnwErUURWmllXZjr/B6dx1+4fAX8Odx+I3D9q4dGwqvdpf6WyclUiREkAKJcwDMYO675+g5++7+v5jIYj7ZWU8/PQC1hpwRE9PdTz1VWVlZeVVWVY3h70W2ynlL7UciEbS0tDju35b6QNt3ysdC0q9UKmFlZUU9NEaTI/WAVpfI8SDjnAcBNP2h8RC9S7jxftn4zQ1oDmtZQdpefW7Ecn7lfaXzL6h8PcNSAy6LM5kMjo+P0d7ebp6RY2a7FlPTu/S/v78fi4uLaqq5pI2XOUz0Ozo6wqNHj3D+/HlzIjcHefcxr4/LTT5vKPjS09ODF154AR9//LHqFLiNvcZbHHfOk9PT02hubkZ/f7/jWiuuWzW5x/WmtohC/znPUzbA4OAgEomE2ZbD9wZLfeHF/qrniNG400r09PQ0SqUSQqEQxsfHa+QzDxZoOMjsDUkH3p5NP8p05EQigYmJCUSjUayuruLk5MSRdVJvrtezORu1N93eJdwpCLO0tIRKpYLV1VW8+OKLiMViDdVP81prs57cdaMDtzOkzrbJT+ng+f2n+7W7u7vxxhtvYGNjA6urq1heXq65sk5z0r3gLfv4tH6Dl/c1/rbNIw0/TZ+STKlWq1heXjZbHOkO6Ugk4niPX0so54RXeK4daAKuZOXvUgA1oky1MvUUiWT+SuV0D8zR0RH29/exu7uLmZkZZDIZ5HI5szrC63IzANzANjHd8G0U3ASL20TQGFMaStp/wJn6m0gk0NTUhFQqhfPnz6OrqwstLS0IhUKOyaDRz6sx6sYzBNLprUcPacRo6UOybSpXLpdRKBSws7ODmZkZLC0tYXFx0RqJ1PCwjYmXfrsZEra+c+VMYxePx9HV1YXBwUFcvHgRzc3NJsVUOnYabjzTQ5vH9B6nh004as5ApVLB+vo65ubm8PDhQ3OAXz0a16OPRivJ+/yPVmf7+/vR399vTvG10Zp+l86wbIP3QetTpVLB2toa0um0GpiRdPPaV9lPWsUdHx9HV1dXjRGv0VrKDyqj8XWlcnqi8vr6OjY3N9VVP68gDfloNGq2iMgxsfEvpyEfBypTKpWwvr7u6dRVL0BGl9wvT23KLSn038ZbJH8aBZtBxOWeTFt1q4scDHmgIznRbjLYCxBeBwcHODo6Qmdnp4NuXmQt52Uq19bWZg47qncYmxfjjeiQzWYxPz+P0dFR9QA+m67TDHUC4vWmpib09PSgra3NZAAQfpyPvYDN2PX5fNja2jLzdGRkxFGnzMSSIBccaK5y4Pzt9/vR1NSESqWCgYEBrKysmKvttP48C1uJ10sr0RsbGyYQ19vba67i4cGFRsCtvMy6s0EwGERnZydCoRCGh4exurrquPZPjvtZxl/73c2+tj0nOpHNkMlkUCwWcXJy4kjjpRPebXJFs+U1HnDrK8dR1ucmWzU7RZbl2TiJRAKjo6OIx+MIBoPI5XI4ODgwi29avxoFmzNrK/t/A0i94vP5zLknh4eHyGQyaGpqQi6XQ3Nzs9kGRws6XHZUKpWGr0R8rh1ozckih5SIIcsR2CYPEZKEsdxHYZvwEidSpPl8Hvv7+/j444+xs7ODg4MD66qhxvhejfanFfZuwI3yr7odrV1i9nA4jMnJSYyNjeHq1auO9DrNYKXP2u/a3gjuxEgHzE0Iy5QxLcUPqE3xdnNKOK75fB4bGxv43//7f2N7e9vq2LmlL3oFNwdNE1a2d2nc+Im+Q0NDePnll3Ht2jVEo1GTYkq0IkNNnlrP6SHTDumZdAq0cSbDk48z/U53hf74xz/G7Owsjo+PjdNwFp6v5/DyclSG8/lrr72Gy5cvO664A+A46Z8bwpwGNuOD00tzDIrFojktlqdG2ww0LRghn/E+Ej/EYjGkUikMDQ2ZAz/c5Kh0smzzG/jSSN3e3sbOzg4ODw8blpO2IIff70dXVxdeeOEFV8dPW/kj3KSyJt4jnrOtpnkBwjEUCqGpqcnBV7yMDFhI+UXliKcqlQpOTk5q0rvddJMNqL/FYtFx5oGkNeCkF0+JJ/xpTkQiEUQiERwfHzvq4Ph5dUyr1SrW1tbQ0dGBkZERx3WDctWO8yKfx3xlyOc7PcwtkUggkUggl8vV2Ai8fS3ooP1G+4hv376N1157rSYQRfjJ8ZRyT84vn89n+DcajeKVV17BrVu3sLS0pPbNjR9sPML11cnJCaanp5HL5fAf/sN/MM+500dOoHyX8wZ3rKSjR0C809zcjL/8y7/ED3/4Q0xPT9cENaSt44V33GQYxxsAcrmcuT6qt7cXfX19aGlpcbSnBbk48G2K2snQBFxfanYm5xO6C/yv//qv8aMf/QgPHz7Ezs6OacfmIMr63BxSjR5uzyXPyucU3CuVSmZ/+x/8wR9gZGQEg4ODpox8z+fz1azQy7nspt+oDv6OfEb/5XVknE7Et1LGaEBXs3Z2dmJsbAy//e1vMT8/j8PDw5pMWze8eRnZl0btxXpgkwH17KOz4EHvkMwmHXHr1i3E43GT0UdBCMkXtm0wbvBcO9AENoOZjHEqw/9rdfAy8l1tEvM0cSmcSqUSHj9+jI2NDaysrDj2qmrXrTQKjRr1jZTXlAn//izadBM4/C8QCKCpqQkdHR34xje+gY6ODjQ1NSESiZi030qlYg5eoDqkIcHxkcqWfpOGhWZ4E05uCkVLCeP9lWmevC0yMOnz8vIybt++jdnZWayvrztO2ZYrsRrtpZHjVtY2Nhq4lZHj19raiuHhYXzrW99CR0eHORmYxojS6yAW/UsAAQAASURBVLiy0ZxdPk+4UtIUujykiZ5rgZNCoYDt7W384Ac/wOLiIo6Pjx17yjUa2X6zPdPoJelEzuUbb7yBCxcuoKenR+2fnCuAk6ekEuap7tzAJDnk9/uxu7uLmzdvYmtry5zEKvmLz6l6/Zd9pPaDwSC6u7vxx3/8x+bOZ24Ia3Xb+FfyBJU9Pj7GBx98gJ2dnbq3GHjFn+jU0dGBCxcuOE5/lnTR5jb1XUsnLxQK2NvbM4Z8ozhKCIfD6OrqchgE0vHhMpGv5Gk6rlKpqKeD13OQqAz/neQbZV9xA5/PaelYklMn78AtlUqIxWJIJBLmPluJowaas0p4bG5uoqenp2aLiOYQ0XMuJ6QRRhklY2NjyGQyagaNpodsQGNGadxra2tIJBLo7Ox09NnWP66TNIORntHBW6urq1hfX3ekF3vhU/lc6lVy/vb397G0tITHjx+jv7/f3J4h5y3ZW3w1nNerbXPhthkPQra3t+OVV15Bc3MzPv74Y8dY8PmsyX/u/Nj6qvEK70c+n0cmk8F7771n5H1HR4eZl7Y7oAGn3Wm73ojkjXTY+Gcae75K7ff70dzcjHfeeQdjY2P4yU9+gp2dHRNM9hLgk/xhW6zQbCj+uR59ua3Ngyg3b940sn9gYECtm2jM+UIbb20ucv7Q5hh/nzvI9Cf36dt4h9cfCATMVblkK7z55puYmprC559/jtXVVcd1V5oN69YvL/aN7JvG426/a9DoczfZKPmF81i5XEY+n8eHH36IlpYWJJNJTE1NGb9B2uRe4ffCgQbs0S7O1BpzE2gDY1Nqsi0aIErTptNUKcq4s7NjDk1xc3pku14cma8a3Gjk1dCzCTD+m/wLBAIIh8MYGhpCR0cHUqkUhoeHTWqiNFx4PfXwcnMAuNDXgE80zaDX6pQGGDdgtLZzuRwymQzS6TRWVlYwOzuLjY0NxxUTGg9qoAkVqbxs0Aj/yfGj1caxsTH09vZiZGQE3d3diMViqtHG9zFqCorwlQ5xvbHU+s+fHR4eYnl5GQsLCw7nmc9TTV48DWiGDB0a1tPTg/PnzyOVSiEajdaU1/pIz2x4cn7jPECKI5PJmBPHteABx1trTwMpd6m9VCqFwcFBDA0NqWnQGq2k0SZTZOk/ZfwcHh5icXGxZtXUK3AaEQ40RtFo1OH48/5xnDmu0tmiz8BpdsnJyYnjykLep3qgyaBgMOgwxnl7vH9eZEi1+qXD+6z4n7IEbAa0dDik0SnLxeNxNDU1nRkfSY+DgwOzqqOtzmvvE2hOqd/vR3t7O0ZHR3H79m0TDKhn5NbDk/h9YWEBsVgMHR0dJijBV/c5HXm7Wr/4ePCD/g4ODvDw4UNPesMNNBmcz+dxcHCA+/fvIxQKIRwOm/ucCReZ8i/7Qb9JvrbJsXA4jL6+PrN9Ynl5WT0Bn8sAaQ96NeZlXdxp29rawszMDADgwoULaGtrc6wu835zOajJNcJLcwakrCI+1XAk+VGtVnHlyhVjx25vbzvq8sIHbjpa4/16jrTmxHEnqVo9vd4zFAohEong8PAQXV1dSCaTjgMdbfjY7NN64GZ/SJ7XyrvZjfSZznoi/k0mkwiHwzg6OkJLSwt2d3extbVl1XtS1rrJtEbBi939LMBGJzceIVqQ3snlcshmswiFQohGo2Y7RSKRMEFur/B74UBre5/5M20PiDTIebROq4e/w1ME6D/dzTg9PY10Om3uKCOnmb/P69Pa+V3BWSeQ1/fcykjhQP/JkSKmfuutt8xVC3LVUSpLNwdao7WMDPJyWhs0ljz1R6MHr8MtJUTyArWxv7+P6elpfPrppyb4QtsSuFBwAzc6aEZ3I2BTvDydnvZhfu1rX8P4+Dja2trMcw6k7CmySsYy0Vr2gwcQ5AnH0uDi79GqBeehcrmMtbU1fPTRR7h7967jMD8vRoJtzOUz27ucZqFQCENDQ7h69arZnuDz+RyrLbJOzr88E4ZknsZfQO31YktLS5iensbDhw9dHTmNbxpx9AKBAM6dO4eLFy+is7PT8b7M6uB95ivqMggpjdKjoyOk02msrq6agNOzAEqtj0ajZk864aGdtG2TTwRkDB0fHztWn91Ao432ORqNoqenx2EMSKPclgrPcaUydMWWl2CEF9lSLpdN2inHTwbHSNbSVh3Cjz8DgObmZrS1tam42PB1k8lHR0dGf9PBM9xpkvqCpxgDqLE3KpUKurq6AADvvfeea6aBZgza5mC1epq9cPfuXfj9frz44ovIZrPmChfpcNP7PPjsZmT7fD5zjV48Hsfs7GxNdks9XN0cBRpHWkn/+OOP0draiqamJnO/NZcBmq6X9fK9sbxcterMSqIr9GKxGMrlMg4ODrC7u+u4mUWTR406Cdrc5zqcrmRaWVlBOBzGxYsX0dLSYnib+i2zM2iuSB3J5SSAGj1ANOJ00ZzWUCiEVCqFd999Fw8ePDBXZbqd02CTT27gVsbNzuS8Td/pL5vNYmVlBVtbW0ilUrh+/TouXLhgMhuILmTHccdUykXZH86L0mbUsjM0GevWJ67HZbvEl4RrIBBAc3MzXnzxRRSLRSwvL+PmzZtYX183vofcHy152I3GNn53K18PGvV5NLu8Xr3yM+cV0j2Hh4fmJoNkMonJyUkTIPdyJTLBc+1AE6Hc7pTke5jJGJBlpWGvDRZfFSNlXygUzIl4a2trNaf2aul6ts+/ayeaT2o3w1gTsvy9euVsz6TRxx2JK1euYGRkBJOTk0gkEkZ50NUiWj3S0ObP+X/p3MrfqCyvi/AnYWuL7knlTc6YFMyaoeHzfXn4wQ9+8ANsbm6aU0K5ULYpL96PeorezWhy+91NcHLnORQKIZlM4t1338XU1BSSyWTNvaP85G1yEnnKNjcyuPFAqzdaWphtfhUKBTPWfP5ns1n8/d//PXZ3d2v2lVMdbgK/Ho1tc4HTi3j+3LlzePHFF3Ht2jWHs2NrVxr0xH9cUWjGBZWjMgcHB/jkk08wPT1trtHTshw0xWsDbW7TVowrV67gwoULNZkcWhCUcOT00PrB8Xn06BE+//xzc39tvX7Uw5+PU39/P9rb22v0CJ3ky50TDnxcpOO1sbGB2dlZa+DGTcZKWUJ40qmtfAxo3nB6aw4CL0Pl6LRbAi98r8lUgnK5bMaVl5MBIODL1EVOR3k6fHNzM5LJpAN/Tb9qOMk5RvIom81ib28PqVTKcZq53EYiZRWfl9R2tVo1+9Kbm5vNij7HUzP23BxS3tb+/j7S6TQ2NzfR2dlpPfuFzwV+XRLvu7SbAKCrqwvFYhGpVMocMKjxp5s81r5LfX18fIwbN24gnU7jb/7mbxzv2TIBiF9o7vGgIrVB/aGyfPyam5tx6dIlLCwsYH5+Huvr6473nhVoc4bwyefz2N7exnvvvYdKpYKxsTETcKF+yW1/Ui5ImaC1o4E2fpxmiUQCFy9eRFdXF4aGhvDee++ZQLNXp6YRaOQdTgfZb5IRGxsbeP/993H37l1861vfQk9Pj8NJ4rKG6xV+Kw4HPm9sqdyA05aR+pmCNNqY8Xe4rak59nIxgq68WlpawszMDBYWFsyWPw42+aKBVsbNJqoHXtqs955bHZp+pM9S15AzncvlsLu7i/7+fvT29pq55wWeewdaI6SWZiuVHy8L1DKj7eRCEnh7e3tYWlpCOp3G3t4e9vf3zR4EDS+vwkYqh98FaIaFdFJtUK+cFAyyDVIQTU1NSCaTuHjxIgYGBtDW1oampiZHKhpXkNreNNvEsRmcNrw1I0z2QRrymkPHQRp0UuCTAfTo0SNsbW05nOezpKHKts8i7DTQnGk+jsFgEGNjYxgeHsbIyIg59ZA7JFz5SEPOZuQSyKvnbIac7C+f++VyGRsbG3j06JEJeknHUcLTzkUbvcLhMJqbm/Hyyy9jeHgY4XDYnDTM25WGuTafNIdIyhXip0rldF/rjRs3sLa2VrPCaJNfbnTQ5hGNdyQSMfv86HRU/o5N7nEDRL4jDSg6qX5tbc11LBtV4tSP8fFxdHd3O3CU42DTR9rzavX0BNnNzU1Xg0DiouHH/+iaPzce8qqPyNmltH5qz00meaEtd3Rs+pIH5Tg+nJ5+v9+kcMvgBTdwvQDRh064TqfT6OjoqDkLhfCVMoX3nbfJA2V9fX0oFArI5/NWp8fLXONl6Y7hR48eoa2tzbE1Qps3XP5QGS4XqAw9D4VCaGlpwUsvvYRf//rXyOfzDhy80lf2UerScrmMTCaDjY0NzM/Po6+vz8gKjhfPKtR0h5su4U4M8KWTeOXKFQSDQXOFmVwJfFrQcOIBBFoVu3v3Lk5OTvDSSy+hpaXFETzmddnw4nqWB6TqgY3nfD6f2R7g8/lw/fp1zMzMYGNjoybgbMPlWYJtrmi4U/Dv6OgI1WoVn332GcbGxtDT04O+vj4rvsQnGk1s2aTyN03fa/zp9o4GfF7K3+m0bpo3qVQKjx49wv7+vmPONmoPPqtxfBrHm97jtrPN1tHalO3S73yOpNNp5HI5s1XBC/xeONA2A0sajdqBC4AzmkugOeDlchknJyc4PDzE6uoq7t27Z1K95D3OEk8JXgb8/1ZoVGHanC5amUokEujq6kJfXx9ee+01RKNRx+nNgDNVSY61bb+yNg7S4NX6I50xN+DBmnrvc/z5c7rLcH5+Hl988QWOjo6M4crrOAtveBEyvKxXIS7/01i2t7fj3Llz5hAsfrgbD3rw62jcMgH471yx2QwDL+NFe2R/+9vfer6q6lkBpxnxPu17TiaTNUEi6hONnTSCpQHh1XkpFArY39/H559/jr29PceqXiM8U6+v1I9oNIoLFy4Yo1AzMBqpk8t+wvno6Ah7e3vIZDI1KyRn6Qc30P1+P4aHh81BTXIs5G98nmsONJU7PDzEzs6OKtfq4avRjO/V5kagVlbSULbL9SZ3oJ8WOG1sTiQ5SVz+k5PFwec7TVnngTrbPHDjMd5+pXJ6OvTW1hYmJiZMEFe+73XuEf8Eg0EMDg6aoLuc015B0q1UKuHg4AAzMzN4+eWXEY1Ga8ZR6kn+mesZja9JTl26dAm3bt1CJpNR+2tzbOr1hf6TfbWzs4PHjx+jvb3dOND8wEOebivblAEXjpeWYuvzne4nnZiYQC6Xw/z8vOMwpqeRf5ImWr+BL3k7n89jdnYWpVIJvb29aGpqUh1oXodNBvC6vYI2ntwxC4fDePHFF1EoFJDNZrG7u2udE1rAwBbYkG02CjZ7i4/z4eEhHjx4gFKphEKhgNbWVmNn2uxJkn+8T7ZgqJQ7mo6id7w40FrfuLzQ5BzxfltbG1paWtDT04PDw0P4/X5z5ZWUCbIftrbl727PnxU0Khvd5ppNJpCtVamcXl94fHyMra0tz20+1w40YF/BkFFqvh9AS9vmqz6ybuB0Au7u7uL27dvY3NzEycmJI02Qt619Pmu/nrYeL/V7KdsIDppxLA1/Onk5Ho/jO9/5jrnSJhwOG4aXp0jyz9LoJuUoBR7/L/dZyrQYfoiVFJSUdhMKhQxe3DDhbWh1yMgl4Xl0dIR//ud/xuLiookUavsh6zm+Gu0lDdzKNaLUtLGkldS/+Zu/QSqVMitCvO/8rm65tYLjIA1pEnKUvs9pT+9o6fv0bjAYdByM9bOf/QxPnjzB2tqa2Suk8Zn23Y0uXmjGV6NisRgmJibwF3/xF2aPOBfsFJyRARpOQyrPDT5qj5xIOXcAYH19HTMzM+b+YX7ye6OgyWA+R8kAe+WVVxxGi1xhlOOuOQBEF5meXSqVcOvWLbP/iz9zM/Rt/aH2yCGNRCImRY4bWZI/5EnF0pHnwZFSqYTj42OHQ2IzWGz8KWlNhzDRKqRtThHQbROc96hvnCf4tWaaQeJGS44j1UtyjuSlDG7z9GjO27RfkTvXiUQCzc3N1kBqo0By+cmTJ3jzzTdr0i2B2ow1zo+Uesl5NhAIIB6P46WXXjJbvnhQWKNZPRzpf7lcxv7+Ph49eoRcLod4PG5wpLHmOove43OJBzfJaeV2VDgcxuDgoMkK4zzg5qTZjHRbH+lGhPfffx9jY2MIhUImgFGtnmaZHB0dobW1FeFwuCboJ6/509rjTggBBQg6Ojrwn//zf1YPU+TvaP1pZD5o9VHgZm5uDru7u/hP/+k/IRQKoVKpIBQKOYJHEn8Cmh8E0g7m803qPemYSecsFAqZO8cnJibwP/7H/1Drqec015Nn9ejm5XcCmh+E44MHD7C0tIQnT57gu9/9LlpaWmoOF9NSnumP6x6emWJzhrntKDMVbbjL1W+Sv4QnzVeN7iQjySb79re/jY2NDayuruLmzZt1z7Lwqv+92kVy3Os57Ro+nC/l/PEKbs444WJL23eD59qB5k6LbfUXgEOJ8HJScUiDrVAo4OTkBI8ePcL29rZZLdAOG6J2JIM06nwSuDkVbuUbYSqvOJy1Ts2JICEyMjKC4eFhc0pzLBYzh8VwZucTh48TT+PiStymWDSlwNMItRRsLjTlvZSyXl5eU9BUD0Emk8Hjx48xOzvruHdYOwHZizMtHUut/xo0wqeyPzSWTU1NOHfuHF555RWzx4iPDXc4SKHJtrmjqPE+N6Y1RSWFNg9gkEO1t7eHW7dumdTtQqHgStt69OC0rmes8X6QMfL6669jamqqJlWPyxG+Us/f521phiznP1nm+PgYs7Oz+PTTTx2HhrkFA93ooSk2LptbWlrQ1dWFSCTi6AvHmQcLuOPB29XmOY0zHaa0tbVVc3VVPfzdwOc7TT9PpVI15y/wOqUhLHWJRifg1JmUe3ol3lp7NqCDzjgPkVElg3oAHMajTHmWDm8jtNTmBclRWtGWMlHrq+R34MsgZbVaNSu7fKsPtd+okUafq9WqSeWTBpwmL214Ujn+fjKZRDweRygUclwt9jRARnoul8Pc3Byq1Sq6u7sdmXUU2JEr+hJHmfrL+xkMBjE0NIRcLofl5WX1sB1NZmh8L8tx3qM7fW/evInz58/jypUrJthCq+Ea/eWYc/tO9hlAjc6JxWLo7OzEK6+8gsePH2Ntbc0R2HHjp3rPNBkgaUP0pFs4Pv74Y0xOTpr7yOvVTfTjspM/s13tqDk8mi1E8y6ZTKJareLNN9/E/fv3sbe3p+6J1vS3hr+tX7xtN/2qvavZYITj4eEhlpaW8JOf/AQXL17EpUuXahbTJE01m4OCj1LXct2j8T7/zuebLMvbs6Xy84w1ADVjGwwG0dnZiVgshmQyiXv37mFnZwd7e3uqvyLpqH3ndp3XOXFW3VsPF46P7V0bbjZZ1Qiuz7UDrYGNAQH9pFcuZOkZnQp5fHyM/f19LCwsIJPJqKvO9YzMszCOxPss4MUx4s/c2tLet9UrjS+umP1+PyKRCJLJJM6dO4fh4WGMjo6a1RItQqdNVC6wGpk42uTQFLsUZppwtPGZzXCn8oVCAcfHx5ifn8fMzAyePHmC/f19x8nTGm95EVgSn3plbI4e74sEPp6UKjoyMoKJiQmMj4+jqampxmi04UXCXjqEbmNUT8jR79Ih2dvbM1c17e3t4eTk5Jk4Wm54aIrT5/OZE07HxsbQ399vTnWW/ZWKW3tmM0w146VaPQ1ArKysYGVlpWYfm43vGgFpHAQCAaRSKQwNDalzW9JfM0Zs/aLvhUIBBwcHrld4aDSy4c2B0s97e3sde0vd3rPJKok3zXm3A3k0R0Frj36PRqPm+jMeIHSTfdrY83ekXNJwawRIx2q4uPVNww34ks9kSq/GP/Xa4/gdHR2Z+SEDrNoYa0Ysl9uk/+LxOOLxuDlITNap6TubnuZjVCwWsbi4iNbWVnOKNZWRGTo2/CVPyLnZ39+Pg4MDrK6uqvfnarSsB3KMKCC2tLSEpqYmTExMOA5Gk4cs0n+OuxYMlO1IfqGMuPHxcWQyGWQyGUfmRT38Cb9G+i1tnEqlYgJWs7Oz5tq8tra2Glliq1NbQSWQdLHJB43fSO+Hw2GzCp3JZOD3+02wqRE75ayg0Zt/t815zs/lctlc/5ZMJtHd3a1muMnVYC1IJuetnK/19LitbxznRnwBqYOj0ShCoRDi8TiOjo5Mluf+/n5NkNrNaeW/a/jY7ON6uGrZg26g0ajR99z0diO8+1w70EQEHjHi0TcCPqCcoXkqBAHtJ7p16xa2t7eRyWSQy+Vq0gYlfFUCoxFG/NdqW3tP/lFKSWdnJ1599VW88MILSCQSjmtCgNrxszlhlE0gJ6wUelKY8MwBWpXRUmTJqJUptG7CWabRAs7U7Url9M7dR48e4f3338fR0ZFZBZVGtMZnjToFGtQzduqNOY0lCeauri58//vfNyuMtBIkI+BcSNIqFDeYuDEjFQ6fsxz/eis43LikqzhmZ2fVq5qeleK3Oc08HTiRSOD69esYGRlBe3u74z0yEIlHZYQaqL3Tl/8nkKl75Kjl83n88pe/xNLSkllV1JyjRujAjUbZ32AwiKmpKXzta19z4EVzkdchAypUD9UtnSnCcX9/H/Pz88hms56ug/LSH96P1tZWXL16FZFIpMbBl+Mt8ZWrfiSb6KRnCsjKPhHY9I0Eok1TU5PZPsFPe+X8rslH+i5Xuqh9fop3PdrVw5POd+CrKn6/3+Gs2OaiZuDROIVCoZoDrng5L8Btinw+j2w2a7KjeBmeoi31h8RRBgjb2trQ1dVl9kED9oPmbMD7Tu8WCgXcuXMHHR0dOH/+fE1ZbidJvShlLL3H+SEQCODFF19EtVrFnTt3ag6Wk+9qtJC/aX0iJ3J9fR3Nzc1YXV3FuXPnalbbiIfkSjllOFBb/I9kHTkRcn6RvMpkMjg4OMDBwUFNH88CtjqkziV5XCgUzH7ofD6Pd955p+YaTw20MwL4M56FogWu5RhqdjNwmukyOTmJYDCImZkZ/PrXv3bQk9Oa91+CRtN6fGIDaT9QXVwvcRz39/dx//59pNNp/Omf/qnZnlBP9nD9JJ/LeQDU2oCcHzmOtvboPfpN267I+2nLhPH7/bh8+TJ6enrQ3t6Ozz77zOgf0hE2umq2YSM2p42mX5Xf5AVsvkUj8Fw70NLw5cqEQAoQTiTOgBTxXF9fx/LyMg4PD01KrSYIvsqBfxaG/O+ibpsyJqCIXigUwvDwMK5du4a+vj5zgAMAh2Hm8/nM/aAEXPjJVH3NCJRKkb+vCQCihzTm+Z4VKQA4j8lVHpuQqVar+MUvfoHFxUWsr687Vp0155nwcBurs4xlvfo0HDQnsKenB8PDw/iDP/gDdHd3IxwOO9LctZQjN+XOlQR/LulJBoB2rYfW11wuhxs3buCLL77AxsaGcZ6f1mnU+sHf57hzusViMaRSKbz55psOhS15VNKd91PyHJXn9OOp32To7u/v48mTJ2a/vbbyqY1BI/wo+zs+Po7+/n5zzRCVc9uvSumm1Gct5ZDmOF0l+MEHHzgCI40oRpszQQGA5uZmTE1NOYJ9HH/uIPP9uZz2HG8qt7S0hIODA9c0Zm1OamUIh7a2NrS3tzuCS9LI4vhwsBk4thVoatsrfbmzSGPMn8k0bP4Ox4fjzw3LaDSqXrEjeVgDTiPCrVwuY3t726y4cTprjhm9z4PAPI0aACKRCCYnJ1GpVDA7O+swqjkemnFtk3H0O51ivb29ja2trZpzFeQ7NkdAyli+rSIej6OrqwsXLlzA/fv3zTU5XmRnPcdE4pDL5bCwsIAf//jHGBoaMjYDAdfP1C/Jq1xP8FVs6cjw1fRIJIKrV68ilUphYWHBnJMhHXU3/OWzevThtgi9l8/njYxIJBKYmppCR0eHtX56l8aV62Dia86PUm9yx0zKB/4+leX74tva2vDzn//ckbXhRhdebyPgVqebfJRAdKBDgP/hH/4Bly9fxvDwMLq7u40s0uSUzeHl7cnxpDYrlYoJkMsxkPOcH5bnliXGA0tS3ki8KPutubkZfX19ePjwobEHaPzPan/ayjaif72AHANpC3lp0w0aefe5dqBtaWWATgS57+fo6AiHh4c4Ojoyp25mMhns7u56usv5q4R6gsKmTLV33b7bnCavuElByx2tnp4edHR0oL29HV1dXRgYGDCHf9gUeD2jTk4eOYm0MtpqgTQqpQOjXQHD25FCxsYXJycnODg4MHfzbW9v4+DgoCZ1VjOc6tHfrYzbWEp6uxkE3JmgFMTJyUkMDQ2hr68PqVSq5toUTkfNOdAi3zaDUY4LNxJkVFau4mxsbGBhYQHT09NIp9Mmvdctk4S3odHPi7Gk/acV+4mJCUxMTBjnWTNw3cZXU6DyueYwVSoV7Ozs4M6dO8Zo8CLbtOeSZzR+oXTIq1evore3V72bVjognC+0oCVvlwy6nZ0dpNNpbG9vq+cH1ANN9nCeb21tRUdHh+NaKBtdbHXwcjQWpVIJKysr2N/fPxMv2uZ1S0sLWlpaADiDARwn7X2b3JOOoIabHBdZpzQmedBQluHvau1xR5WXoYPq9vf3a+gi65Dy2/a8VCphY2PD3N/M+8e3fXFngfO01D/0Hq1AB4NBT2nQXvpCf4VCAevr63j48CHeeOMNB87ys6yHf69Wv7x7lvi4Wj29z7qzsxOXL1/G3NycuUvVqx3mVdcTj5ycnGBjYwMbGxvo7Ow0B6RRGS0Qx8eGytn6Kdv1+Xzmfuju7m5cuXIFMzMzODg4MHVpdUjg42Lrp5f+037oBw8eoFqtYmBgAMPDw554RcsmkSDnA8efv6O9SzqN0stfeeUVLC0tYWVlpebeeJss0NqTdhz/bLN93YC3KdumTJN0Om3GeWtrC+Pj44jH467bjnw+n8PJlXYkl/dybDWbRqO7G0g5Y6OjpCXpZr/fj0KhgEQigYODA6ytreH4+Bi5XK6G1jZ57EbzpwWbTNT65qUurZ6nhd87B5qAT3weWeN/e3t7WFhYwNramuMqF7eUun9t8ILPV4mzm5NAhjM/YXhqagrDw8M1Akau9NiMc+qPVDrSCZKOFsdXnuJKbchT9/ipivLkZhJ6fJWV+qNF/aj+7e1tLC8v4/3338f+/r7DcfYaudfgqxpjbugR0Goirca9/vrrGB4eRktLS42RThFWuQrD69KMTeoTN5IJyPmypebTM/5eoVDAzMwMfvOb32BlZcXhMEol6HVOuRne8jdOx0AggFAohGQyiatXr+Lq1auGRpL/bXVrRjCfT/wZj0ZTffl8HhsbG+bqLlsgwasCt/WfAi3RaBTt7e24fv26OSFZU/Y8qEVltKwMzSgplUpYW1vDxsYGDg8PrZkc9fCWbXDcenp60Nvba1I+CWzBL60OztPUt1KphPn5eeNAe6F5PfD7/WhpaUEymTTfOd00g4vTRKafk+6U/aV36uEty3KHU7sWi5fnqy68fekUkDwm2aTdpNEIXXmfKEsglUphYGDA/E748XJ8PktZwQ1mGqOOjg5EIhGHXPJiCMo5wXWQz3eawbW0tASfz4fXX3/d8S531utdjwQ4V7YINzqU6KWXXsIvf/lLk6XXiOHP27HxI/FJoVDA4eEhZmdnzUnmNnoQ8CAQrSDKIId0ouiAMp5Bkkwm8fWvfx2ZTAb5fN5seWnUBvNKE41v6EC1Bw8e4OTkBPv7++jr66s5jJHTTtbJ66Myshx/xv/bZDB9DwaDZttIW1sbvvjiC7M1RTsc0UYPr7/JZzY8bc/lPCOdUS6X8eTJEywvL6OtrQ3xeBzd3d1IJBLWdohumoylstLO43MVcNo02nYlbRFPGz834G3Qf9pKNj4+juHhYRwdHeHTTz/FxsaGOWBVa1ejwVcF9XjCRgOJp1e52ghNCZ5rBxpADcPSb8S4cqUqnU5jbW3NGC+FQsFEUG0GZT1Du1El/TTgBY+vCh9pHHIhQN87OzsxOTmJt956y6w2BwIBlEol9RoGrT6bIUUGHZXjaYp8lZkbCOTQyXJUhhsVsk1tRUyeylmtfnnFCyneSqWCfD6PGzdu4OHDh9jc3MTx8XHNXeFuwsBtDBsZW60eKVjc/pODEwwGMTY2hsnJSUxOTqonbWvBBQLtkB+OD6+D0ie508F5TaZwS5pUKhX84Ac/wPz8PDY3N9WD/9yUOe+TbMPWP/4up10wGDRGxl//9V+jv7/f7FElHuMGnpRXWlvckZQZFQSSPh9//DHu379v7jjlTpKNPzRwU1o0vnRa79e+9jXEYrGa+cK/07hojg9vi8qSUUFO6G9+8xvMz8+jUCg42jgrSJ6/dOkSLl26pPIbx53GjN8rSuNDeNPeX9rXuLGxgePjY9UpbQRf/tfc3GxWS7lc5mNONOT9JZBpmpoRyNv2gq+U9dyBJiObAnTcCdXaJZlNZak/4XDYpNzyOcj7qel1zcii30ulElZXVzExMWFWa/iVSlyPcP6UjhqnI+mPWCyG8fFxPHr0CEdHR6ZOL7TkOEqdXyqVcHh4iPX1dezu7hodLGUFDyrTVUnSkec2FMePAmRvv/02fvvb3+Lhw4cOGa3pNSnTOK3l2EgeLRQK+PDDD43zzq+vIp6Q8oHwpHp5UFfiwmUPD5zTVqVXXnkFyWQSX3zxhYMvGwWpX3l/NXpwu4fS2Q8ODuDz+fDGG284siJoLHkw0u/3O66i43KAl+Vtyv5J50s64Vx2NDc34+WXX8bIyAh+8IMfYGtry9g9sn+83zZHpxEHSKO1F/uJ97tYLJqMin/+53/G4OAgXn75ZYyOjtacYE44cXnAaaTZcwBq5pJ0wCV+PKgs+8Dpo52wrrUv6eL3n54d0d7ejrfffhv7+/tYWlrCZ599hpOTE0eg06tuehZ+iM029soL2pzyUrZReO4daL5fDtCFCd23+ejRI+zu7mJ/f984z9Kp4fVwcCNyvQF41g6tGzPYhPRZ6tW+S4eX6ByJRNDb24srV65gYGAALS0tCIfDDiOH3//K69bSovg40jOZ9mdzDvnv0lCSe1pkWqa2GqCliWlChYTvysoK5ubm8PDhQ+zs7JgTn7UAjY3PzjJ+HNyETj0HiY8rCdgrV65gbGwMIyMjiEajNWnYVK9UjlrAQCoLbqTx8ZYrB/XmYLVaxfHxMba2trC0tIS9vb2aVGWpYGxz82noz2kXCATQ1dWFyclJ9PX1oampyXGHrZyvGn/IucDLaBF+AnLYDg8P8eTJE6yvr6ur8Lb3NbrYlBHnmUQigY6ODoyOjjqMQTnX+FjzemV6LNXPcS6Xyzg6OsL+/r4jNd82Hl5kNP9MMq21tRXNzc2OQBs3Ujkfl8tlFAoFc9gYN0Y5biQnSP/Q+40aKhJ/mqv8OkDNOJb6ks8xjqfMyLIZefWgnrzhRqWWPSF1Bb9OjHQKZXjIO13lfNFwssmvavV0jyTtq6Z26a9eoIvjz+drqVQyh1UtLS3h5OREbVujo80B5VAul5HNZjE9PY0LFy6gs7NTobyz727POQ/zuTk+Po7V1VXMz8/XZBRIWe/FgLXpc5rr8/PzSCQSuHbtWg1fcPsCcF9t5Xu7CTSHkb6PjIygWq1iaWnJbO/jusnL2PF+SvrWowvJ7Hw+j/39fUxPTyOVSqG/vx+pVEp91yYPpQ3HbSE+/7zwmlxk8PlOgzEtLS148803cffuXayurmJ7e9saQOG/NSJfvOhnaVPafuP9ovl5dHSEtbU1VKtVnJycoK+vz+w/53JVZrdyvS95QdKa/tvsSz4Wbjxlo4Xkbz6u2tgGg0G0tLRgeHgYoVAI8/PzWFxcVK/7tOFCwPGuN1ayzFls4LPoI5td0Ehdz7UDzQ0sDtx4oJz+vb09zM7Omv1/tsPB5OdnheezqOMsDPW0jpgEKXxpdS2ZTGJsbAznz583hoxUcNIRIOBOq5vA4M6W1i8+lvRZCidZhzZxpfLlRqhsh9ogo3h3dxdzc3O4d+8eNjc3HQeQNOKwyDaedhx5Pba6+NjQ+MZiMbS1teH8+fMYGBhAV1eXY6WZ40Z01eaUFiSh/5oils4zr0PjDVr1393dxezsrCNwYRs3L46V7KP8bKMd9SEej6O3txfnz59Ha2urY5VNCwzIzxI/ibPkD/ksn89jdXUV6+vr5u5H7kxJaFRWyT4HAgF0dHSgu7vb7I2zKVap4GV6v+wvd1oKhQLS6TSOjo4cdxTb5phXhc77kUgkEI/HzeFhvE6JH32Xqy0aTrS3k6c4ejUc3fD3+Xwm40GTVxw3W+aCXHF0w8uLk+fmnFJQxW0eaMY8Dz7xbAF5n7oXh0UzJPlnSt0tFovmECtNT3Bc6bMmawnnUCiEwcFBRKNR9X0buI0Dp2uhUMDc3BwGBgbQ0dGh9lPqUS8GJcn3YDCIVCqFVCqFtrY2sy3Epiu9gE0+0zisra0hGo3i0qVLJkjEcZe2g8w+k/NQsx1lwIiu4SsWixgcHMTR0ZEpoznPHGy/yz5LmWejC8mNtbU1PHnyxGwHiEQian28z5odYSvnZT7yd3g9gUAAkUgEExMThlb7+/vGDpJ12cCm52x91N7zSn8JZDPs7e0hm80iFAqZKztjsZjKn9Vq7Yn1kj7SrtF0la1ftnGt1z/erjyFX/I/Bfbpyqtq9TR4sLu7a1Ly3egm2zxLlkY98MI7bjLMRt+zwnPvQHPG5cxBe2fu3LljDC2Zvsjr4f9/V7hznL2UrWf8aeBFiGjltd80Y7mtrQ1vvPEGJiYmHCdE8pRUap+UO/Dl3jWb8AG+vKiep0ZrhpdcNeYX3Gs0oDr46jhPlaEoJLVLZTShQHVns1msr6/j//yf/4Pd3d2aVWcvY9DoWD0tSGXK6UDXjo2OjuLtt9/G2NiYUSTyXUl7vm+Sl+E8QKlP1C6P6geDQQfN6X2bQK5Wv0y3nJ6exvvvv4/j42OHMSTnPP32rIEb9YFAAOfOncPly5dx+fJlq/MsAw+yPo6v5qARcF7jRsA//uM/Ynt722xV8UKHRniR804wGMSbb75p7m7lc1wLotC7coWX48m/Ew329vbwwQcf1JwmbsO3kbH2+XyG91taWhAKhUy7hD/fg0jyiPa6SyeOy5ZAIIBcLoe1tbWaa2Xq0b2eEcC3DEjZyveFyoAV8GXqNs09PmZuWQuN0JS3RU4p4W3b/sHx5fKJzyGfz2fSEGXg1qZn6xlg9FcsFpHL5ZDNZhGPx9WTjDUDXrtyiHghGo0iHA4jHA4jFovVBDOkrnFzrGVfK5Uvr6ubnp7G1atXDY0lT/C5xlfSZP1Ujm9VAGC29ZRKJfzwhz+suUHjaUDaZ4VCARsbGygUCnj55ZfR09Nj9kPzuSgzmcjo56vTfOuWBryPsVgMlUoFg4OD+NM//VNsbm5ie3sb+XzeOi42GpyFNpwniO9OTk5w8+ZNZDIZRCIRnDt3zsH3bs4WDzTwZ1x38HY1/iYgPSdlYzAYRCwWwyuvvIK+vj6srq7i8PDQ4UTzNuRn7btGF0n/evT16nQRrSml+969e8jlcjg+PsbVq1cd9i+nD50FQKnzfH5RvZqs4Nsp5Knx0obh4yftN64vtQwEwtWLfIxGozh//jyGh4fx6aefYnl5GZlMxtWe5fKFz0WNxpIfZT0SnpVt7IVv3OSthOfagQacnae7Nefn55HJZLC/v28OgKB0RptB/awEvwaNOMtu4EUAyDJPy3DSaSYjra+vD6Ojo7h48SLa29vR1NSEcDjsiFJJB5aEDuGlCU2Ov9xjK40wTTHQZyks3JxoiQ+VtZ2QKss9evTInLKdTqfVq5I0oWMTrNoYfBXAjXtqhxyBSCSCb3zjGxgZGcHg4KBJx+cOoqQTgS11jKc4cYVL7/O5SeX4+zLoQuXpztBf/vKXWF5eNlerNBK8eBqQRhvRr62tDV//+tfR29tr8OQrZl7GXxo4RAPpZGoZDnNzc3j8+LE5FMTN+dbarQdcLlCEPpVKYXBwEO3t7TVOAP8v25JGnZvzQEbk7Owscrmco++aU2OrR+sH0TYajeLatWtoaWlx0Fg6cFSeywrO24Qvd2729vYwNzdXc3qxVx7lck1zKKktbtACzu0qWpALcJ4rIXmM+ueGq6Z/bPKLn4vA2+Fzn3jepi+4HG9paXE9zEvjCTcg4/bw8BDpdNpcxWYzYrU2OC9LPUYB6J2dHezu7pr+eJ17vD3Jb5TGTfOe80kwGDTOLp+jVA/1Tc5dLlN9vtOgBcm2pqYmHB0dOe6V1YzVs0K1ehrMODg4wM9//nN85zvfwdDQkEMX8TlBOsRGHyondZC0Gfg904lEAu+88w7u3r2L+/fvo1gsqlslJN68fU3me9HvkodpT3Q+n8fQ0JBjexwBOVJatom0p7Sgpc12krKDO5N8LAKBAPr7+/Fv/s2/wU9/+lNsbm6ahQUv9HEDaevVK9uIbOWfq9WqueI2k8lgZ2cHV69eRVdXl6MM8QjHS9viAejZP1o9Mqhsc4i1oJcMmEq+1vQxx4+CqfF4HFeuXMHQ0BC2t7dx9+5dx1WBbosaEjgdbONr0y/Pyn7TePpp/MDn3oEmZXFwcIDj42McHBxgZWXFXE/FV104sbwMUKMCrhHiP8uybsx61jY4o5FQpNSO/v5+9Pf3Y3h4GP39/WbVhZSZzYHS9nrwdusZ2fK7VEbSQKnXR16vrI+veMsJRu2USiWk02nMz8+bO8RtzttZBcDTOs9eaUJCNxQKIZFI4Ny5cxgfH0d3d7e58kAK3kZx43W4pfe4pWrLNguFAvb39/Hw4UOsrKyYPWqc9hpvNzIeXnDhzhSlk164cAG9vb1obm5GtVo1ex81heoml6SilcaDJtuKxSLW1tawuLhYcz+yre9uNLHJB8Kf0tUnJyfNwUUcX0krOS6aIpf9p8+0KkgH1MjyNjw1frWNYSQSQU9PjyM9kveDr+pyp4P/SSVNDvTJyQnS6XQN7vXATUbT/NXKaEFC/pxwrZc5ouFzFrnmxn82/N3woN/4XfR8TNzwsNGUt3d8fIydnR1MTExY+Unjafrdtv+T0qB3d3ext7dXg5+X+WHrF62g0XkvtA+aO5mcPoSj1NGS9lKuRiIRJJNJDAwMYGlpyXFzRT0nx82+kv2lPlEq98bGBpqbm5FKpVTdL9uk55qDqLXN6yIaRCIRDA0NYX9/H+l0GhsbGw7HW7bbqGNnk128HH0ul8s4Pj7G+vq6SdVva2vz1Jak11lsDPmutJFIJ8RiMQwODmJychKhUAjLy8vmzAoOGv3cQJtrmu50G2NbeYlLpVIxW24CgQBaWlpQKBTQ19fnmB+afau1Jz9rZSV+ks5ebEo3XehGG2kHJ5NJRCIRRKNRHB0dmcPh+AGYXuq09VUbh0bBxgtuPGLzBxpp/7l3oCuVCo6OjvDkyRNsbW1he3vbREFlap9XwdYo1DMuntYJ8tq2F0VUDzRjl9K3mpqaMDAwgHfffRfJZNKkoRGtuQHKHUhunBEePMWbK0h+wJIW1ePjqE2OalU/0ZeeaxNWi8DTaZwy7ZTje3x8jFu3buHu3bs1B1Y1KugaHScbaPVIY0aW5X2Ox+Po6+vDn/zJn6C5uVnda8bBLWii4aalMEvDXzPCyGiQhg/dsf3zn/8cJycnJu2qUUHohrPbHOOGBNGQDtT7zne+Y05KJb6g1C7eP4mr9pnPKx5g4NFlblwdHBxgbm4OMzMzDnq6OS9uv7spegoatLW14e2333bsReXGlFzVcDOwNfpwY+bo6KjmLnWJW6NAONE1fO3t7SYQADidDsow4adHkxzU6EbbQsjw3dzcrJE7XuWznBuEG79XnK+c0Z/myMnVc7oxwW1l4WnmFfEv1W9b1dd+JxxplZzKET5SVnGacfxtoPFMpVJBJpPB6uqqI2WVDGbqi1xNd+Nz7sSNjY2ZA7K8gCbT+Xf+v1gsYn193exV5uVlyry2WkZzV6atE11orjQ1NeHll1/G0dERjo6O6sqaRoDqIPzK5TL29/cxOzuLYDCIrq4uR9YEPxVZ0xnUV15OZs1pV3xRZlZXVxfGxsaQzWaxs7Nj2tDA5gBrZWx95+9KvVAsFnF0dIRf/epX+NrXvlZzBgDXFfI3rjO0LQT0ndLdbWOppf5z+QOcpsG/8cYb6OjoqDmzQvarEfDyXr357vacaESyu1KpmJsTyA5ubm429WjbUDR7i3+WOEj7hge2eDm3LQjUvrY1iOrk8pXjy9vkcpWukEulUrh79y5WVlYc17pJW03iov1uc2Dd4Gl8KRteT2N7P9cO9ObmJjKZDB4/foxsNmsOB9OuHGnUedbK1XNW673/VYJbpMXre9LJ4ummb731FkZGRtDT04NEImHKkONMgptoL/coSwea/nNH2udz3wspnWeuJDnwuxzlpJZCjfrJBQEZR3wPNL1bqVSQzWZx69YtPHz4EMvLy8hmszVOSj0DwjaZnxa0euo5P9TX7u5uvP322zh//nzNfnb+Dm+Lrg8i4NcpyL1mZMzwK8akgidFxL9Tn/h75XIZu7u7+OUvf4m7d+/WOFSSJm6OoBvYxkUayDQHgsEgvvGNb+DChQsm5VOmpmtOgbbqB9SuTkuDhddHAZxcLof/+T//J9bW1kwwUaML75/NmJBGv2YA+v1+dHd3Y3h4GB0dHcY4BZxywOY0yxRXmRLP8apUKrh9+7ZJobT1S/ZPw132AzilZ1tbG/r7+2sOICLnslgsIhKJGDxpexCNDzfI+WfgNPXy5OTErMKc1dHQ+C+RSDjmCKe32yo0r08zzGxGUiN4c34m/CRPcXrbjBoZPOI3M1BANxQKmf3V8n03o1k6odTe/v4+1tbWHFtQuIEs5aKbrpNXno2MjGBnZ6cmEKnZK/Vkl8zcKZfLePToEXw+H1588UWDd7lcdmSIcLpw/avJJUkrn8+HaDSKF198EQ8fPsT29jYODw9d8fTaH61/wGnW0f3795HP53Hu3Dm0tLQYmlNaNeFGPEWOMukfSV/O4zb9A5w6E0NDQ2hubsbi4qK5g95tPtSzPaUN5mVecdmxuLiIarWKjY0NfPe733XMdem8k55y4ytp7/C5xunJF0p8Pp9j3y8PYtOWmKmpKfT19eEf//Efsbm5icPDQ2M/cp2mBRzO6ux4padWp9RR1J+DgwPMzs5iY2PDbNHq7Ox02LF8zMnuselaLj84DWRgQ25lkTazG12kDqd3uQ6jZ/wcDG5nkC9w+fJljI+PI5PJ4KOPPsLBwQFyuZxph8tQyYO8z18lyDGQvz0reK4d6Lm5ORwfH+Pw8NA4MDYD+lmCnMRfNTN4gbPgIQ1a/hul3zQ3N2NqagpjY2Nob2933Osq2yflw40KmzPJmVsa6TaFI5WdVo/ER/7Jfst2tDZI2GSzWezv7+P+/fuYm5vD+vq6cZ654fOs+U0Dr8JA9pWPMxeKiUQCb7zxBkZGRoxBIgUPr8vNWJBGIIF0/twMW27A8d/ptPOTkxNzBzA/SEryhsYXTwua8+L3+xEOhzE1NYWRkRF0d3cb5cSDOVRW4iUzMeS4STpp41GtVpHJZLCysoJ0Ou04hVybS5pRUq+/vN+cf0ZHRzE1NVVjnHFnggdLtDHh4yf7RXQpFovY2trCxsaGNQ3QBlp/5We/34/Ozk5z96fsM9+DrslP6rOUh8CpM31ycuLYt+0VbLKLt0n3i2syldfDx0HTG5o85N8bnUOcV3lb5FCSkU3902SwxutSXtAqvDxIzNYX+Zt0nul5oVDA8fFxjXPGx5CvQsuArOZg07NoNIp4PI5YLGb2JduMT20s3PpZrZ5mSe3u7iKTyaC1tdXgyPfpy1UvTYZqPMHlVDQaxfDwMI6Pj3H//v0ax/tpjVdeB2WhbGxs4NatW3jjjTcQi8VMXyhoKK9bJJypnHxmk0nSoQuHw2hpacHLL7+MTz/9FPl8Hrlcrm7/tPpl3W48qj2vVk9PKE+n0/D5fJiensbw8DASiURNOU0ua/LW9p4mMzQ5o23B8vl8Juh47do1zMzMYHFx0dwMIenTCGhtcfw1OIsMo/8UuC2Xy5ienkYmk8HAwABGR0cdc0N7X6OXmz3Nn/P/mjPN65PjIT9rNrDGi5rOpOCb3+/H5cuXsby8jI2NDXPquiaXbDrGbczr2Zq2/tra9AJe2yR4rh3oxcVFc/cmgWacuxnqsowUDBLcBsWrQSrL2hTh04DN+JZt03/6TKtosVgMyWQSqVQKr776KuLxOEKhkBVPojsvw2moTVxJA5nWpxkz9F3e/81BGok8bZCnkpIRJGlB7/Pxz+Vy2N3dxerqKj755BMcHh5a95a6TT5uUNn4y8vklWVsE186CPIvHA6jqakJHR0deOWVVxCLxWpO2iY6SeNXA01YS7y58aYpbLc6i8Uijo+Psb29jU8++QT7+/tmHGQdjYyHG9iUAXckKQhx6dIl9PX1oaWlRXW+NAdEcwxsONmM2Wq1avbkz8zM4PDw0BiS9RyHRgw/rU+JRAKjo6MYGxurWf2QeEvnwPZczm3qH+0/3NnZcT0UTXNc3PpJZWlf6vDwsGqUkHzUtn0Q8JVE3pdq9XT1ggwNryDHSuPHQCBgtlzId7VDzTjITB9eTvKPV8PCTcfweokO2uozb5s72LLvvB+RSKSGBmcBzo+0575QKJhTzm39lSvJnNe5HPX5fGZFLx6PI5lMNswXXvqQz+dxeHiI9fV1xGIxEwDnp3DLMZJ3k8t5S2V5H2k1PZfL4fHjx440fU4fThMbzm5OJbVbLBaxt7eHzz//HBcvXkQwGDS2B2WJhMNhh67jIPWZdFJ4/7m+JprFYjFcuXIFW1tbODg4cD2VWwOv9p5t7kuHjoLId+/eRTweN4c6yrq4ziI6aM4ed6CkTrLpaLf+k+7z+Xy4fPkyfL7Tm3IKhYJZhOD187rq2QhuvOTl90bGgtuolUoFs7OzyGQyyGaz6OjoQDwedxwQKtvh80a2L3+XAWc+BnxrBX3ndWhjqgWM3OjM3+XtAl+eN3H+/HmTmQUA+XzeZAFrOl6DevLADWz+mpQhWl2cx8/qfz3XDvTJyUmN81UP6hmTHLwO/rOAsw6i13ekEpCKhSLTLS0t6O3txR/+4R+ak7WlQyWVLgdurJFCk8YZT+OlvvM65YnpPFWFVnRojzKtOnDDhNL3qF2eusWNA55Oxx1reqdcLqNUKuHw8BD/9E//hM3NTXMdGuc5rwamV+X6NKAZC/x3nroTDAZx6dIlXL58GVeuXEEkEnHwBResnD9lSj5P5aLnVF7uybKBVAAalMtlzM3N4fbt2/jss89MCpjNUKsHvH+2eeTmPPMV2I6ODgwNDeH11183vMlXnqXzzJWjXCWWh1PJ1WmJFxmU09PT+OKLL3Dr1i2TImzLyJH98mLgct4ivKLRKN59912Mjo46tnbIOU54Ulvani7qo0yRpX6fnJzgRz/6EZaWlkzQ1E2ey366jTHh29zcjL6+PgwODjqMS7dVOs7/0hjhtPT7/bh37x6ePHni2PKh4VfPeJROTygUwtjYGBKJhOFLMmqkw0dGHPUtEomgUqmY8twJpG1Rja6Ya3TnxrgMMNh4slKpONJGbXXT//b2dmxvb2N3d7eG9m59sNGeVppyuRyWl5cxPDxsTmbnMpD0CmXIcH7h8pMCv1x29Pb24hvf+Ab+4R/+oSblX+JWD3j/aDvH+vo6/umf/gn/8T/+R0SjUceeVs2RlFsoOG/bAkPBYBAjIyMIBAKYnp42J0RrfFyPj6Szpo0NHca3vLyMn/zkJ3jhhRfw0ksvATi9goecR6I3v96N+q2dvM3bkI4N9Z/okUgk8K1vfQuTk5P4L//lv5h5YsvAsoHNCZDPNTpR+UKhgEwmg5s3b2J1dRVTU1P43ve+V9NfLWAix1+mBEubgPMDzyrj9XLZL6//i8fjuHr1KiYnJzE3N4cPP/wQq6urxu7jfZN2qxc61qNrIw4z7z//nfChKwm3trbw4MEDvPXWW7h48aK5/ky+z+cRDxTwcZK8z2Uk/U5zT2YS2OwnTn9qpxG7SWZYEm7hcBgXLlzAxMQETk5OcPfuXaytrWFzc7PmPJBGwc2xtpXXvn+Vdvdz7UBzJWB75rUO2+/PykF+FnAWIaCBdIQDgQBisRheeOEF9PT0oLOzE62trY5DadyEiAR6RxqJmpCQQkaLnGkTnb/PVzHImNSEDTngmrCRTqHP58PGxgbW1tYwPT2N1dVVcy0IN8SkESyhHn95/f1pQDrOdJLk+Pg4Xn31VXR3d9c4zxpOGm68Xu5sSBrTOLjxLV+V4oYvPSsWi7hx4wYWFxcdVylQ/fWMtKelLacP73c8HseFCxdw9epV9R7aarXqiLDT7xotbI6EnG9k6JDjk8vl8Nlnn2F+ft6kCEs+1f5rUI9OnI+i0ajZ700BKbkKzXmBz3NttZobTPyP0vbn5+dN4MQLrhwH2QdJ50Ag4HCQZFCIjz0HyYfceOR7cSuVCra3t3FwcODgV/mfy0Evcp5keFtbm5F9HF+qmzsfHKRjKeWi1+v83HSmdIqoHP+NG9rcwOT4yNR5bsxXq1U0NzcjHo/X4FAvwG6bd/RusVjE6uoqOjo60NTU5KAF/y9lKH8mHVEq39TUhKGhITX13OZQcRra7AJqp1gsYmdnB3t7e2hqakIsFqvZp0905SuJmu7Wsr7oWTgcRmdnJ/7gD/7AHOZqw7MRkDzH+1gsFjE/P4+2tjaMjY0hmUyqZfnKHNGFBwps2SxUTtMvZDe1tbVhcnIS8/PzjkUdr31y+52PhTZ/+DyvVr9M5/b7/Xj//ffx2muvmfR2/q4MnPDnMrjJeVoLuPD2NZCyHYCh3cDAAF577TUsLCzgs88+c5V3XmW9BJsstckvibv2PucZGp/j42PcuXPHXHVFNjTJNh6YJFy1A+s0Ocrf4TjUo4u0naX9YAM5b6VeBpxZQRQYmZiYQFdXF7a2tvDo0SPrtWVewM2Gc+u7pJOXNuvZjjb4vXCg5ed/DWi0fW0iNFq/m8Gi/S4Fmc93evBMIpFAKpXC5OSkw3nWyvN2JU4kfCuViuqo2gxriRt3xmy0cKO35sBJGmjP+O9HR0dYWVnB/Py8uW9Wu9v5LHz3u+RV6fT5/afXEvT29mJychKDg4PG4LQ50Lwe7Xebc1LvpEj5DuB0Ful7pXJ6cNvGxgYWFxexs7Nj9iERPA1NvTop/DPRk+5EHxkZwdDQkGpontXJk79rBgBfZVpaWsLe3l7NiqFtvp4VqP90rV1HRwei0ahjDnP86TPvj2b4S5nA53A2m8Xe3p6509qtL40Y65znA4EABgYGjANtc1Sk3tH6QcAN9lKphOPjY8d+STe57oavxJ32QMs96BwPG3AnWQI/IM0GNsOVcPQCct7LIKubbOKQSCRUB1ri45U/+NiRU8ifyXrps20+a++Fw2Ekk0lHcKAevb08I5zoTuh0Oo2WlhbEYrEaHezFvnBz7imgFo/HMTo6ava7es0MlDjb+ib1N53KvbGxgZWVFbS2ttatQwvIcP5302n8M8kMuvZxe3sbxWLRyKdGea1R0OQovybv4cOHGBkZQWdnJ+LxuPV9/l0bc82OlM6YG2i2LmWVtLS0YHh4GADw5MkTZDIZs/Bio18j8t0r2OrTfAxNL1QqFRQKBWxtbSGXy6G9vR0DAwNobm42802ba9JBt9HaJmvcfvPST7d+2/Di487pEAwG0d7ebs50ODg4QCaTMdsd+WLKWX0er+CljWfBQ783DrQXsAlGW9lG6z5L+2cBt7ZsTjN9lsJ/eHgYY2NjeOmll8yKs3a/KdXD06BlWgkHfmIjAU0gelatVh2rwtz5IAeEouP0ntsk5E6iTFMj3Hm/ZLoc9Sufz+P+/fv49NNPHScZS+XrZSy/CmEvx7SeIcdTBkOhEK5du4aJiQlMTk460iP5AUkyJcstWENRepmWz//b9qtz0N4HTlcZVlZW8M///M/Y2dlBoVA4U1TTq0EjnT4t7Y2fFfD9738fPT09iMViNatI/DOPPrsd+iGVs2ybDEcqt729jZ/97GfGudR4tBEjRBtjia/f70drayt6e3sRDodNvzV6cdz5+9IAl84T/RWLRWxsbODhw4c1V8W5OSqyfVv/aDxDoRDOnz+PVCql7sHm2RByJYH3ixtVAMw5HcfHxzg5OTH86zYmjRqlwWAQyWQSwWDQcUe1lIESSAbbgK6Fs+HA+asRvUTvcAdGzhWOH10VxlMQZb3VahXJZNJcLeMGXmQBL1MqlbC6uop8Pq8GxzR+of+cTnzVhng+FAohGo2aLR9Pky4vgfiQtnj4fD50dHSoMoXjRc/lXNScaN5Hv//0FPtoNGrOCuAZDJI+XvvmFozI5/OYm5vDyckJpqamHHvgqf80L4i25XIZkUjE2B789ggpq6gtbqdwGrW0tOCtt97C8vIyisUiMpmMShutX/I3Kfvpfa/OADlytC/7xo0buHTpEl544QVTrxwHbUx5diLVKzPEZEaZxJkD1+3cLgkEAmhvbwcAXL9+HR9//DGOjo4c9NPopfEFt1e1shJsdUhaSLA59xSoKhaL+OUvf4lLly5hZGQEU1NTDr1gu2rMbY7xRShpn7jJXqn/uCznOpdkMNWnzVnCV+LP26ezYOLxODo7O7GysoJHjx5hcXHRlNfo6kb3RvSiVsar3XcWeK4daODsKQH1IjpfBTzNANoMXhvjaY4UCS1i8ldffRVDQ0Nob29HJBKxtsMnuLwzVO7f5ArGrc/y7kWOJ39HOr3UHt8PTcCvkuGHGNgEnoRcLofZ2Vk8fvwYjx8/NgdUaZPerZ6njZxRf72UcXOCuLMXCoXQ2tqKb33rWxgeHkZra2uNMOaGtzTAbQYw0VkLUvD/mgPNjXoqJ9stlUr49a9/jcePH2Nzc9N61/ZZwdYv7bmcQ319fXjppZfQ29uLRCJhjHz+nlRyXEFyo9WNt3i6uPzt+PgY+/v7mJubM6nbvF35WTN46tGD6uArZKFQCOfOncNbb73luPaCjHFZj7aHmFK++Z80OIm3lpaWcOvWLXULhcTT9t2mWGk84/E42traEIlETH81Z4n3UdbJU/WCwaDBN5/PY2trqybAYYN6846ekREaDAbR1NRkAmKFQkFND9RoZOsLGeM8DV3yjJSvbm1pc0IG37gOkE4nd4YA1AQhKKjT1NTkqEvi4VWPcl4slUrY2dkx2QPS6ZTOAzd4tQCjxMXv9yORSNSkPLrhJz/b+kAr6PPz82hpacGFCxfMlWekQ2WWGJ+P3IHk8pn6zI1q+v/CCy8gGAziyZMnNfqznrxuRLcSrehgSTptnE4K5gFNTg953RvXYbyslLtUJ6eBz3d6wvS3v/1t3L9/Hz/72c+M3eDFZrA5ofKZF+DjXa1WMT09jUKhgHw+j5deeqkGJ653eZvc3uI4ye0cmqx36wO3CzhfJZNJvPTSSwiHw3j8+DFmZmbMtic5Nryv2m/1+Evyg/xNltPAJvOI9icnJ5iensb6+joWFxfx5ptvOg4Y03DQsiXpOZ2pwrci0PvSbuNbJzW7gT+TfeZ1S31NtqSNHjI4WKlU0NPTY7IMHj9+bK4D5DqgHjRSxm3M3Ozls8Jz7UC7KW6tLIHmqJ2lbV7fWd9v5F2bAWgrJx1nig53dHQglUoZ51mmvLkpOm5YavteCWSalA34XiTCWRovXiNIUqhIetgEFR0S8+TJE8zPz5tUWNs9s/W+24CP+VkVpKxPOqr0mY97KBRCX18fhoaGMDQ0hGQy6Ui55fVxZSWdQTcjTvutkRQ+jecKhQJmZ2cxPz+PjY2NmjT6esaJ27iche5yHg0MDGBiYsIoRulw2XAhg5X3WTqN8j/NL7lSu7y8jMXFRWN4a8EFL0acfG4zesgRaGtrQyqVMvdf8vc1ftGUdr0xI17c399HJpPB/v5+w8q3HhA+0WgUnZ2dZlWKnnEZZJOL3AGRz4kfisWiCQCddWxsPOv3+839x7ay2ri40ZAbbtp+c00GSjnrxemjcpr+kHqM3rM5Jn7/6aF2dPpyI2DTN1wm5vN55PN5FAoF46BxkI6D7CdvR77n9/uRSqWQzWaRy+VcAxM2PnRzKCqVigm27e7uorm5uSYAzesgB9qtXkkjGic6kTuTyWBhYaHuFgA30Ggg5yOtsJ+cnODRo0eYnJxEV1dXzftcJ1LfNZ3nprNsetbn86GzsxODg4OYmpoyjqvU9TZaarxjo4fERZNHZAMdHR1hfX0d0WgUL7zwQs1NKlynaO1zXaXZd5oto/GnpJvMIgqFQmhqasLw8LAj4GPLXmhU3z/Lclp/OZ/R3Dk+PjZbYB49eoSenh6kUimzWMV5j/MR1S3HRNMbbrTX7AsuP930gE2nS7DxYLVaNWekEM/lcjkEg0FsbGxYF6aehZNr0z9fBTzXDvRZ4XdJYN7e76JN7vRQWxQ5DofDGB4exsTEBEZHRxEKhUzamIYvTTQt6kSKiNK0tFUhiozJlU5ZjwxocIFEDjZXcrxvEtyi93LCUv3ZbBZbW1v48MMPsbe3Z9Jw6jlqT2MU8M9eAwReQDrPtEfr4sWLuHz5Mrq6uhwrpfw9bjQR8NQjbiRJw4TzDAFfrajnSMuU7HK5jMPDQ/z617/G4uIiDg4OHHt7n8U42EDjLU7TYDCIgYEBjI+PY3x83LFCLI19ArmSKXmdGzESaBuDNHSKxSIePHiA6elpK78+K+BBs0AggP7+fqRSKbPaRzSyyToaU260S8ODv0M8Uy6Xsb6+7lj9c+vjWeaSz/flQU60jYXLCG2riuynDCSS3KL3i8Ui1tbWPK9MNaIn6AofmWLupd9uThdwup2Fr0DXm3te6c5ljcxOoHHX7uGm55wPiN5ksGkOtFdHhpfn/aX5ls1mkc1mTRuSHsQLXE5ynqGxkRlagUAAo6OjODw8xM7OTl2autHdFgjI5/PmnvixsTGzGqYFf6SO1Ogm6U/Oc7lcxvj4ONLpNCKRiLnful5/GuF52T9Kn/3kk0/Q0tKCzs7OmgA/3wqmHfQn+VADnuotcYlGoxgYGMDrr79urljV7B1NhkhwC4Dx37R6+O+0Lzefz+Ptt982q/OcR2wBI5Jd3ImVdoLMGOP18L5ouFM9XFYNDAwgFoshHo9jc3Oz7hVXTwteeU5r04YD/U7bXwqFAj755BOcP38eoVDIEXSW9irZy5qMJVoR7eldGQzi72lBImlL87J8DjdKIynruP5rbW3FxMQEOjs7kc1msb+/b7KxtEUqG6/b4Hfly0n4f8aBtk2AsxJeKqlG236WQoDXyT8TA7e2tmJwcBAvv/wyOjs7EQ6HEQ6Hral7QG2EUTMGSBFpKR88LZOcDlv/5WQl3AGYK6q0fX38Lkv6XQpkjrMWpXv8+DHm5uZw584dHB4eOpw06fR5ddrqja3tuReecqubO88UNIlGo/jbv/1bdHV1oampyUQDNSOOhLNMa+Npk9SOBoQ7D8pwOkp+k+mCBKVSCXfv3sW9e/fw6NEj5HI59dqfs86fRuY8p1UwGEQkEkFHRwe+9a1vob+/3+FgEZ240c+Vluw7344g+Zj3TV4JUi6Xkc/n8eTJEzx69AgrKyuOrRRPK1ekHOF/wWAQ0WgU3/zmN9Hd3Q3A6bBxBc9XEbkRwPsqFTgBNxJ+85vfYH5+3vAAvddoP7W5RfyaSqXwyiuvmKAijZ3cD0qyQTrVMgBC/+kU1mq1iuXlZcfVPlK2egU+HsDp6ceJRMKRbsn5TAbB5Ioyr4sbT+SU5HI5U47TUnM4bd95fyWNNL3Cn8vrhzgUi0UEg0EzR0i3eQkguIHGK+VyGel0GpubmzWHVXFaUlCZOyLyM6X6EwQCAVy7dg3b29uYm5tzyBWbrpDf6zlZxWIR6+vr+Oyzz/DWW2+pwQnAqfuLxaJjbzYPElI2hQwaUNZTf38/XnnlFXz88ceuWxfOYhtpurxSqWB9fR2PHz9GOBzG+fPnTX/IfiBesQUbuQOh8bC8TYHKEw2ampowOjqKa9eu4cmTJ1hZWXGkImv9rKePbI4yHz+tPPDl+QuZTAZ/93d/h3feeQfnz58315NyR05rR+psrmO43iKaUlkZELc55AR8MaazsxNNTU2IRCK4efOmufaP889Z7WfJN2epxybbtHopc4XuLH/y5Anefvtt9PT0oLm52bUNTkeuV6ktvpVAOskSJ1sf+VZKuQWN24L1aEH4cmeY66BQKGS2SX3ve9/DwsKCOaRXbgPldJSfebtuOuh35VA/1w60HCgv5dyUfqOgKVBbvV5/43XVw09jGG7oxmIxjIyMYGBgAJ2dnUilUojFYjXGKwF3aGzKlfAjHKVRywUHlSUFRm3wujWhrSkWMia4krY5uHLSS0ONDMPZ2VnMzs4inU7j6OjIGAQSf60NKTDps5tA1sbLphRtYOMzPqa057mnpwcXLlxAT0+P2aMrjW9Zj7yvmBtIvDznMzIQNNz5yinVx8eRv0epW/fu3cPDhw+xsLBg0rY1w7tR8DLfpVFC+BFN29ra8Pbbb6Ojo8Ox6kfgpqykMUJ8LH+TDppWz9HREW7evGlOBvayqnlW4HMukUhgYGAAra2tJhVNtscjz27jzd/TVsGKxSKOj4+RTqdxcnLiKTjg9lzSmf9Fo1G0t7c7FLMWGJTtcOOQQAbgCoUCcrmcuX7LTebV65vmOEWjUbS0tDh+A5xXPnHZLFeU+BjJ9mgPtBfaNwpuQR/p+NucBJ7hRKvQ5Cg1YhcQ2Maa6Lazs4N0Oo1z5845gpCajOO8LecBlePtNTU1IR6PIxwOO1b9Obg5AG79JfxzuZw5Gdfn8zlSejU9LvcQc70odQQ3ooPBIDo7O3Hx4kX89re/dZyVYbObbP1yA65zyVmZn5+H3+83WXbaKqqNXlSf1+1HUp7QdorLly+jWCxif3/fbD3R+qvNZzfHwOaE2/oBfKlXt7e3ce/ePeRyObz66qtqpgR/z81OI50og3Nan+ShsVSGnGbZHmVL9vX14cqVK2hubsbt27drMtDq2VBefvcq0xrRO9qY0NyrVCq4ffs2dnd30d3djcHBQbUuOQ4yO0KTiRw0PpL2M9kZJDflgoqWIeA2L7TMBCmfAoEAIpGIOTemvb0dMzMzOD4+dgTZ6s1/t3nkxc57VvBcO9BPA40S+asaFDkRtMmttW0z9H0+H2KxGBKJBJLJJKampjA0NIR4PG6iQDZhpxnvUsDycoQjfbalQDVqeEma0GeK2rsZOZrw4bgWCgUcHR1hZ2cH9+/fx8rKCk5OTqxX/3jthzQmvkrQDADu6EUiEbS1tWF0dBRXrlxBS0uLiVa6RRR5vdKhkQ40Ra/5QVAcpLEIOE+h1oAitdPT01hYWMDOzo5j5dlN8bk5AvKdeuMjFRff9zs4OIgXXnjBHMIjFYQ0lGyrSHLeak6mTQkeHR1hc3MTjx49wtHRkeqUNTLnbHSRuASDQXN/OAVkqJyUF9o8lcarJkP491wuh62tLXOirM0gkP3QQDotsl90JRdQe5aC5GM5P+TKHDcUgdPDCU9OThx3l9fj53rA8Y/H4+pqhuxnPdpoUCgUHEFSG3950VUS3LJ9tJVz3pamc7gM1HizHrg5VIRjJpPB7u5ujcHsZrTbUhSlPo1EIkgkEmhqajIBIw2vRviGj1elUjH6b2NjwxzeJHHnPMMNZj5O9XShz+dDc3MzBgcH0d7ejkrldE+o7LvWPy+g0aBaPd2zv7GxAZ/Ph3Q6bc418Pl8DvvBqw7wApJewWAQg4ODSKfTSKfTyGazjiCnjSe98KrGC5JPtDboeqv5+XkUi0WMj4+jubnZEQSm8a2XbSbnG72rlSFZyA9t42OgpYDT73S3dzwex9raGjKZDPL5fE0WAH+/EfljA21uas/cQJbhcm5+fh75fB7ZbBbJZBLxeNx6g4lGa2nraPPXjc94X7iNw9u3+SFutKSxlnXJNimlO5FIoK2tzVx3dXJyguPj4xp9Y+Mxqq8RcKvrLPD/hAP9VTs01EYjyhqonSiNKHo5sUjoUPTz4sWL6O/vNwfL0HNulHDHh5QPMbhMc5KGPp8kvByPMMoVHIp2S4PCZrjwZ/SdG1pamh7hQeUknpubm7hx4wZmZ2fVS941Z0fD06YwbKCN71mMZvmZxpPGNpFIYGRkBN///vdNuj5XiFxZ8ivCAGcKj8SR04ULSp4SLvfmcKCVIXIoy+WySR/y+XwoFAqYnp7GT37yE6yvrzuu+pHOvI1ubkaqLGdTtHxu8dTtRCKB7373u7hy5Yoji4Mrc8kfkma8DJ8DNN+ovLzLl+YM0ePmzZv4zW9+49hywNt4WuVQrTr3L9E4Nzc3Y3h4GN/+9rdr9pnaDBptzyD1R1sB4TKJri7j+985bemzNs5e5iPRvaWlxbGX27ZlxDbOsk5eR6lUwtbWFjY2NtRtCLKORoEMzf7+/prfpZ4g2vI0bds5BdSXk5MTk8JN5erNM/ldzjdqi/YIEg5cTsnT/Pl40+osyRR544Lf70c8Hsfh4aF1teSs+pqnb3P6cqNP6hxelgcwg8Gg4+wCv9+P/v5+XL58Gb/61a9q0lbdZB/1yU020krk0dER3nvvPbz77ru4fv26uqpH/eDbU/jWDM24l3KIZMYf//Ef48MPP8SDBw9q+Ezrg/bZS3nq38nJCVZWVvDf//t/x7/7d/8OAwMDjjIAHAsJ1WrVwXtcdsnsJ56KrMkF7hy+8sorGBsbw3/9r//VnOEgx8RLv91sJZt+I37i41osFrGzs4ODgwOsrKzgr/7qr9Df349oNFqTNSRpLOW0pt94OW7nBQIBc386fSZbgK4X422SXAZOt2TQnco//elPsbi4iK2tLatelXjLz/UcsmcBWr187pATvba2hrm5OXz72982h4txB5SvDGs2uATZXylz5bWtvBzPEgWcGY02mnFZxu1tCtTxjEfedyoTCoUQCoXw9a9/3WSbffjhh8hkMshms1/pWNVzyr229/+EA/0swW3CPu0gezEEpYIjodfS0mJOBaaj47mhJIWbFnmiPmjGIwfpnEoFynGVE4j66OWQAiko5OEGfHXIdi8wCfnt7W0sLi7i7t272N7edqQG83IaDrJPZwHbRG0UJD2ALxXO0NAQBgcH8corryCZTNbcbQk47/EjI4LjKMeWG0W8DhKCZAASDnL/ova+pEelUsEvfvELzM7OYnt723HQkpcVD/nczZj3CnyO0F3PIyMjZn+lNBT4ipnc4yUDDPwZ4StXeTSjqVKp4IsvvsDCwgL29/fNqdv1Mie89FX7LmXFSy+9hPPnz9c4Z5JmHA85z3lfpVHDcT88PMT29jY2NzdrskPku27z1g1H4JTPx8bGMDAwYH7XVj5lVJ0bFrTPmdfNDdGtrS2sra09daaABGqPrt/i9KhUKuakaEkDKUPlM86ruVyu5horibfsg8xykeNM37kjzP9THdIRkPQlfKVhGY1G0drainQ6bTWUbDwj+ZDzLKUI0yGT9Jw7xtrc0Rww+ix5rbu7G9lsFh9++KH6vhtofdTmWKVSwcbGhjFUaRWS8zh3BvlconJa1hHHgQcBBwcH0dXVhaWlJWQymTMbxdqclg4c9a9YLJpsplKphNHR0RodJuWQbEvTPTyww+0ZbUGBro783ve+h1/84hdYWlqynkjuRgtNh3Fa2BwNbV5SoOfw8BC/+tWvMDk5iddff13d3kU0sG3tc3PeySHjjiM9Jx3J8ZbzhsqSfIrH43j99dfR0dGBDz74ACcnJ6rec7MlzwJe5IbX97ntW62eHuq3u7uLDz74AAMDA5icnEQqlbLWIWlVry36zSZHbfYIBzcbVepRXp+8Fo3+Uzk+X7g98cYbb2Bubg4bGxvY3Nx0lTFfFTRS/++NA11vAhGc1QFqFLwY7hou9X6TRkQkEkEymURPTw8GBwcxNDSEpqYmR+RKrtxwocNXJBvBl8pLwS2VLaeFNM4IpPGhKQGuqLhxpRk9Uplubm5idXUVCwsLWF9fN2lAkhZe4Gkmr1celaApGfrv852moHZ1dWFkZAQjIyPo7e2tOXhHptRqQvQsfeEK0nZHID2Xzku1ehoV3d/fNxHZbDbrGF/elvwswTbnvCoBbkAQ/4bDYTQ1NWFsbMwEpWwGF58Ptjrd8NXmJ73Dr1pLp9Pqac5av2xzqRE6BAIBxGIxDAwMmIPDpLK28ags55bGyOtJp9Mm0CXn+1lB9ovGuKenB+3t7VZ68HclDeWYcwOSyu7v72Nvb69uHzR6eOlTJBKpST/nuNL8Pwv9SqWSdeWiUUeA3iOctEATr4PTkrfH9Yps2+fzmZVPLUOpHriNDemwUqmEbDZrZC/vm8Y3Ej/5nes22hdIZ0tI8GJXaLjzdiuV05sndnd3kU6n0dvbW6NTpD7WZIdNftG8omctLS3o7u5Gb28vDg4OXOX5WXUkf594K5fLYWlpCfF4HIODg8ao1/SeJrttv/N+8+dkm3DZEolEMDAwgMHBQeRyOSwvL9fYNI32zyttNFlF/S4UClhdXTVXXA4PD6ur8PyzbFtbrdbateEvMxlkGV432Tj5fB6jo6OYm5sztzJoOD8NPI2z7dZnXi+NQz6fx8bGBsrlsglktbS0IBqNOnCpN+b17AAb8OdygYrzs8Rb0yV8Hmg60dYu2Rg+nw+pVMpcdxUIBLCzs2OyEakuzbbwCppTL581Ar83DvTvChoR7G4GfaPGkmROMhTa29vx8ssvY3x83KTiUHnaC8aPi3drW5vg/LABDtwh5oYhNwrkoQR0grCMbFNbNInkarJMO+fPNKOE/lcqFeRyOXz00UfY2NjA/v6+cTxkPfXo/qyEsxvIttyMMaJvIBBAPB7Hyy+/jAsXLqCrqwuRSMTVMOHGkW2/Sr3URw14VFkaFfScO2WVyum+uAcPHmBtbQ37+/uOA4vcaC4dM/lZPvcyxtI4CAQCaG5uRldXl9lLx1ftpfLWDqrhbRAeUqFqhipPtwVgTlK9c+eOuQJCvuMVGjHCKIiQSqXQ39+Pjo4OAM6VS75NRK5i8RVy7YA63n/ii3K5jIcPH2Jubk7dDsDhrLKUcPX7/RgaGkJ3d3cNLWllmehAOMvIvWyfVl4oSLe3t4ft7W3XsfJqTGvzNxQKIRaLOWS8NIa0VHoOfCx4mWKxqO6BbgQ0GV2tVk32CrWr8QWfM7wuyWs0/6rV073E7e3tNbxYTwZImaHJFXLM9vf3zfYVvoIiAxWku3j6olY3fY9Go2hubkY0GjX00fSCV7tCGpxE72KxiOXlZRN85yCD6vXGnssznnZKOEWjUUxMTAAAZmZmrI5TPWjEcSyXyygWi3j8+DGCwSBeeOEFtLS01KwUU70yi4j6yg/IDAQCajYMtall4FHw8cUXX0QikcDa2pqDpprzSL+70V3yhJd5yXVLqVTCwcEB5ufnkcvl8Ld/+7dIJBKGFppu4rSqVqs15+nIctyRIhlC73M5pslFHmCjMYtEIhgcHMQf/dEf4e///u+xs7NTo3e90oLKNyrPbO/YfrPZKcQvFIxbW1szaf4TExPo6+sD8GXwk5/sL9uTbfOMAe4Ec/ufz1npW3A+lpmI3JGVth6Xyfz3eos0pKu4Pu7p6cHIyAg++ugj7O3t1Wx/0Pr+u7TVCX7vHGibYHrasmfFw+szL04TMVg4HMbg4CCuXbuG7u5uc0AYAd9vqqWJaUJaOrzS+eWTRSpMLijloTtURksjln2lKBw/sZE7EtKIlY4P4RoMBrG5uYnl5WV8+umn2N3dNafJ8hSqr2LcvYDNeHAzrnlf6S8UCmFqasrc8RyLxczKMzcI5NgBXwpLGayQRrfNubQBL0cGB9Uthe7q6irm5+fxs5/9DHt7e9Z7nm3taEaMxIH/Xq8+6hs5z01NTbh27RreeustRCIRBy2pXrlKJA8DITxlyhrvg2as0Hyk8ZidncUvfvELHBwcGMNacz7q9VHOZ0kvzl+kuNva2vDnf/7n6OrqMsqO91MaBpL+VJbv77IZFpQmOz8/b66AcVtpr2fMaH2k78FgEK2trWhpaUEsFqtxbDTctP7ZDEja73d8fGwOUOL1akE8N5mk4RYKhRCJRBxp5MCXslT2n48FtcudQGkg0T3QfH7YHABJB432vAw/c4Mb93R1Er2rbTXic4XeDYVCKBaLiMfj6Orqcjir9eaHZlDy3who9XZhYQFtbW2GZvI0a/rjuk7L0NEc1GAwiPHxcczOzmJvb6+mnFsfvPQROKX98vIy/H4/3n333RqZQ3STwROuPwA4dLR8n+RotVpFV1cXCoUC2trakMlkHMEBmyzQ+taoE00HZ7333nv4sz/7MzPPbUDzkvrFbSFp29i2odFY0/uRSAR9fX3I5/NobW01Z1e4BQclTbw6bfIdjZfpPdoPv7S0hPfeew9XrlwxV39J+43bh1KGcHzq0ZYCfgQUCJbBC1k3PaMDUv/yL/8St2/fxu3bt5HJZGrsukbtbw3XRmhuK2/Tubw+4oVSqYQ7d+5gfX0dvb29ePPNNx1XVcl6te/SaXVbMdaccS6Pufyy9Z3bC3w/u3TMafEMQI2s5G3QynMwGEQwGMQ777yDdDqN5eVlzM3NOc6McKOHBm42t/RZvMLvhQP9u4w4fFWgDa50nILBIHp6etDT04O+vj50d3ejpaXFIZDkJCXmlcaAFKz8ff67FABSELvtg5aTltcjI70cJ/47Tz+Ue5aks0JCiNK119bWHHtq5cR7FkaJV+fFS1mp9CRwgzAQCODixYs4d+4choeHzUmO0hGUDgsXsHw/Gz2rh4MNLwI5/pKHqUwmk8Hjx48xOzuL/f39mgNzvADnw0bw5e/LftBfKBTC5cuXMTY2htbWVut7cqVPC+wAtfOK/6Z9Jn6vVqvY2NjA6uqqYz+w9p6EegrdBtyBppTS7u5uI2dk8Ev2if/Jw6B4G/x9muP5fB5LS0s4PDxEoVCoqe9ZAPWN0itpr7CGJ29XmyeyDIdK5fS6MX4gHr0vjRfNeZc4889cDmhOppx3cgsFX5nQgpn0na8SuxktXo1XKkuGo5y7pOdk/fy7bEvSPxgMorm5uS49bfND4iqNvXw+j/X1dVy5ckWlgdQz3AHRMrYkHuFwGGNjY+bkYYlzIzpHApcttJK+u7uLpqYmhEKhmrF20+FS9tIzbQWbDuu7ePEi7t69i0wm03AAsJE+Up2U5bSysoKtrS2kUikkEokavLlu0mwSG2h1yDkdDAYRjUbR2dmJq1ev4tatWzg8PHTQtt788arf3HSi/I2CVcDpgY3Nzc2IRCIYHh6ukeccR9mWDVc+BmS7yPReDT9ep8zYoKBMe3s7xsfHAQC//e1vzU0q0kaVONnmz7PmQVm37CP/TlCpVHBycmJuH7l9+zaGh4eRTCYd8toWTKTPPPijtUPl5HNpt9h0lLTrbG3Y+MaGF+ddACa7sqOjw8yjra0tZDIZk1XrNm6Szs/KTufwe+FAEzRiRJ/V6H5a0ISsfMa/cyGcSCQwOjqK8+fPo62tzZywzCNEcuC5wnbbsyL3JsuVZZswksDb4xNSTg7+vk3o0TOZUkL18j07tFfv8PAQ09PTmJmZMROtkXuE6ylPTfDYnmngVSHzz5wPSIHEYjFcu3YNfX19aG9vrzGCueLhikwqUO5EU/02wcpBU4RkqPP6OV0omFMoFLC8vIz79+9jfn5eHSPevg20cdCcVzdBz2lE/Q+FQkgkEoa+PECl1a0dYCedrHogy5ECLJVKmJ+fx/Lyslm5kIZ3o4rfxmP8P/FZMplEb28vWltbHYpTfpZ4UDCLr/hw/uDpYlQXOSd0L6TtwB1bn7zMPf4Xi8XMwXCSLgTcEKFT6zXjQVtNqlQq2N3dNVdwyRQ6G/42Xpbt+nw+c5KpZljxeiuVislOIXrzDCXeLtcFPJWSyniVcZqO4/XIFG76z/eqEg70jpv8pPbkHmg33rAZg254075F4gdJExkI5HjL1R3+Lo0JOdBffPGFQzY3YrO46Slqk7Ij1tbWMDQ0VJN6LeUM1w1cL/O2aDWJfyf84/E4rl69agJktKJrc3hsxjV/JvWVzHSjQMH29jaWl5cRDofNeQEStBRsakN7Xo/W3E7x+Xxob2/H66+/bnQeHWSq1cfrsYGXeeaGL6fn1taWyWLp7+9Xg2p87N2cQt6O1BXyPcB+/Sk94/KJ5gjJ7ra2NiwtLWF7e7vmCiTN3nWbR/V4kH7TaGIDG3/zdzm/kg2bzWZxdHTkCOjzPsk+cF4guaLJVq1dOa6yPNcR9F3Sh9ojna1teeJ6hcsHyRNcZtA2ung8jmQyaYJ8fNFF4uF1HvA+nhV+bxzoRghxVmI/S/DiSJFgSSQS6OzsxLvvvmuihIAz/UEaUPQupd/xScGNOf6MCxybEJcGQ6lUclyPJevUDAcuAKRAkymx0ojiIAXznTt38PnnnzuuQfKaEqwBx8urs+JV+dUDaTTT+AaDQfT29uLq1asYHx83K89S+GnCkJ/aTb/LlG1p1PBnVK88aMJmhGpG4sHBAdbW1vCDH/zArDLKMl5o97T0BZw0JoeR6Pvmm29ifHy8Zq5ReU5nMjy4gicaymuC5JzVDC+ib7lcxuHhIT7++GOsra0ZWvGyNiP5rPQg/ElpX7t2Da+++qpJSdTa4n0mvMm548pQ8iOl8PJA2PHxMT755BNkMhn1ECUbuBk62me/34+mpiZcvXoViUQCAIyTSfXxtDPNiKYx1NL4CZ8nT56YE9Pp/XoGr+13Ke98Ph+SySSi0aijX9rcBmplK6+XA5+PMuPhLMaJzdjL5XJGTnM5QrSWOoXXRcYa1yvUXwo2S8PcZvQ3ajsUCgXjQBOeHBeOO32W46Jd0UcyOhwOo7e316wK03yi9qms23yXcoG/T+3SPtif/exn+NM//VM0NTU5Mr4Id2pPZjhwXc77QVs8pE4Ih8MYHh5GV1eXWfl20+9ufdTGTCtL/Tw+PsYvfvELFItFdHR01Gx5kDwq5zuNjdSXWtvcruF6LRwOo6urC3/wB3+A+/fv44svvqhxhnh5W/+lw+CFNjY8AZig9srKCo6OjvDSSy8hmUwiHA5bnSqSDVLnyT7wNmmO2gISXP9I8Pv9Zr7RFj+f7zSl+2/+5m/w4Ycf4vHjx9jc3HTQXgMpB9xoV8+eqyfDvfoa3KEkOpVKJXz44YeYn5/HO++8YzLhJN34gbH1bKh69r0sR06vXMSSz+g5BYvp7nVOD7KxqH7pA2iyhOuApqYmXLlyBRMTE3jy5AlmZmZqMjls4KZT3Z7Xg+fegdYUy7METeBoz5+2XSmkKBI9MTGBVCqFnp4etLW1OSKDPOojjQXNodIMJV6W90UyMTfuNWEpDUP+mfqjpVxo6W5yRYSXqVa/TP8mQySfz+PTTz91nFDMVzS9pgZrk7ARp+RZOHUcuGIi5/ny5csYGRnBuXPnHM5dI4Jfc4S44tJoJsdCWxXSjAwOR0dHePjwIW7fvo3Dw0PHXt5nTbt6IB0O6n9vby/Gx8cxNTWFSCSi3pMr02EluBmv1LbNyODfM5kMPvjgA7OH35ZK+zS043OfOyvBYBD9/f3o7OxEIpGomd8yEq45DkQzbiRLBc9lWKlUQj6fd6w+16OTRgeN96VsjUajiMfjZqWSeJ/f6y0NBw68n5LnuYOytLSEk5OTukq+kX7xPiWTSXVfp3aaqg3qPZPyQo5ho7qP6pAp+tyY4kEoPvdIN3F5RO/x/fl0ZoHUiV5lvNRhvC3SOXxucydZOgD8Oh8eKLAFUyh4Rfvz3e4PlnpWWx2STiKnXaFQwNbWltmLKmnK5ZwWCOM48z5y3LhsiEQieOGFFxAIBPCb3/ymxlC3jYmtzzbgfSQ4Pj7G4uIikskkrl27ZsppOtAtG0/SgvDXZJscn1AohOHhYZycnCCdTmN1ddXBH43Kunq/cXCzCShIc3R0hF/+8pe4fv26uc2DB0NkH+W+fi5nqf/UPzmnaZ7LPtA7VDd30qgePj7xeByXLl1CS0sLbt26hXQ67eBnG/1s877ee7xcPQdUa1MLRvAynNa5XA6bm5v4+OOP8cILL6CjowOtra01/ClXm3l7nHel7cE/awsEkt7cPpfBv2pVv0+dP7fRhuMtM1gA593gdKq+3+83mSU8mKONbb254XXeSXjuHWjpPGjOxP/twJVSIBBAIpFALBZDPB7H+Pg4urq6zNUW0rmRk0EqUX5SIhdYxGg84iwZUFNU0tiRDrGcKLZUX15XPeWoRah8Ph8ymQxOTk5wcHCA+/fvY3d315HG42UiNDJZvADnv7MYmNLQJ8c5Go0ilUphYmICg4ODSKVSNalNsh45NvXwdcPVlpaoCVQeLPH5fOakyaWlJczNzeHJkyc1K89PazBxHqlHb2kcEo1bWlowPDyM4eFhpFIpR2SX04FWkN3ApixsxpWEfD5v7jElnrbNe61+rU63Z1IGhcNhjI+Po7293XEatZvy53Vp/efOtFxVK5fLZlWKX9F11nnspqT9fj9aW1vR2dlp7vUm4AFCaaRodWlAPFIoFBwp3F5xdpMf0iCnFWi3euvNB7fUVM2B1qBRY7Rada5uS2Na6gjpQNMzyY9cZtqunPMCNruCcOG3BUiHUmZpcZ0lDWQNaA52dHSgs7MTW1tbVhxt3+uNE3dUDg4OcHJygnw+b1YdOS70340PNB0ijWDg1DgeGBjA0dER7t69i6OjI8cpyo3oY03GaHOFr45tbW3hyZMnePHFFx145nI5E3jRAgRcz8n6pXOi4clla3t7O/r7+zE2NmZsGOKnRvrtpYybbSzrocDQ48ePkUql4POdXivEaSKdJptsov987nJbUwZb+PsaH8t6eBk6GygUCmFnZwc+nw/7+/tmdfKstOMgx1azM+rJwLM4dZTS/eTJEzQ3N5tDHVtbW1U9pa3e2+qm/9JvAJxOLH+HyzLNFpBZGW72j0022/wFvvJNq/HRaBS5XM7IL7IdeFtfJTz3DjSBNNrqGduN1PtVPZdKhw7auHr1KoaHh83VOfQMcBqe0hHgNOCph9JA4qtuPGWE6rQpCnpORiYZKVQHd9Y5E0tjidrQhCOfmHKVhxxjau/mzZtYXFzE6upqjdHtddXZbWy8TECtnBcnjt7VvpMRSH+tra3o7+/Hn/3ZnyGRSCAYDFr3fknacseSf9eMBNkHWznJHzw1lHAm47VYLJqV5x/96Ec4ODhwXKtWz+izjYObA1cPNOeZ0nnfeustxwm+nAc144E7GfSc7zWVRoVtVZMit0STjY0NLCwsYGNjw3Hy5LPgbTmuUoaEw2G0trbiW9/6ltkvSMqRjwe9XygUEA6HjWyQtCHgVynJ1OhyuYyZmRk8ePDAeqCc21i7KWP5FwgEcP78eVy+fNk4DFQ3NwBoRZPoxfGXzr/EL5/P4/Dw0JzDcBZDjpfV+hcIBNDX14fm5uaalQJ6h+jLr1/THGMOfEx4uvGzAumEajKLytF/G++TLOS48z4HAgFzUJIXg9eGL3+XcKd5qZ1SqwVcZFCgXC475j0vR4cYBgIBPH782PSBO/KyPmkDSANXGvNEz3w+j9XVVSSTSQwODjqec0Oaz2+bIU301+YElens7MTQ0BAmJiZw7949I9vcxkfaSpwn3IDzEN19fHx8jD/8wz90bH9aXFxEPB7H0NBQDX0J3BwVTn9OD7k6SNkv586dQ19fHzKZDFZWVswtFLxvbjquEf3n5uTyvlG7+/v7eP/99/Ho0SN885vfNKt98j3NzpCfAWeGjtT53J6V1xxK/DjI8QmHw+ju7sZ3vvMdLC4u4uHDh/jkk09qdJCt/zbwass1Og716qJ2+ZWIN2/eRDQaRTKZxPe//300NzfXbEWwBThoLnNZzoMYvBzxrPQR+O+S/zX5xuvW5IDXseBznfNKZ2cn2tvbMTIygo2NDSwtLWFhYUE9fNTWhk3neIXfCwdaG5ynqees73upUyoCYrDu7m4MDQ1hamrKXKTOJ4dMyePA0xe4AgZQY+zRf86I9Ju2L5Pa4xOUHAStDikAbYKarw5I513Dk54fHh5ia2sLn332mVGGuVzOIZi1SeCmhDRoxLhyq9PNsJff6Te+itLf348rV65gdHQUsVjMsd9c26um1a3xIDe26DkZafVw5yANBHld0+LiIp48eYKPP/7Y3POsOc82sJV5GoeEwOf78iqjvr4+vP3220gmk47UMT6vpFNNSkU6K/QuGcg8csrpJPEnozqfz+OLL77AvXv3jDNpi6p6NSBlv+V3znsDAwN47bXXTPCOO4makcj3R9N9ldQ2fZeKXQbbyuUyVldXMTs761DYEk9b/+vxKg9IhUIh9Pb2YmBgwPq+7LPtrl9tXCqV09O3t7e3a05E9WL0y/5KGcjxaGtrMyncmtwl/HhgoN7ecsKXrlfR5PFZDFH5n7bakPPP5wdvh88tWaZarTqcNm5wxmIxhEIhx/aHpwGu3yqV04Ns2tra0NLS4pCBUhfLYKcMYNN7vF8+32l2QWdnp7kehq9iu4HGy5rBSm2XSiU8ePAAPp8PQ0NDjnIyw4i/Kx1Z+isUCo6APw880XsdHR34+te/brKRNFrbvtejgc359fl8Zj/0z3/+c7z22mvo6+uD3+/HyMiIuf6Ty0JOJ41+nFepjOag0Hv0R0Hb733ve/jVr36Fu3fv4vDwsIaP6vXPVk7i5AZ8TtLcyeVyWF9fx09/+lN873vfQ1dXl9nKw/vPx11ud5ILIPQ7txNsmVwkf7zaaDTPQqEQ+vr6UCwWcXh4iEePHqmHFXq1Ed2eeeHJszjgGo7V6peHLhaLRfx//9//h8nJSfT395s7ozm4BSSB2m18Msgj8ed12ZxfTcbzZ/SdB88b0R8y45J+C4VCSKVSaG5uxsjICO7fv4+9vT2cnJyo+tkN90bh98KB5lAv0uBW5qvCxeZE+/1+c7DEwMAABgcHHWmFjeCp9U9rXwp3L4pKCmxpQGv1yPZ4X+RqqUwr584JNzR2dnawsrKCtbU1x6nE0kD36mScddI8LUgjSxpXfv/pKZOtra2YnJw0fMFpRfVImmnjIcdRjp8XBetVCfC2yuUy5ubmMDs7i+3tbesdfhJfG728GO3S2dCecd4LhUIYGBjA5OSk2SbBaUht8r2L0uGUKyj8HU4XW585v5fLZSwsLGB1dRV7e3tW58uLIynLaIY1n3uUOdDW1obh4eGaNC7KPKE/NwVtoz3vL/0vl8vY3t42WzBswTAbj2hyzsYHfv/p1VyJRALRaLSmTm4gUnlpVGj4SIfv+PgYu7u7nlZvOV9pfbP9TnKCry7L/mq41sODPtdzOr3OQ+13MpDpN83Y0uiiyS5Nlvn9p/tt+ZVY2nxo1BHjz/b29tDZ2Ynm5mYHv9rGS7bF5QNQu8IZDocRi8XQ1NR0pmv+eN22vhGdd3d3zZWPdKq77Iubk1BPpksHJhwOo6OjA+Fw2JHFdtY+abKN48xlbLFYxMLCAs6dO2e2QMhzBLR9nlo71Ja2UCHf0ey/VCqF0dFRHB8f4969e65OiGzzrHaspiPkb+VyGblcDltbW5iZmUG5XDZBhnr6TLYjA/08W0bTE9Jp0/prG29a4e/o6MD4+DgODg6wu7uLo6OjujSVOGjt1HvPrf6z1Mnf5YHlra0tRCIRFItF+P1+czCeho983zZX+ZjUk31S3/H+ufVTygTNnm1EFvh8p8HtaDSKcDiMaDSKwcFBxGIxHBwcYHt7Ww0YPyvb//fCgfbiBHitR0KjgqqeESSNd0od7enpQXt7e41TyUGufHHgKw0cZ2nga4Y3leUCTQoymzFDddiEJz2TB1HwQyLkybcSt2r1NKo9MzODe/fuYWNjA9lsVr36yCYg/rXAC/9IJyYYDKK9vR2jo6N47bXXEI1GHZFaOQbcuaPfeCqtLY2G16UJPRu/SMdLGq7kCB4eHuLu3buYn593ZAk87fg0+r5mgJOzmEgkcOnSJbz88ss196nzOcZXE/hp5lSnlhLL6VLP6CDa0IF4W1tbjr2zXxVf84AAyaTW1lYMDAw4lBmtpttWwbjy0xwaTZ5Qv0ulEp48eYK9vb2a9Csv+APeeIKUbXt7O2KxWI3BwMePTmTn9PHaBjnQ6+vrroE9t9+k8SN1CPEhOdCyPslrXp0vzm/aQW6aPODg5jhrBh1Q60jKz5q8479r+NEdojSniTcbBZuBSEZsZ2cnenp6amSgjQYSeDaDzPLgZ18cHR2phuBZbR+p9w8ODrC3t4fDw0Nz76zsC7clbHgQ3rwM1+nUJhm9lCUgMzX4dgT+XqP95nOHO9Dr6+tYXV11yDreBrXNg/gkP7SgmCynyXvtt1AohPPnzyORSODx48eOeafRWOvfswBpH5Jczmaz+PTTT5HL5dDV1YWmpiZH/zjdbCnu/HYP6oe0UaVDpvGatHE4cNyDwSA6OjqQSCRQKBQwPT2NfD6PQqFQI4O0umR9tjKyHq0OibcNvNTPxyibzWJhYQHb29vI5XK4evWqY97K96UDzflU8xc0+vK66Depm6QO5XhrNlKlUnuejMxi1PoiaU6ZmX6/H1NTU+jp6UE6ncbx8bFZiZa4S71+lrn0e+FAewGbUHODesav7R1tknNHJhAIYHx8HH19fZiYmEA8Hq9Jiwacx9N7Vf60SiQni+wP4cQNGc5Atisa5OTjv5OQJEbm9VKkjPpPv8s0KEnncrmMx48f486dO5ifn0c2m63ZE/p/k8MswSaIpPLhtLl69SrOnTuHyclJxGIxALUGjwS+WigPaNIcFjLAtXQdwk+OLzf0+BjygE+1erqylE6n8fd///dYX19HLpezjpXXsXMzmLzObW4EkQH3b//tv0V/f7+hs+wvvUdAhh4X2KQYiC7yqhPic3m1C3c6q9XTvWfr6+u4f/8+jo6OTEq9HO96CtvLMw0Pv9+P0dFR9Pb2IhQKOVLotNNWNSObj4Xf73cc6McNJZ/PZ1bVCoUCPv74Y6TTaesJ7vXAxgN8ntGq5PXr19HR0YFqtYqTkxNEo9GavlSr1ZqglW1lXDMAdnd3sbi4aHjDFjzSjGz6b5MdhCfdAc0DkNxY4qnCki/5Cht3lOmdcrmsHmykGZZeHF/eL/os94bzVUrSFzL4ZzOo6TvRIhgMIpVKYXt728EbT6sr+OrZ0tISUqkULl265EhDlynbPBWeB2b4mEh+o9+bm5vx8ssvY2NjA/l8Xu3D0zjR9L9QKCCdTuOTTz7BW2+9Za4B42WkrrC1STpC+536SXz55ptv4u7du5ienq4x3Bvpl5v8l7iWy2Vks1l88skn2NnZwV/91V+Z/mn72fl3kolSv3JnhOqid+SihnSyW1paMDg4iD/8wz/Exx9/jO3tbYfTYZMJZ+VljVbSseLy6uDgALdv38b6+jr+/b//9wiHw+Y9Llslz/PtZpozxWlYT+7TO0RPAi4zeJ9CoRD8fj9eeukltLe3Y2FhAZ988okJQnF+ttnWNv6T9rPbe0/jnNF7WjuVyunZBaVSCXfu3EE6ncbY2BiuX79e8750XKU/wIHLL+4b8Oecf2SmLLd1tGwuwl3yA+c/uv6S3+nN2wNQs9AmdVtLSwtisRi6urrw6aefYmdnB9ls1tWPcqOLDZ5rB1p22IuT68XQtrXTSDnNUYpGo2hubsb4+Di6u7uRTCbR3NzscK65kiJHhwtcG1PLFWj5jNNIc4B51FManVIBSRry1BI3WnEBzScOx4UEJU2gR48eYX5+Hmtrazg5OXHdE/q0xhGHZ2mo0Lvys2bct7W1YWJiAv39/Y5DTrRInaZYpSKRbdI7NkEi65L8Jt+X9ZZKJczMzODx48cmOsodCCrrZnxJvOvR3MuYcDpT6mtHRwe6u7uNsQjU3nEo2+C04X2h59IQ0Pb78HlOc6ZcLmNlZQW3b992ZFfYtlpo/bM5L/S+bW4SPsFgEBcuXEBfX58jvVYaPLzfbkardBr5Z2ozm81iZ2cHh4eHjhM0zwISPznnyOkcHBxEIpEwyhpwrjjxOgi4zNFoy9+j9EeeNihBk3v1gIw+n+/L1UlpfGhyRvbFhrvUMW5bLtzqlTjRb5qhxa/w4eWorJuusznW5AjJO7Lr0cINeF+ob5lMBkdHR2ZucGdfOlRS70qekc8IotEo+vv7zSF9Go3pez38beVoHI6OjjA3N4fr16+bgKJ0oiU/aPxGfKpl5HD6+Hw+cwDQ7OysI5gg+ybHzOsY2uwMypDa3NzE9PQ0zp07h1gsVjPOknb8mc0J1XCX73H8KZNkfHwc8/PzKJVKZvuOhksjfSccJMiFCxsQb2SzWWxvb+PTTz/FxMQEenp6auxHnlHCbQfNyeKBSjfn2ab/NT3BdRXhEYlE0NPTg2AwiOPjY8zNzeHw8NC0rY0Hx1N+9iqn6b8XGSyfSb3g9h6dmZJOp036+uTkpNmGIW0vDnJuc9Bkq5R/8juVkQszEuTBhLJtrhdkZge9w2WJzHzgixXBYNDcJrKzs4ONjQ2HY/60PsNz7UBLsAm1ek4dYF8J8DJhqJxmEJFijcfjaG1tRSqVwuXLl016GU+LlMa5lg5haxvQT7yjKLcUbhpIhS6jTRxsCo0Y2iac3eqjd8gAPTw8xPT0NNbX17G7u+tYzXpWE6ARaKQtmxAl0JznlpYWDAwMYGhoCMlk0nHatm3cpJEGnI4xT+Gm9qTQsyk3Xl5T2NyhkoI2k8ng8ePHuHv3ruP6JbfxOssY1lNM0rDjf8FgEM3Nzejv70dra6u5T1uWBWrnBADX63Fs4y1pzce1Ujk9dGp5eRnT09OOlb96hqObY2QDSQ+iSSKRMME96odckeGGj2Zs8r67rZxTuePjY2xubiKbzdbwis1BOgtQX8LhMDo7OxGNRs0pzVIJa/iSoacZBjJQQM6nvL/XZpjzz7a5yOugvtAJ6dS+XLG1jQXvM5cDvE3KDNCc1WcB1eqXNzPIjA3gy/lBOJKc5DjSZ82pCQQCaG1tNQ60V/zdykm+pPTAcrlsHFxpA8gVMil/CXhAjb8fCoUce4X5Kdj1wKusJTyz2SzW1taQzWbR1NTkyGzg70unQ64+chkn55VM5+3u7jYHANGWlUb4TMoIzQbTHBlyPPb29vDgwQP09/fXXAfHy8v35W9eeEzTwfR7OBxGT08PBgcHkc/ncXBwoMoHr+DFfuVlZP94X0ieHR0d4YsvvjDns0QiEcfJ2ZzX+fyV89arTc3f4WBznmXdJCdJDhQKBRweHqJcLuP4+NjqtDaKj1fgNpXEuxGQOJRKJROsrVQq5q5okkk2Z7WeXS9lkXyuyTIp52S99eYJzU3uRPPMEOlEE54AHPqPn9cyMDCA1tZWxGIxZLNZHB8fO65RdaNtPfi9cqAlPGsnS2MirQxXIMFgELFYDF/72tfMqjOtevDVLqlcCWgliDMJoDvUMlUDqF0RI8eHDC7bfptSqWRSzbiC1BwynqajReMJtInMhStFjvb39zE3N4ePPvrIXHuk7cf7vxk0gS6/c+dlbGwM4+PjeP311x2nH2t0BpxKnFbWCDSj0k2A8fI2I08zVGQ9uVwO/+t//S+sr687xo23U09gaULdi2GifZd9ovnY1NSES5cu4Tvf+Y7DeeZbJqQS4PTnvM3pKtNkAacRKY1P4ulSqYRf/epXmJmZMQpeCzpotPLqFGi/cZq0trbihRdeQGdnJxKJRM31P/xqLm4AS7z4qoltFb9aPd3SUSqVsLCwgF//+tfI5XLqmQacbrIvbv3nipwUaSKRcBzSWK1WHTJL7r3ie075yewa8PGi7BlNSbsZJG4g+TEcDqOtra1GHvOyPNDD2+NpjPwZ8OWYVSoVx5jINjhesh9avbIOwoNfbyP7Qn+0NYLwotUVaeRz59Ln85l9kNLo0wxZG83dfsvn8zg5OcHx8TEikYiRC3y+83GQbfMgZKVScTisZDiGQiFEIhE0Nzcjk8nU3JRgA1uftTLUPjlJ8/Pz8Pv96Ovrc9DJzaHT5ijJDeBL20QG80OhEMbGxlAsFvEv//IvKBaLnuSazfFw0yea45HJZHDnzh28+OKL5oogmToqtzvwMeO6QOpnaQtyWkt7iQJib7/9Nnp6erC5uYn9/X1HcMxG93r0cZu3vA6bTOL8vLm5iRs3bmBtbQ1//Md/rOo77T2SObYUedkn6jN95quakrd5UIbf7kD4kI6bmppCPB7H3Nwcfv3rXzvucud0cpNfGv0kuNHWyzu279x+kHSiDJJsNov9/X1cvHgRFy5cQDKZNGW14KptzPl5DLwvciFAymmSzXybn9Yvm2wlfi+Xy44963JVm68yc+ea+ifPqWlra0NraysGBwcxPz+PhYUF7O7u1si2euMk4bl2oDkjnOXdeiDr9jKJOHM1NTVhYGAAU1NT6O7uNkrWVp+bkcjvjJQM7Ga0h0KhmjskCWTE0GYcSiebp2DIFUy3fSXc2OFKgRtsKysruH//PjY2NnBwcFBzv7NXg/Np4Vm0I/mDK1ES7NFoFJcvX8aFCxfQ29trnGf6k4KM05ADFygk6GRZaYRLg4grfSloJf68/UrldD/gnTt3sL6+bvbvcgUq2/MCTzMGvK9E70AggFAohLfffhvj4+NmBY+3pxk9fO5JvDhf2rI8uIDnyoZWffb29jAzM4Otra2aVdhnTRfCg/6TcZFMJvHGG28YmlCfOT2of9yZlriSHOF8RCADCScnJ9jb21P3PmvGeD3j0U0f+P2nJ95OTU05ApZy9ZhowvtH9NDa5mWo7UKhYD3504tzoIE0GumkWWmw83lsWzHn9Uiep77QCjR/JuWvzejwaixqqZva+Q2cD+WWIu7w8+0SwOn+YZ767NVxdusfH/dyuYyTkxPs7OygubnZISM4/lKfy+cE3DnmMojuDaaVJq84uzm8VEY69IVCAQ8ePDCp4xp+WjaDm8FPuo7e5TZNIBBAR0eHOQvm+PjYcT+4DfdGQY4l4UEy+MaNGzg+Psarr76qOge8X5x2gJMHpQ6V+lPT27xuuobpO9/5Dt577z0cHR2dWWbIvruBzdaVcrBQKGBvbw/BYBBra2smO4LsD61/PDCp2SLcOeJ7zG0ZJ5I3eOo/P62ejw/Jka6uLpP5eePGDXPAlM325fSReNjk3NPId6918vJ8TlWrVRwdHeHRo0fY2dnBiy++iI6ODseNE3LeA7Vb8jTgzioBl738mW27IX2We5Y5LxAv0V57kh/cruCZD3Ku8b6RzCJeolO6k8kkNjc3sby8jIODg5qtRF7huXagJTSqyN3KneVdn89njlJvaWlBMpk0KblyDxOBZlRJwUvlGsWNnAaZJmfrAzEpd5SobWlkyndtfZPfOdNzQ5pOAZ2fn8fi4qK5M1jui3Kjxe/KuZbtem2bT3RaQers7MS5c+cwMDCAlpaWGtpK4Sjb58YPVzr8OV/dkTjLsfDSV+58lMtlrK2t4fHjx3j8+DGOjo5cV96eBdQT8vI/zYN4PI6BgQGcO3cO3d3dqpDnPFavHTd6uc0H+l8qlbC/v2/2i1M66FkCDhwfN8NTGneBQACpVAqDg4Po6empudPZ9l49OnGjS/5OympjYwPpdBonJyeeHJtGZbLsZ1tbG4aGhlSHUb4v01K1sjY5dHBw4Dg476x90niZ/ui8BLmdQMppmblE8l0GDmS/KpWKY0/6VyFbtUNiOI70O8/UsmU1AM7ALh0SSCsiGnh1TGSQgf9Oe0MHBwdrZK/8rP3Gx1auwlM/A4EA+vr6sL29jSdPnhi86zmYXK678RnXIeVyGZubm9jd3UUul3McGOUWFOftueEk8aLtbe3t7RgeHsbS0hIymUxDzrNmP/F33ZwSWnlfXl5Ga2srhoaG0NXV5epQ0vd6NprNNnLjCb/fb87JSaVSqFZPtwpoJ5k3Oifd+N3NvpROVjabRSaTwdzcHCqVClpbW2uC0by8jVY0/rxNGWiR+Nj6wPlOk900HvF43LSxubmJjY0N7OzsqPatTX/aeF4DzT71osfcyrrNfQqC7e3tIZfLIZlMIpfLGX+EZ9nxd7jMbQTc/AIvvKYB4UHZBLb5wtuVgVW3epuamsz2g1KpZFK79/f3Gz7E9PfKgW4EvBgu9d6XDEP7LXp6enD9+nWTrs3T/6SC8WKo8z0ANpCruXw/gFxJk8KdO1E8GqQ5Vtwwpt95WxLkSig3cIBTI2prawu3bt3C7OysURbSwDuLIvVS3la3rS43Y6zed6KT3+9Ha2srrl+/jmvXrpmrIYAvT6/UjBG+wkLChcabIq/8lFdql0eA+dhz51oz0jVDnPNTqVTC4eEh/umf/smsPGt7nr2OiRdDo5H3+NaCcDiMvr4+/NVf/RVSqVTNahHgNBCJltzZlVst6DOnoVxB4zjJFcGTkxMsLCzg//yf/4OjoyNHFLSRgEYjdJGOSSgUwvXr13HhwgWHsWx7j77blBcfd2kE+f1fnspdKpXwySefYG5uruZsA6/9c+svl32BQMAcJjM5OekYe+5g8rQvuZpCuEvZx2lDfZ6fn8fOzo5a1kuUW5M9sm8UDKLTZvkKGE+z4/+5DOCHtHD+pX7SORQyECbH3m0MtN95XXyvP6+X8Jepz4Qfl0V8/KRzTUYSPat3J7c2X9yM9XK5jEwmg9nZWbz44osO/LmepbRkOVekruVAc4LGZ2JiAtvb2wgGg2aV7lkENeR8LZfL2NnZwdbWFtLpNLq7u01ZuZIseY3jw/cg8n7wuug/nb/w3e9+Fz/60Y+MHpF2B6eT2/xopO+E087ODh48eIBisYi/+Iu/cGyj4nKN94fa1K7dkXqWeFVu85EOFh0oFgqF8OKLL2J6ehqzs7M1bXrp29PQxlYf9XV3dxe/+MUv8NJLL2FsbAwXLlywviv5hssYvvWMdDWXUzSnvaR+E5BtVC6Xa7aQkeyMxWL4kz/5E3z22Wf48MMPa2wkr8FS+d0LfpqO02xtW1ntdz4/iLaFQgGffPIJmpub0dPTg6997WtmkUbaZ7JdeU6G1k++aCNx1Ox2akfKAR4opHbophS+gCbrofc1e9YG3P7p6upCe3s7crkctre3cevWLZOR4BWeewdaczTo97OCptR5nVw4khEaj8dx7do1dHd3o6WlxRHpIiAG4ZNVRuCkgpCGmpaqBjhTX4jpy+Wyw/Dnwp/jI/vHDVnuIEjgCpLal8a0pB9vY319HfPz87hz5w4ODg7MQUKa0y7x1AIRvA9ewE3Y2Z41qrilAxGLxdDe3o7vf//7SKVS5jRgGQABnIY8jQfRxu2E9mKxWHMFD39uyzDQjLtq9TQNZnt72+xrvnDhAorFIlZXV/Ev//IvWFlZUQ+B4rzmZlhr81e+4za3uTKRBjcFFK5fv46pqSl0dHSYw9lkdgZPJePCW9KSR7ipDa6stfRdAqJPqVTCBx98gJmZGXPqtk1we1XKGj004OnsXV1dGBoaQl9fnyMDRdKRG4HyZHHJizz4xfmW+l8sFnF4eIjV1VVkMhmH8/e0wGUM/21wcBDt7e0m6syBy2VJQ1t6HzmhUo6Xy2U8efIEW1tbap/O6vjwfvl8PsRiMXPvp2bEcHlCePHxknxMwJ1+uQf6afrAeZLkAg9IUL28PP9NOtfEh/IdLuuCwSAikQjC4TAKhYIDdzfH2CtUKhUcHh5ibW3Nwe9aqq7UhzIQwceCG//0mTJokskktra2HGUljaQj12i/CoUCFhcXcePGDfzJn/yJGmwkkLYF/VHwQ8oUmbpJQJkwtNK+ublpHSObE83BFpiQPELP6eTrR48eYXl5GalUCk1NTdbVTG1LDzfqeVvcVqRADj2Xaan0ezAYxLVr1wCcBlpXV1cBuN+eYYOnkatuzlM2m8W9e/ews7MDAI7gpJSlXObwPvAUW5sTJuvjQPTkPCEDFHze8f7EYjFcvHgRra2t+NGPfuS4/cJtTtWjj5tN41aXlAnyXZtMlH3nwdJisWi2Qh4cHODq1avo7u5GR0eHo125x5yfR6LNN2mP8XHlulPiyO0lvvAmxw1w3y9v0/O87zbaUZuVSsUscIZCIbz66qtYX1/H0tKS0Rf14Ll3oOsN8NM40vS+zUD3+/1ob283qbj9/f1oaWkxkW+OF1cWxGxSwHJ8tb7I9Dtbep1si8rwdmTKBjd+ZYqcxFH+pjlM2io1h9nZWaytrWFpaQm7u7smXVsaGpIG/xpwVqOXv+/3n95N193djYmJCXR3d5v7Z7Xxkg4MBynY3AS2nB+yfpuykCuhdG0O7amfnZ3F3NycuedZHgDViNNno690vmxgc54puNXX14fh4WH09fWpxqB2wiNQe7qjphA4btI40Axp4NRYW19fx9raGnZ2dmqCRl7p6JUnbYomEongwoULaGtrM6mu3JDhMkKTAxwPbZ7bjIqTkxMsLS2Z/Y62zBytnXryXFPYfr/fONAS3FbPuOFL9OBgo0Umk0E+n1fxque41eN36g8dTqnJABuNeOCUjE5tTxvVxcfGC142g0vTbwBqHGhtRVbqQRncod9tRpPP56s5YNEruNkT1GapVMLx8bFroFDiKumh0ZYMQT5OTU1N6Onpwfb2dt0zA2T7sj9S9vN6KDCwvr7uyIgCavU6p4XMGtPalH3kq1iRSASDg4M4Pj5GOp1W7QBZpw3cZIXkUfqjQ9QePnyIQCBQcwCd5uRRv2S2jVaOlyF62coCQCKRwNDQELLZLNLptDmlXNLgWdtGNtrJdujgqu3tbTx8+NCc/kynmfO5yuvQxlXTk/IgKC2DQdopNjlIPMa/A6fnJPT29uLy5csmc0ge1OeVvhqvu/G/WxtedJ32vpQlJKOq1Sp2dnYwPz+PYrGIUCiElpYWtQ6Ji+yLpge582rDj3he+gL1+uSlnEY/zabQdJHf70c4HDYHrvl8Puzt7Xlq+7l3oDnYlO6zcKLpP/1RdLu/vx+jo6MYGBhwpEByw9M2cLbv9JuWAkh1yxQnLqh4+gWVpfekMNPw4OmrlUrF9Es6bTbHTWNeXnehUMDt27exvr5uThaVq1aaQHATRpqD/68NMk2tu7sbU1NTuH79umNPPB+jUChk8HdTQFz5as62bWzlSen8kDKugLghDQCxWAzxeBzVatVcZzEzM+NIt5P86tX5a9QAkHzI/xPQKms0GsXU1BSGh4eRSqUc/dOCCZxeZODxFDL6rq1AeJnXwOnpvbOzs9jc3DSnbns1jNwUlHSmNHyoX7Si9fLLLztOc+ZKkOaktrqpjXU9XiS6Hx8f4+HDh46Iv62PNufNi2FCOAQCAYyNjTmi7rwvmky0ZenI+ukdPi/pTmvuVD4tcPqSPOH6pl4bXA/xTCR+IJycw4VCQTVC6tHejfd4GZ6xwuWdBtxBlXxO+GiruKSnJWg8xXGz9U22WyqVkMvljAyU/eSGu2bc29rg+pd4OJlMYmhoCA8ePFDxlXR3Gyebs8HnaDqdRjabRTAYdOglXifXE1qats2w13AKBoMYHR0FAHz22Wc1DqfW53qglZPykXAvlUrI5/O4ffs2Ojo60NfX5xgnmYos2+E8zANzPEAoV5813iDeCgaDGBgYQCKRwK1bt9RMHY2mZ5GVGt2kTSDboWwi2i8/MjICn89XcxCq1j8bcLvGzY6TzhrRhctrm93Nxz0SiaC9vR2vv/662bayv7+v0kHSx+27rYzGezZ8beOmzVmtXaqPZ6Q+efIE+XwesVgMsVisxlcA9Otstbko5XW9MZaLaxx4O7y8FxuS6y23sm7yh7JD6TrZL774wrU+gt8rB1qDszpSmoKjiR0KhTAwMIDr16877mi01UHCmQtgeX8eX+UCagdcGnZUP/+dC3lt4svUYE2p0qodlZdXodiMBIknfaay5Dhvbm7igw8+wOrqqsPwsCmFRo1PmzHxLMAmsORzTh9KD0kmk3jnnXfMSdtyrPmeOc4X/DvfH6Sl2UpcSGjydwBnZJjv8+Xv8vQZrtROTk7w3/7bf8Pm5qbjxFTN0OY04fAsHAoNpIORTCbR39+P7373u+bqIgk89ZDTmtelCXJuENlOnNT2xlUqFRwcHODnP/85Dg4OHCfke3GC3H6Xc14zIGjud3R0YHBwEKlUqmbvszQseRBNa1ca0ZyPeSpUtVo1BtedO3eQzWYdjpHNONRkmZtzw+ch3//c0tJSs3JH1/UBX67MckOC91EaDDS+xWLRBMGy2SxyuVzNFW4cv6fl/1AoZDIGtJVPGjPbii5PmyT5Tu9Qhkm5XHaMD8ffSx/kfCLdQs9INvHx4lsBZMBKpiYSLlyP8rMz6B060HNzc9Mz7hpI2U/1kNN1cHCAcDjsuJub99VmMNuMwGAwiGAwaPpRLBaRSqVw8eJF/PSnP62RS432SdP9BNTe8fExPv/8c1y6dAk9PT2O8sFg0PA3v4pM2hvc5pA04O/Ru3SGzMDAAFZXV81Bdl7GrdGx5eNCeNJ2JQpSvPzyy0Y324x0rp+pPpnCrIEM+Ej9RGd3tLW14c///M/x/vvv15wZ4QVszqjkZfosn2s2H40JycDj42P8+Mc/xpUrV3D9+nX09vaaOcn7S+9oIFcnbU4d4NwmJXWIZpvKucadwmAwiLa2NnzjG9/A1NQU3nvvPRweHjquVKtn+9lA6iyOg5uN5LVuL+9yGZTL5bC4uIh0Oo2NjQ2Mjo6ip6fHIX9kfyXttYUHW3YePSN5xumg6SwJNAb8ij/ZjgxK8YxCOjPCJncJuM5x27Ii4bl2oOWk9mJgealTfuaOc1tbG0ZHR9HV1YW2traaO3s5LvK7NDC5c0nPbGmfmoPE/3NDhRsmfIVBoxtfAZATnONuS7uQClPiBZwy+O7uLmZmZrC+vo7Nzc2atF8vhsDTGp9nFVg2h0QDPq5+/+mJmp2dnXjppZfQ3t5uDrjQjFvAqSj4uFAZW5qMXKGhd8kp4LxnixxqDhf9DwQC2N7exvLysjk52S312I2OjYAm6GzAaRWLxTA5OYmrV6+aOcpB42fJ8/QOF8hy+4VciZbzl94hB2tnZwcrKys4Pj42K3D1oqe8Ls3B5M95OTmWhAutbFy+fNmBr2bkEvBAgZRjXKG6QblcxtbWFjY3N5HP52scnkb6X08eEkQiEaRSKXPYFoEtLZA7zBK0VSf+Wy6XM1eRSaf/aZ1mztuJRMKkSfK5y8vKffv8P+8POa28LH3XDhHTPrvJZZvxTu3L97jRLHUD51NbcIC3Q1kW8naDpwUp72hLBq3qSCOPzxXqnyYrNUOVxrJUKiEcDqO5ubkm+G2bs7ZxsdFCjmexWMTMzIw5oZ/zBuFHOMtALT/TQTqfmr7jwd3W1la8+uqr+OlPf+q4C9aL/vdSxuY40pjQ+R50wCLXvxov87H1YqfJMtSudEyIHsFgED09PRgbG0O5XMbCwkIN/erJmWfF/zZHmwJuCwsLqFar+OY3v2m2qJVKJTx69AiJRALj4+OebVyg/knegDPbU8PT1ncZPI/FYujp6cE777yDTz75BLu7u+ZQKZuu1ejt1Q+x8crTgubwc3u/VCqZA0xzuRx2d3cxMTGhHjDshrtmU2l+Bs/GkLJTs2+lTq4nr+rRguNi4xkuuxoZh+fagf4qQToPsVgMiUQC/f39GB8fR2trq1lJ1KIiNgWnDZTNyOC/S4OfMx8H6SS5TQg+qbSVSI0msq9yskqc8vk8jo+Psby8jEePHiGdTtesPD+NkelG96cBm4B0U1D8j1JC6IqgCxcuOPiFv0P1ejV23IwEKRCkojurIZ/P57G5uYn5+XkcHh460i+fhXNwljo0B5Fo39XVhdHRUZw7d64uT2jt2+YXAc0ZqYTd8KQrYpaWlhra+6uBTUnLeSCfEV92d3djeHjYwX9yBUC2Z5sLXvY0Uf2bm5vY3NxUT7QmHG1Ocr36eZ/pLxqNore317rKTu9qqZRe2uR1FQoFbG9vux4ip4FXQ4U+U6qZlJ+yrMRPMzAp2Ko5OPyU7EZBa1P2QwsWAnDIFeIb7kRrPM7r4/VEo1FzUGOjuHOwzW9yHujEatpnrxmx9JnPdZkaaQtK+Hw+cw6FvGWh0b5wnGwyjgzt9fV1HBwcmEwNXta2OsjLcJmiOUBy3larVcTjcUxNTeGTTz7B4eGhcaIbcUy86CWbU1Yul7G3t4dIJIJsNmtSXW1OiWzTpjs02UJ86xb8CAQCaGlpweDgIPL5vDl3hOSWll7rBTS9oZWx6Sb+vVI5TedOp9MoFAo4f/48enp6EI/HUalUsL+/b8XNxkfUhs1pp/9SdhP9vehk+uzznS6QNTc34/z589jY2ABwutLNr+W00VnKWy8Ot02efFVA+NNY0X7vk5MTtLe3O3waN9BsSs3WpLJaajY94/3VAvia38P7otleHB/JO3yu1ZvTXuD3yoE+q/Mk35ORwEQigfPnz2N4eBhdXV1qBFheTwDUGuFy8lAKHRkqtusQNJDl+MoYKWbbijC9zxlJi+JxHDRjxg3oHXKc7927Z9IauaKRwvksikCjhw2nRsHLBOOOG/0PhUIYHx/Hq6++iuHhYUQiEUdwg6f084nO0xRthg3HQysnx4k/p9NdCQ9bn32+L6+6KZVKePDgAe7cuYOHDx+avZHSSHFTKvK7F0elnvLj/4mWfv/pgRDf//730dPTYxwnngLE8ZVzndOXUnP53OApQkRPLvhp9YXzI8mFw8ND3Lt3D7du3XKsvmq080IbTUHYylI/AoEAhoeH0dvbi2Qy6ZBDHOSqpMRL8p/sKy9LdCsWi5iensajR49qDp3zavRqRqtGF+pve3s7rl+/jlgsVrNtguS2G1/yMwIk8OAJXWk0MzNTExw5K9iM8GQyiaamppo5Lg0H/i7pJ6kXgC9vcOA6rFKpmHnuZhxxvLz2VzrH9JtM25b9pn5wHDid+PwlGdvU1GTOPpC4as6BJku137leKJVKWFxcxODgIAYGBhyylWSMNOzpmSYjNR1Ic5ScaDo/gNfD+8/7qdHfDQjXUqmEg4MDbG1tYWtrC319faYM7S+X7dMzPp9tTgPxnCwTDAbNoay5XA4bGxuenRKvYBtnwj+fz2N/fx/37t3D1NSUyWLg+kDWR/TXMiW4fpC4a/PV5/OhUCiYcY9Gozh//jxaWlqwuLiItbU1k8Uj33MLaDRiu0n6aDKQl+NXFP7whz/Et7/9bUxNTSEUCuGVV16Bz/flDQA2cAvKyOxN3jdbRpHbdUxc1/MMiEAggG984xuYm5vDRx99hLW1NdeAL/1302Fe7FOvfKzJIrc5prVRrVbNfdF0ENxrr72Gnp4etLa21pTVaM7L2PwM/rvNt+ABZ57tJ20rak/TrdzukAsBnAeA08WgQqFgDg2T+PBDJ+vB75UDfZYogmQ2+gsEAmhra0NPTw8mJibQ0tKiRn+1dDJtMsmoC78Khp+KqqUB0fvSydWYleMv9/LRXgQuvDljSSXIf+cnIvKDfySTk4OWy+Xw8ccfY3Nz0xwyIQ9L4kYFgRcD2uZ0nBU0etoEksSF/nMDr7OzEwMDA3jjjTccaduaQUz05/Tj95/KvfLAlwYmPbOlYNJ3W2og1UW/cUFDvx8cHGBtbQ0fffSR4yRQW/BDc6i9GGwcX7fyNp6nPiQSCbMSFI1GTX9ISHMngfYYUl94Fka1WjUH5xCNtdR32X8tukrOyM9+9jM8efLE7C3VlG0jBq9Ga0kX+qPxjUQieOutt9Df349QKOTYl2TbHsCdAP4bySR+ZzLRgPMIGVXpdBq7u7vmzmsvffQKXOYS+P1+RKNR9PX1qadNS+PWpuABmL1UVI4fxkdlaHWo0RVo3rY0ROh3jmtbWxuam5vNczfjhssVqoc/k2m4NPfpHlFtLHm9jYybZkRy+acZglr/JZ14ndJZ5SncjdgFHAdbX+g/bU0gvpZzT/aNj7WUJ5zG3NmieRYOhzE0NIRy+fS+Zk2nStrV65cmO7jcnJmZQSAQwODgoEMP8SwybVy53WCzWTT+rVZPzwR55ZVXEI1GkU6na64q4u+61W/rtw1nKlOpVHB0dISPPvoIHR0dSCQSxrDm7/L5ZLuK0DYn5TM+lj6fzxx+x/VTZ2cn/uiP/gg//OEP1avybGP5LECrWz4j2XF4eIibN29ia2sL3/zmN10PY+RBSm5H8bkk7RwO0mnm3+X+fGl/y7lGEAqFMDg4iG9/+9v41a9+hXQ6jf39fetWo6elcSM2UqO/cZD8wLf33bp1C6lUCufOnUNvb6/jZg7gS9pqwYpG8JO+DNlhxDsEtrNlNFnO5T63X+XCpt/vN1cbaoue0n6uB8+1A60JQa+gCTFavUomk0gkEmhvb0cqlUIqlUIwGFQHlDs/WqqSpvDlQNv2B0nnRzKsNOBstKh3oIWWOsGBO1n1DM6trS0cHh5if3/fpPuS82ybcF6FD9HOy5h7Vai8Xre6bUqPJhztVRoaGkJvby/6+voM3xA+tv0VUijxCSydVVtf6xl6BHIMeX+4YVKpVJBOp7G1tYUnT55gc3MTJycnrleNeWmfg025exkD+s4dxObmZnR1dWFqasoEuwgHohFfHab5YzPatfZtQQLtMynqo6MjbG1tYX5+HplMpuZQC+197ftZgfBuamrCwMAAent70dTUpDof2qqmxIXesyk4WRY4NbZnZ2fNwWnSIXua/koZSPwQCoUQjUYRi8Uc5bX5JT9LWU79lQqa3qHTmI+OjtTMAjeHRQOb/PL5fGhubjYn4stnjdTD/8vxoKCPrMur3NZ4QCsjDVutPamfuAzj78gxIX3Or/uy4W2jnc3hkzgeHx8jl8uhWCya4DXxoU0+2/QBp7Pk7UAggJGREezs7GB3d7fm3acF2TadX0Jpw/JMFTdZ2YiulvrI5/Ohq6sLPT09SKVS2NjY8HQw11mAt8/nQKlUMnKbnxDOwW21lz5LO62eTiSQQUtaiR4YGMD58+cRDocdd9aeVdZIsMkVbX7a5iBt+QKAhYUFc3iqbf5IvCVoQQgpt6W9LJ+TbeVm63EHnoImExMTJpMtk8m49r8Ru9MNbDRvtF6Jj6bbySba3d01WzWKxaK5opdA+iK8/xpNNbuKLwJxx7we/vIzr9dWXquXO+4afhxHL/BcO9ASvDKX5tT6fD5zcu+lS5cwMDBgVmi0VFvgSwOAmEEu/XMGkUKG3uXGtBZZoXa4UUB10DuaA8wZhDvApIRolVPuH6EoEBkB3MknJ9Ftz8qDBw+wtLSEjY0Nc4Kmm7JtRNh7Nd68AqeZm9OmGXfceaOTthOJBL7xjW8glUohkUg4oqE89UtetQDUCicqK6NnNqNO2ysiDVD+R2VkOjL1tVQq4d69e5ibm8PMzIzjQCEb7RsZE6/GlQ24o0Rzt6+vD+fPn8dbb71loqduBjC/Y1XKBCorFRDnBRkx5e8RrehAms8//9ycKnuWO7PdHHtJE/md+phKpfD666+jtbW1Jv1SC6zwbBMqx2WGpJfEheqklMhf//rXyGQy6tVVjYI2XrzPtPpMB9nIVQquLDU5xp0gAh4p5/MLALLZLI6Pj02Q6az9qffM7z89ZKm5ubkmkq9lnnD+tRkqvC+cJjyFW+LC+dGLDNfmIdeDtpUjwLn9gmfoAPpBZJxfo9GoI1hUz/nTDFebDOH/T05OcHJyglwuh1gsZpwmcjhJ/vO2pUzmupZSpDmv0jtXrlzB0tISFhcX6zoENnArz3Gk/cCxWAy7u7uOjCov8kj7LDPjbOWbmprQ29uLixcvYmdnx2G0a215wUnaEG40oDu+f/Ob32B/fx8jIyM1wTetLvmfO9A8o4zmLMfblh5Oz8PhMMLhMN599110dnaaLARtHmjgRY/wsm7fqd+8Xi5D6IrGDz/8EN/97nfR0dFRM/94JhCvT8rkUChk5oUMfLs5Q7wMv9PczXnmtn4wGMRrr71mdCY//NNN7tno7KYvNXnqBk9jP0ncKpXTLVZ7e3s4ODjA0tISLl26hNbWVofcknJa1iGzZG1jxMvz33kQX6uDvyu30vLncmsWr5/el7qf5J28B9wNfq8caC/AJw83tpqbm811Dclk0uEM00SXA8L3AQGo2TOppX1Su16FmBxwjrem7Dm+xIia0OeONHei5X5oMoAJB56yTbQrFos4ODjAjRs3MDc3h6OjI3MVCtWj4ShpYnvuRVB4EfYSpPB3q9PmmBDvDA8P4+2330ZnZ6dDSHPaksDgfENlaLzkqp7EzbZdgOPHlYyGN32Wypz46+joCJ999hl++9vfYmdnx5Pz7Ebfszy3KRNt7lLWyLe//W0MDg4iGo2qYycNcKIBb08ajwRyy4XX/u3u7mJ+fh53796tOXmayrg5HWc1jLkDS8G9zs5OXLp0yREUpD75fL6aE5m1QI40eug9wpe2cHDZR87YwcGBGkDw0ieqX/ZTe0Z4jYyMYHh42HE9lRdayjnLP0uFS/TY3NxEOp12/ObmqDUKfJ43NTUhHo+rTr42LrY+Em/wK4lIblQqlZptN5rzadNtUje5GYdyHOV4cZ4m542nfdpWsamOcDiMYDBoVurcDF8NV5uu4jxcLpexv7+PdDpd42hxuStTkQlv2xWFZPjzQGFrayuampoQjUZxfHzsqK8R26IeyL59+OGH+OY3v4n29vYah7WeviaZK/eScjrJ7TXVahV9fX0IhUK4efNmTUaE1m69sbPhyHmWz3k622BhYQEfffQRrl+/blZSOciVLZ7pxOumsZR0kxkvXB/Tc45zLBbD1NQUEokE/u7v/g7ZbNbRViPOmw3cZKwXKJfLODk5wdLSEm7cuIFz587hhRdecMxnbmeT7uD9p3Jke9r4jM8lAr/f71ig4jSmMZDBUE3GhcNhTExMmCsfnzx5gv39fVU2yrkIOA8+dAM5bmd1ymU5N9ual+fBu4ODA9y7dw/r6+v4+te/jng8buYknx/0nctjKb+kTULtaHqK2wbShqVtU9VqtSaIx/Gn79L+BeDYhvUs4Ll3oL0amBqTBQIBtLa2mrsHe3p60Nzc7LjyhBtR3IjmqQhe2iNcNbyl8OUTj0coubLhApVPUPmf70/U8JGCWjpZsr/S8D85OcHy8jLW19exsrJinGfNgHQTxGdl6EaFugZenXU5XmScnT9/HiMjI0gmkzXXGtF7cjLzceb1cn6TuHE8aDWMysh5IAU5F2b0mxTsPp8P6XQa6+vrePz4Mfb29kwWgTb+so82fL2C17HkwjgYDKKlpQVvvPEGuru7EY/HXVMjpYLV+iJBRl25PHBTcpVKBQ8ePDDXRchVAi+08moQ22hHcq6trc1cuyfbl4pIyhs5ttyxpu+yHi4fDw4OzOnUNlq79dHLnKTPxBeBQAD9/f3o6elxOIc8i4OcfFKqciWUK3fJAxLfdDptVsm8gBejVD4jfieHUAPeR7fVAo4HlztcJ9hW0m16jOOt9c+LISf1Wr2gh1xl57xKAQaimxf5chb5RfTa39/Hzs4Ozp07pxrovLxmcNfjMfoeCoWQTCbR0dGBk5MTR7/cxvsszjXJ/nw+j5WVFUe6sDSQtT7SmGp9lMY150V6LxQKoaWlBbFYzJw8rS1mcPqc1SbQeJlW5jKZDB49eoQLFy6Yw9x4W1KGyjrr2QKybemoyLIAzG0KLS0tZoxkm2cZ80bo4/a8Wq2a83BWVlbg95/eADE6Oorj42Nks1lEo1EUCgUEAgEkk0krrlwWaTJf2ieyjOZQ1ZuTvCzx4dTUFABgbW0N6+vrjqw9qSfPQneNvpptJR19W7+82GUan1DwAwDu3r2LwcFBtLe3o6mpyZSRAR4b/hpozi3VSc/kQpNWv5StGm5Ujt6XMutpxuu5d6C9gBwsMrDi8Ti6urrQ29uLoaEhc9k3HyyZYgDUpttKZqaVRPosHWQCbVJrKxzcoKX33VIlpKOtKVUqL09x1NJ9JX7E3HRtwcOHD7G0tGQun3dznuVnG9gmok2IPAtHmuqvZ9Ry5621tRXnz59Hf39/zVU5HGSakpzQHCTPcAODj4nGT1qdMg2QP+NpMMViEevr65idncX8/HzNyrOkdT0n6GmUt5vhzccgFouhs7MTr776KlpaWhwr+DyFmN7j48BpbDM85VwCUONYaH0sl0/vxbx//745WEobq2dh3NiULv0FAgH09PSgo6NDPcyF5rTGJ1wW0m+k2ORvWr3VahWZTMYYG43KAQmazNTkFfW5s7PT0Q8aZ+J7CjBqjouWSqa1W61Wsb297UgzrdeHRoD3KxQKIRQK1ZxerOkQch75d3ouswgkfSqVimvA42n64/a+pm/klhfNWOQygehCfSSHx5Z+2whw2cf5v1qt4uDgAOl02rH9yUY/TZbKdGybcUcBse7ubqyurlqNSAle+6zhViwWsbW1pV5tpn0nmSKvitGcQR7A4bSjvobDYbS1tZk95ja94qZvvDgS/DnXDaVSCUdHR5ibm0M6nTbOlM2xlfXxcZVpp7Jd/lnOWymbQ6EQWltb0d3djVKp5BgbzkO8Xj6/6tFCyn7+js320uokO7FaPV057O3txfHxMfb399HU1ISTkxOEw2G0tLQ42tacJdkeLy91lvZc1uWmj+TcjEQiGBkZMfuE9/b2TJaOrN+rbWrD221snoWta6MtAWWNlctlPHz40JSh4K2bfWbjPQJtQU7i5qYTZHuUVShB2nRyQZLa5/qiUXiuHWhbFIOeab/5/X7E43G0tbXh2rVrSCQSjjs1aXLwKzUkaBNDcza1icXf40YLNwCkg86NVLeUcI1htbQniSMJCN42pUjI8kSjra0tLC4u4ubNm8hmsyY1S1uVexZOggaacnjWwMeUj3E0GkVHRwe+//3vm9QejQfoPb6Pj6fXE+15WX7iOe+fNHrpd26E2JSzJtxpLIFTPrh9+zY+++wzLC4uOlJtbXShun+XwB0kuh7j0qVLaG5uVk9aBpx7V7nzrCkN2QbRnZ/CLEEK5Uqlgp2dHdy4cQMbGxs4Ojqy3pv9rOmoOZLhcBhf+9rXMDIyAuDLax1I8fC9ljJlmfoXCAQcDhUvJ4NDxF/lctkcHnbz5k3HKc8a3o06nprxQX2Ox+Nmr7DbnOCyj6eXSX6R8kWuwO/s7CCTydQ4P1JHeJFTNt1FB9vwLQRyHHh5zYAgoDpKpZJjfyGvl3hWW93RnKx6/eB9l23w4FS5XHacgA/UXqvGnQhbW/zk/UQigaOjoxq5qeHrxoeyD/SZTsVeW1tzZDnIDDAezAOcq+z8P+c9vkWCVmXHxsZQrVbx+eef1/ThWckSPtdLpRKy2Syy2SwKhYIZH5m1IN8lOaCB2yGEdN0R9ffdd9/FjRs3cPv2bcfYaU6HlAccbHOLvy/rqFZPAwiHh4f48Y9/jOvXr+P1119X9TDVVy97h+jFb36Q+Mh3OZ3JpgiFQvjzP/9z/PKXv8TNmzcdDp3sh5d+u9GJg0YrTe7R91wuh83NTRwcHMDv9+P8+fM4d+6cKUtpw01NTY4MP609ibuWQclpyANZmq6S9cjFKa5LY7EYJicn0dXVhWQyiY8++sgcHMnnnuZEeqGl7J8XaNTu9VKeaEZ64e7du1hYWMDExAQuXbqEeDxeUw/faiJB2kc8mMvL8DRtOseG46PJGr//y7Od6mVdcVpLuUS4u50YL+G5dqC9Ok1kHJHiSSaTaG1tRSKRMMeZS8hmsyZdTgI3wvkfB3ltCDfY+SBJ4SiNNGmQ0R/HWVMW9J68qoe/I5mY48edegKKSj148ACbm5vY3NxENps1q85nSVF9VvBVOc8E3Lhpbm7GhQsXMD4+jvb2dsdqkHRg6HfbqqVmlHNBI4UyKUdpbHGDSwpu28ofF0bHx8e4efMmNjc3jfMsy9u+c3o96zGXwQty5sLhMF544QWMj4+jt7e3rtDjDrHtGRfEGmjCWfIdGQLr6+uYnp42V1Y1Ahpv0Hc3+nKjjfoTj8cxPj6OZDKJcDis8qI0HAgHKWOI/twA1HiNv3d4eIhMJoP9/X3VaWkENGOZ/074hcNhDA4OmnR+CVzuSQeayzwthZLmGgXEKpUKstkscrmc4350L2AbZ2m4EQQCAbPyxZ1/+s5lgAaSftR/eWiKNDBpXvB2eT22Nm39k881esnAgM05sr0r7xZtaWnB7u4ustmsA6+z8KN8n77n83kcHh6iUCiYVRptDLmeIHCb6/xcEnrW3NxsDvRyC9S7yepG+1wqlbCwsIBwOIyRkZGaFR3N4eEBAgA1/CqBFgl44MHv96O3txednZ1oamrCwcHBUzl/Wt9sv3Ncy+Uy0uk0VlZWsLS0hKGhobrtEl2k80vlbcEA/p0cTP47l7GJRAKTk5OoVqu4ceOGw050o5MNd69zwu0dbY5QEObRo0eGpwcHB009kUjEwSuNyg05ryTt+XzgtpOkv5Qxss1AIICmpiaMjo4il8thaWkJCwsLqu1Qj/6Nyh8bj9Ezbc67jY0NJP9QAOnJkycoFAro7e0154tw4HOW5r5mV3F5QO/x36SOIf7R9DkB98O8BOltAZpG5Mdz7UBL0DpOTmQkEkFHRwf6+vqQTCZNBIWIKE9YlUpJc265IyOBmMdm1PCJ5VXJaYxPONoGXSsrn2uOAY8SAV+mpNLK8/b2NjKZjMN5lnjawG2S15vUvMzTOmsSD82g4UZQMBhENBrF0NAQxsbGMDw8bK7I0egqx9imIAFn6rxUEJqi0gxJ2YasR1M8lUoFmUwGm5ubWF1dVa8ck+9odNeMUrfxkcrMrRz/TIGwRCKB8fFxdHd3I5FIOPCQdcsxljT8/9l7sxhJj+Q+/Fd3dVV1dfV9Tx9zcGY4Qw6vHR672iX3kFewBUEQ1pZfDEMPBgwYEGzDgOEX+UWG9WAbkF4Ny5YhGAYsCYa9kMRdLVdccsnlOeTcR9/3VdVd3XUf/4dGfBNfVGR+X1X3UBrjH0Cjq+rLL4/IyIhfZEZmcj6a5NiPrBFA2trawurqKnZ2doxXNsn3TPnZZEYjLq907cnZs2edlUuZpyajJrnTnEtZdxkWv7Gxgf39fWf/olfdOwEU8i8SiWBiYqLlMDk+wSBPt5f8sBHvR7qmjMLdbLLfib7iskkrqdKhpOemz5SOt433nwmAmcaNn+9+SHvfVF85djTbyPUgd8BDoZAaoSLrbbOjXu0ggFepVFAul11Ojs2ueAFrUzsjkQgSiQS6urpcpwJLPsi2ttsu3r56vY61tTVkMhlMT0+7ypOTTbJt7ehSiT1o0rq/vx/Dw8M4PDw06lKTg2FzPPi7tnrTRPPm5iYWFhYwPj7uOpDS1i5pAySG4bpV+92mlyORCIaGhlCtVnHr1i3nqkDZ/nZtjyyLvpvy0ewF/99oHO8n393dxerqKrq6utDX1+fka9sC57cc7ZmNTHyXfSR1Dx1cOj09jWbz+Bo7uq9c5kXv+MX52rsynVe/tUNeepXGfrPZRDabBXBs97q6upxtYbJuXv6A1BPSB5G8b6ddJr+Jf9bGVCe8e6odaE2wNMCdSCQwMDCAV1991Qm11fKg9PykXr7iRyT3jklQCbhDo3nYllSc9Jn+5CoI71i+SsJJCoVp9kUKNbWNG3tOPP3h4SGWl5fx85//HPv7+84p250A3nbJpng0hdfOYDDVh+dFPE8mkxgeHsav/MqvIJlMOqH+PDSV94Xp9F9eVz7JwsuiGW8Zzs2BL73HV6Gbzaa6P5Ke8z4PBAJOiO17772HYrHocp69DK5Jlv3wWesjDVTwZ8TTdDqNiYkJvPjii46TJPnMx608OZ4bObkiRLzkJ8LyOtDMOTcsVGfqk08++QR37txBpVJxwp5NilryoBMlznnFZYgOG3rttdecCUM+Qyxnc0n/EP943vSMy53maPHxUKvV8Omnn2JlZUU9edtkzNppr6Rg8Hhf/LPPPuuaWJF7Mfnqg/anReVwvtG75XLZuSPXNm7aaYPkBfEnEom47pbXxhSVr+lD+o36iDs//Dk/KV7yiJfjB5xqPOSkRT/Q71wX8n7RZJfbvmaz6Wy5CASOJz77+/sRi8U6kjU/7SJ5p1VoioSQNptPqHOnU4JObfuAlAlynLie8dM2Tba8nD/i+8OHD5FMJvHKK6+42qHJnMRGUoZolV5OwHN7RmlDoRDOnTuHcDiMhYUFl82Uzrsfe+TFF+23RuP4oK7FxUUcHh7ixRdfRFdXl2uihPOKyyzHcNIWcD5RmXLM8RV5qXcDgQAymQyCwSAuXLiAe/fuIZfLucqV/eOn7drvXMZkfjaHkbelUqlgfn4eu7u7zpVv3d3duHDhgqsMSVo/U1oNYwFw6TJOvH/kOzx/uQDGPweDQYyPjyOVSmFwcBA//OEPUSqVHL0j5f2kekfWU6uTRjas1U55fAIkn89jZWUFb731FtLpNGKxWAufTVGB2iqy9E047wi38rpzv4rbCo7JeF68zaY+8Frh1uipdqCJNMMeCoUQi8Vw7tw5DA4OoqenxzFolIYzq1qtug6WIaAsV23kgSaaEpGDRjs4gg98OZC5QuWfTSso3IgA7j3VnDjA0J7zZ0R0jcMHH3yA9fV17O/vu0IVbSuVGvlVIO0qGpMib5ekgiQZOHPmDGZmZnD58mV0dXU5fcH3p9E7fCBrISVcJmTf8Xy4AqGwUWm8+GcNmGlE/Vav1/EXf/EXWF5exu7ursvZkzJpyqcdksCB/87BBKWRn4PBIFKpFC5fvoyvf/3rzh2/UpYJnHH+acQnyygdT8v3QHMn3BRVUiqV8PHHH2NlZcW5A/Mk/PJL2jgPhUKYnZ3FhQsXnCsoeFpu0Kk9MmzStKqlARy5+kqneD569AjZbNZ6dZUfWdPekX1OTkUymcT4+LjTZgmu+BiT4b6UN8+Tp+XPKXz7wYMHODo6culPCXL9tMFGgcDxqsfg4KDrjnPtfc3Blfe903OSa23M+6mfn37T6qPpa7m3W1vVJL3J9azkBbWHosqCwSD6+vpcK1wS4NraowEwWSblV61Wsba2hng87uANLV2z2WzZM8jbz9smMQeNy2QyiZdffhkHBweeW0VsDpJsH68Df7fRaKBQKCCXy2FtbQ0jIyNqu+QCg7zux6SvOCDWHJ7e3l7U63X09fUhl8s5N0TYqB1HQSOJy8iJzuVyePfdd/H8889jbGxMjeig79zG89B+ypO/w2WLy4PUryTj5KxFo1H09fXhrbfecibCeai71h4vMmGqdnW1tJf1et3h4c9+9jO8/vrr6Ovrc8m2NqHGcZXNKbI5i9zu8fRykt2kv7mOJ33S09ODWCyG733ve/j888+xuLjo0qteMqqRrQ6y/jayjft2f+c6gQ70e+edd3DhwgXMzMygq6tL9Sk4mSJ2qQyuB7gO1N7T+lWrM9luPmnM2+rHBpjoqXagNZBN9512dXUhkUhgbGwM3d3dLrBNpDl/JgBvKl++x0mCcUrL8+eh4J0OCl5XEhgTmYwkry8p5r29PeRyOezs7GB9fR25XK7lHsfTIpuh6/QZf25Tqvw3/hcOh5FMJjE5OYnJyUmMjY2ht7fXpRg5v2VZ3HBKkoOX/nNF7qcfuZLgeZuUTSAQQLlcxsHBARYXF7G4uIhsNuuaFLGByNMgrX6aE031pYmMcDiM5557DhcvXsTAwIDn1TTSCJnSanuXTKdKE0l+0xYHmv2Xp9FTOq1u2vN2ifOJJhomJiYwNTXl0nty6wkHbFI3yRUyTR9K8Ed82t/fx9LSEgqFgsqL0yKu++hawuHhYedwKd522RdanWQf8c/SiSaHaWNjQx0/7QAdW7u4PuInzWtpTHX3Uw4RBxuSOmmbHHucT9xR5mBJq6PWVi572kQkcCwD6XTaqC9MNsIvcbmvVCpYW1vD+Pg4enp6jHqHOwtUR9le/lmLBKCtCjShK8fwaYw3CTir1Sr29vZw7949DAwMuA5x03SdTS41G2hz+CKRCLq7u3H16lV88cUX2NnZsUbD2Nqk1ceURv5GDuDc3Bz6+/sRj8fR09PjSsf1Ki+H2zlTXbzwHfB4slc63JlMBhcvXkQ4HMbt27ediRXNcfBLJpmS/SqdWvk+T0f2dW9vD0tLS842Cz5GbWNH+2wik/7nzyV+5rrIhB3pGV17Ozo6inw+j1AohIWFhZbFFcmnTuqtPTPxvVOS+cny+ZjLZrNOhFlfX58zHmyyotlh/lk66xKvmMamTS5svhyva7s45al2oAG3IxqJRJxT8jKZDFKplEvBcxAkmU1GSnOGZOfbnBVu8GiGWQICcpJoAPIVau1ydiKTMyZDduUeOWnMuCHmCp3/5fN5PHz40Lm6wbTX2aaYOx3YJgH2Y/j8OCaaQZeAhUJBh4eH8fWvf90JAZQgmq/222bXgNZrZDjx7zSzqa1e8zpSPqYVUV4ul4ejoyMsLi7iRz/6EQ4PD40h6J1Su86hSalxvobDYXR1deGtt97CwMCA62Adk1KVdZFjVfYDl2MeFkS/8wkT6UjRpMS9e/da9pFr9WvH+TCRpneIVwMDAzh79ixmZ2ddaQloafpNGi1tvHEdwnkFwKVbt7a28NFHHzm8MIGAdoyVzSmkdo2MjGBmZsapjwRHmg6V+k9zKrUym80mKpUK1tfXUS6XPYGOV34acb6Hw2H09vaqh7tR+22H4Gkk7R3QGjJ3GqTZ0WbzeKKWrzzKA7OobnJSUbORGlCnNvb09DhYQObtRaYxwetAOpgcq2vXrhnBtzZpQHlLvUdpaFxx+Y1EIhgbG0NXVxcikYh10kPKoc1mmxygZrPpXEn0ySef4JVXXnGiIWw2W4uyA1rDNrV36T/VK5lM4hvf+IYzoW877LJT0mRVfi6Xy5ifn0d/fz+i0SieffZZJw1/lztjMg+SBSJ+4Cs91yKsALQsZJC9isVieOGFF9Db24uNjQ1sbW2hUqlYHVzZxk7JNpY4ziSq14/viP7iiy+Qy+UwMTGB3t5eF77hfDCNb8pf090mWZbjjeoj39Nsg0xDOquvrw/PPvssBgYGsL29jaOjI8cH0HSUX7LZkK+CNP3BHc6lpSVsbm5ieHgYzz33nDMmpE/C+1RiW5J7iqig37g+5MSjO3k+miOtyT39Lu0Jz8sPPdUONAcO4+PjGBoawpkzZxxHh4ctEvOoI6WxIeNN/5vNx2EdHLBIZ0UDnfQbL98G3iORiLOflneqDRBpThU3sJpS4PWXe3SIN3QYwjvvvIPDw0MnVMO2WmMzfieldpVHu+XK/iPeRCIRfP3rX8f58+eRyWQcgFIul52DwygtOSQaWOBhI3KihPKQ/VypVFxAUvYt4A7Tls4kV0D1uvvO3nw+jx//+MdYWFhwrleSxuG0jGm7+UhlyR3CwcFBXL9+3TkMiINWaXAlcUUreW1a5ZcKnk+EaRNJN2/exCeffOJyGDXw7OUQd2pgSQ7C4TASiQT+zt/5OxgfH3fC1Kn+XDaoXdzAcF0nwRtf4bY5WeVyGdlsFg8fPmzRHZ22URKNNZIRkpPp6WkXmCU9Lt/VHHCSIQKn8Xjcec73ulP6arWKUqnk2v9sqqtf4rLPf6Nr22i/mZyso3ZqfJZtpe0NpgmFarXqXH+oTaLI7xo41tolHUR6l6+Q8TMaOHHAxonvuZdAlcZrOBx2dLgJ5PvtI62dvC21Ws2JSCCiulFduXMsnWfTxADnGweP4XAYIyMjODg4wOrqalt9wusueWBzssrlMnZ3d7G1tYWhoSEkEgkAbl3qFXIp8+X9RWnlNYLU993d3Th79ixqtRru37/fMhnhp82aDvAiaSPL5TJu3ryJfD6P5557ztEf0jZwXkiHjBPHBNoEC8cOEnPw511dXZiZmcFv/uZv4o/+6I+wu7vrHGapTZJr3736zvSuiUzyRCHxq6ur+NM//VP8xm/8BjKZjCt/Xh9pryQviXdkD/hhanKCjttzjtf5M66XiNd87z6vH0W5xuNx/OAHP8CPfvQj53wM6RtoPG5nrPLfvGTZhOvkWNH6X+ogLR86D2l1dRX5fB7Dw8N46aWXnHNXZHoZLSPrQmVp2Mxks4DWLajSP5E2lY9V/swW+SnpqXag6b7P2dlZ9Pf3I5lMusKZiKSjLJWZJtz8uVylIgOmKTmNvJQLlSHz8FoF4KCCt5G3xbQaLdvdbDaxurqKra0tLC8vO3udvUL5bPUy/a4NxJMCG791kYOI/hOv6OTiK1euYHJy0nV6KznW8h2enyZrUhblbybjIuvOQSK/Jk1TUvSd5LRWq+Hg4ADvvfceVlZWcHR01HLAhhZdoOVpM7SyjZ32H+fvwMAApqenceHCBef+UV4fXidqh+QvpTXtS9fI1H45nugE8/X19RbnWaurlme7YE6TXYqaGBgYwPDwcMueJNnPsv+4TtN4YHJ+uJ5qNBpYXFzE2tpay13imjE+CR8ksEokEs7JxFQ3OfGhtYsTAXftABTqVxozh4eHzmE9fBy1I/OmMcXbRnWie18lIOd100BDs+m+kkzaCmkH6vW6685v03umZ7bfZF2pLE58Epu3QcoN2WLAvZLOHQ0+SS0nJL3q6bc9PHKNHIJyueys/FH9+LijenCgzp1rLaRb09XBYBATExPI5/NYW1trqa+fttn6TuoPGu/lchkPHjxAIBDAmTNn1PGsgVmbE8DfsWGyYDCI2dlZ1Go1PHr0yAWCOx17XvpHa0ujcXwGwsHBAba2tpwrLXkaQF/Z5Dwy8YLS8JBZbte5oy3LDIfD6OnpwXPPPYdHjx5hYWGh5bo6zX6adJhNZ/PnJj7axjKNmWw2i08//RQzMzPO6dY8bz62/TiMEgfI6BaJkTUHTJbNeW5yDiORCHp6enDt2jX09fXh9u3bzi0UmsPbqf6RTqcXXzQe+S3L9BuvB1111Wwe309/7tw5pNNpJBIJV/1IX5oWAWVZmpwB+iKiKT+tHWR3pL/YDgZ5qh3oRCKB3t5eTE9PO9e08MODgFaGcwMlT8fmilEONCKt87gxs3WEpoTod6koJdk6VSpiLoSaA82VcKNxfLJesVjE0tIS1tbWnOuMZPonSV5laE53O6QNLumE0IRMX18fLl68iP7+fgeMUzp+CAgPw9cMCPFftpHKkqBAc+g0+dXIptxqtRr29/exvr6OL7/8EkdHR65T1DvhaafAzC8RTyKRCEZHRzE5OYmRkZGWO7f9lCkNotcMo+S3Zuwor1qthqWlJee6JgmSTXXym8YGCjUnOp1OY3R0FD09Pa4ZdV6OBGM8D00etO989l2CxeXlZWxsbLjkywTM2iETSKC2d3d3OwemUTu5LjcZbfnd5mzyv3w+j729PRcvtPe82uOHyLbJAyl5RIUGpkzAVwPMHFhwp/Y09b/kEQ9FNZF0sLgdB9yTiCZgyg9t7AS8+mkX1Y0iE8rlsjPhynWPSY755J50oE0UCAQwPDyMnZ0dT+eM52XSnyZZkXaoWq1icXERg4ODmJycNNovjbT2c8dE2lK+NYS3+ejoCF1dXajX621tObD1uXTatLHC01arVRweHmJpaQnJZNK16qbxWNoeDVvyZ9LxoDy57tfwB4Vznz9/HqVSCRsbG22d1G7jjcYL23NtvEmbXKvVcHR0hHv37iEQCKCvrw+pVKotLCx5IsN8tXBd7T1TW7RJDK0OdIDxzMwMotEotra2sLm56URjaXXQyKQn2n3PZBdk+k5I2v5KpeJcW5lMJp1oCb59Rk78eOUtx4F83o6fxfPjGKFdHhM91Q70lStXMD4+7lwloM2AcUMLPJ7pbTaPQ3Ci0ahzWiYXbs2AeRkf7ZlWJzlLKetHilIb/CZQZAK/fH8rP3GYyiqXy9ja2sL777+PnZ0dlMvllv01JiXmZ+DZJhROAmQ6NQL0rpQPMjjPPvssrl275hxEROCM9mbIA3wkIKO2UN20kCk5E0qgSjpEkj+876RzxJUDreDQ++VyGR9//DE+++wz7O/vu1Zm5PuSTyZD6KVwOpEN/hcMHl8DMzQ0hNdeew3T09POGNXqIR01jYf0Xbadh8Dx1USv6IJarYZisYgf//jH2Nvbc9353A4f2iUT3+jk7bfeest1P7m8uky2KRwOt+gXkke+gszlhusVDqwbjQZu376NpaWllgkaP5MBfoiDSN72K1euoL+/vwUo8f6WIfx8wpXGua1eVB4dHra4uOjbcdDar+kPjRexWKwlooD6h+fDQw15Wt4uSmsCVnSXcbttMaXzQ+Fw2LVlik9M0taqer2OarWKcrnsgLJoNOrwX7u+j/5If2tjQOOB37ZwPUFl1+t1ZLNZ5HI5DAwMqABcOjJ8DAFup1FO0FMf0+TQyMgIdnZ2nKu7/NprPo78OJW8/vV6HXNzc5iZmVFxBa8v7xOqN+8HkxzyBQXOe7LVvb29uHTpEr788ksUCoW2xqH2XeOPFy9qtRpyuRzefvttjIyMuLZ9UHo5Wc5XMCV/NCwhyzWlAeAKdQ+Hw5icnESpVMLR0RFu3LjR9iGwmoz6fdeLuANDemdra8vh6fe///2WK8IA95VeRBJD8zGmyZrmExDukJhHTpBqfgB9pnyj0SjC4TBmZ2cxNDSEP/uzP8Pu7i4KhUIL/06iS9uxm15k82v8vstt/ueff47e3l5MTEw4Z0LIOnM9R7pUi6g1jW2uJ/hv/LP2Xb7DMUE7k3FPtQNNp0DSAOCgQQ4UqXi4kyH3iXIFp4WDy5VsOYhMSlEDT1QXOZtlE2TTgNMUBZ9559RsNlEoFHDjxg0sLS1he3u75fAjmd5WtqmeT4pO03mmw+e+9a1vYXR0FH19fS5QxPuH7z8yASrKWypV4PHVSdLx4/sxTHv1pDHjcioHPQf6b7/9trPnWTvc6kk4ee2SdIai0Sh6enrw/e9/H6Ojoy08kQ4U/Qa0jlHZVxzYEd/lahagR5nwd9bX13Hjxg0cHBw4pzATmXhqAkomnsjPGvgjp4NOis9kMqjVag74kNsOpJ6TMk4knWeeh2aYSqUSlpeXkc/nXadSm/jhF7Tb+EM6OBqN4vz58+jr61P5xtskw7MJNEnnmZ4B7pNHiXK5HDY3N32Hb3vJBNVXAr9AIIBUKuXaG6jxRTpaJj5o+76oHo1Gw3GgO9ENfuwDz5fvt9YiJjiADQQCLlnm4Jq3i8qgd6VTycGTH6fJ9NwEpOv1OjY3N9HT04Pe3l4nrbaPnssibw+3B/Qbd15J7mu1mnPAYk9PjzOJJ/vBJnt+sIa0V8Bx321tbWFubg6XLl1S+57LKz3ntlTKorTNMh8Ajr7r7e3F9evXMTc358irrW9N7TdhKa/3iKrVKg4ODvDFF1+gUCjg/Pnzxq0FfKFHi3DiaW32XcqznMSh59FoFJOTk4hGo7h9+7YLe2h5tYPvKL3Mw8872jiiFcxsNotarYZPPvkEs7OzGBwcdNJpci0nSGXbtLpx3lO/UF6a/pWTWVreXO/S4WGRSASpVApvvvkmHjx4gHv37mFvb6+Fb3742A52aIfkGPciXg+bHWo2m8jlcqhUKigWizh//jyGh4db0kpZprx5WV71kO2R+kr2iy3isx1ZfqodaH7PIvDYKSayMcKkuGzfZZ4mxcNnU0x52H6XeZkE3EvIpPEiRUCz+Ovr61heXsbm5qZxv6LtM/+ugTXtmaY4/RDnjY385kl5RaNRpNNpjI+P48yZM0in04hGoy3hP50oLeng8fxMIBYwK1Utra1exWIR2WwWCwsL2NvbQ6VS8XSeO5koaZdMcsyNWW9vr3N9mHaugVe+1E6pE7TyKZ02iSXHA/Hs6OgIOzs7mJubc008+QGtXs9M7TIZCuLZ9PQ0hoaGnFPcNd3B5dEEpLhcaDyQ9aJnxWIR8/Pzzj2kNmN0GrLF2x6NRtHb29uyAiTJK3zfVA4ncm5KpRIKhUJbEyey7n7Lj8fjSKVSLY68plNM9aZ6SBmQoNC0B9oP+bEPWlk8jc2p5U4I1d3Wp7x8ubeYkx99J22y9juB7Gw2i/39fXWMmSY6JHbR5IrjCqpHKBRCV1cXhoaGnDvXNWejEzLVodk8nnDa3d3F2toaLl686Eueqf7c/kjHGmjVO5rui8ViGB4eRm9vL0qlEvL5fMdt08r1+x5NOi0vLyOZTLquDuRt5GXwvEz4yA9p+px+Iz4nk0kMDg5idHQUW1tbODw89F2eDe+a6mN6z/aMiPbXN5tNzM/PI5lMIh6PI51OW8uT+WntsuFkv46TzR5qOp4me0ZHR1Eul52tHaVSqWXC1mZfTWQaG15yp7WrHbLJLJXfaDSciFbg+PC/SCSC/v5+Vx5cF/j1D/zySqbTVsFPQk+1A61deUFEHShnmjRnRnacXFW2gR8ZcsVXLMjQyzpqRl8TIA28a6sLWh5ciOX/fD6Pra0t/OxnP1PvaT0NJ+BJOF/SEejU2HDgnUqlMDMzgzfeeMN1YFipVEIwGHStinC+87J5JINtUoMDVUorZZhWTHi+VDZvN5frZtN9AT3ls7Ozg1u3bmFnZ8dx8qhufg2GiY+mNtreMQEW/kc8P3fuHK5du+bsaaVntjA9ySsOVnkZphAdOTsvjQSNkXq9jo2NDSwtLWFpacmZmNC2PZgUvWYobM6GrJfkWTQaxYsvvojh4eEW3QS4T9CW9ePppR6kNPK6GA76yVnO5/P45JNPcHh42MKPdskLoPH/0WgUqVTKMdCy/VznU/9zPWrS/1IeuE0hEFQqlZxnJx1PtrZ3d3ejp6fHNckpt35I54zykv2rrdLwsrWDvejZSZwOLZ1tO4lmg6n+9BtFFMi9w7Is0iuUVtMBfhwZm2NAv5Hu3dvba+G1NsnB/7hzyol/lzYpFAohnU7jwoULmJ+fdw6LsvXLSQAktZG2MYTDYXzzm990hd5r7dXwjXT6ZB01J4Wv7sbjcUxPTzt7aOUYMNk6k461OWCynjxtrVbDwsIC4vE4nnnmGcdJoDQyHJ2wHL+lQ+oik3Ms68p1mcS51WrVOdvllVdewccff4xisdiypUOWa+OB7A8/v9HvJtxKxHHq3Nycs5jxwgsvuOor39VsnkxvaqOGfWU/UzpTiLF8NxKJuELpQ6EQzp49i6GhIeTzeWxsbODo6KglL428nEMbbrC91847pvqYfAWSKdLvdCtHPp/H1772NdehjvSujB6R8kK85zzT8Jpm0+l3iX9sbfNDT7UDTQwJhUKuEwY1YMEZTgqHK3tuUPkeZanYTQyW4VYyvEzusabPtmt1pELnQqXVQ4aZELikfS/1eh2ff/65c9o2D+lt13mW9bM9a1ehmvLxA3BMeciBGIvFMDAwgG9+85sYGhpyOc8AnFVP/r6sK9Xf5NTx/UhanQA4B6CQk8jbxu/E46RtVeAyV6/XcfPmTTx8+BA3b95EuVxu2ccjx4Tsd8lzP/3ZLnGe0mRBJBLBK6+8gitXrmBqasp4GrJsu8zTJjMmMCV5w/UDjSsKM/vZz36GxcVFdfLJz5jwIs2QyzYCx7LQ29vr7P+NxWJq28nwNBoNB4BLHanJFG8bAQhuoOh5LpfD9vY2dnd3WyIdNJ7Lctoh2f6BgQFcuXLFtQ2H+o+Ir1rKyQDqVxqHcqKLt5/24dI9n34AkBd5AZpAIIBMJoP+/v6WSTJyWqjdFDofjUZbdAIvj/pbhk3zEG5bPf38LtsgnQCql7y6im9z0fRruVx27D7PA4ATfSEPlqL0/Aqvdtsg6659J9rf38f+/j4AuMYbJxk9x8EhH4vaSpV0FHt6enD58mX85Cc/cfZZUv28+s3m1GjOFP+tWCxiZ2cHm5ub6Ovrc/QPTy+vxtM+yzJ4BBgfszxvmjh89dVXEQqFsLKy4nJUJSaTpPHGj46WdpP0QqlUwvz8PH74wx/i7//9v494PN4i82TTJU6T9bM942NCOt6cb9yGhUIhXLhwwTkDhc6ooHQ2/mg88YPdZF42kjJPET4PHjzA3t4ekskkzpw54xwaR7bItl1Fs8laO7jjJn0G2U7qa8B9pZbMk/Ii3gWDQVSrVYTDYXzve9/DF198gYWFBaysrKj10vKzOY3tEO9XU74nJc5TAM65EIVCAblcDteuXUN/f79zBR73x4i//PYbzmuJ8WTd+cQ35UvtNOEz23iz0VPtQAOtna6Bf0m2jpB5kKBxY+e1EibzkSDA1kHSQHADy59rq+SacBDgPzg4wMrKChYXF5HNZlXnWfLHVD/eBpuB1Z7R736cMQ1wdUI8n0AggO7ubvT19eHSpUuO88wdWPkeEfWlycjy6AMiPhljkxne53LlkNeFGw9t33+1WsXe3h4ePnyI5eVlFeS3C/jbcfy88tE+UxtoH9+FCxcwODjorCZqcsQNO/9M6bnC1aJUpJ7Qxhn/TM9LpRLu3r3b4kCZxp/mwJuem8jkTJNh6e7uxuXLl517KLnx4pExHKRr9ZCAg/OXiJw2zp9G43g/+NLSkmtCwa9j1QlRH1P7+VU6Mk+5QsMBPeeHBEQaT+jz5uampwNtA6amNsnv9BeLxRCLxVpm3+kdunqLH7AjZ/i5jJvGFHB8Dz1NSJ903NucM+58SMAleSftIvUpP6DJq77xeByxWMwV6mvTbRrAtDkSfMzQ3m7ac6fJJgeLxAs/jolmS6LRKLq7uxGLxVxRIe2SHzDNdV2tVkOpVMLc3BxisZgzcSN1htaXUrdrGInrc22cNpvHIcp9fX0YGhrC2tqaVQ/7wTZ+SfZ9vV5HoVDA5uYmVlZWMDIygnQ6reoRTa/K+pqcOE0nyfd4nvS9q6sLZ86cQb1ex9bWVktUmrSnlB//366uazedHGulUgm5XA537txBPB53rqslfvOoGhOftbwl/yQ24WNR6wcqX8Mn0kElogmfWCyG6elphEIh5+BeUxSOjfz4N37e9cJ37eI/kw2lbUHZbBaPHj1CPp/HyMgIuru7jWWY2uLHTmt5aZFHJ7FxT7UDre2LlCHbNkVqAlwy9E8Cc6nQTfUxzWpoV48QSaDGV9O1Z1SONsAp1LBQKGBtbQ03btxANpt1rjDyCrH0MxBNbTjJoDQNlnbBtlQSBEQHBgYwOTmJa9euOYDDa2+kHLCa7GhKmE449jrZz2RYpANN/cqjDShNpVJBPp/H4uIiHjx44PS1dPIkj0xjRGs7/34S50d+p8M2JiYmcPbsWefEYTl2pPMgjRaNCxNo5XmYeEF9IQFdvV7H/v4+bty4gVwu57qWgudtAhsa30x1sDlZXBdFo1FkMhk888wziEajan7kMEpgbXJuODjQZEaC3Xq9jpWVFczPz7cAd7/jXPajlkbKQiBwvIKayWQwOTlpHIuUv5Qn7rQArcBc8oSo0WhgbW0Nh4eHRkBsaqsGiLX6ymd04nSz2Ww5CIXGP51M7TWbrgF33qe1Ws21Am0DNlSOCYxSWinXHORzB1r2j+Zg8WgCW0ilJJqE0LCBJqc222wDr43G8TacSqWCQqHgTGzItnFAR595KLqpHVLn0PiOx+Po7u5GPp9HtVptG/ia2qM5UdRftGf1wYMHGB8fd67Pk6CWv2+ST15XaY956KUM5YxEIs51ppubm+rWCz/yYSPNueRE/CiXy8jlcnj06JFj03jUA3fOZL68LBmxKMeN9o5sr8R3dCp3LBbD7du3sbu765x9I8kLw5n6zQtL8s+a/eafaRwdHh7izp07GBgYQCAQcM654PIgy+I8ICzAdYyshxfm0fhCEUtaGk138IlbOtjt/v37zkFbFGnSrr00vaOlkXmYMJKWj/Z7O74ByX2hUMD8/DwODg7QaDQwOTnpuvGGE9f5UvY1mdfSmN7T+qhdTPtUO9AyZJn2OdGg4iBYA0Z8Ba9arTqdyEGJZsS5YGonulLaWq3m7Cfj9wfzd2q1WovwyJBQek/e48eVBE9H4SL7+/v4xS9+gZWVFRweHjqhlX4An438CNlJDLdJkOWAl2VIZUD/CWxGo1G88MILuHjxIkZGRoynXWv5ctDCec3L4aej8tU5QD9hloeqaGH82koShZiSsuUraJ9//jkePHiAu3fvolQqtYwPLyDsh9pJ7wXgiFd0ANalS5dw/fp1ZyWVh2lSfrIOXmBbM45875kcyzwtz6Ner+POnTu4d+8ebt++7Zo1liuuJ+GzHPe8nXJLQSgUwtTUFKamppzbCAB36JMEETLSgkdISOApQ0epfO5c1+t1bG9vY2FhwQkL9MOPTvjExx3xo7+/H4ODg85pxxrxE8Q14r+T/dBW6alN1WoVd+7cwd7ennEi1FZeu+kCgQASiYQzU8/BBI0T6huSA+7kUL9rqyqAW84J4NB+Uo28+k3T3xLMEfE7p+VqmHQ8eHQFn8jm7/Brekjnko7s7e1FX18f1tfXVVtrao8chybi8l6r1bC/v4/79+/jhRdecE4Pl6v/cusYj5bgEyOUnuSPv0O6LBQK4cUXX0Q4HMadO3dOZONle2TbuXyVSiXcu3cPly5dQn9/v3Pgk8Rg9B7XHbx+/BouqZuJ+IICd6qnpqbQ29uLTz/91JEBDee0C5AlL3gbJG+oPYVCAe+99x6q1Sqi0SjGxsZcciz7V5sA0nCe7A8NI9J3uYWB6hiPxzExMYHf+q3fwv/8n/8Ty8vLzkRgpzzqZKJGvqPxlOuxw8ND/OQnP8Hs7Cy++93vOjcS8HFMepAfSqiNXSpLOtRy4UzWl97hTh3Pj/eXxPzcJ6Ew/sHBQfzmb/4mPv/8cywuLuLRo0eqz3JSXmt8NuGMTvKjetnSSVkuFotYW1vD1tYWbt26hbNnz2J2dhY9PT0Oj2kSEHi8eq3lzUPq+WKV1K9aneg30+S5Fz3VDjTgdlq0GRquZGnAEGPJQJOxBlqBtElgKU+tbCJthkR2MO9kub+Q8tBmUfjMOwkcb+v9+/extLSE1dVVZ0baFm7olzQem9L5LUtL6wVI5XOTEiAnbHBwEBMTE3j22WfR29vrOsHd9C4HmF4OPZ8V14jLHq8bEQ+L5XeWau9KWahUKrh37x7u3buHtbU11xVCJqVwUjnolOSkBk16Xbt2DdPT066wbc3IytBsLeyPGytOUnly8Em8p2fcUWk0Gjg6OsL8/DwePHjgArDSgGhAgJ63w3Obs0d1i0QiuHTpEi5cuODkL0EUATU5Sy8n3fzUUU4oAMdRDzdu3MDu7q56INRJyOS4cABKJ4/7zYdIM6R8gkKGqXMZof2O3DhLvd0OaSCGtzEYPL4Oha8uE8k90BIM0m+mfaiybAIuXMZlXb1+M+lprR/4id+aI8ABFOeLBKzSDpLe57o7Ho87e+5MbeF1lbqzHaDZbB6Hn66treHKlSuu67c4aecRyO+aDpf6jfgxOTmJlZUV1wRDJ3Jp6mdNpzYax/vml5aWkEgkcOXKlRYnUMqnVo4WhcDL1fqD47d4PI7e3l4HoPvFKp2QSeap3RTWDsCln0iv8DHbbrn8PS7zVAc5McFxDun9RCKBl19+Gel0Gp988onLQemEV506YTZ8zYlkbHNzE++//z6+9a1voaurS9V/Jl0q85PfucxqzrRpfMrfSN/yyT2Jx2hsRiIRzM7OIh6PIxwO49GjRyq+0PimPfdDWp68H7zwMCfJH1N9JI6jtDQ5sri4iMPDQ5w/fx6pVAqxWMzaBq775XkJHBfazpiSbZA40A899Q40kQa4JdmcCS/wLfMg4spLGirtbjktP6+QO0na4Ace74/NZrNYWlrC/Pw8CoVCy4ysX/JyQPy+b3rP7+CzlaXlxwExXYk0NjaGs2fPYnh4uMVJ09qoDXjKW6uP16CTvOfK1hZaJOsjeUQhYw8fPsT6+jpyuVzLdWSnCR5sjp3Wz1p6znu6fujMmTMYHBx0TV5pIMXEIw1McpJ8oDTa4TTSoazX61hdXcX6+jp2d3dbIkRM/DHxxItsMk0Ggk6QHxsbw9DQkKp/TAaRGwqeph1AR+lqtRrm5+eRz+eNE3SmfG2/a995vxIf6N52E5FutoUpev3GicKbtfD9J0XcIZT9JaMmtPGuyT7/LCcJqtWqy6nl+ZioHXvAiVbKtIkw2QZ6xp9zu8YjDbStL/F43NkaIutlk0MvsE9pJBArl8vY2dlxrYrLq6psNt+kY6RDxH/v6+tzwoZ5BMlpO5A8X5pU2tzcRDqdxrPPPgtA55fU1zYdL2WT/5cOEzkjo6OjqFQqKJVKvpwCOXY65YFsU61Ww/b2NoDj++KTyaQzAcZBvKZ3vcaSTC8PXQJa8QjpEKonRS9VKhXMz887E6C8PbIufnWBVl/bO6YyeDtJxg4ODvDo0SNcvHgRg4ODzh5zmZ/N3pj0Pi+LR//ZtveZ8A33IbjscqxPafr7+x0btbu7i3w+79zuIHnil0xjr9P8tPwltZMvT1utVpHNZlEsFpFKpTA6OgoAjhNt07kmvOMXa52UnnoHms/y8P9aCHej8fjUUnm4Ewk0HzgcZJvANR8U/MAQmZ8cVDRIycjRTLS8+ory5+GifNaR6tpoHJ9auL+/j5/85CfY399Xry7iPDop+R2QnQizHyNi+p2vbkYiEbz66qsYHx/HwMCAaw+cdFB53wBuGdBAKaXl+WlEabmh4/3HjZ3cEmDaO03pNjY2cPfuXee0bbm33ctoPSlgZSqPj41wOIyenh780i/9EjKZjLNfnNedj2ftnlQ+LvlY4/0iHTs+DnlECM+bf65UKvjhD3+Ira0tdXVfvvOkiPOOrkvp6+tDPB5X+UXvyLbRjC3fVuB3okXqkWq1ioWFBRQKBavcncTg8rHJeRCNRjEzM4OhoSEVFPHVPS472gnP/DO3HZyvjUYDxWIRu7u7rklJ3hYZFSF54DVhoOkRbmv4yqLJIZWOGS9XhgVT3Xmf0cGTnKT989t3ss1SNmq1mjMZwdtJxKNUZKg5tZXbOE2HEC96enpcgPtJ2i+yx+vr6669jVLXcMea11uuqvG2mw6mDAaDSCQSSKVSSCQSqFQq6pkE9K6UO5MTJ/uP20m+rWNtbQ3xeBz1et05DV2+LycZeP/IyVP6zMOR5eQI51M8Hsebb76Jt99+G3t7e1ZH/bRI8on6rl6vo1gsYm9vD5988gmef/55DAwMOGHdHHdSPpwXXD9x/EfpuO7hB2hxXmoh3CRn1WoV6XQa09PTeP311/H222+jWCy6tud0yg+THHlNFGi6gqeh6JiDgwO8/fbbePHFF/H888+75IDrPa63NWxHZUocyHUdj2ThUZ68/lK3AlC3zHCSGKS/vx+pVArBYBB3797F4uKiGtFo6xeNn9o7Nuxso05xvK18knGatP3iiy9QqVQwNjaGkZERY4Qh/ZcTUlJ+NFvMx6lc3GzX+X6qHWjOQM0JkcCAh2lz4kqJK21+FZWJsWQUSdh5Z/C9iJQnfed14rP9UulxJ4vnJwVjYWEBa2trWFxcxN7enmvW2waOpTJ4kmQr6zSd+kDg+NCdwcFBvPLKK5icnHSupeIDTitTG0yaEyKBM+B2uImo3/jgpxBtqgttJdBIc4qAY1m6desW7t27h4cPHzoX1nOZl3najFcn6eQ7Xg4Cd35CoRDGxsYwMzODy5cvuw4No7Q0HqRDLA0cLx9Ai6Gj5/yPT7JobaexTCv8Ozs7KBaLLU6VSYYk7zoBJZoc8omHr3/960in0y6nSQIDwK13OI/4hCKla2dVtVKp4OjoqOVQQtleL93jlw/8eyQScSYP+PjhafkKnIwG4nmZ9BGlp3dCoRDy+Tzm5uZcof+anHWqT/lYp7rFYjFHd2mgiMsJX2WidDyUXxLZOc4XAjM8b1lmu+2hzxLgUll8LHJgSStP9F3bwkH/yXnm+fP3E4mE69oUycNO5VQD1AQK6RAxcqq4/ZFOjtwSwEnqRRMFAgH09fVhdnYWN27ccE1MnMQxMhHXl+VyGQcHB5ibm8PMzIynEy1l0qQvOdA12Rd6t7e3F0NDQxgYGMDW1pYqv0+CD5yo/+lu6s8//xyjo6NIpVLOZKd0iKmdgL4vn+MIsodUlnT0eFs59iD54k5kb28vnn32WTx69Ahra2vIZrPOeOT5SDLxUMqZjede37Vn1IZcLoebN28il8vh29/+trNFgi9i8bLpO5c3zfHSHCmuf6gfpJ7X+suEE7WrOYPB46tVZ2Zm0NXVheHhYXz00UeeNtSmn78KTO9FNnwEtG5PrFarmJubw87ODnK5HKanp10TTnxyOxB4PCEkfR1t8oE/J+L93ElE2VPtQBNpwFHOQgH6icb8O0/PO8xGNmdD3sknO4iDYptzzp/xwUsAP5vNYnl5GRsbG9jb2/N18rJWf1u7pCL0Cyo0vmh8N6X1QxxwkSKamJjAxMQExsbGkEqlWsANV5T0uzTmsl80YCyVtEZS0VJZpAi0g+ikIeT5EDibn5/H2toaDg4OWgC9fE+rk+17p2TigXQCE4kEzpw5g+npaSSTyZaJIp6W3u/EiHADJPteptf4tru7i0ePHjnRHDbH2Ys6GQecb8SPTCaDkZER9Pf3O8CBp5VkmqH1IimHkm/7+/tYWVnp+MocTl7jXoLreDyOsbEx59ocrY6c/MiOTddT3oVCAVtbW6ojLgGTqb/bIe5A+8lX8on+y8goL7AqV9dtvPXbDlNZfLLaRNrkJL1Pz4loxVJOOMdiMeeAwidBmiPN95ZKey+dFLk6JvnPP3Obx4F+KBRCT08PxsbG8MUXXzh1a6fvTE4n/03rB3IYFxYWMDY2ZjykU+o2myxqdtr0eyBwPLE2MjLiTHqaHB1TvbSx5NfuyDzJic7lclheXkY8Hse5c+dcddLsFceKmkMn36lUKohGoy67KScnqD6SwuEw0uk0zp8/75x4rV1tJfnjpctk205iH2Q9Go3j/dDZbBYAHHlLpVItZfmxB7JucpXZhBe1dzVbJMerVi71VyqVwvDwMMLhMDY3N7G5uelEd2k22A95jee/SZI8oKvgaEKUbhlJJpPqgbJaPibnWXtXyreWt42eagdaMkICbiKukLRZPJmfnOn3Mu5afYikUaTfOCCQV1xw0jqXAEG1WkUul8Pnn3+O5eVllEol1+nMfpwkzQicljPlVbYEFqb6aQqcP+d9Hw6H0d3djeeffx6Tk5OuvUcyPMnWJ7JeGjDVFKDWPi1Ui5MEtFSutiLRbDadE9bv3LnjXKfk17HzAgU8jUYmBawZCxOAD4fD6O/vx8WLF3H+/HnXpBAAV+QHD9201c8ERug/z5/SeoW71+t1LC0t4YMPPnDxWObfKdnApfaZVhlGR0dx4cIFZzuCLT/+LoFcU3kysoXP5GuhpxsbG7h165Z6cq7mXGoAVaY36UA+zgOB41Op6eouns7k6GmhYBqfKB8e8cD5Qve8djJbrZWtfZfjhl+Fw3lgI5lWrrxwOZDgjK/a2pwHPzrEC8xSOTIKh8sbv55N5ktOI9WHZLxYLCKRSLgiTegOVq6LTPKotcXWTvmbpmMA96FvfBKV2yTNwddOxOf4gajRaKC/v9+5Z1a2zeZQ2EApz8P0fr1eRz6fx507d/DSSy85Do0pXxktoeke/p3zics25004HMbMzAxCoVDLCrypDSa++HGceTqT3imXy7hz5w5qtRrOnz9vjKYivUPjj2SBY0TKky+Q0IFpfEuOzJ/6R1usiUQieOmll1AqlZxtStoKOc/Ta1z7dSzlMy0fiVFpjB8dHaFWq+Gjjz7CG2+8gUQiYcQL0gaZ2sCxF/0mHWpNZjW/Q7aBxjrQujWP3otEIo7D2Gg08OGHHzp3ynMe+dVTtjH/t4UkNqjVaigUClhdXUWxWMT4+LiDEyk90Dpm+CKMzFdiUsk/vpDVDr+eageaSK702k4c5eQ1E82FXYaHUX4mZkswKpU/rw83qKaVYxrUlCabzeKzzz5zDo4y7c00td1ET8KJ9srL9tymKCRATKVS6O/vx3e+8x309PQgFos5VwnQXZxSAWn84n0gla8sm4fB8hBDCUBt4Xm837R3eR2LxSIePXqEn/zkJ064FdW3U1BPdWqnn2zGTxsXxC+aUfzBD36Anp4e10m53CjxMEdp9PifBJESbEi+yIkUzaBSH3z++ee4c+cOtra2XNczyfZq3/2QBrw04MFlvKurCxcuXMCLL77YcoAU8UDb1mLSC/LcBrnthBspIgKFGxsbePDggTXaRf5mA7L03OZkUh1TqZQT+g+4r6oyAQnedxKc8zy0PiBgViwWkcvl1Db7kQHTuDHZEbpBgO4+lX3K+46PI84HOQEsnTEiAiK28DdTW7zAsExL3wkc8isatXMguI2sVCrOZJKMwACOnSh52jY52mTH/ciqHyClpefOBwF9msjl+++pvXys0neumzgglM64vLKl0Wg4p1FHo1HnRHWJP9rRX14ODrU5EDi+B3lra6vl2hlKy8ODpYxJG0tla/aSOy68bbVaDV1dXejv78fo6Cg2NjZQKpVUu38ajgVvo1x44eNyZ2cH3d3dKBaLTtQM9RnHgVwGSY/L7Sd0cj1vd6FQQKFQcBYR6E860hq2If32/PPPY2hoCH/8x3/s4EnqA5P98OKJTcfb5MqUH+cLXRO7uLiIYDCI9fV1vPrqq84YI75xZ1jqTylfXD5ktBr9znkh2yAjRnmdibQzV2QbaaL8G9/4BpaXl/Gzn/1MjUq00WnJejs2y+8zL/xI/N/d3cXh4SFWV1fx8ssvo7u7G7FYrMX20TjTzgySZZiwCt9a6ZeeegfaNOsglbBUTtqgsQmZSYGY3tE6QTMMXLgl8JXPAoEAcrkccrmcs2fl4ODAdb8zb0+npBk+WXdTWj9ppAH3ct60sqVjEY1GcebMGZw9exbd3d0t14PwQST72wbYTcZA22sHuPe92wYzL4P3twnEU9jSF198gcXFRee0bW4QOflRZKa6+cnD9L4mKxzYjo+P48KFC66rxExjkr5TGtlW6XhrddGcJfmMj0VSwsViEffv38f6+npbK/wa/2R7/JCUcwJGFy5cwMDAgDF0WwJxvpphIo0nPC/eBmrTysoKdnd3US6X2+aLqb1+9CvnBZ1rwNPZeMzLkMZc0zEyOoGvDsk2a/rM1ufyGXeYpG7r6+tDNBptAVAS2PJ3TXv9eLtkfbj8n2QyzkRam8kZ4O1qNpstUVkcJHGbL/udAyteDgCXc6FNMFE+Jl1K5IUTpF3Y399Hd3e3M2Z5n2mh6X5tIZGcnA2FQojFYhgcHHTx10/+Wnl+60PtrVQqyOfz6O7udia4tHe47pdyT/0s7bUcp3zckNwEg0Gk02lcu3YN7733Hsrlsjr2bTzpxH6a3pXRgs8//7yzF1pbieS6m+fHbSDlW6lUsL+/74yFaDSKrq4uhy+mc3/4b+T0JRIJ9Pb2IpPJuBZlOK/9tNuPrWvXXmj9Q+VUKhVsbW0BAPr7+zExMYFYLGZccedjT6s7kYwQMU34AOaVaZmnrd0yWoJWo6vVKs6ePYulpSWnT7wmxOh3r3K9/CFTvnJcemF8E9nsIHAsm+VyGY1GAw8ePMDg4CD6+/uRyWRcabVJX1u+Gk/awWdET70DLRvNAaNmfE0DUTO8gHuG0zTDzw2CNsPFAaosmxtbzUDQeyRIW1tbWFtbw71795xTNqVjYRJsv8bQj6L0K2wmQ6TVzYskb/gqRCaTcRxoHtrqZ2BrThj/zkGbrDPJFT2zDUq5z5crQq6g5SAnQ7mzs4M7d+5gfX3dUSpcfjXyAoMmknXgPNL6VI4F/p9W5nt6enDmzBlcvnwZ8Xi8xfjIPGXZktda2A43YBxUEcl+lG3gvF5YWEA2m1X3+LYru9o7NlDD0xAPY7EYLly4gL6+vpb3Nd0jV41NxPUMJ+l4cz24tLTUckWPra3yN1M9bPWj55FIBLFYzLUC7xVNpIFtWTcTWCb9K693so07r3poJOtA/U6TTZqz4VUPkzNpKl8eiGnLWxv/XiTtbK1WazmwrNFouFbP+DN6nwNoDcRKPUC8IHthknkT2PbbNplno9FALpdDX18f0um0k06GDGr15XXStlfwcrnsBIPHt0+MjY3h4OAAR0dHxjGoyZxfwC/bTO2q1WrY2dlxDs2y2Vxqr9bPHBzzttlAPclWMpnExYsXcfPmTeTzeRSLRVdaP22TPJB2StMZWlrCpPl8Hrdv38b09LTTRyaS0YiUj+RHtVptuW0lEok40QkySkmWAbi3USSTSYyOjqJWq+Hg4ADVatUTN7YjL5I3mh32MyY5D2q1mjOJcP/+faTTaaTTaUdnmvS6Vg9eHz7u6M9ks7Vxo401HjkBmO1yIHC8n58mUM+ePYvDw0McHBygWCxacb0JS8m6aPzQ6sHbo2E27R0TP7XxobWFj32ySzSBUK/XEYlEEI/HXVF3RFxXyoUsDeNQuk7oqXagibFkFInh/NoDfsosvUPvcWCmASuu4LnTwxU1FzrTdTj0rhQKaSCo46UyqVQqKBQKePfdd7Gzs+Mc9KABnHaVmUaagZEDzDaA2yXT4LXVj/o1k8lgcnISv/RLv4REItESgsoVXyAQaBlMmuE21ZGTdKq4kqVwcb4nSa7qyKuEKMyMh3fRXzabxcrKCn74wx+iWCw6Totp9ZnaoylJ/txEWn4aODQRBzvEh2g0il/91V/FyMgIMpmMw4Nm87GDy8cWHxfSgZLKnMriq2eaEZEyoBnmcrmMubk5/Mmf/An29/edMDGpG05jnPkh4mE6ncb4+Dief/75lhPLAfPd8IB9fyk/gZk7LjwfCY5LpRI+/PBD5zonzRBKsgEm+t2PcQ6FQhgaGjJeccHHjnRMNCNuqysPE2w0jsMwDw4OjCHQNjKNPVkf6RBS1Abt5zWlM5F0yGRaAtokZ1RXWwTVSe2KrB/JHT+Nm28t4O9z3UC2n97hKzjN5vFZEbKdkUgEPT09yOfzLQd8dVJ/SZpDeffuXaRSKZw5c8bBHhwb0HtypYuPRb4FSa7Yc1kgnNHV1YWvf/3r2N3dxfb2dgswPU2dxfMl3fLuu++iUChgZGTElU6CW14P7jTKSU+p+zWsxmWDztm4fPkywuEw7t275+KzF3n1NddnJgeNU61WQz6fx4MHD/DBBx/g4sWLuHjxoutaTcCNK7iDTfWmthGlUilnawBhWppc5NEymh0EWiOWkskkfu3Xfg3vvPMOHj58iI2NDTUqzqQL/I4R7d12iL9LeKhareLTTz9FNpvFxYsX8fLLL7tkRW7z4T4Az5PbCdr+QPw1TXrw8c7LIuI+CG0HkpP+HDcBjycSM5kMnn32WczOzuL27dv45JNPcHh46Hq/Xbxnw3h+Zd9vOluZprpSXXgbS6USlpaWsLq6ijt37uD69esYGBiw1oPCsqkMLnvUv81m07l+DzBfHavRU+1Ac+KgB3DvX+aCwQWNr1RzB5fPiJNxpvR8xkMqek7SCTLVVxoTOZj29vawubmJ+fl5bG1tOQeFteM4yTJtv5/0fRPZ0tgGgASKvE9mZmYwOTmJ2dnZltNVOV+r1arjyPF+4f0vZYTX2aTgNEMgDTRPK/nMlQMpZgkE8/k8bt68ifv377c4zzYgYJKNTsmPcyPTUV/19vbi4sWLGBoack7c5oek2OonJ5S4E6EBbA2I1Go11xkGEuDyd4jXh4eHvlZXT5u4HFJ9w+EwxsbG8PrrrzsTLFJ+bH3LDToH4gQMgMeHF2n5cH7l83k8fPjQJYuyLBuZ6qnJFZclql8oFML09DRmZmZcbaf3+bjX5EZzFOU+e03nAMDm5iay2WwL+DnJWDPxi8oNhUJIJpPOJIi2oszHEc9P2j56LseJDBfVJqA0G2FK46XPKS3ZWrJnplUZknUuwzQuNJtOxNtFvIhEIujt7cX6+noLX7xk1wZItbT0t729jXw+75JPmoySE7287kT8eiL6TkQTD7LcQCDghI1LmyLlx9RGjbz0DP2nrWaHh4fOVguOcbRxw+VOyhdFG3EnWyPOt0gkgkuXLqHZbGJ+ft7Z6ib50K4+9+p7k0NNTt6jR48Qj8cxOjqKdDrtyDGfqNX6So5zmjyiPaFSL0knmefHxwbvi0DgePLl2rVr6OnpwY9//GPn+kYe+eGXZ350gfZ7u3JINi4QCGBzcxPpdBqbm5sYGBhoabv8LPnM8+T/5Solr6MM95bnsBCR7SWbJvvMVAbhw7NnzyKZTOK9995zDlEztU2W3S5xmZB94se+eY0vE9aw1Yd4VSwWcffuXQwMDGBmZsYVdWrCbFJu+QJWp9j4ydzn8DdAUuFqoYdEGuDkQIyMm9deMK8wNzlIbQLIZ59J0eZyOayurmJ5eRlra2soFAotpwG3q9C8yC8YPIkzxvOQYEw+0xyySCSCgYEBTE5OYmJiAoODg9aT0m084nz3w0MpO16TCnylWNaHly+dSVrpW1xcxNLSEjY2NlwHhzxJJ47z3jZWtPfk+8lkEgMDA5idnXUO0tGcE5kHkTZubPWTzhRflbYp1kajgaOjI2eGUx7SIvvPxjuv3/0AMC7vyWTS2dulTQJ4yYMfWfHrCNM1NXwLgS295pTK9H5BFjmU/f39DjCyyagtT01+TLqPnu/u7uLg4KAjh9lUT9v7XN/J1Tqb/dLa41dfe63OnYbu4e9zW8t/k0CS18smUyZdTt9DoRC6u7tbVvNN1K6d0+pzeHiIUqnUssKs6XKyA1pIoWZDNNBNRIdomibGOmmfVh/ZhmbzOJInn89jd3fXU140HSbxHC+P190mj4FAAJlMBgMDA8hkMq4+l+m0z/w3brM6Jep7WhRZWVlxTYbbJsVN8h4IHE8k0bYW0hU2Z8xE3OaQvZmYmHBN2ppwmckOe40vLzK9q+FfcqKPjo6wu7uLpaWllvB2/r4Nv5t0iSyPp+PEx7EN03j5D/yPb1WcnJxET09Py4q4F1aTurOdfrKNAU0uTO9pY1vL08R38o92d3extbWFra0txzeykY3Hndq0p3oFWlOs5IwA7lk2aZSlgqHvpMQqlYozO8FDZng5Wtlah1CnU3ny9Ex6j8oOBI7vG7179y4ePHiAw8NDJ5REAglTvZ4UmYyNzYjZqB2nlVaPenp68MILL+CZZ55x7oeznX4oHQ76zvd48vf5f9nP8hmXN/6cytHelW2WypeO8d/b28Nf/uVf4vDw0Nn7IfOz8d2PwZT1OYkyoffpj06SPHfuHC5evOgyKLIveD9xsq04S1DB604TKjIsR+4Jo7FZLpexurqKxcXFlmuK+Ax+p9SOnPPPoVDIATIU+i4dEPpNvivTyLK4HqJ0tvHabDZxcHCAL7/80nGgbW00AV5b+/l/+VsgcHxIzsDAAAYHB1u20fAVEqBVBqiN/L+MEOF15Hqn2WxibW0N2WzWpa+1+msAwQ/J/qeoGbnFQdZN6h/efo2Xmv6h39o5QMzmiGik8UROYFK7bbaFr4bJVTEt/I7zLRqNor+/X129NvHHj52zUblcRqlUQrVabXFq5HVF/E/yRusj/q48TIwcq3A47OxlNbVBA/kacT2jfSeq1WrY3t7G7du3MTY2BqD1kCSpD+Sih8Z3OU757/Qbjz4KhULIZDK4ePEifvGLXzgTqiZd9CTxE/UlTYxXKhWcPXvWaSdFEvDVelPdJH7UJlFkJIkWoSfzJrkLhUIYGBjAt7/9bfyv//W/nO06nEyO1GmQn3w0jEXO1crKCnK5nGMrksmkM/6o7/lp/tLZpQl0ihIh7M23VfCIVMlnvjXKppfkmJV2nBPVMxQK4c0338QHH3yAhw8fumzSacrvSfqS20e/fek3DbW1UCiZIHeDAAEAAElEQVSgXC5jb28Ply9fxuDgIHp7e11lmnS5nPTwa/MkPdUOtLzGghsb4LERIZJKF0CLIaLPlB/918ACV+a8DtIg20JfeIfSQWEPHjzA+vo6tre3nRk0r5BdXt/TIM15fBLkpYQ5UIxEIrh8+TKmpqYwNTWFRCLhcjQ4cUUJPFasdB1Ms9l0yQa/n5P3KQ/N0Rw8ypvSUt70uxYOKZ1sbvRDoRAKhQLu3LmDjz76yDnIw7byfJqOXTt5af1EfUH99dprr2F2dtZ1cI/mDGvjKxAItOyF1Jx9Gvc8DYFwMmSmVZ1AIOBEe/yf//N/sL297XuyitehE/6ZiPMxGo3itddew5kzZ1z8A/QD0fhzLodST1EfScMuD2Dk7VlfX8f6+jqKxaILpGqAWJMrGyin97Xv1HfRaBSTk5POuOeTktLxlPtMNb5ofON8kg4MXalB754WYNF0CoWXxWIx57vpXc0OmdIDcI0XLgME7rVTxum90yKpI+k36UQ2m82WvcryTlx6JtMRAG40Gs4Wn1gshoGBgZbtPLb2aY6/HyeU0tVqNRweHmJ3dxeDg4MA3FsJtPc1h9FP/3JHKRqNYmhoCMPDw1hcXPQdZeVFJqeZ17ler2NnZwe3b9/Gt771LWclnOpIabzkVOImbdxxWZLbMcLhMIaGhvDqq6/i1q1bLlsq7bDM77RI4s1AIICjoyNsbGzg7t27mJiYcA6YI37w8H5ykGUEA9C6gsadOvouSYYOa/1JY6Wvrw/PP/885ubmMDc312ITbTrwSeJGWQdeHi2A5fN5/MVf/AVeeuklXLhwwdnnSjpEHiaonYgu720PBoPqGRiUB+8zaZOIZKg+z0P2g6afAoHjfe4vv/wypqam8NOf/tQ5NV2+64dvfkjTgba0fvcR2/CsScdw3Q8cT1Deu3cPW1tbGBgYwMWLF1vSSv0h8+ZYoh1n+ql2oIkkU6VS5oLMBz13fDhQIvCihWBIAK+VI7/LASA7ttk8Dnmiy8PX1tawt7fnAqpfhTPLya9S5Ar0JIDSxDvuSJw7dw5TU1MYGhpyAJGpf6QzQb9J42P6LMGVNuhIqWoKztY2WVeeptls4v79+5ibm8Pu7m5bzly75KeP21GynOexWAzT09MYGBhw9j1rxkGbVNCey++y7tpEBe8b/h43co3G8eFQi4uL2Nvbaznd3Is66QvNeEn5IwAzMjKC3t5e9ToYXr5mGKS+k+8RL7g+JOPHxwqlXV1dxerqqnqA4WnrJd4W+hwOhx0HWuOBZhS1NLZxKvud+FIul537imWeJ2m7Nr7ot3A47JxizHmhgTRTPWz5y3dodU5zTk6DNNnkcsflUJvw4J9N41o6idQmonA4jFQqZXXcONnsne0dXi8KK81ms+jv73fqaQuttulBU935ZAilGRgYwMjICJaXl62RNH4Asmy7CeDSX7VadSYO+vv7XZPX3NmReksrg6eR7SD+yGgl4nE4HEZ3d7dz8CCt2Gk60UTt2ETZ/7JtNLFTLBbx8OFDJBIJRyY151jm42fyhN6Reo/0utTfWrsCgYBzPWi5XHb28svxKnnUDmbwIj95arqg2TyeuMrlclhYWEAwGMQzzzzjGnMy+oj7AxKXyPHnFWrP85W/0TjlNts0lrQ6UP2SySSazSYuXryIhw8fIpfLOSfut6u3NUzSzru8fpxM2Jx/N71rsmdSvzebTRSLRUe2u7q60NfX5xy2qi0I8P4+iY17qh1oLvgcLHPh1lYoTMqTz07xzeW8c7VBxkmuCpnqLcs9OjrC9vY2vvzyS+eAHnna5mlQJ0rONiCfFNgC3CtPPT09uHbtGjKZDLq6ulwzg7J8PhNNRIc3yNPXJXEjxAcYv1eaO2FSWfJ8uFKiwc3L5u+Q/JbLZXz22WfY2NhQJ1BkW2V5Xr9p1A440Ii3iQBLKpXCc889h56eHvUqDa7ItJV/WR/NMPH2Ud9SfvJwCK1/AoHj1efl5WXcvXvXtfp2GsrVL0mQSH9dXV3OoSFaqJgEkLa8OUknhcs7bztPX6/XMTc3h4WFhZbV59PmkWlcRiIRzM7OIpVKGUE3H2c8hEzWU5ttpjxpworGZK1Wcw5skQ7ak5APqi/ddc3rJgGyadJAOt1a/vw7tYsm7Ph7pj42tb0dHUKn2/K2aBE92tg3lak5LETtOtCc/OhJqZcCgYBj37e2tnD27FnnWa1Ws15lxN/n/amF99JzecPAyMgI9vf38emnn7ZERNnq3y5pfUTneGxsbCAWiznRFDz6gVZatetoNBttkkXpQPP0dOrx7OwsSqUS9vf3XTqM64p222pLQ3nL9DSpUy6XcffuXYyMjGB4eNi5v5m3gesk2TbZfsKuXI/bIoqkgy35RraUHOjV1VUUCgWXjPvBk+06dCfRqbxuFFGzsLCAw8NDjI2NIZFIONiAL5zRu3LrgEa2iS8ibkfq9bor2pE70HSoJ283r4/UgbLcVCqFa9euoVQqAYBz4BvVwY+O9sIR7faHl65ux5Zo6WS7SNfQWROVSgWzs7MYHBxENBp19vDzOhFp46od2/BUO9BcQE0KkK9IE/O400LEfyely5UXOXNyqZ+HZsjQIC1/AqN8z9PGxgbm5+fx6NEj5443P06TX2e4E6f5b5K4ExEKhXDx4kW89NJLzuy93C9GxMFBpVJBIHA8gwpA5T0vi0gOeg52eJkcBPBy+fs8b1KWPE96RnXa29vDhx9+iI2NDRwdHRmvKjtt0pz9dt6V/TU+Po6ZmRlcu3bNuauPgwDqB3qHj0eZThp4CSaJyCjJdNq2DJINAFhbW8P9+/dx9+5d1UHya/zbAQleIIj42NPTg69//etIp9OubSCUlo8FqfRNV2XwfqZwP8qTnxDK+6BWqyGbzWJrawu5XM56C0An/LAR8SMSiSCZTGJqasqZQJMgjl+DRMSBoFY3uZrC+UsHNh4eHroOTvPTzpPqWjrsanh4uOVOZK1szZGmd0zRH9JpJRAiD6psl7wcDJ43n6yQMkz6r1wuIxaLufSDaWsNP2E+EAg4jhsvk8sPkeZg2H73wwOiRqOB3d1dPHr0CNevX2/BDNQWuR+SiF81JnU06VJTHQYHB5HP5z1Bvwlg2tJq5XHdAhxfz/jee+8hHA47+xM58XppESNyQojkmU+Wcjwg68Bty0svvYRisYiVlRVHV0hHt902e5EE/LytzebjMyUODw/x1ltvOWn5pJImq9RPUh/J83rk5CjnN7+WldeRywBdQXnp0iUMDg7iv/yX/4KjoyNUq1VXCP7fJozJnWDS35VKBf/3//5fvPnmm87VanwvvCkyUSOJW6gc/pkOtJI8NTnHVG8ZSScdZ63MWCyG69evY3BwEPv7+84kh18dLscNp9PAPifFASY7J2W20Xh8uFihUEA6ncalS5eQyWRcOIf6QMqJzN8PPfWncPtZKeIhK9zh5n8awJRONZUl35dpTCEyROR0HR4eYm5uDnfu3MHa2hrK5XLLO34Ggl8B5YPRb76m536c9k4cCjKItEflypUrmJmZQTqdbrnTm0+cmICidten5vDy55w3mnLjcmRy6DQn0NTmZrOJhYUF3Lp1y7kiiNom3zXlZ/vNr/zIdvsFFMR7cvrOnz+PK1euuFbtZf35H/GRoi64U8MBkhybWj1keRJg8D6s1Wr46KOPsLq66lxx0g4PpH7wQzbnmfMyHo8jlUq5Qrc5P6RDKImiV2iGm79j6g8y+nwsBQIBVCoV3Lx5EwcHBy65NMlmO2PfRBIwJxIJ9Pb2uk5x53Xk5Uv54W3m6fmYNq3ONZvH4WHLy8uoVCqeY5m/p63ka/rGRPF4HJlMpmV88nEiZVbTYdrksgbKms2mc1ihrQ/b6V/bGOHfySky2XNbXTjJ1TZu76QToa3MmSYa2mmn9nupVEIul2t5LuvmB8dQvrZVU0oXCoUQi8VckUDamPHTTtmPWjQGrxfp9lwuh4ODA5RKpRaey21Ysn5aP5nsNS9ThsjSlpjh4WGcO3euZZKNl+3Fg3Z1m8QRnN+1Wg07OztYXV11TU5ykjpX4zPP37agZLJvUv6IZ7SVMRqNore3Fy+//DKGh4eNEzLt6P9O0pqe0X+NT/V6HZVKBXt7e7h16xYePHjgtJGe04IFTW5pulFub/HrbGl9ok2GSZ7wfpb+howWi0ajGBkZwfXr15FOp1vOnDHxU9N7fnS/Ta+fNtn0Kv/OMTnp2wcPHiCbzTqT3zzC0GQ324lGeeodaKBVsWskBc5r4JoMjEl5tfNXrVaRz+edvZekPNsNjfQ7gE86K2gS4NMgzXBGo1Ekk0kMDQ3h3LlzGBkZcfZP8XeAViMu6yhn9Ph7PJ0GTGR/m+RAKlUTKNHqUavVsLe3h/n5eczNzWF7e7tlhe8kiuq0lRvvJ/5H+zUnJiYwNTXlXLkkeSQVlGYk+O/SAGifOUjyWmmhetAhIw8fPsTe3l5bpw/bqBOABbSuPvf29mJwcLDlEETtv9QZWh208EZAn+jhoLXRaDh79QhkyLJOm7R+TafTGB4eVrcDmAAIf66NRSl7cpxRvtVqFVtbW65xqY1rjUzPTG3g/+PxuHO4kBw/Nr1nkg9ZJ22c0ESSjbT3OrUxWp/IOtry9uN4Uv/TZ9qi5ScUU+Zjcj5t7Ws2jycm6G55mZ5P6PD3NNImGLSQQ3pOzs/g4KArXNwGrv2QzebK+h4dHSGXyyGbzVrzlDaF/0Z5m+yHrIO2ck0nS09PT1sdQPn9tHUcz5MWUsiJpghEqrsJf2g8kL9z8tPfUmfyCUiagDh//rxzI4QpL5ON9kt+0nr1idSX5CQvLi5iYWHBZfObzcdRHJrc+Sm7E52o6WeT/EkZkPqfbOS5c+cwPDzsbHWU0Zpau2xj2Y/c+JED/puUj3b0kLQRGvahlehisYiNjQ3s7Owgl8uhUCiok1Gyru2M97Yd6L/+67/G3/t7fw9jY2MIBAL4sz/7s5YG/s7v/A7GxsbQ1dWFb33rW7h165YrTblcxj/7Z//MOWDoV3/1V7GystJuVVoUDRE/8ZEzi4M/mqkgp1WGfFK+Mg/6XRNCbbWLr6zRvpelpSW8++67ePfdd/Ho0SMUCoWWO369OtHPQJfpNSBpyteUt1/ht9VLDma+qhYOhzE4OIirV6/iN37jNzA7O4uenh7X+9JR4LPNWng3d87C4bDrahjKj9/7LfMCWve9cMXM36H2yX1qmuNSq9VwcHCAP/uzP8P777+P+/fvu1ZCZZtt5NUPXgrQpNi0ulP7aGWTDmmZmJjAP/gH/wDPPvusE3JJPKpWqw6Pm82m0wcEZvmYpfbS+KR3iQf0jpSfSCTiXNsiT1XnkSbN5vGJyp9//rnrsD4q1y94l881YGwzXJyXAFzteOONN/DWW285PKJ6E080AMXTBAIB14ysthrK//N9iLyudDbD/fv3cXR05Kk72tFHJj7K56FQCLOzs3jttdeMIZ/UBmqTabVNRqzIsw14fUgmy+UyVlZWnNBmTn74wfvHSy/SfwrhHh0dbRkX1Fc8IofrLL5y5KUTKC3x6/DwUI2q8aq7qX2md7j88f2AgUCg5ZTbaDTacmI1yTblQX8UWkp84vqbR2LE43HHodTqrH02kWy3BMaNxvGpwMViEQcHB85puXwyiPqcvvMoABmizfuf3pNntnD7k06n8frrrzt7v2X7/E4k2Pgkn3OdWyqVcOvWLbz33nuODqZ+4OlszrCGj/h4lhiOeMRlPBwOY3x8HM899xwikUhLZM5pkR/sw9tWqVSws7OD//2//zc2NjZQq9VadDHJKscypNt5Or5NTOpH7SYMvgeX/055VKtVVCoVVKtVVKtVDA0N4fr16/j2t7/tsrGc7yYeaOPEC7fYeKo5P9oY5DJEJ8P/yZ/8Cfb39x2+DAwMuA65I94Rb8gu8y0ilKcJe0qeEHHMA8DVj1Kvy/HJ9SXVC3hsC7u6uvDd734Xb7zxBi5evOjCSRrvNfKSXZOe9yI/abzKJfIas8SnSqWC27dv49NPP8WNGzecKDIpHyZn2ova1hxHR0d4/vnn8Qd/8Afq89/7vd/Df/gP/wF/8Ad/gI8++ggjIyP47ne/i3w+76T57d/+bfzpn/4p/sf/+B/42c9+hsPDQ/zdv/t3fR99rhEXWC64MsyP0pJRJoDDSYZXSJDC85P5c6eZr3rX63UsLy/j888/xxdffIFsNtsSLuflPJtmXDrll6kMvwJ0kjpIHhKomZmZwfXr13H16lXX5n/5jrZiRLzmfc8P1eB11gYld9JM4TrSYed5yjqSbJGilaHK9+7dwzvvvIPNzU1X2LYNUJjoJLLgJ2+NaGx0dXXh3Llz+OVf/mWnzzQFxUEs4Aa1fOzy8nhf8UkvHo6j8V7ykaher6NQKGB5eRkfffSRa7/nafPQz2SVHAOxWAzPPPMMBgcHnfBtDpg48bbJsEW5BcAEbigtd1o4OJufn8eNGzesodtau/3wxsQT+s/1Qk9PD/r6+lxjisY6tY9PymhlaQ60pr/5X6FQQKFQcB2u1Q6ZjLKXvBFopoOX5DMJJriNkk4JAEfnyBVQyW86SM/UFlvfmtpk0o3yGdfNpmeAG2Ryp1PqE1M9SKbofAy/JNtmAqEaj8hubG1toVKpuLCHjLzR9pZSm+UVXoQzqF28ntSPsVgMo6OjLfZUa1M77Ze/S73Nn+3v72Nzc9O1WCAXNLjekX9y0oDI5LgQaTYgEolgenoayWSyRR5NTl+nfNKwnXxG/VgoFPDpp5+2LDjRRDTHonISjeptsxH0Hv8vf5ft5Do/EDieVOzp6cHAwEDLlhp6X+OFXxt7WrZYyiIfE+VyGfv7+3jnnXdw//79FntJWI1P+PP36T+FfEte8rRko8hppvMMSBdz2eVYR+sPrg95v0ubRrd3XLp0CZcvX0Ymk1EXBm1kc7BlvfzkcxIH26Zf5HNZJz62stksbty4geXlZddZU1yPajjLRm0fIvb9738f3//+99VnzWYT/+k//Sf8m3/zb/Drv/7rAID/+l//K4aHh/HHf/zH+Cf/5J9gf38f//k//2f80R/9Eb7zne8AAP77f//vmJycxI9+9CP88i//crtVUo2C9juRBE1cQKVypt+0zuPPtWc0IOkKgLW1NWxvb7vCtTtRFCYjZmuznzz4M8kbP+8R2eqgzVoFAgF0d3cjnU5jZmYGQ0ND6O7udhlHUx7cgfAiCYB5/5GRovx4WpOB0HjBlSGlke80Gg2sra1haWnJGcwmB0UCNj/81wAy/e4lH159J/9CoRDOnDmDqakpjIyMtNSRfzfxRcqELYyby6XsI7nqz8cXB0HLy8tYXl52wrikgdL46IdsBkBrp3yXjN/Zs2edPYua8ZQGicusBHxctv2QNCo7OztYW1tTJ/pk+U+CKDQtmUw6qzAS4PFZeBOYkb9xeZJyyf8fHh66rm7RAA3/7HeM+mk3nQOh2SDZDmq/iTjIkvnwMVUqlU58SJzJqZT20gSstbGu5akBT1O5krq6ulrAP3+Hv9uJ3qX68bzq9Tp2d3cxOjrqaj9PD+irKyaMI/PR8guFQkgkEkgkEohGoy2Tw09q/HK9RCHsGxsbzmnIpnc02dNsj0mvmjAbfY9EIpiZmcHBwQGOjo6MuOAkbW4nHdWtXq9jY2MDqVQKR0dHzn33pnxlhJWWTtoLm44w4VzOO5qc7O7uxtmzZ3Hv3j0cHBx0hGO9yKRT/Uxq2HAHyf/6+jr6+/sxPj7u4M1ms+mylzJSUcMdss4ynVyQa6f9Nn1tancgEHDCtycnJ1GtVhEKhbC3t9cyodJuffz8JmXWJsOd2k1bWvmM2+5cLues/Pf39yMajTr9bZp4tdGpxq7Mz89jY2MD3/ve95zfYrEYvvnNb+L9998HAHzyySeoVquuNGNjY7hy5YqTRlK5XMbBwYHrz0S2VRK+4gA8DqHiykWuLgKtoF2uLGtGmsqnun/22Wd49OgRdnZ2Wg6A8Ut+Z3LkO7bvJrIB9pMSz4uA4sjICC5fvowrV644pw7Tc60O5CxpSl6GOXGAzX/nilCGSXLAyf979RfVU0ZA0Lt0wMGnn36Ke/fuOXuetUPDOjFIpndOImca76nfYrEYvva1r+HSpUuIxWItBp2/L8GRDIGXjhGP5OAKDnh8sArfHsFXY2R/cZDy8ccf4+7du23f+XxSshn7QOB4dj+RSODatWvo7e11KXO5umYal9IhMekZ+Uz7K5VK2NnZwcbGhmvsyHL4d79km2yQsjc+Po50Om10vGyOs3TMNODF+cj50mgc3xG+s7PTtq7W2mVzDCgN/RYOh50tCV5GXdbZBpK1fieq1+vOFYqm+mpkk0eNB5ykDgDc+/UDAfMVPlI3axNLpv5Pp9MuJ04bH/z/Sewg1aFarWJtbc05JVdGHFHb+WRuIBBw4RTJD4qw4nlQOv5eNBpFJpNpuQKuHXBuIi/e8FUgui5QhtTzFTeps2S+3P5oeZjqQZPs0WgUL7zwAvr6+tQzFYjaHQO2Z5pcyjIajQb29vawsbHh6FzinyYnHGfIdOQI8hVSvsjQaDTUK5QoT01/cnns7u7GG2+84eytN7W/3TFzWlhTw1G8PfV6HQcHB9jY2MDCwoJrvNnCg6VuNckHT2fTzV7OuAmfmH7nMhGNRjE9PY1Lly7h7NmzLXrktHG9ib4qfAW4cZ+G/YrFItbX13H//n3s7u46kWX0XE4uetGpXmO1sbEBABgeHnb9Pjw8jMXFRScNnegn09D7kv7dv/t3+Lf/9t+2/E6M0WbOiJGRSKRlZZGDUBnup6WRZVIa+q8BOAA4ODhw7pilvWV8UHRCft87qSP2JAYW5ycN5kgkgq997WuYmprC4OAg4vG4S6lodac8pNPrVXe5EtdoNBzlTwaFyxIHXPSdX/0gy5Ynf0oQUK/Xsb6+ji+//BJ3795FsVhsCSGW7TxNxeMFbrny0dJypRsMBtHX14eXX34ZZ86ccYCZzJM7vdzQk8ICoIIYKkM6NtSHtNpKaWXYoyyz2Ty+zuLevXtYWVlBLpdrcQZPQiawZyPOz1AohLGxMVy8eBHd3d0tIZzaexroNIXByzElHU+uC5vN4zC2L7/8EhsbG+q+fFlGu7JqSsv7jVZgr127htHR0RbdSWWGQiH1cCbpkEmnyAaYSD5XV1exvLx8ookWr3HF60H9l0gkEI/HXeGblNYka3L/I2+X1FsciHN5oHtEpXMqeSfrr7WVvssJEU1PyHBIXnfiCd+rSY43tS0QCDgTabIusp7hcBgDAwPY3Nx0tVPyVupETu3aR3KgV1dXkc/nWw4t4unkhIC0c7TdQpsg4P0pgfLZs2ed04i5zPmNTjkJkWx9+eWXuHr1qrMdg0+e8Agiua2HnpFsyrHN+cP/+GREPB53ZI3O7Dg8PHSwKX9P2n56TnyW5Nd2yzwoHfVBpVLB6uoq/vzP/xz/+B//Y+NKPaUnOaLxIJ1qIq2feWg81Y33BX8XcOuXZvN4EuqNN97AyMgI3n//fWdcnoY8eWGVTt4D3FFa1WoVS0tL2N/fRyqVwsjICFKplCt/0ku8jzR7QfpW2lr+nNffhlHlZzkmADg3ZgBw9sxLWaL+GhkZQXd3N7q7u/HRRx+5fBEvOonNl9jZD0Y/KZnqQzxvNBrOmTr37t3Dzs4O+vr6MD4+7rJ7fumJnMJtMwomsqX51//6X2N/f9/5W15edr0nmcZXhvkz7vTKFUjbjIxUytqMOC+nWq1ie3sbjx49wurqasudvqdBJ5lB8vOObPNJ6i3rSkp7YGAAly5dwsTEhHP0vuwT4recrZe8l31D5XCFpD3jRkMCPW6w6ZJ2CUokL7WVU8p/dXUV8/PzWFpaclZ6TCuE1C7bdz981z63874Ec2Sge3t7MTo6itnZWdc+TTkDrk1EyRUmCSq4QyjHr3SgZP9qs/ZkLA8ODnDz5k3HgJx0VbFd0iYJ6C8SiWB4eBizs7NW55mTNj5tjil3EjSgzp/VajU8fPjQmWgwyaKUkXbJ9g7Novf19TlAUgOIVD/u5GrGmteV6wspU5wf+Xwe+/v7nn1h0sWaTtFAuaRUKuWMKy+7JL+bfjfVV/a71IcnAT5e9faSW54HpZEgXQJ/qXekjgkGg+ju7kZXV5c6Jk3laiQdWBN/qI5HR0col8vqliM+wc7zlvuDeZ2kLdLGKj0bHh52Ilt4+0w4RpKtbabfpWzRXkQZ9kv9wvc5c3sjxysf89q4l+/LszbC4TCmpqYwMzNjXYXW+Og3jZc8aNRoHIe7HxwcOHeyA62LBZo+prZxnMXzlROuHFvxOkneaViHeNjX14eRkRGMjY0Z76v34oUf/njpVhvZdBDdxnH79m2sr6/j6OioJb30FbTJaF5nzUZJ2ZS/S90mJ4p4el6G3AOvtT0SiSCZTGJkZMS51caPbpN1NX234WFTWr920G+9/KThOqTZfHy14NbWFpaXl1sOr/RDp7oCTReUb2xsOPt8AGBra8tZlR4ZGUGlUkE2m3WtQm9tbeH1119X843FYuphKkTS2NNn20wYN1QmAeRCbRooUsir1SoODw+xvr6Oubk559J5/m6noF0bgEQnUU6nQX4MC/0PBI5XWIaHh3Hp0iUMDw87ylcqehvgl23hn2W4Lye5skmyIO8tpjKbzSYKhQJisZgDukx9YXJmGo0GFhYWsLCwgM3NTVfoyGn2h185kPX3q/hIaQ8PD2N6ehrj4+MtYWLSadbaJ4ERT8+NO/B4JlX2o+YEmOSiUCg4k1q059wE3jvpD7/yL+tNfEilUhgaGsLk5KSxPZrhbad+mv6S9SGgWyqVsLCwgP39faP+k59lOe2SrE84HEZXVxfS6bSj/6VuIOJ19AKxNuPN+UAOD4Xcyjz8kk1vmyiVSiEajba0x8uxNbVL4wt/RqBNHpZmGrtau6TMmt6XxMc6Jx6xQv+1lTQ5MerF51AohFQqhXg8rtpwE8l2+elPafdLpZJzUng4HHbxUPLBtJLFgbmUb77CJnVOf38/MpmMc5CRlB/bd94WWzs58TyoXnTidCaTQXd3t0supc3WALfUQ1rUEZUt68IpEolgYmICtVoNH374oS9b7LfP2yE5nhuN43D3crmMnZ0dJ/Sep9fGveY0y3c03Sn1AuUhMS6l5RQKhZBOpzE4OIipqamWM0W0d7wwgYn/2u9ev3HZ0XRSs/l4S92DBw/Q3d2NaDTqHN7J08t+lzrHVB+5HcPWNk3Xa/Wg/zxah1bJNYxEE0SZTAYXLlxAKBTCzs4OyuVyS/ts/cLrx7+3Y99MbZJl8fxOCx9LXVuv152FsVKp5ET+tTPGT9WBnpmZwcjICN5++2288MILAI5DUn7605/i3//7fw8AeOmllxCJRPD222/jBz/4AQBgfX0dN2/exO/93u+1XaYNOBPJkyv5u/w3aYhkukAg0CKgPAS8XC7jzp07WF9fx97enstJ4nXthNp9r11FbxPck4Ji+RcKhfDmm29iaGjItdJCZWqhMoHA8SoiOdqybibQQH+m0CK5L4j+E7ihcvr7+43KgteTh9fR/2q1imw2i1u3bmFra8t11cppOiCdkBcokM4zXTP2xhtvYHZ21nUVDD2n9DxMUe6ror17/DkRv34kGAw6PJVXtVD9tbryNpXLZfz85z939t+d5AC/TkgDdjwsNRKJ4NVXX3X4yWdC+Wq9NGIyX35nNN+6ouktznPiAX0/ODjA0tKSM/nn5VCdJvF+p4NqSKboOf3nYcmkN6RsEHDk/JOrdJreazQaKJfLKBQKKJfLVlCotaGTZzxNb2+vc0qwSa41u2Lav8dvIyB9SGVxvtDq6El0PwdWGhCXfcTDT2022NZn1EaawAsGg84Y4Ns7iNLptBPS207f8jR+HSoe3lmpVHB0dITDw0NEo1HjJD61RRLXB1o5/NodefVfIpFAd3c3UqmUE8ZNeZ32uNb6p9k8PlD1iy++QKVSwZkzZ1z4ScolvaPVTa7QyTZwZ4Kv6HEHIB6Po6+vD7Ozs87EqizbZGdkO/kzP7zU8qB3aRy+/fbbeOWVV/Daa6+59mdKfcaj6WT7JXaVNlirE+eRVm+eJ5343N3djfX1dWxtbTk37thwebsyZxprtr7gv3G54r4APS8UCvjkk0+wsrKCX/3VX3W2z9A7cjIPgGsCjPqNp5Ph2NRvclzLftNwpvQjuJ7jukLySNa3v78f1WoV5XIZt2/fbol68eKnib8m8pOfHwxq+t2Upy0/aTcbjQZyuRzu3LmDkZER1+KvF7XtQB8eHuLhw4fO9/n5eXz++efo6+vDmTNn8Nu//dv43d/9XZw/fx7nz5/H7/7u7yKRSOAf/sN/CADo6enBb/3Wb+Ff/It/gf7+fvT19eFf/st/iatXrzqncvslEmypTLkx1lYfZQgw0HqaK/AYyMu9H/SchK9araJQKODBgwfY2dlxAc/TCBP9Kh2qTsik2CTAp8Mn6LL3ZDLp2tdG/zVgSA4CBxpauVJpc6eYyBSZIH+Xg98ECDXjSu0oFovY3d3Fz3/+c2SzWVeIpFb30+xrk9HnJH839SUp60QigTfffBN9fX2u8C8C6DJsiYiDZDnDzf/L9suxKg2g5pxyqtVqWFpawvr6OrLZ7KlvpWiHZFtpwiGZTGJ2dhaDg4MtK2wS/EvgpDkmPH+elht5PjZ49ECj0cD29rYDcts9VOO0KBgMoqenBxcuXFAPqdHaKMcvB0+anJicp2bzeBV+e3vb2f/N8zYZbj/jTXMsZLuCwSAymYwTtk711IAtb4PWHhMA0+pF7T6N/rblIUEir5/UsVpecoxo20QAd+gll4Fms+lEtXFn5KugRqOBbDbr7L3TnDWqu40kGNf0JuDmIV1BND09jXw+74wZGwj16wx6pZNgdW9vD6VSyRVGL0PXef2pf3nfc3nW+p+nkXUk3ZvJZHD9+nVsbm46E2V+Jths7fRDmtMg9VU+n8fa2hru37+Ps2fPuurA9R6R1HFSN8jf5Jggku2Xk09SfwaDx9fCXb9+HXfu3MGtW7ecu85N/DcRpZPp/UxUmchL55I80aGZP/3pT3H9+nVkMhmEw2GX/pfyp10bpqXjzyRpDrN8zg8L5GW248AShs5kMjh//jxqtRo2NjaQzWbV/vHTZ7Y0Xnxvh9rVz9IPkPXQxvfR0RE2NjZweHjou5y2HeiPP/4Yb775pvP9n//zfw4A+Ef/6B/hD//wD/Gv/tW/QrFYxD/9p/8U2WwW169fx1/+5V+iu7vbeec//sf/iHA4jB/84AcoFov49re/jT/8wz9UD/Rql6Ty5aCRftPCwEx5SYAqnbKDgwMUCgXk83msrKygXC5bnSQ/ZVJZXvXi6bV32i1fEzA/DpaWj+RbLBZDJpPBwMAApqenkUqlnCtavAagKV8befWvlAHNoFGZsj6S95rCB4BisYitrS2srq5iYWHBFTr8N+GUcGq3HynMmPbp0onbfvJsRwnLtH6VsNZP1WoVR0dHmJ+fx+7urnNAkgTqfvrC1Pd+jYOWLhgMIplMYmJiAgMDA+qeTL9GjY81075/E2+5ga/X68jn81hdXW37NGatDFPdNdnhYzscDiOVSmF0dLRljyJ3KLUyNNJWoCgvbcsIOdB89VmzLaZ6mJxU/tk0+UFjjVZIbe3z6lPZfhsRILSBe1NdvJ57lauNy3bzAdzhlJoNoPzD4bBrQtak5zVHVObHQT//zdTO/f197O7uqpMh8j1t5UvLl6cl0pzG7u5uTE5O4s6dO66DiGQbTW3Q2i7LsgHVZvN4Ujmfz2N7exvj4+Pq1imtfDlWKK1clffjtJFTEo/HMTExgf7+fufGFMmHk5CNj/KZdGIpjHtxcRHj4+OIRqOqLrSRJmNS52ljXeoRTf/ydHSd5dHREbLZLJaXl9W91bb+sLXBRn51j5xAkHagXq+jUChgfn4e4+PjqNfr6O3tdUV2eZWrpfHSvbxOfHFB6hY/+Mo2buhzPB5Hf3+/s12MrriSe71lHpJ3pmdedTTVTXvH78SL7X3Td16vRuP47IFm83ibjV9q24H+1re+5QmSfud3fge/8zu/Y0wTj8fx+7//+/j93//9dot3EQ9J40qXMwVoncE3OcTA41ALHorLBwCFTNRqNVQqFdy4cQP7+/soFAquvc68XL/kR8hOqtBPUo9OiELpBgcH8bWvfQ1jY2OIRqNO2DY/zMkGZCTVajXHAdf2fcl+oHwCgYArzJicBG1g2fjuxxmZn593woJ4aORX0YdAq4Fox9nj8k6z9efPn8fVq1edO4oDgYAr2oOUP+8LHlrEVxL5BBOl04w7X4GVwIZHL0gQXq/Xsb+/j7W1Nbzzzjstodvt0Gn2F/GFDssZHx/Hr/zKryCZTLa0U/4nMu1zI8DfbDZdofVyVVE6Kxzo0H2tOzs7X9l9sUScN8lkEn19fRgbG1PD2ElOtIlKjW885M2LiA83b950DjvizhRPp5VLz2z6i9JowIgOWEwkEsbT5bW+4PzgZxHQMz55YHLw5ORvu+OlHWeXeErhqbVarWUrB21xkKvJvM4UusztvwTvMsQ1EokgHA67Dqzy0vGy7lLnewHIRuN4f+v6+roTfSX5S5/ldhWOZWTkD/FcLkBoq9O9vb24evUq/uqv/srYbj/tl2m8gDDwOMqvWq1ic3MT7777Ln7913/ddd89kQTo9J/bHCJt4UXKL8kG3zpDW7VSqRReeOEFxONxfPHFF8aVWb/ULuYzObCVSgUrKys4ODjA7OwsRkZGkEwmAdiva+W/Sd1B73Gea5Mf3KbK6Bv5G+WdSCTw7LPPYnx8HP/tv/0356BUPw6WrHu7Y89GJudTkxGa4PrJT36C6elpvPrqqxgcHFTLlHLIieuqcrmMeDzuPOPXbYbDYTX8mtdJtoNCtrUtLhI/ceI6IxgMYnZ2FhMTE8jlcviLv/gLFItFV5mnZe9lGzp9t1Pyg4PJZlB/+aVT3QP9VZPsbG2gSAVCRpoUKSl1GabB9zfQReSUd6VSwebmJm7fvo39/X1nT6sXwJK/aTNFXu948aNT8mMIvUgaOgrDHBwcxKuvvopUKuXwWu55IwEOh8PO5EU0GnWBAJ5WAlrZ/9xRo+dkMKUx5XznoNNmoDTQQzJ0eHiIra0t/PSnP8XBwYEaBirfbYdMMqT1oQ0wS9LGDk0YXblyBZcuXcLMzIwrHYU4AY+NurZ3yGakuWNLYJi/a6qnPGiG51cqlXD79m189tlnnpMXXmDJNC474SkfGyMjIxgfH8fAwIBrllvKsCb7WhpO8kRJ4m2z2XTGAMkkd5jm5uawsrLirE6ZZF3m7YcffmSdZO7s2bOYmJhokQPedu7gc52u2QI6kEsCT853bkQrlQo2NjZcUQvttIPq2s5zamsweHz6ON/7Tc/5iqgGvLl8yYlhDrA4qJUTDZp+8eNktWM7pFwR0OaTcHz1lbdJGw903Qwnbuu1yZZQKIRoNOrsfdXINvnB05jGheYIHhwcONt5+O+yH7h94qGk9Lu23UPb18rT8YP5arWaA5plnb1k3I/jrbWL+vLo6AiLi4suJ0TaYRum4/ZdrvDx8rmu0xztQOB4YvfChQsoFot48OABCoVCxxGEGm9s+lHT8fS92Tye0Do8PMQ777yDt956CzMzMy1jR/JQG7NUJ373My9Hi1Si3yW/Af1qwGAwiFgshp6eHrz11lv47LPPsLa25oxtU5388JCTyY5r6WSetjK4Y1wsFrG4uIjDw0N85zvfQU9Pj+tWBErPF294P/MxShiK4yNeF46R/G4f4GPadHWf9Gt4GhobwWAQg4OD+N73voePP/4Y29vbLp3gF2v67UupXzRceJrkJQMaf9sZ90/kGquvmjQmaYpXI5nG5ARzZba2tob19XXkcjlnn6CfkHA/JDvyJErELw9kvn5+s5VHiiOTyWB0dBTT09Po6elxViA5kOXvkSIhhUOf+TMbkKW2aoBbOlim/jKFEnJDw1d5pCNydHSE9fV1PHjwALlcDuVyWTXGfvrPSwZMfasZCi+SfCKeR6NR9PT04OzZsxgZGXHCjKVs8bpKJ6UdpaSFIZqMLy9bAoDV1VVsbGxgb2+vpU81x8Evf7Tybe9o3wOB41nkqakpTExMtAA7baVU8lYjTca0lQqtryn98vIydnd3VX51CihtpNWDJhcGBgas7bXpeS7DpnSm3ym6yCtqQfKunfFqqg9N3vLVUROfJEl9Svnxq060cUs8lpMpprrz9tqoHbmRUUS8/jYQxG2GbJfWVp5HOBxWt6LY2mIiP7qBO0XlcrklhJrnzycPeJ/wFVTet/wcA37glCYLPMJByoT8b2trJzqR2klOCp0VY3tXOiZ8skziCa7vtDEg5YTyTSQSztWM3KHRxowfXOUHg9rGFB87tVoNOzs7WF9fx/b2dktaW/4m3W/CUSZdyvOT7eN/oVAIsVgM4+PjGB4eRiaTMcrIk8CvWr1NZMK6JEe0J/rRo0fY29sz6mvTeNB+k2OSy7SXrGnjGWg9A0JzfrU6UX9FIhH09vZiamoK4+PjrtsJTFjBS67bSS+fe5XtJz+vMjTqBOc81SvQQKsiMQms/OyVJ/3nq2t0mvL9+/exv7/v7I+zOXWyHp0Maqnw2qGTgF4/vNIUBg3KiYkJzM7OOlcd8TrxcBJ6j/Lie6JM4ar8s1YH/lk70EE7pIU/4wpKOmicpOO2s7ODubk53Lp1y+U8+5ERv6QZQfr9pPlLpZ5IJDAyMoJLly4hlUq5wt81Q0yrIPS7DP/in02G2zReNR6ajODdu3exurrqCksyKcgn4RhKkoYvFovhwoULmJ6eBmC+foZ4oNVdc7KlIdVmnyUIos+NRgNzc3PY2Nhoy5Dw+p0E8FCbQqGQy4HmqyDcmeCz+hoPtP2jVFetntQGimDgp+U/KZIAg7a8RCIRx4EmPcjHnBc44u/IMGUpTzyMuhMQYeKlLb2Ucbmyzp9T/xORfpGritQuyos/kzIQCByvPNJBbSY6bXtMYdzVahWlUslx7LgTyW2WXEEKhUIt9+2aQu65nJMcAMf2lUI39/b2Wtop5cQLLPOyNBuk5UFRHoVCwdnvTyuVnL/aeOZtIp3A8+U85PXkq6fSfgSDQfT39+PSpUtYXl42rtzxNplIttfEP66HTc+pbwuFAhYWFhAKhTA4ONhiB2yY11R/DTdJnalFkEmSdiQajTp7bMvlsnN4J0/fzvjxwng2nMDT2mSS9wXxnbY+3bhxA7FYDMPDwy2yx/nFI3u4buL4UxtTvH4km5L/csGJ8qAy+TYtrf0mnlA7otEoLly4gHQ6jYODA9RqtZYbZSS1a+tNY8JkP7xsdbtk4gEvr116qh1oKcSAPgsvlTEHZSSotVrNta+T59NoNLC6uoqtrS0sLS2hVCqpjpGJNINmSyfbSP/bFZp2AbD2vk3QtWc0u33u3Dk899xzzkmnPH8+KSFnz8iw8rAXWUf+X84AAnBm9rkM8HvypDNtahOlkWFMXMnRX6VSQT6fx1/91V+5Vp79hPWbyA+A6YSkQZH9SH/JZBLnzp3Dd7/7XaTTaRcwl/lxPssVE0C/p5fLBQ9ZNPWLFpIkAXO9XkelUsHdu3ddp5578eBJEucvTUpcuXIF/f39rrt+tfBcqdskKKbfiX88xFUzuoB78oj4VywWsbm5iVwuZwzhapdM8qXxh8tPOp127kHm+8MkUJPyxEMZ+TjnvOAhn9wWcOc5m81ifX29Ze+4SUe2yw/5nYPUSCSCnp6eFnmQk3qSnzJvfg0ftVfaNJNjY3OiO5UHE6in7/z8EN63cmzwCVfZRsB9aj2fEOCTCPR+JBJBOp1GMBj0BPh+nSet3ZJogmZtbQ3T09OIx+Ou/dDcPklbV6/XnfMNCOTzsng7tAk24uEzzzyDjY0NrKysGO2hH9zi5ZTIPuftq1Qq+Oyzz/Dss8/i/PnzTps4cYeE4zn+x+2zXMmT2wB4+ZQ/8bCvrw9Xr17F+++/72y96sTZ4203ObDyHY1v/N1yuYxHjx6hVCrh3Llzzp21kuQEAs9X6lKOc6Ud1sYigBYbrTnaABCLxXDp0iWk02ncvXu3RbZt/JC88fPcJnt+35HPSBceHBzg/v37KJfLeOWVV9RoSMCNZwF9kUbqYeoH+k6TmTTeiW/8VHMNg9H7QGvoNl/h5naQj81m8/jclLGxMXz3u9/FX//1X2Nvbw+Hh4e+x4BXf2p4wJbO9N1U9mljFT/0VIdwS0MvFSv9xh0dqXj5f/4edUipVMK9e/ewsLCAzc1NJ6xPm/VtB3DI9Fo6zWG1dbDXMy8Fbnru5xmB35mZGZw7dw5TU1OO8wxAdUCpbDkZoa0c8fZJMM3bIb/z1RXZFi4T0mnh4ZNcAXEDTfUslUrY3NzExx9/7EQmaPLWCfkBLp3mJ3nI2xWJRHD16lVcvHgRXV1dLnkn+Zf9xvkl85UGVtaH94kk6kO+Z1A6pVSvXC6H27dvo1AoGE+RlqDgSZCUVaond6BTqZRrNU3qJm5MubHnMs0NpVxB1HQaEYFvmmA4OjrCrVu3XPv/pH7rlAftpCcjHo1G1TBWDhCJp1RHIg7u5J9WN8qX+LG/v4/NzU1VFjmdlvzwfMLhsHNjBck8P9iL97nWHuorr5Vz6UzydzXdLN/TdK9fsCtJyr5Nhvn/Wq2mTojKiSgNbNI4lCGmXvW32XO/eQDHk7wbGxvOya+Sxzy9xCmmM1eoXXISSb4fCASQTqeRTCZdhw3a+GDqD1M6U34Sey0sLGB7e9ulq+UYl+9J/cfrJOVTa7+mD2nrRDwex8WLF9Hf32+MfjvJuG9X1ni7K5UKstksPv/8c9e+fZPjqE3E0O/y3BFOfLKC5yvHmcxD6guaDLxy5Ypru8BXRV79ZNJhmh3e29vD8vKys4CmpQf0aBAud/K5JK0vtEUYkw+itdH0jI8lwiZ0Mv3ly5cxNjbmbLs87b6z6Xiepp382i1f05/tju+negVaNtb0XQNXMo2cGWo0jvdAHBwcYHl5GYeHhy2HEXUy63ES5csNhJaPLe/TAnuA7gTxKyFGR0cxMDBgnCXj9SdB1laSZXkc6Nl4z5UGpZHhXJSPJO4oc0NiUx65XA6rq6t48OCBc+iQBJ5fBWnAwC/xdtJ9oefOnVPD7+XsJS/TVLaMQuCGnsolvmkrJxIUa+VUq1Xs7e3hwYMHavj8V9EfXhNNoVAIXV1dOHPmDKLRqCqLcnzIfE1g0a9eIn5yXVYoFDA3N+eKrjmtdnul4c+i0SjGxsacvfa2Nkme0H/JU2kDNFklUAIA+XweOzs7p2bcTW3ViDvQvE5044ApP1u/a3zSdKltwoD3g5aPqU5aHTQy7TWX5TQa+mFQ9Ex+NvEkGDy+u5Yia7Qyebnt2lYbf5rNYyd4e3vbdVifRpqt5P1tK08D3pQuFouhq6sL8Xi8xRlrF0R6kcZfKmdnZwfZbBbFYtGJxvHzngnraY6fFw7k+iAcDuPs2bPIZrPOfuN2cJ4Ju3RCssxarYajoyM8fPgQzzzzDGKxmOtcGZmebKnUoVpaTZa8PmvlUV5UdiKRwPnz57G+vo5qtepMGJnGlaY3eFkcPz5Jey59gaOjIzQaDSwvLzsTT/L0eDlxwfPR/vuRKxrzEi9pk0yyTFMdiLQJWJpImpiYQLFYxN7eHnK5nMuR78TvsdVPwzvyueldL7LZRJPOaIeeagcaaAWNHIDTZ+26CCI5C0kgd2trCysrK1haWnI5RVSmX+pU2GxGXXvebr1MeXkJkgSf5Gx2dXXhwoULmJqackCJDLviSlP2ER/M2r5o/l0qcu7Qyfc0Z5Y+85DXZlMP8+P/pVIl0PfRRx9hYWEBhULhb/SqKq90tmfUj6FQCD09PfjWt76FyclJ59oMObZoNZj28FEaG0iR/NZ+lzOu/ERubbaU55fNZrGysoLbt2+3nHzuZajbAfsmHpr4SvUPBo/vYc1kMs5BHTQWOE80J4d/18YR8Yr/Lo0Dd5L4eDw6OsLe3h7W19cdvtmciJMaUI1PABw9cvXqVWe/vUzHx568E5Wfys73D8tJGRmiyMd9pVLBwcGBsw9cli9l3K9xtzmavF/j8ThGRkYcW8SvfpP9Tb9RX2oTlpRGTgZSnqFQyHHi5MntvFwTwLGNG9s4ovdo5Z+ANY0TeUuD7Gc/xJ0FLSomkUg4K43aXkOtLSeVe+qLUqmE1dVVJ3Sdg2TSdXIy11QXeib7PxgMuq5p5OG3zWYTvb29GB8fx/7+vtVm+RnvkrfaKqbGh0KhgJ2dHSwvL2NmZqZl3z7lZzppmk90a1uApKzw8SJ5Rb8988wzzmqj3ALkR6Z5Wj+y5NfeNBrHV+xsbm7iwYMHqNfrmJ6ebtlyqEX4cR0o9YHkubb3VQsDlmOT6w/6LRqNYmpqCrOzs4hEIlhZWWlx6nlZJtvHeewXo57W80aj4Rx2d+PGDQQCAUxNTWFqaso46WiylZxnxAMTfiXdqL3PfRr5nOswae+pPLmNi+tIsrszMzPo7+/Hj370I2dbFx/bXm2VvNSeSVn1Itk3J9HHmm1pN7+n2oHmAFnbG8YVqgSS/B0udHSK8srKSsuqc6fUCeCUg8KUx2k7an4AkQRg4+PjGBkZwTPPPINkMtkimBLAcrDHnQhKy/exSUXP+5IrDwmeeeg4v0ZBls9/0xxEyoPqQt/r9ToKhQI+++wzbGxsuEL7OR+ftCPtN39Tv3JAHQqFMDw8jMnJSZw7dw6JRMIFLPhJptreXK5giTjPeJ9JcEUGIRgMOoCe+Cz7Ss6+NpvH4Zwff/wx5ufnHWNn481pO4AmJ5fzl+7SvnjxoiNrMvJCOvUy9F0zINR38l0+/ug3GdZXq9WwtLSEhYWFlnvsnzRJIEyHD2YyGWesS8dHgi5NT3LATbzRytbqQSBVu76Kp7c5klo6E4jiv9HWiUwm41wxInWVBiBNQFyOS62uXH/S5InfvCXZwJMkyQNyoIlk1Isfko6mVj9eJ7phQHNo2hkH2ril3/lvzebj+3dpqwAHyHx1XTr1Upbk2KHftck4rkfo3XA4jJGRERQKBdy7d6+lDJPsmsjU91LuZR/UajWsra3hyy+/xOzsbAsuMDm8fKzzbVVy9Y/eJVtC/JLOB+dTKBTC9PQ0qtUq3nvvPee5trLohydecmVyCjVHjrDM7du30Ww2MTw87ArDp3SyPGlv5W/N5uNoF22ygvNK9q2pfYTPo9Eorl69ikQigVwu56zm8rqaeGcrz887XmTSb1q76OyC+/fvI5/PIxqNoq+vz3XdIPFJRszJfCUu0tpgqpuUc5mGL0ho552QbpERAxxr0xV/3d3deP3113Hv3j1sbW2hUCioY1v7Ln/T3jNNTnn1cbtjyauf/ZSt0VPtQHs11K/D2Wweb9I/OjpCLpfD2toa9vb2WlZjNOBvyl8Telt9bQDlJMbcVK5fBSPT8wEWiUScu2yHh4fR29vb8p5JIXBnVasjn4EnvtuMNP/MByVXUDydySHRSE6g1Go15HI5bG1tYWFhAUdHR649XH9T1G6f0jvUnz09PZicnMT09HTLISXS0fNS+jZjphla2U/8mWZk+SxoqVTC4uKicwUTvzu803Hkh7z4LUFeJpPB8PAwRkZGjHmZQI8mrxoAlLIu08j/9Xodm5ubWF9fb4me8ANUTkLSgYxGo0gkEojH48441mRNvke/m/YsamVKgE75HhwcoFgstsz8y7z8jDWT3uLlyzEVDoeRSqVculGumPO6aP0vnR9TOzjY46dw8/p5kQlMefFEklz99vuerIt0Ok35NJtN505kbezx9Dx/rzSmuvP8ieelUsk57V2CcGqDzEPjg+aYSnmR44i2CtAd9PJOapvMepENxErZbDQayOfzWF9fR6FQQFdXl+twOKnXTHWz/W5LK8cXcGzrBgYGUCgU1BDoJ0E2+Zb2sFarYW9vD2tra1hcXHQmHrQ6yvFvwj2S35RG9hcnDWvK5zRh1NfXh2KxiOnpaTx8+BCVSkUd8+3w2JZWq5ctX2k7tfybzccTX4FAAAsLC2g2m+ju7kYymXTkWZMXE7434RPZb3IRSiPpxGuY2tR2Tf5oQndgYAAHBwcIBoPY2dnB0dGRC2O1S35sp80Jbqfc004n6al2oAG3U8uVoaY4tPA34NhBOjo6wt27dx0BMYX9au93SjZBaheY2Orkpej81Ikb4GDw+Bqenp4efPOb30QymUQ0GnVOQdYAAF9JpD6TjpPX6oE8RIqDTArnJQPDw41kPl6KiKclJ4PLU7lcxs2bN3Hv3j3jSc9PytB2Sppx43yMRqM4d+4cXnrpJUxOTrr6kmblAR0EaQaHPvMVa+oP6iMiHqZNe3C4MZLAnohAfzabxY9//GNsbGygWCx2FDHSyeSD33w4fycmJtSJJnqXy6wEvZyIP5ROM7DSmNMfP1CvVCphYWEBCwsLLZOFnZIJNMi28jYGAsenvvf09CAUCjmnjso8+GntclKHVpnkKjt/B3BHK0lZWVtbw/7+vnESxtYer3RyQoPyl3q1t7e3JS2XBe4carw29aHUy5Q/hVDTtYydtEsrz5ROvtNoNFz9bXPATPnRd7L/jUYD4XDY0TXylH96Tgf5cTmyAc3T0BNUfrlcRi6XQ29vL3p7e13YRYawy20tEvRKfhKvtIlPei+VSqG/vx/xeNw5mEzy0y9J8G57n9edsNfu7i42NjYwPDyMVCrlyoeHaWvl8IMYNb0i+SflSG4FCgQC6O3tRa1Wc2TIL4Yy4a9OyCRvjcbxrQkLCws4PDzE5OQkotGoWhbJEbffss08X23iSRsPXJZ4P5lwcigUwuTkJDKZjLPvnZ/4LXlrwt6d8NKmlySWsekd0g3lchk7Ozv48MMPUSqVMDU1hUQi0bKIokXRSHzEV/slcRtUqVRcZ6Zok6qUlvpRs10yGovjCK2O4XDYwS6jo6N4+PAhHj16hEKh4Eor6yGfnZT85mXzX7zy5njY5otweuodaM2IkuBIUKkpjIODA+zt7eH+/fsoFotO+CeRCYRIsjnYfpStX8VwGg61FxCxPQsGg+jt7cXZs2edkG0+ey7v3uQgjacjZSSvTZD9JY0m/ScHjws9hRjLqz34fw6QeKi3DCmSJ99SHtVqFT/60Y+wvb2NfD7vSmfjuazDV02acSDDGg6HkUgk8I1vfMMJnwXMd0DyiQ8CQRKwEPF0vG+j0aiLb9Vq1akPhaSRQ80deU6NxvH1cgsLCy3Os8nodzJO/ZJ0ECR/X331VfT29jrjgPPXZHxkv2njRPJWTmRQPYgvkUgEtVoNhUIBP//5z7G1tdXxHcAnBTfUFjrB/+LFiwDgCkvkDgMPVeegma/ASDnh70jgx+vcaDTw6NEj7O7u+jKgnehirv/oO++jSCSCWCzmkgk++ai1zwSkeF/KiB6ehsC0vCqFyOZEa/LiJQcaQOcnRnuFrMtnXMfw+pAdkDaFy0woFHLdxUx5+rHztnTaGJSyVq/Xsb6+jlQq5ZpUM+lR3peUjttIartp8pjXn96JRCKYmZnBw4cP1S0cfmXcpFdNeo3Xlw7H+uCDD/DGG284h+h54RKbo0Vy7dfx5c8Jw6RSKVy9ehUPHjxwVh0pb9kOrX02Pmhk45f8jcKJ9/b2kM1mkclkEIvFWuoiFyj4mOHYR9Zb4y/Pl7YbyEkKrle5raIzK5LJJH75l38Zn3zyCe7cueNaFDHpXK0eNrnU+sDvWPWTnupZLpdx584d5PN5NBoNTE5OqhGP3E5p+penp8UfXo9A4PhsDD/b0kx9KevO89cOiaVtdETB4PH5JOfPn0c0GsXm5iZWVlasctIu2cap1Ken6ZxrdtMvPfUOtEbEELnvEnDP0GxtbWF/f9/ZlyGdIT+DlJdneu6H5EDyS5280y5xY5tKpXD+/HmMjo4ilUpZy9eMi2ZAOSCQJEEn/11Ly9PZQBDfg8L/y9k7DloovH97e9sVtq3V4W8LcaDOf+NGtK+vzwnbpgMkbH2ilQG0AgDTZIp0wDmv5cqL5jASlctlrKysYH5+3nXqth9+2Mgv4PJKR23s7u7G2NgYenp6nFlkKdMmHprKIHBkA5C2ejebx7Pai4uL1v2+7cgzdwj9Ence+/r6MDIy4msck6wA+p5GWYb8z9NTvRuN4+tKtNl1rXw/ZNNB3LEi/SoPDdPqbXou+18DbHKFiZ7TKrTfNrQDYjSZljLCQ8ilk2ci0mE8D6B1tVECevksEokYo5K8nGmTjJpklstevV7H7u4uhoeHPdNKTCJ1iLSlxAe5x5K3GzieyJyYmMDKygoODg5OBaRq5Zn6kfOC9ljWajVXVIBtMovGLeVj6kcpV6b6St7QCdKHh4ct+kVr02mDe14vWUatVkO5XMb9+/edFUJOtlVKm560/W7SOaaxJd8JhULo7e3FxMQEDg8PsbCw4KTxcnL9kM3ptznificupEzSIXiPHj1CT0+PE43plb/0MyTW5O/wCAyN3xrGJl3gF8vw9+V4ozFF17z19/cDgLP966Th3F64Q9NzT2qctUtPtQMtHWWgFThwgaCZsFqthlKphOXlZeRyOUdp+wHgVIbtu9c7XkbZRF4O5ElIA1wc3NEq2sjICC5duuTsHeNh2fw/f7fZfLxiDDwOH/Ize8XTcdAgQ8K9FAvViQ9AzXkhYy7fLZfL2Nrawu3bt5HP510HVZmMiKR2HIvTJM2BoDFD1wZdunTJeCWGCchKsMUNDJWhKXQCOppilPd1k+xo4JCumFtYWHCNX03B+h1XfslkGHmexINMJuOcQsqjHkwATAPOPL0JLNrayPNrNo8jKYrFItbX160OtB8emH5vB0iHw2H09vair6/P1X9SHuVnAtAm+ZTjXMoFByY0SVYqldTyvNot66w9t+UTiURaTh6X72p1lzKjlUd84iu8nDd8BVojW99pY83UVlM/yf2QJudPK5vy0LbRaLLDgWqz2XS2H/E0XmXJdvmpn5SPRqOB3d1d5xRs09jX6i8nIOVz/qfhIeJVOBzG5OSkc7qwbKNpgsDL2THZRG180Gr8/v4+Dg4OUCqVnNsf+DuSp0Q89NwLkEubxZ9z/gDH4/HcuXO4ceMG9vb2XLZJa6+0Z52QbZzx+lMdq9Uqbt++jXQ6jaGhIfUGExNu1GSdR/J4vU8k9YrMV0YKdnV1YXR0FPV6HWtray0HCNrI1H+8nqdhz7Xvssx6ve5cnVkqlZwrXGOxmGe+Gp7h73DfxlRXG2kh3BpfZBSCSSbo/WaziZ6eHie0e39/H6VSyTncrh196LctpvHshcG+CnqqHWi+t5KETtsvQ7/V63Xk83lsb287+0fkheSnQe2Ad04m0CUB40nq6gcESMAZCAQwOTmJyclJPPvss054ZbPp3sOhOVqBwOMQEXlSsF+STpWsNweHWv4yJJCIK37a6yQVWaNxvIfuF7/4BdbW1rC7u6te9XOa8tMuaUrfBm7oLxQK4cqVK7hw4QKmp6dbjKZU8NzxpvI0oEv5SB7xGXGp/Pi+E76y2Gg0nJDnQCDgrFSVSiX85V/+JVZXV527izmddIx4ARmeVrab79Ht6urC1NQUXnnlFaysrGB4eBiZTMaVBw8rNYFo3h/Ud1z30TiU4Bl4PGHFx8jGxgbm5uZQLpdd+x9tRrcdEG0iDs5If9Pqc3d3NxKJRIv+lu9LflM95F5G+R4vm8qn/fY0oVAoFJxQVpMzZZILGyjQ9CKvFwB0dXUhmUy27PHm4cWyPV6TkTRGaSuBBG5Ul0ql4qyymcgLjJl+lzKkAVGKIJH9J8ORJaA0XVNEJMOypc4KhUJIpVLI5/Ou+5C92mQiP2m5bsnlcsjlci2rrrK+9B7gPnWb2sjzlhOVPA+yZ8S3cDiM4eFh51o9nq/Nee6EHxLH0GeqX6lUwtzcHCKRCF5++WWXndLGo/ZZOtP8j//O+cTrwSkUCqGrqwvPPPMMgsEgbt26ZRxjsl1ez2y608v28OeNRgPb29t49OgRotEoLly44JIP2VZZByIuYyYnR8NfHHdrtkc6tYFAwDl8NpFIYHl52bnxRsq5jb4qvKU5aZL/1WoVh4eHeOedd/CNb3zDdbe8tNtE1Eemg9QojcYTqQdMOE1iCq820W9yqw+vfzgcRiQSQU9PD1KpFCKRCObm5rC8vOyJD7zqIHGXJosan/4m6al2oKmzyfiQopCAgmbX6a7Tg4MDZ9WZD/Z2B6VJCZ4G0DS9d1LHoJ20ZLzS6TRmZmYwOjrqhLtpylUOck1ZSycNcB+KI5UG/V6v1x0AqNVVgg1ejgwLprxNIJkctUajgcPDQ9y/fx+rq6vOnmeTEf+bIA6UbCSVdywWQyaTwaVLl5yrMOS9upKH3BEzOTfSQeIk+9nmpBBRmVQfWnleX1/H5uamc/c2L/80+qRd51l7FgwGcf78eUxOTiIej6Ovr8+1T43rK76iJMeKBkik3pLGR6YlojI3NjZw79491z2xX4Vca2CWrvdKp9MuIMx1kEmHaqCfywF/Tifn37hxA1/72tcwNTXl5EMHw2hhxF46uBP9zscJ/aXTaWf/JyfbBK8GRGTd5ASXNglWrVZdK+9+8+dpeLvk77w+GvGIHq0PuS2nfLS8uE2hOkigz9MFAgEHCPI8OpV/v84mdxppEkvT4ZpzwvWFLQrFtnrFATZFPvAoMZ62XQzSCWahBY6NjQ0kEgm8/PLL1vSyn7U+4/ZG6gN6h2wKdzp5NEIkEnGutLp//75LBjVbY3J+TY51O8THIneaqtUq1tbWEAwGcfbsWdd4ofR8EsJUvsRjWp35eJR1kk4YL0vqiGAwiGQyiWvXrjkn0fMJLJsO0fjCyzfpLOnM2fLWnD1Nt3F5KBaLePjwIer1Oi5fvuzawqbhHm38cjKtClP/c/nmE2QcJ2v6QesXefe3aUWcrrdqNo8n7QcGBpDP51EqlbC9vd2SryxbI95fmkNt+t4JSf14UszzVDvQQKuS5wJNwkNXVG1vb2N7e9sJObDN7nDyAsp+BqI2wG3k19ntVKBsSp4EORKJOOE2Q0ND6OnpcZWpgXoTaDcdmMRDhkz14vloipsT73utLrx8UlBcEfFntL9lcXER+/v7rjvBNaMg+ag9M6U5KdmAG28brfilUilMTU1hbGzMuTZH1kl+p7B5Djh42VI5axMWWr4mGaaVM1mHbDaL5eVl5PN5J/xL6xOtHrJMU128+sfmsBCfw+EwpqenMTg46PCch+hq8kdjhTtWtmgHk7EytavZbDqTiRsbGy2AuV194gcs2t4lB3piYgKJRELVLbaxpdXdJHe1Wg3FYhHb29stJ06TA20LffMCAKY2auBd40MymXR44DVhwNvGy7DVSwMqJH/VarXlELFOwYutrRrRqqiWj9YuLRqGE3cgNNskdaMcl6b+Pil4k9RsPt57XiqVXHsnbUDSVE8pa7Ltsj+5Lqf993SY42m11a8DBLgPdS2Xy85heryttvw1LGCaaOHpbeOCzggZHBxEOp1GNpttGXft1Mkv+Rl7VMd6vY5cLodgMIi9vT309va2HCgm+UB2RtpsrWw/2FWOeR41I9/lIfLj4+MYHR1FqVRqiQA5TTnU6uuXbGORt6lWq2F7exvBYBBjY2NIp9OqXuHv8gUjTpJ/JnngfNf8GVP+NDYob4kD+DiQdpU7nslkEv39/SiVSjg6OkK5XFbPBvJLfsfOadij05Ctp9qB5oCeEw/ZBoDd3V0nbNsrPE8j2QE2hdwpADW912nHazNotrTSUAUCx1c5jIyM4Pr1684MJu11oHxlGL3MzzRJwZ0DDoYCAfeJwbQSxU9ypLzpxELuZGlhL5rh4ACCG0uiSCSC+fl5LCwsYHV1VT2h1KvvbGQa1H5lSAJEWzrg8YQC3X06MTGBX/mVX0E0GnUBUS0siJO2P9yUlojzVzPknOQqiLyCiM4u+Pjjj50JDV5+O3JPaToFOVInkEyR85xKpXDhwgUMDAwgGAw6AFmWSW2W+8LlZxovsv5aO7mRIzmnd3d2dpyzH6hvOpFtm6z6mWCgsR6NRjE9PY1UKqU6R1qIsqY/TMaXxnx/fz96e3tx5cqVFp2Vz+cxPz+vjnNOfsd6O5MIAJy98nKSkn+mdhJJOwcch+RSGhnezEnKEYVRc93c7tiQaf2MRZLfSqXSIhe8HtJJpDbI/XmcnzSmuPwTWKR0oVAIAwMDSCQSzjt+JiP8kmaDONXrdRSLRezt7SGZTLZEAVEefGJYhmXLdFxv8Pf4Z64barUaMpkM0uk0isWi6lh68UKOTU2feOmSRuP4eqb9/X2sra1hbGwMsVjMNVZpLJvykCTbwNtN32V+hD+CwSDK5TIikQj6+vpw5coV/OIXv2jZtubFG62O7ciTiZck7zR2c7kc3n//fbzxxhsYGhpy3jWVSfloeoLzSWI5WxQI5yXvc9MEWSwWw4svvoi+vj7XgVRaHpJ4H/hxvE7qkNvki/7v7++jUqkgGAw6t27wtMQ7cjIJf3H7DNgPcZVpgcc3ykh7QHhd6oRarYZoNOpsiaN8JRYmOSOMrd24MjAwgFQqBQBYXl7G4eGhiyeSV6b+8tIrmh/Wjg/nRZ2MzafagQZaZ7VIQEipPHr0CNlsFkdHRy1XVHVaFpVje277rd2yTut9m0HkAywUCmF2dhaTk5MYHh72PNiGeKoZf6lQSeh5f9HAl6uNlCfPSwJp2VZyEm1KV4JwkhmqV6NxfLjL0tISVldXWw6oMpXNeeKHNIDq1+nzAmaSiM/hcBivvvoqzp4965rhJ0OqhRJzp5bKlrP79J50fom4kWg0Gq4ZclPf83oRffDBB5ibm3NCt7lyNSlsk2LW0prIL79p/PT39+PVV19Fd3d3i4GU/CUDpf0uwRL9Lp1eUyhns/n4gCY6QPEXv/gFlpeXfV1bY2u3X0fTxLNgMIh4PI5MJoNEIuHoGdmX3Jhrp7QTj6T+4SCQ5yf7gc7GWF5eds2eazLF87bJQjvjk+qRSqWQTCZbrl+S0TRSD3GQo41NXh9qP8+DDsMplUpOWm1SxatNJl2o5SOBkdSpUu41h4frLKqzvO+W6w8ZmUZ5d3d3u1Z/NeoUfHtNIpDsLS0tYWJiwpFhzn+5ZUbaQN6f0tGUsi/rFggcR5pNTU05YZidYCSbTdR+k/qB+q9Wq2F/fx8fffQRvvOd7yAajaoHFHG7o41t/kyTN8kHaat4Oprcev7553Hz5k1noumkfJJ18CtfEuvSNqdyuYyFhQVMT08jHA4jnU63TFpzWaHJZ36FJKWVkxaybPqsRUtx2aVyuO6gu7/L5TL6+/uRSCTQ29uL4eFh7OzstOB0PxMyfpwfiZu83tFk1FQmd0yLxSKWl5eRTCYxMTGBmZkZFRdRv3H9ZHIYiW9c7qQ+pn6z3efOcQiVTeXwsxGkPHCdwm0HYcp4PI7z588jkUhga2sLS0tLRt76HQNUL/q9HWztJ38TtaPnn2oHWq4iAMeN39/fR7FYxOHhIXZ2dlAoFIzX3LRj9G3f2yEvB7DTvE9q5MPhMLq7uzEwMIDJyUn09/ejq6vLKrxyxZeDN5OSk4OSFDE/WdtEsn0SDHPQYALA3KjK3wuFAg4ODjA3N4fd3V3XCcUa0NP4aHvmBSROSloexJOuri6cO3cOZ86cQX9/v0shauFWsg+9ZIuULgd2/BkHO9rhP1r9efqjoyOsrq5ib2/PdX6BqZ/9kPZep/1AbUylUhgYGMCZM2dckzmSt9rkkqlefOzw/7a+kQ43HRRF50CYQuxOm+RY423o6enB5OSk6yohqpc2oWBrowYoiKSekKCQeKOFcPN2dNJ2WReNaHzSCa7aFgmT3dB+k/LE9S1/jwBVrVZzjSmbjeqUtLEtwTyfjLXlw9vA5YvbFC4Hmr6n7zyE22ZD+TPts9++lu0/OjrC5uZmi53hdlWTaZNjobVb6ko+vgCgr68P/f39Lkx1EizSDi94WnIE19bWsL+/j66uLlfkDucHd9qkbFM7uLOgRbLwOsj8gceTx5FIBJlMBmfOnEEwGMTW1lZHfLHxQMoUb7PXO+QMHR0dYWFhAYFAABcuXHBWOCVJZ1ezL9zp1srm/+WYlO9IuaVDW+lzd3c3zp07h2q16uyp1WTQJE+nIacm3efnXfpOurRQKGB1ddWJmhwbG1N1moYNTGVQveRihexfLx5JLKbxQYskMPGF8kskEhgYGHB06ebmJiqVissp99ILJrnX0nfS5176s116qh1oClfjhoYOVNjd3UU2m21ZPTSRNMImIH8aTKd8TPXgaTRBagf0ewECeo8A3MTEBK5eveqEUwKPD/CSQESeri1XlW385I4bH2A8PIrSydAhXjb9roWAc4BIJIGzBBu7u7tYWFjAp59+6hr8XuC9E+pUlrS+1hwU+kzhw5lMBm+++SZ6enoQiUQc5S6BFeA9+6cBdCpLm6gCWq9D4GBHA848j3K5jM3NTWxsbGB/f9916IXJ6NioXb7bgCCX92AwiIGBAYyNjWFsbMxlqDQgwt+1OSx8zPFnck++5nCSg0L7f2lS0U95p0lS3wSDQQwNDeHq1auOLpfgS/JGHswigSB/j7ddTuxRepK9arWKQqFglF2tHSadYNO32neSga6uLnR1dakr6dIp5M+079Quk6PBfwPgXO3IgRIfl6b2tDOONCeQ6kyrH9qNC3wMabIt60Mgll8ZR/nwMqmMdDqNeDzesoVC5u/Vtk5Bd7FYxMrKSstVmlxGbfpYOo1SPqnP5Uogf39wcBC5XA6hUMi14mvCIO3wxotPvJxm8zicf2trCzs7O0gkEo5jL8vU5JpsGhHpBh7lxuUecOsUvjrIsQQAxONxvPDCCwgGg9jd3W1ZCbSRl+PQDr8oP+7g0gJEuVzG3bt3USwWMTU15cJolJ/JMSY9pKWT9Tc5NDZbx+uRSCSQSCScvDKZDF5++WXkcjkAaLnpxMs+epHNAetEj5n0LpdFmqjO5XLo7e11rn4l0lbZTb4HH+PAY/nUeML1gDwcjGSaxgAP++b4TUbySOdX2iOqV39/PzKZDEZHR/Hee+8hl8u12HS/PPZLUje2856pbL/5PNUO9MbGBiYmJhAOh1EqlbC3t4e5uTnHceYG2S9DpANB9CQAZSdkMmrawNOIK0D6C4fDSCaT+PrXv47+/n7nSgvbChl/xlcTaVDyQcOdZACu+4bpGa0+08ykbBcPZ6Tf5cnrwDEQ3NnZQSaTcV23RelCoZCjQLhyqdVqmJ+fx4MHDzA/P69GLJxUycrnPN2TcliCweMDYq5cuYLLly+jr6/PAZYcJHDATe9qzpipntSH2p3NWp14WdSXlA9PCxz36ebmJv78z/8c+XxePSn2pGTrBxOIlLwi+b127RrOnz+vzjhzkG77jZfDjZt0kjnI4YCOO57krG5vb+Pdd99FsVhsCX//qojLFU3qjI+Pt9RD7rnS8qG28VAzImncTfJIzjO/yutJkNTbUnbi8bizCi+dG77SwAG9dCp43tR+ufJG+h5AyziSYIvyMtkcG/mxnVx2aTuBZnc0QEfEnWvSO7y+ZI+4A0FEMpFMJk/lFG5TO01OK3cYSa/x66W4U8jHP8+L5wO0rtzz53KFn9tM2k4xMjKC1dVV14Fyprb4cbL98o3yoTpVq1XcunULjUYDw8PDrsl53h76jcY4TcRJ/Uh7meldOcFGPOEro7L9wWAQU1NTzrVRuVyuZfKuU9nRyCsfbq+4A1cul7G+vo6/+qu/wne+8x2kUqkW/vI2RaNRV6SU1KX0G6Wn8iQf6TlhLDkWNeLnfyQSCXzjG9/AnTt38OGHH6JQKPjmxUmo3bx5m2TbeH/UajUcHh6iWq3iww8/xNmzZzE9PQ3Aba+lvqP3TZMW2jP6zDGAqV1cr/B3+d5/no7/Vq1WXXnRwhq1g3R1V1cXXn/9dSwtLeHevXs4OjpqCVE/KbWTlzYpYXrWDj3VDjSFZh8dHWFjYwO5XM7ZxG9adTYpOtMMlY3xfsg2W9Vpx3Uyy2ICNPF4HD09PTh37hz6+vqcmXhJfBDbAD/QumeL14UcAm1lgBtlbhD8gDFuGOLxeMtvpCCoHpzK5TKy2Szu37+Pra0tZyWG18MPz20zWvyzludJZMLkYFBfnTlzxtnPru21lfWS0QOmvCmtNMqas2Jzrvlv3CjR3+rqKhYXF3FwcNCyR1Xmo3038Ue+YwKCNj0hHZOJiQn09/cjlUq5DBr1hQbutHpw4uOD0nJHWsoqpZETUcViEVtbW65Va1uo3Un1lol39J/ufQ4Gg6hUKi0rhrztvN1aXeVKvwbupD6n/IrFous0d6/2aHaB52ki07Ng8PhaOWq/bKNcWZT1kXnL9226mAAs7Y+XeXQKNLxsJ68XgU3NtpjAKf/PwazUY1p7JPClcell105LX8s8aQKB/yYPa5T9KEOTuYOk2VHuhPN60zhpNptIJpM4c+YMtra2WoCyqe68fp3aSOmQULu2trYwPDzsOPgmLGOSA7niTrw26UzpOFMeMiJmaGgIFy9exEcffaRGt9lsp0luOsWZnGfUPoo22tjYwPb2NgKB4xP+ZVot9JfzhcsTrzfnJc/TFEqsya3WTqrn6Ogonn32WXz++eeOHLbjKNn4biLZL17ybNOP/DeKClhfX0c0GkUoFHImjE36m5fBZVrKKn3nkxUafyWeNpVHfSsXjvzyQlI0GsXAwAAajQbu37/v3H7UiayfFv7m6fzYcy96qh3ow8NDHBwcIJvNOvf08gMI/Ha6CWDYvmvkxylvN892yA9o4Z+DwSDS6TSGh4dx7ty5ljA2E/lxaGXZPK10bDVwSMQPieGzlUR8ooRWG2gFXVtRlWCaZglXV1extLTkrM75CfvvlPzKRTuDWjPItCI6PT2NkZERpNNpV1rNoaDv8jRsnkabMZXPTYpcGl0JbDmgo1DMlZUVLC8vo1Qq+bpGrB06KQCmPAKB4xXVqakppNNpRKPRFt7yMG96T7ZDAkkpv5QXz4//RiSNYK1WQ7lcxsHBgfGkYV7XdshmgDS5JB709vYimUwCgLMCyZ1oSmcCBprjxOXMlF7yqVAooFgsGsFMJ4CsHQoEAi7dK/kpdaQNJNpkSqs38ZcfIGMiTV+0m970PulubfKWv2tzoiV/OC+0qCY+jmjVzFS2rY1ePPB61mw2W2wOn3gDWqNUeFre35o+5W0m0pyirq4ujI+P48aNGyqveX3a4YFGXrih0Wggn8/j4OAAhULBCffV6m5qK+cjj94h4jzWDtDU9EggEEBfXx/Onz+Pzz77rOVWEhNPvJyQdkmzu1RGvV5HpVJBLpfDxsYGYrGYK1xa++9Xx3H+aJPe9F32jyk/yV86FR8AHjx44Bz+61fuToPHNt3aSR509SZFGPX397vO/NDsjbRvQOud5xInmurNsYDtxHXtN9lmE/aTeRD27unpQTwex9bWFrLZrK+IYE12bKRhjJPIQTvvPtUO9MOHD7G4uIhms6k6ziYFYHqmpTsJtTPoTJ1+EmHQwBaBUnI0r1696hyMwdMA+mDhYWYEOMhhIhBE6WRoJVcElJYDaqorrVTyg2VkWURyoPP9HPRnCnsMBALY2dnB/Py8cy2SDIX1y+fTBhEnIb7vqaurC9euXXNmoAGoQJ3PNGv7EDmA5f1M5fCTJEm+uLMcDoddp0jyPo9EIs7KMuVPoH57ext3797F0tJSy8FhXsTlrp2+9PpN+x4KhZBMJvHGG28gHo+38IHzjNrJT1vWojY4j4i38hRqvtrKDau8ymJ3dxe5XK5ln+VJeeOXJHgPh8O4fPmyc/IwtQVwr7gTb+TKLBGXJeIPX52jsEySOzmx0Gg0sLa25pw+3M441nin6Vvts+TFwMCAc4BYo9FwbXOh/bxSjxKvuM6SOp9kgb8rQ/QoPa32aE4okSY38rMfknlSyDDJMZdfLh/SwZZ9ydtoCtvnbac2RiIRRKNRV9iopHaxgx+ekFzSSegUhszf5bJgcq65fGsOoLTpGn+6urowPT3tXB0lJztl20/TKdQAOJ0KfufOHVy9etW4j5fbK8pLOgpyyxkP6+f6AoBLX8g8aNtJKBRCT08Pms2mE7Fm0lFEXnLg55nJkZR9RCufH3/8MWq1GoaHh1tsPsmTdOS0/a+S5xpGKpfLrnpRvlyve+kHCuUeGRnBiy++iHv37mF9fV21+Z3aLi2fdsa2KY1prAQCAVQqFWxsbODg4ADxeBxTU1PIZDIAzGejcFsuFzT4hB/hCI51OYaSbQR0HE1/FPFBf3IbFcfuNj7R/1gshuvXr+PGjRtYXFxUrzTzIq8JFCnT/Hetv03Urj57qh1oOuSJC4PNebb9fhp0khmxJ1EvPqC5oxqJRJBMJvHiiy9ieHjYGSjcaMgBpq0MmEKx+WeulPlnLTSTG376zoExOVcakNS+c1mQjmK1WsXe3h4+++wz57RAGQ53WtRufidJS9/D4TDGxsbw7LPPttylqTlr1P8SWFL9tT6SQJeIyxA5zXKFhfI2rfrQyuB7772H7e3tlj2qpwnevMjUfySfweDxAVA9PT2uq8Ekn7WJLKmvtD6SB2dJHkqAw/Okvrh79y7m5uasIXRa+06Dx9KJJPA6OjqKvr4+hMNh4wmlMuJAiz6RZfAJCXIM5YQDT7+2toadnR1jmzVwdRq8oT4Lh8Po7e11dCSF5PGxTGk5mLFttdEmHaRcak6LJBsvvCYHbESySX1FK+B8UknKNa87L5frNk2PcVAlnUv6PRqNOlt/JHn19UlkgTvFBwcHiEQi6OrqcrWNO8WkU2X5QOtWD8pfI+0cCZpwTaVSODw8dGRNTnbwMp6kHq7X69jb28Pdu3dx+fJll8OgbUWi8cEjfWjfs0m2uY4h4g4i0OoIEp++9rWv4bPPPsPq6mrL6uBpkMyrnTFG7aKbK27evIkrV644zzhJPWpykHh9iNccEwBowRmyHNMhodRfROFwGGfPnkWhUEC1WsXm5qZRD2tt0vjhRVoaOemgYSe/+VJo/d27dx0d39fX50ojdR3xUF6zJh1sKaP0TE6GyAlXWSZ3wjkO0WSG3uOryiY8GgwGMT09jWQyibt37zoRZ/TOSceMH3/PVL+TlG2/M+hvOZFjZQpJlMazHTK9ZwLSfokrfQ0gaHl6pfWqB3+XZlBHR0cxNjbmnPrKSWu3HHT8d0AHc6Y6cKXHnVZt8oM7KSZQZGs7B0r0uVKp4OjoCEtLS1hfX0c2m/Wsg4n8ypdfGdTAihdpjlQ6ncbQ0BDOnDnjrGAQefHcT/1MoMT2ngSytnSFQgG7u7tYWVlx7ny21dOrj06bpDxnMhmMjIy4TseUK2J+6sf5xPUb7y/TuJFywA3s5uYmdnd32+JFu/LnJx0Z6K6uLnR3d6Orq8voLAF6qKrGB00/2d7h3w8ODnB0dOS7ze0CKFkfmRdtpeEHO8n0HMBR/eWEn6yXSTfZbCV97oS87Jqtju3oduk0yT8J/r3yB4BYLOZs/TG1zdYOrTwbSX43m8fXb9JqprRZtugITX/w32VeGh/IxkYiEaTTaSQSibbHdTvkxSOqq+lualM/Sj6Z8JZ8n3/m0UNa+wKB46iAM2fOOIeVdqoTOMly2h2Hsi3NZtNZKFheXvbkt/ZfptFkkX6XEYWazfOrYwKB4/vZh4eHMTo66hwOR89MOsFrbNra3i5p+ZrkinhUq9Wwt7fn7E/XeEmk4SvTti2T/fMjTzKdVgZvA5E8pFmzV/RbMBhEd3c3hoaGMDg46FrUkaTpdxudhk/WKT3VK9DA48HrV4nLGYd2mWeaseACY3u33Xy98vEqT4Zh9/T04Pz58zh//ryzT5N4qM0O0gAwrRSaVqBts4006ChsjU6FpTrywSgdbs3ISKPIecRXrqleBwcH2NjYwIcfftiyr7YdMqXXQCKvq1d+UqFyZWIiHpoXCoVw7tw5zM7OOhEGlJcWvinL5/zUQIcMmZNt4GDfa7xRfrztFFb78OFD16GAkjdfFXnpiFAohOnpabz00ktWwy71lGY8OX8BuGb5KT9poOkZn2SidHQn5fb2tnOlhAl8PmmitkejUeeOeX4itOb40H/NgaD2ceBG5fAQVC7zHADQBEU+n3dOCdXIJL82W+AFVnk+4XDYOR2f+p+3yQRKOE9l+3nInxy/sn5UJuexxmted7/2SkvH5ZWe85PGpYzzNkt7xu0/lx/e/7Id3EEi29bV1YV0Om18z0bt2nze/xyYbmxsoLu7G5lMRl0hkqtLXvaCvyNlW9pz4h/pslKphN3dXeeZlMHTIhvIbzYfn1CuyZ82acG3OshxItsgcQURj5CTq6L8sLuRkRHnHIdyufzE9akNP5iekcNG97xT2yQO0PKQGJAcQHqf809GBUidTOmkHGqyShQOhzE7O4t0Oo1Hjx4551TI8aORyYk2pff63ST/tny5riXd1WgcHxj48OFDHB4eYmZmpoVXlBePApXRJRw3Sdnm+kFOyGo4yjRG6LN2yw591tor+cQjN7q7u3Ht2jV8+umn2Nvbcw7v5PzU7J3tufxsIpmfzfH2O5afegeaSHMINONt6ww/RsI0ULze85POBEpMdZbvmigQOD4gpL+/Hy+//DJ6enqclR8+qDRnicriA0eCGF5HPljk1VV85YTe4UqCO928PZoyNoFdmY47FcBx2P/t27fx8OFDx3mWwESS39/4M5uh43X1onbSUCjx6OgonnvuOQwMDHjO2kqHitJx8M37JBQKoVqttoBV4LHDzFfFOCAm4u9K4N5oNJDL5TA3N4ebN2862zS0cSr5eVpk6yPppIVCIQwODmJ0dNSZrOD7uXlIKg+nkvlyp0mOHVkfDTjyyQpu9AuFAj766CPn7mxNxjsFx+28x2WF7vyMxWJO38t9n5xXHCTI8w2i0aiTTq7Gcpki4BiNRp194PV63Vn1k/uybDrWa+z74QX/oxVoOZEoHU36XZ5BoZEpYoiPVeJXtVp1ALZJB3o5zCZH2eTEyNUpzTZoOkuudJENkWkDgcfnLsjoFUrLeZRKpdDb29tiA09Kfmw+cDz+l5eXnb2qmvxT+3ndtb2+WtgnAJdzKevH9f25c+eQy+Xw4MEDX5MJJ8FEmsPGv9Ne3q2tLQwNDSGZTKqRPVwHStk3OXP8HZ6WnnP55fJJ6ekch3g8jrffftvF+07kx+YMcp3uF5/SZ5pE/eyzz3DhwgUMDg6q6aitPIRX4kDtalATfgQe817iQpJFKaNS3mhy8Xvf+x5+9rOfYWdnx3UTh40HfmTvpGPcy/nU0lIU5M7ODn7605/itddec64a4/Um3QbAwRWc5GSw5oTLz3yCUBt79BvHeFJXS5ng75t4T+UGg8cH2169ehXb29u4f/8+isWiUc/Y/DevtCayYch2MdBTHcIN6CtaGuDUfpfvaaR1oElI/HagppykcbeVL8k0k0K/9/T0OOG83d3dDujks1um/XR8QMrQQd4WGdqjKUYtfz6bqe2Ltg1WjS8aiKPyK5UKlpaWsLm56dy72U4Ycjtkc3pMJIG1l2zzd8g5SKfTuHjxInp6epx+NilW/t1UJk/DHTyezgTWpTMnx6L8I0D48OFDbG5uolAotMyg2nhhonaVotd7nFfhcBjnzp3DwMBAyyE32gSDDDemdKZDomS5NiPNQTXxs1wuO6fL+11Z65RffvKlSR4Kd5fPuZxqepGn0caLl5wDj/VdrVZDNpt1zYLb9Gs7MifftfEjHA4jHo87MmAKbePvmMLeOW9MjoP2X35ul07qLMjVb83Z0d6X9ZfjC2jlGc+T0nV1dTknFXu1xWavTb+Z2sD/9vf3nZVMrW9pbGthtDKNdjaFHCeabQWO78Wm6BAvZ83Gq3acZ5kvz58mFw4ODlrkmv9p8g603vqh/c6fm2REvh8IHG/d6e/vN07i8DxPolf95GHDsNVqFUtLS8hms85hqdI+8/Sa/uX/AfNdxs1m0ynDVEcvW8TLi0QiGBwcxNjYGPr7+0/FPrWbh2lM889cbkw2g/O1Uqlga2sLS0tLTrSHyX+R5coxIvPmbfTSUVw/8nbxhS1TiLgsU6uDtGeBQACJRAJ9fX04c+aML13TCXnZXo3atWP/z6xAA62zQSYwxUkDovJ3k8OmCfaTAp+ybqZ60XMC5ZFIBENDQxgZGcHk5KTrhMlms+kK6dFm/wMB912IfEDYBhSgn3ypDWTTIUk0Y8X/87I0JWVyAGkW9tatW9jZ2XFWNk1kUoi8njytnzy0Np7EueN/FB4zMjKCq1evuvZlybrKOlGfynZQOs5/khctFMgLqGv9xd+v1+soFAr48ssvXTPNJqDnl07i9Gj9Qzwnx+fSpUvO1RtyJpgDKzmDrIFZ+l3Ku0yn1ZGDPQoVOzw8xPLysivE0Cavfsk03qQ+5c9pkieZTGJoaMg14cB1jpQPyU+en9T5mrxJe0D/a7Uatra2jCuvfuyHll7jk+QNb084HHbugZZ3Qct+lt9l2L7pGdVFtsXkHMg6m8CiV/u1NkiSefN0su94O7R+4aHg9J60V1KnBAIBZ0++SZ5tMkB5eI0vjQekW5vNJo6OjpxxKh0SbYXeNPmryQ5vK/HClAftB+/q6mo5WdkP+bVpNvvHQXyj0cCDBw/Q19eHsbExtQypQ6T+1NJK0lbapKMn5SGZTCKTySAWi7kmP2z6kbdPS6PpIZMekaTpPQq9XlxcxMTEBHp7e9Hb29viMNE73LmWThhPK1f5ufyXy2VXP3BMx983rYjytgSDQSSTSUxPT6PZbDpnedjwlYl/fnCblt4PVvPSEfJzrVbD/v4+7t+/j3K5jFQqpR6wK/PR9KF8ztvC03Acz/9zsi1ayDKkvdXK1tpDp9h3dXVhf38fBwcHzhWyGvmRea3f5G9+bHk7OOj/KQeayI+wn5S8lJ5MqwmYLT+/5cpn9BeLxZDJZPDaa68hkUg4J902m03X3YXk2PJDGshomRxeDuS0vXY8Dwn6ZPvl/ZsmEGILz5Lv8zDPZvN4pu/evXu4ceMG9vf3XQfPaaTVoROZMgHwdgaolidXDtT+vr4+fOMb38DMzEzLyYt8RZLv4+KTJxJsBwKPT9kkHvK0cg8VV+w8D248TWGJ1GeLi4v46KOPsLa2Zr3z+asim+yHQiEMDQ3hypUrGB0ddU7w5WNBgjg+HuRpsUScN3KigsYuET+wjMrk11jcvXsX9+/fN/JSMzKnyTsJvgKBAMbHxzE5OYl4PG7klTYTzvnOwb8M55UAgX7jfUllFQoF3Lhxo2X/s19e2ICyH74AxyGR/OR2TdbluJH11PSr5C1/l/MoEomgVCq1REXwvGRbT9J+E1CmsHrKi/8Fg0HXVg8+XuS2CJ4HjTE5OcjrQM9SqZRzrYytrRJQm+yVJBNg5fkdHR0hn88jn88jnU47+VPIq3yHTy4DrfsTpW0mHcC3mch2EL9GRkbw/PPP4/3333eu1/LCMKb2eTkWJtmh+tEK9NjYGAYHB53JSum00W+8HaQv6/U6wuGws0IviRYWZFSa5pDQb4SbMpkMXn/9dXz88cfY399Xx087OtcP6LeNO25v+ZgvFov48MMPsbKygl/7tV9z7VmWdoVHbEh7zvEh8YreJzyXTCadM25M9SV+a3yWjhnthw4Gg1hbW8Pu7m4LhvPCcyeldjGgTT9yWVtdXcXe3h7m5ubw3e9+F9FotAVT8e09PH+eH9k6XibvQzr5mm470O6ipskWWVfefj7WtEgCrS/5OzyPaDSKa9euIZvNYmdnBw8fPnSV6XfSgurm5WifNj31IdwmgO0HdJvSeL2rdaoERjI/W14SPEmFLZ1W7V0OJIPBICYnJ3Hx4kXnlG0O1mW4EQ8J0wTXVD7Qery+5JEcONzh5YOJGyWejuorD6gg4mFt0ujU63VUKhV8+eWXmJubw+HhoXNdSruDSesjXp7GH02ObHLSbn3IoUgkEnjppZdcp6prylWCOBlSzMP/NDDLlb7kuSRS5sRvmbf8293dxcbGBtbX151Dw/yOmydFtnEYi8XQ39+Ps2fPugC+rBPJLh+D9DuVoa0C8t+lYSSSciz7dXNzEysrKx0fktcJaWXw8Tw6OorR0dEWZ0RONHB9xP+Ix3xVkesODfSZAG21WvXcG+4FVOmZqa48H4030WgUXV1dVt1us3Gm9JJ/UvfzPLjzqrWDl2GiTuRL61euo7je4fXn70rda4uOkrzitoXugZZ6RfKQ5+WXNzwfaWdlGYeHh45zwMe8ZrO4LZThlvSO1n6p22W+weDxnvyxsbEWrNAupuK8stkKW740Vjc2NjA3N+fwkWyKHG9am73K4bhAyiX/zHUT8SqRSODcuXNIJpOuUFSbc2uqm9RbWn39jjOpAxqNhnM43L1795xDuUwYjuohcRrPn49Jqptp5V+2VX6W5fL/NE4HBgbwwgsvuHCOX9my6WH5Di+7U9LGgawXYaRSqYT9/X3cvn0bOzs7Le0mHmt2gZM8gJTScdmlfKV8abzyilDi+Wu/cayotZ/sNp3QPTk56boBwNRntr6R9tj0js3Z9ktPvQNtI6+BRWRzEE1kcqJtz7WB6VU/PwOeK5tQKIR0Oo3h4WGMj4+3XLEgFSSRZhzaMXraarUEGhK48LJtAIcbca2fpKGgMsvlMvb29jA/P4+trS2XY2bjqSzDLzhqN8+TKGjiD+0lOXfunHMQkRaKprWDKzmpZKXC05S2l1KTIESCEc63jY0NbGxsOBECpjIkwDktsuWpgfru7m709fVhcHDQeV+LuNAmfYiko2iSCRsg0eSeVhuy2Sz29vZaxjQHZ53ysRN9SQCov79f7VdTm3i7pCxrv5ucMJ4XzcJT2JhJ3mQb/JLf/GKxGJLJpFU3mPSyDYhrZWk6lE9y+SGvfvdbH0leMm7qSz861cYP+hwKhVquytHysekHrUytTpp9JTk+PDxENpsFYL6aRtZB452WTjrbsu6cH4lEwjnXweYQPimSPKrX68jlcq47lyVmMWEXP2PRry7UsEw0GsXQ0BB6e3sd8N+JrjB99/O+9o7UE83m461sCwsLKBQKzuSZCSN4kQ2PtVNXXrbUUfx7MpnEzMwM+vr61IlHWZb22dYW0/uazfSSJ1MdND1OtmhxcRHb29soFAquyQvN+bOV5TX5roVVa3LoNRmitZm/6+f9UCjknN8zODjYMhFlo3Z9N9vkQyf0/2QINycyvibyI5h+yMuhlvlxICDBc6flhkIhxONxfO1rX3OuiQEez0RpK2REUthN4du8fhLk0TPbwKN3tRBgWZ4EMzwNhbTwWS5a2abQoc3NTXzwwQfY29tDtVr1DRJt9FWCCFmuBDKhUAgzMzN47rnnkE6nnckSCTKB1rv9iDTHBYCLn/x3OSMqFZEEZFLGeX9zmfn444+xtrbmCheUil1r11dF3JjRKZIzMzOeip47KiSzBAiJuOPN+artUZOn1PNwK3IEa7UaHjx44LomQnNIvwriBo6ur8pkMi6dZ9KD/DepI6SBlulkG3nIPF1dJSdr/LbHJO/8uZczR8/o+iQ63VbyQepSGerOZUfyx1S/UCjkAOdG4/igOW210o89MgE5bazaxgl35Cn0WG4Xke2n92T+khe8fqYVEQrHNTmMtj43Ea+DzEvWLxA4XjUnJ/H555935cW3ZmjlaPWSzh69S/yVtphTLBZDOp1GLBZrK4Sbymun772ek77MZrMIh8MolUrOCiTw+KpK4HFEmlYfvmKqTUyQ/uVybLKbMm0sFsPly5cRiURw48aNlrx5GzX+mZ6Z+O1ly02OLTnQ9+/fx8zMDCKRCJLJpOs9fiOCLM+0DYvzn+tkU1u47En9xvOXziZN7rz++uu4efMm7ty5A6D1ukdt/PuVXWoH/661x4s03KLlwaPydnd3nSuurl+/7llXyR9ed8CNDzT9wPlK8kzjiY8ZGbXC86Q+o20SkqR+4X4IlUOYcnBwEMViEQCwvb1t1Wn8u8Yb+Y78/v870KdEmnHsdLBov/kxuO2kJeLgNBaLYWxsDLOzs+jv73dOYJYn3XLFoikvPrvLSYIYP3Xn9fMCT/wEWukwaCvMvA0EiolqtRpu3bqFlZUV5HK5lhBFG/kBI37yOS0y8TQcDuOZZ57B7OwsBgYGXOFsst5c0WoOtmYsZHnys5QjXh4n0/5NAnR0Rcnh4aFnhMCT5LnftofDYaRSKUxNTTnXVmnOoAngmEAwf+4XFNG4AdzhWtVqFZ999hl2dnZ8y/2TIqpzJBJxthhwnlEaIg10yTbIiAl6JvOTQBh4zKe9vT1sbW35ikjhZDLGfknqxFQqhf7+fjVPqhfXbVIetXHFP3OAJMESUbVadfbHebVX+13TUe2k13hq2uIgiTtPfPzIe6WlYyTHEZURjUZRKpV8OYCarfCSa+0Zr/vR0RGy2azRAdCcP1Ne8hkfA1Lna/WLRqM4c+YMlpaWkMvlWtpvoiela8j5e/ToEaamppBOp11lShzASbsek94jQC+dQklcz2tpzpw5g2Kx6Lqap50VPK08qrNJ79Azm+Mo36vX6yiVSvjiiy9weHiIF198UR1DQOuhmKY68Mk82tJExN/V8JxXfSkPcrLq9Tr6+vowOTmJSqWChw8fOuPbj+xpaUw6rBNcbspT1kGTxf+PvDdrluw40sS+XG8ud9+qbu0bAJJFACTVpLqHmjZTj41GGhu96g9IP0CmJ/0C6UEy2TyNTI961D/QTEtqjdq6m90cNpoLUEABhVrvvuV6b+6ph2t+6jueHnHiZGaRUxg3S8vMc2L18PAtPCLkZoh+v49KpYL79+9jcXHRpGufbmDVw7LUaqN2zMp7LT84Hz/j68+E9q06pQ5L38nlcrh27Rqq1SqKxSKOj48n7ormtrrwYfWP8aGNaK3bhsJ/UAa0xYg0hAxCSD2uMrWC46vXVTdPiGw2i0KhgGvXrmFnZwdbW1soFovm6hXX5SrXEtCA+8orzbi1UWUZbEmKh1WvZVjosmXS7u/vY39/P1qB03tA0xpn0yjN0zDckDJljPL5PG7fvo2NjQ0sLCwAmPTs6TaLYsoKNDtM9Iq/NiC5HEuRkP+WE0bTiTBZUYj4miVrnN61AegbL8aBOKpWVlZQKpW8yhZ/+8pn5d4Kt7IMQfmv55YomScnJ9EeNx/dpwWfIaSfMd4KhQJu3rwZHbYWwu+stmvexHxJKwtaSeM6G41GZKhMAy5ZYvEoXxmlUgmVSmWCn/kMV9e8tL45n4XPTCYTOa58kGRYuJ5pPCUp4xaft9L42unK45I7vLq6sLAwITunUaxCcGXx6F6vF13fpw/HdOEOiIdnu9rrkqW+Mnd2dnB6eoparebVn0J0qzRg0bU4XN+8eYNr167FDOhpykx6zsDtsIwH4OpE7rW1NVy/fh2vXr3yjsU8wadTuubacDjE6ekplpaW0Gw2oxOg5b3Fgyw9zmV4M7i2DbrAKkv3cWFhAevr6xE9cBSNxe/leUjdIZBGv0sz9kLjAPDmzZvoZgCJErD4d4iOIWW70uqoHhfvEz1RcMz5ZI7K76R5psdZ+FupVEI2m0Wv10O320Wr1TKdmiFgGctWW6aF99qADvUaaMUqLfgYUVL73sWEBN561mVF7OOPP8bq6mp0EIq0z+epsbxRlpDmlU0+4VpPIA5T1fuRXAqaFvza86U/3AdWMMQz2W638etf/zoyIELuek4zRiGKxzxAl804z+fzKJfLuHfvHpaWlgDEVxf49E296pDP52N7/TRe2cBmWuC9ZmLIyYeVO14RdV1dJvTQ7/dRq9Xw2WefRSchv0tFwwVJhiDw1nFUrVbxox/9CEtLS+bquvawMy4lraTjMFV98qXUmcvlopNMAdtLzNDpdHB2doZ2ux0djsX1huJjWmFl5c1krlazPvzwQ1QqlVgfGARPgkP2YjMdcl0Cukz9jvE1Ho9xcnKCw8NDb18krfV8XlAqlVCtVmMGU5LCyX3n+af5rM+IZqWl3++b9Cfv0yog0+CM26WdeT6FXkcs6XZbbderH7xaXalUTGMxZD74DFzfnOLx6/f70an5fGUghx/rvLylRstPBpbjjB9tdDGe7t+/jxcvXjh5pAv3uqxpgNsqEVadTgdPnz7F97///Vg9Fo/Q56y49oCz3mEZGHq+sAwUehW5vL6+jsePH2N/fz92H7c2dFyOMssYtujQxWstsMoZja7225+cnOD169f48MMPI/6j5bDPIcNt8N09LvmtaDfN02VOMu/nsRPcX7t2DYuLi3j69CnOzs6i0F+rrRY+dLp3zet95TEPGA6HuLy8xN7eHqrVKsbjMR49ejQhzy3655P3taEqt69Y7QjRvSw93vXfcjLxXGPeYy3OlUol3LhxA6PRKJLVHG3E/RNw2WhahvkcTmnhvTagk2BaL5QFmrG+C0U/lBmKormysoLt7W18/PHHqFarMaNI2sl7Q9gospQLVqL04V16ryUbT9IubVCH4koMPn39FPdDG3zW2L58+RLffvst9vb2zNO2k9rhE0hpaCmJUYak0+Wx8Xzjxg387Gc/Q7VajZ1U7msHnwQtDIzvnNXjqPPr98zs2UiX30I7ViiQfL744gt8/fXXkbHnCzfm/POee5bSpOvOZrNYXFzE9vY2Hj58GLt6SJ96bu35EeeF5ZhgxwMbEHo+cf8ZXwyvXr3Cr371q4nIC5ch5MOHD5JoV9NRoVDArVu3Yg4+eSd9dRlIzEfEUSb0y9fPAHHlWSsLQvvdbhe1Wm3igLUkHPjwkkRDFm4ymbf3DwNvFVB9ZZHehsP5uU7Nb5nvMy/VNCW04uuX7ps2KHT7tKJi5eNnbIjIfnDuJ6/mucIQrfoYT2zw8LgXCoVo/97q6mrkWEnLa0L4iJZH2sAYDAbodruo1+tYXV2NcKEdkdoYZGVU6rAcVEwbPEfYYcUyYWtrC4uLixGONI35xngeoOlEzi84Pz/H+vp6dPUYp2EZpB38FmhjxOobjx3Tpf6sr6+jUCjgb//2b503VWjdxgeuucXt1nzdNU/5/3h85aw5Pj7G3/7t3+L27dsRP+W8OqpN+In8Z5wyn2LZ4zoNXuOC2y0OE+uMEZa3i4uL+Gf/7J/hL//yL/HixQv0ej0TV0ngw3NIeZo+XOlcRp/FG/r9Pp4/f45ut4udnZ1YdAwQdybospmOme8JPlnHFlnKtoJENQJAt9t1OjVdfePtCxavl+fiOJb2MV4ymQyuXbuGSqWCxcVFfPvtt6nOLJmX7eeD9/oUbiYA13sG30pkqDHjq89Vr5XfVY5P+ArzyuVyWF1dxZ07d6Jj37WATSLwpLaNRiOnkq7LY+asV571b83stYBhQa774BPajUYDx8fHOD4+jg4Mc+HYNQau367/PrpLos20IGN/7do13LhxY+KEVI03PphCl8MMlJ9zOaxo6pM6dXnSZ800XfuSRqMRzs/PcXh4iOPj40SmaNGNqx2+d2nHhHGVzWZx8+ZN3L9/3zQCXe12tdESdiK8LEcY59djKHjv9XpoNBo4OTkxr2Sx2jRv0OWLc0ciHzgN8xrNeyze4lNgrbMeGKdcbq/Xiz6W8pnER12g81rvuVxpNx8g5ivXmuvaGPTxNtezbrcb2wPtMkQtSJq3SWVYaawxcJXvo2097nrlQzsh8vk8lpaWEg8GTJKtegys9lnp5TfvgxTgPsh/4c2y0slObhevs3gIAyvJMm+r1erESfEWTuYJLnqWyKXd3V3s7e3F0mudQcs+F040r9BzzUqrZR3nLxQKuHPnDlZXV80IrKR+J8kpbfyElmn1odfrodls4ttvv8XZ2VlEf0m8Q/NfVzuTjEntQLJ0Fl0mf0vUyK1bt3Dr1q0JfLva58Kdld7qtw9c/ChEx9G03u12cX5+ji+//NIZxmzJAS7Xkg9ax7auxLT0Js1Pdd98+LPKEUeJLosXecrlMlZXV6O90VaUmYXPJFz76CwU3msDOg0kMRrXZPKBJpY0jNJVnq9c2e9cqVSwtbWF27dv4/r16zFDShOri4HrZ5qJyYTi8DarDK3o+CayZixa0InHmEOfOK9Vpnjsj46OcHJygnq9PiFIQwXNNJB2/C2hk6R0izJTKpVw8+ZN3Lx5E4uLiyaj0gzOCuexjGWLsTJz0+m4bVy3DhPU/RyPrzyre3t7ODo6Qq1WMxlxWpjn+GrFOpO52pdz+/Zt3L9/f8JYk/qTlA4XaKXBWjnytVHGqtVqodFooFarmbT/ruaAD7LZq2teZF+TpiXLYaZpTT9nJ4PgwjKgGdjwuLi4QLfbNR1DrjHjeWOBxX9d5fH80Ks+Vr36v1Y8fDjj+hl/PF87nY7zELFpZJrGJ/8OVT75v35mOVV86TQ/Y/zLe+BqZUsMaF1Gmjan7R//Fpl2cnISrabx+Gmll09TT4q44r5YeoHMK+04XF5extra2sz6TVpw8dPhcIi9vT3s7u7Gxp9X4/VzSyewvn2Gg8WzJA+XL6Hv6+vrpqywDMtZdBRL9rjSaF4wHA7R7XbxzTffRIsPlhHrap8LVzqvK49OxzyK03PZmg5zuRx2dnZw79696JBKi0eEQFpZaaUPkbkuHs3vxEHWaDTw5ZdfolarRUY048FliEpZ1ko169mWzq5D5l207zovgn/rvPyf63DhRbapXrt2DSsrK7Hov2lh2rmm4Tsdws2gGZZrElv5BKz8vvS+dK52MWglMZPJ4P79+3j06BFWVlZiobNa6HMYk6XEcHiTJno9mQaDQRQCzIQPxEPIuM2j0SjWfpnAFj64XJ6YljATL7v8Pzk5wbNnz/DVV19NHCTBdXM/fR5GDS46mYcy4XNs8LesjPzsZz/Do0ePooMlGPL5/ARzE5zzSkahUJgYFw0yFnq8pFypS/eBFQhZvZDnmUwm2ttzcnKC//P//D+jeyiZybvwNA+GF2IAcXvleaFQwCeffIKHDx9ie3s72qMr73W51l47XY/VH0m/sLAwsa2BT5GVMeYw736/j7/8y7/Eq1evImNIC2YXLwsFn5DU/1kJv3nzJj766KPYGGvcWG2T/vO+LgATSr58dPih0M1gMIhCvfv9Pr7++ms0Go3UOJgmvYUf+YjxrA3oNNft8RYOi96YVrhdgls5N4JDH5P6GcoLeRyZ7i3jQVbD+v2+yXfEScxGnrwTw9GKwpL26bnAOJatJ/l8HltbW97rAC2YRhZYeQQP3W4XT548wc2bN6ODsrSzTNrF/FwrocIbLIcTp5dnPHeljFwuhw8//BClUgkvX76ckP9SDuMqrZMkKa2liO/v72NhYQH1ej2Sh9wO/VvmgI7ucY0x05Rut+A/n8/Hwl4F1/l8Hh988EEUan54eGjijCFEzwzVX5Pmo+7jeDzGixcvAFyF637yySdRPyUdgIiHig7G531onqXnm+BGfrvkPdOQRIIw7rROKOVubm5iaWkJq6ur+Iu/+IvIMa9p0vXfByH0bBn80+qI3Ebhi/V6HX/+53+Ohw8f4vHjx1hZWTEdZ3pbJX/zVilLN2AdvNVqAYifwu7TWXQajQOOjpF5w33learpRtq+srKC5eVldDod/O53v4vOiuC+aD7AoGXQPOA/GAMamE2BnJfHYppyRdm6e/cubty4geXl5Yl9r3JAgKQXkAnAIRHyXCtdPLF8xp3k53K0IWEpjmxgaeCJwoKKBR5PutFohN3dXezv7+P169eR8awNepeiEgpJk80y1NOUbQHjUsL1d3Z28ODBg9hpmRbOfco0MLknXu8tt9ooaS3Gy84bZlrMjOXZcDjEq1ev8Lvf/S464M0qMwk/acGHZ5eRA7wNP15YWMAPf/jDaBVGHwyjy3fh3qXAa2Aa1tfxSL18WNt4fBWWfHR0hEajMbHaMk8IETzaSNza2sKdO3ec+TW9coiWXsHRJxNrxVgr22xYCz53d3fRbrcnhPc8wRLgrLRL33yCnvNY/Ezfx64daFabmIZkP7msxs/SN1e60HfcfmDybnSt8DJe9Gqg5kMuQ0i3R/ZAa0dMCPh4DL/3ySN2vDWbzWhvuuZT2ojg566xl7SMD5+hxTK4VCphcXExpvj6+uzqb0h6nUfnl/4NBgPU63V88cUX+PGPfxzbs6n5MjsQ2Njl8pmWNL1ZfN4y7ARkXt++fRvD4RD/z//z/wDABF928Qjffw26DAvfSfqLOGCPjo4AIDKgNbARDMTvL9ZlWgaqlrXCjy29VfcBsCOzstlspPsuLCxgY2MDd+/eRaFQwNHR0cQCkguSeFoaXqbbbvFzXxkW7Y1GI3Q6Hbx58wa9Xg8/+9nPYvxf12nppaFyjs/JAeK6fq/XixyMXCbLNq5T6EPTjdVX3TadTvpaKpXw6NEjPH/+HM1m09lXF8xiB2r4zoZwWwKaf1sMkX+HeJ18ir/+TNv+TObqBNuVlRXs7OxgZWUldk2VAHuidJ16AoW0mdvA73Wd8h1iALmI26VAskLIeeUgkYODAxwdHaFer5vGs/z2TdIQSJsnhH5c+fT/fD6Pzc1N3LhxI1LuWAnXbUyqW4fk6Lq5bGtcXGVb77RzptFo4PDwEG/evImFn74LQ88FPmOF/0t/8vk8SqUStre3J65gsuZVkpIY0l9LMdEGAre73+/j/PwczWYT3W73neHUpeC4DBLB39LSEtbX180yeRXdmr/yng1k7r/mES7eK0rIcDjE+fl5MJ4sfIdCktLFBrQvAkPA4pvykfyWAaVlBfcpk7m6xsplQIfQ0bz4qgsH2vh1jbmPBlztY76Zy+VQqVTMsFsLXHzS109L8dRpRVnmszxcq3aWccf16Lp8DhbdXvnO5/NYWFiIwmOT+mi9S0Mflv6hYTS62orBETcMIfNV6zouZ4f+z+NuyVH5iM5WKpUmDpr0tUW3Jwl8hmeoHiurjnKDg+XgtQxlX5SVS09J0v+sZ5YRymWLrKlUKtjZ2cH6+rq5sOMCa4x9aV398OGd55WrXVp35fEZDodoNBrR9rdOpzNhnLraY7XbxyMtnuFyloSUZ/XP11YLpJ+5XA5ra2tYWlpCpVJx6sK+vs8L/oNagZ4FZvFQAW7Pkys/E8vGxgY++ugjbG9vR15g3yqjqy5RVC0hznms/NoYkm/2mmshxIxC5w9haqIwiAItZV5eXuLFixf45ptv0Gq1zBOc04xXErPm59OWmQRaGIhCt7S0hA8//BAfffSR00sJxCMQkoDHjz3AWjmSMnlFhsOAAJgHIMl4cZTDYDDAl19+iVevXqHZbE4o/CGKqAs0Lqz3loKi02j8ZjJXpySvra3FvK48j7Qy5esHn1Ku5we3X1/XoNssdYih3Wg08Jvf/AYXFxexcK55Cwsf8JxmvMgp03LSNIN2BmmBJysMLsEnK6iW8c3lSbuGw2HkbBAD+l2Dj86KxWLsyjmLL2qcMgwGA6dBA7xdodFhfcyPM5mMdw+0hlD+ymm5Hz7gcdQOE+1E5TqE3+h6dR4LB0w3mUwmMqD1XAvtsw+ScMBXEHa7XXQ6HfR6PZTL5VgfuG0yB7hfuo/CK6QMvkVDy2v9W8oqFou4du0aLi8v0e/3Y7jwjfO7mmOj0QjtdhvPnz9Hp9MxD1KVdC6jRvNueab7IzRiXRGky5N3o9EICwsLWF1dxdbWFg4PDyN5msSfQ+W4D1xlWP0DEMnoi4sLfPvtt7h37555zzbjS+ufOkpKR4ZIHqFh0Sv4vJ0kuQxMzn/moblcDo8ePUKv18O33347wdesOeyjDx9vdrWJ84eC7pP1W/DUbrfxi1/8Aj/+8Y9x586dCR6vI9jYSe2qW88FfsbOVYn00HOG6+VymZ+Lnq5vmWDHJ+OMV8ItHf3WrVtYXFzEs2fPYls7Nd6s/nK7Z4Hv7Aq0njQ+hTSpnBDPxaweDt1eOXznk08+wQ9+8ANsbGzEQhGtkEcgfmCKtYI7GAzQ7/ejuz+ZwNlw00aVy3PNiq5PuGhhrVcQNA61cSF1Hx0d4dmzZ/jiiy/QarUmDIZQ/IdMsFkg7eTUDEm8qf/kn/yT6IoJTqf7aq1O8D5kBvFm6r2ymlaEDnifsj6oxjpBW9IJiNHy29/+NgpB0gdeWKtHaXAX8j50TITu8vk87t69iz/+4z92ruLp8i1FnRVYPiDPUlQtpQ6YnD9cR6vVwpdffhldN2HhRM+zWcGl6LAClc/nce/eveiqmXw+j0KhgDdv3uB//p//5+i+XV2e5teW8STvXVc8Me8TnPd6PVxcXEQH5YTgYR583VLO5XCmQqHgpU+Zw3qfq7zztYv7Lw4foSPm8XKSs6vd1n9XXxm4P0n8VvgRr7hKnewkEV4kH45Q0HOET6i2FGmmIamHnTq6L745FQJJSjaP8WAwQK1WQ61W85ajjWGX8s2gDx3V0UC8zUcMlGq1iu9///uRoerqw7sALRdYXnW7Xbx8+RInJyfme5cBZs0n5jGa3uS5lKf3kzI/kXcSffOnf/qn2Nraim29km+Xw+xdgMVrpV/Sh06ng1/96lc4OjqKbinQ0X3aYWWBdYOL8B3e28x8SV/zyPNaeB07hCQv8wcp//r16/jpT38anRFgnQEgvzXvsHAmfffh1rctQtK4bBFfHq5b+t5ut/HkyRN89tlnE/xSA+tjnEYvUMm33Awh4yHndFhjo/Vz12q1LKbwWRacT4NlD+l3pVIJGxsb+MEPfjA1X5p1vn0nDOhQJFiGGb+z0ut69ORztSd0olgMVELJbt++jc3NTSwvL0dX54SUaV1h4+sft9envLrazqvarlAPXa42el3/uR0Str2/vx+7O9hVxixglZFG4QbCwrC0MBVmsbKygrt372JzczMKU3EpYGmZsqu9LEhdZVs05cO3jNs333yDer0+sfI3j7GSckJACyTrvYzB4uIi1tfXsbW1NYEDbUD75phF25YBntROC/dyCn2r1XIaz7o98wDug2X8Ch+7ceMGqtVqLG+5XMaDBw9ih9C4nGman2gDK0SZk7I6nQ6azWaquyTnAZbCnMlkon2lVlt/9atf4eXLl2Z5WrmwQJ9vwN+s+PNJzjoNtycU9Pj5lHZNN1r50g49Lkfj0oUDXadrjvoU0CRIw3tDxk7SNZtNNJvNCcVVl6W/5bfVHylDzy3Nm3T6QqEQHbAW2r9p3uv2u57LZzAYYHd3F2dnZ7H3ll7A7y2ZZrXPJV9ZTgKTCxeSN5fLYX19HcvLyyiXy16aTdJJffQZogO48MH9kTDhw8NDHB0dTdTn2vcsOBCHlcYF1y2OCXFOaN0zTeg1YG9RWVxcxPXr16NTm0NxpHEl+TS+kuR3KKTlHYw/ubJyd3c3tV7l0zms3zIurjnJdVqngVvprLKY37uMa26XXLNXqVRQLBbN9rvy6v5NA98JA9oHSYroNOWwENJppjWa+VMqlbC2toYf/vCHWF1dnTi2XX5rzxpDUv8knxbOrj64+syTQkIu9Aqk1UcuyzfxxWs7GAxwdHSEV69eYXd3N3bdQshqkksIzgoWc02bV49BoVDA9vY2Pv74Y1Sr1WiFxKJb7bnl59Z46RU7vfqgFUkt0Fj5dikdjI9+v4+TkxN89tln0cFhSYxx3uASDL70mUwG6+vr2NjYiFZQAXvVmJ9rOmNlSoezueaU1VatEArdX15eRmGVPiNgWgHBffMJT6u+fD6P27dvY2VlJUo7Go1w7do1/Ff/1X+FcrkcWyXUihn3lYGVNACRZ1t+WysK4/FV6NvJyYlTuZ43JBl5S0tLsX31rIT/+Z//OT7//PMJB4Kecy7+z95+awVfFB1tQHNbkww8nd56p9/7lFFW4q3r83R+V99d8pGdLlym5n9pwDd/04I2ZmQFWg4LYkVWgCPEQhRUAZfxrHmY4LBQKGBjYyNmQLsMCJ888L335dHP2JB48eIFjo+PYzRkjW1SWZxPG3OutPqZ5mGZzNW2gPX1dayurpp6iDbG5oGfafIKT+h2u3jx4gVevHhhXo1m8QwXHhhXPLf7/X7s5H/Nt5P0UNZvrBXmUqmEra0tXL9+PbrD3GU0JdHvtPjU7zQeQ8qz6GE8vnIcdTodnJ+f48mTJ2i32+ZcFjmgjV+Z5672a34A2ItpOg/ThF41ZhrReifPV5fxbckLAFGEDB8k6MOv1mH1Jw18J/dAs4JqPUsiJKs8Scvf07bFlS6Xy2FxcRE/+MEPcP369QmPpXWNlABfY6RPneXQIcuDLITD1xNpYvIxNGZ61sqz3oNnKUPW5JV9E/V6HScnJ/jFL34RMxa4jlCGZD0Lye9ittOCxoN8crkcvve97+HBgwfY2dmJnXDtahOAWIi3ZYhYiqceK6GX8XgcnbYoBroeW/nNq1xMI8Icv/zyS3z77bc4OzuLjVsSs5qnYpoEWmHM5XIoFov44z/+Y1y/fj1KZ9Gw5GHhoMfTmv8cGqjbIGUC8THSJ+AOBgN8/fXX+Prrr82VWauf0+A0pCzusyjclUoF165dQ6lUimjLAqYli18y39P77AQXSTAajXB2doZvvvlmAvfvAnxOG6GLzc3NyIDWe37/u//uv4ueWRFFXI78l200um5xbFrOLwCx6//0PLfGIy3udHqLnph2WeGz+HO/35/gSZqfSn42OHlOsdzSp71ask7T+jS6gAu0o0zKPzk5wcrKysSYc53ascJ9YxBZqo0PzbeHw2GkIzBPE/1AxobbmaafSYq7S0+y8C9tqNfrOD8/R71eN/ftWrqF/s23HVj0wTJVDACJChyNrvZjLywsRPKa51ChUMCnn36K5eXl2N3VaUE7frhP0+DUSgtcyaaDgwMAwL1797C1tRWbj9rg0fOFacploBQKBWd4tTbcBLgNUo/Wh4VWs9mr2zN+9rOf4bPPPkOv10Or1XLi3qUHWnTn4+1pwGcXcB+1nJN2yJaXwWCA3/72t7h58yYePHjglbVcrshTIH6GjiUjtL6n00k79ZW0enws/Mv+ZS6bbx9ge4DpDriSXefn53jz5k1sS+I0MI2O/50zoF1M3SUA+V0I8/aBqxwXc2PGUyqVUK1W8dFHH2FzczMWdiLgmhSsUGqDhhUz/tYKACsjMgFdyoQGVmxFAHFfLWHLio8VaidpRqMRjo+P8c033+Dy8nJiTxJ/W2WETIqQ8U0SUgxJ+NJjIb+z2at97xK6rQ+zsepkPIYCjwWvbgjD45Upaw+MZZwz0+Zxef36dcTcfKsBrjn5LsEShpnM1YE56+vrWFtbizmxXPk0rek5I2PLERoaB7oMVtYsgS343tvbw8HBwYR3WNOFSwH38UttlOj3uk38v1Kp4Pr166Zx4MIn05UYSPyeDUoAE4oX99tS9C4uLlCr1bxCNpQX6Hpd/EYrXcxTl5aWougiURAECoUCRqNRdIc704zut3w0frWCaSlj8jskesGnXIbgip/pNgJvo2E4ndUmvopR2qcVa/1MO7msPvI7NgAsCDUek9JYfFDGstPpRDJP8xutSMpzlsXcRkuJteSnNlJ0pEepVMLCwkLExyw+6ANLTqU18LTO0u/3cXp6imfPnuGTTz6J7Ze1HAZ6TnBaKZd5jfS13+/HIl04vRjPTNc8FqVSCZVKJbpLOSnSIUmHtd5NY8zxXGEeKgsXn3/+Of7kT/4ktvDCeLR0RN0OSxa5ooQseWPxPXlu4VGeyVbIe/fuIZ/P41e/+pU5H6S+JJ3E6psLfHxUpwvhET55NRgMcHZ2hoWFhdhtIb528bfme/yejew0fbPSsHOD0/n0Ip2f6xMeKQf0WTqVC+fzgu9cCPcsyNFEFQIhBqYrn0CxWMTi4iI2Nzdx584dLC0tmdcehCg32uDS++CY4TEj5IlkhTO56hfglS8dNmddr+UK1eC+ykEqR0dH2NvbM8NUkwSNr81pxy20XE6TlE7GQjymm5ubuHbtGpaWlkxD22oP48SlHLrabYVMjcfj6NClbreLi4uL6OAvS6nVdCPKRrPZxOHhIc7Ozsz7Q9PMsyQIdVr4BKKMQ6VSifbuyipDaL2u/VuuMbDmoPVOgxiEp6enOD8/D8alxr1v/lht0eBSiBcXF7GzszNhQIeCxa+0c87iVS4QYdtsNifqcP1/lyB0xqt9DNIvcWTpsGZX35n2LLxY9MbzWqflPAxpeWeInNQONuErLhq1Vl+tVQ8gLgc1/rgMANFK6+8LXPOt3++j0+lEhwNqfFhj6cKba97r5+xItWhraWkJi4uLU+k88wDLsBoOh6jVanj16pVztUvzfx/P5TpcMk/LDS0n2AE6Ho+j6xBXVlYmDlJy9c/673rmgxA+rtPLQVUvX75ErVZDp9Pxyirm0/qj2+xK42qXT1a5QMrN5/PY3t7G/fv3sbq6am5BcOFc00JoW+YhRyzHhKuu4XCIVquFWq2Gs7Oz6HorV7v0/GdeyA4zXUaS7mA5RXUe3yKKi7Z0/YIXOfulXq9POD5DYB7G9Xu9Aq0nqIvBhfz31WEBE4Y2SkPbLZ+dnR3cunULN2/enDCceRK7lHA2TvThMbySyBev53K5aHVDK1JS3mg0iu2/lTYkKReShhUU3XYuw5rYYoD923/7b9FsNtHr9RI9VBovGofzVJCTBJvFXFyKbi6XQ6lUwu3bt/HP//k/j4Xgy9jpUCc9Jvzfd6iSxRSlLXJVk1zXIQd9iPJeLBajj6tsZuj/7//7/+Lw8DB2565vDHz44/eh45g0x/U5ADIOt27dwj/9p/80tvqcy+WiUCMdVs9htNI+HhtgMmRbyuO5YvERNhp5XHu9Hn7961/j5ORk4k7jNLzIglDBYilFEr597do1/PSnP43tS+IDs6wtBzwnhOZyuVwsLV8lIyCCX5R/KZ/xICdwX1xcBBncPvDNfQvv2gkgp5yurKygWCzGFBZrjne7XRQKhYh/a2eU4FDPH5fDgvm+1OtazZ0WD6H5ePzldgiXc1V44OXlJYA4DUk5enWe+abQCdct/E9knxg6CwsL6Ha7E20OXaEOxYFrrmUyGfT7fVxcXODo6AjXrl2L+LPwBOYR0hfX2RfSds2XJL/Uy9fBSHmc7gc/+AEKhQJOT0+dfZL8/CyJ76c1jqRMGbvz8/OJCAam5aQIC6YlYDLiQ24Q4He6HVrG8QprNpvF+vo6/uzP/gz/5t/8G9TrdWdEYVK/9W8ffnxpfPqyzIdarYa/+qu/wgcffIBPPvkkSst6ZEhbXPQmPNuiF22I8TYT+dZ6pNZZM5mrqxQLhQL+xb/4F/i//+//G/v7+xGdh9DeNHrHNPQcUr/WM+Rdv9/H4eEharUaPv30U2xvb0dnjzC9arzyfNELXwKip1iywTKUBTR9iyzXhrJ2empeK8+0jvTVV1+ZfCgJNE3Oogu81wZ0EvgYxDTpfPnTTERhrLJH8OHDh6hUKgDeXkvByiRPFG6vpWTo0Gv2hGqDgZVzbdBpTzen06E3XCZPCn7u6ou0jYm60+ng+PgYv/vd79BqtSb2PGsIMRzehRHtaoe0xWI0Ft5yuRw+/vhj3Lt3D6VSKcprOR+0caUZl4t+WZHU46SNDgl9KhaLsat/2NBjT6U2fOQUz1evXuHy8tK5KqRxl9QH39i5xlzjzFd+JpPBo0ePcP/+/ZgTQ/dT59dpWEHQc4jLEIVM2seCg/NpehiPr06U/uKLL6I7tbkci+5+HyDtX1xcRLVajfY+W3Nf+JyAy+mjDR7Gr2XMuJx7h4eHaDabphIdajBOC5oOM5lMbJWTQz1Z8ZN+isNKK+5cvvB6KVPPT+bD+Xw+UiD16nOo0u1Kl5Sf2yvPpFzfAYPyno1EvbfZ5WxyKec8l5kuy+UyyuUyGo2GOad8fbXGx9UfrcBxXcLbe70eTk5OsL6+HjNaXO3gvvF/5j8a9FzUxg7jamNjA8fHx05DPem/Cxc+SJKlQhu9Xg+NRmPiejhJY+Wz/rv6wPqULldHNPAYCQ8rlUq4fv06lpaWovD8JF4dMi9DwDcuFs3wnDw5OcHS0hKuXbuGa9euRWnYeBYeZskfi18BthzWEUYhMtxyRGiZKRF+H330ESqVCp4+fRqbG0l48hlblm5uQRJvCKnLV+ZoNEKv18M333wTOdWXl5dN/u7is5axzvTh4oVML/Jf8zPN63U7ZH5Z4yy8q1AoYDAY4De/+U0kz316vS4rVNaFwnttQLsmF79z5Ukqk8u1iD6t90IL68XFRayuruL69etYXl6O9sa4ytRKhyuNEKd1+JQV3qQFizZ2WTgA8dU27RCw2mYZHFa7BYRhHxwc4OTkJPWdrSEMyvV/3uAz1FiZ3dzcxM7OTnRYh5XfMqJdioAP2IjWKzKsaGvlnq8ME7CUVRm/3d1dtFqtib0pIW0NVUJDwSV4+T+vnG5vb5tGsIuWXXTk4ksiULQBGSK8x+OrFclGo4Hz8/Pors4kBd+H92nf8XPBTTZ7dQXb8vKyNxICmPR+u8LOmEZFaXONqUuZOT09jR0i867mfogxICvQ2lDRbRd8skNTaMfKx2MATConuj6f8exTSuYN0i7hMS4eCPjPfNAy1hWCyPk1Lx2NRtEKdJr2u+agrjuUr0l5/X4/Wl21+pE0ZizDOZ3Oq/vjGv9yuYxSqYRisThx8NC7Ah8fY4NAburI5/OR4eDiDfLfGjfXf23QcX7GsTXWQtPlchnXrl2LwvNd+JvH/LPKDtHFON9odHXTw/n5Ofb29qL7rC1ZyLjQ7XdFIlp6DL+zHBJSXpIOofGXz+extbWFXq+Hvb09tNvt4CiAUP1zmjRpxjlJ/5AFjJOTExQKBZRKpdhtDEn1WXaBgI7isGwFq3zmtfxe2yOaHnTZ+XweFxcXaDab0aG0Sf1JA9OU814b0KGQxDSSPEg+hT70ORtN2WwWt27dwvb2Nq5fvx5TnjVjYiLiMCO9wqDbK6sRHErN178wg2PFTBMv4A771cArKUB8pVszUz2ZpF2dTgdPnjzB0dFRtJcjLWGnMXLeBbiMNP4veCmVSvj0009x48YNLC4uRrjVyiAQxzsbwq56OI92gMhzPjWRmZjUoemABaGE0/K4d7tdPH/+HE+ePPHeGRmCt3mDy+EgRsrS0hJu3LiB7e3tCGeCGz70hMfIB/l8PmLyUp5WZPXqmVY0eK5Ke87OzrC3txednvz7oG3mF7rf7F3OZrO4e/cutre3ncLWAjb6hK6kz2xIcnt0ODePp+STMvb29lCr1YJpkcubFr+ueS9hwppXCvC8YoPZ4g0cKSE4YWPQx4P5W7fTJ/M4TdIz3Xdr7sgzcbbJAWr8nn/rcH+X4qYNB5fM1GUtLi5O3IARYgCH8C+r/y55MR5fOcsODg5iJ9VaSqvVH23c6UOuuD1cBjtPWemWtKVSCcvLy7F9sa6++OZOEr2EzjvpX7/fx5MnT1AqlbC4uDhRnkVzAKJtUpZxp+vgspi/WHXpOSoy4PHjx8hkMjg+Po7hVUcEukDrbq53/CwJfDrTYDDA8fExer0efvCDH0yEbQtvcbVd9FXhT0l1s4GlZQuXB0wa1lyG1nPz+Tw2NjYwGo1weHiIFy9exNrtwxvrRK76LPDZFiF6oq9sqw2ZTCYK5261WlhbW8Pi4mLshh3tuLboWOuB8l9vF9V6jTaCdfukfi6HdU8tI5imFhYW8Pr1a7x69SoxKjXJBkgal1CcfycN6FCBl1SGD3xCg98zM5XQ2MePH2N9fT06LU8YhW9vsR5USwAysJHKxN3v9yeMAc7DhrS8572LQJxp8cSTlUqrLa70otgMBgM0m0384he/QK1Wi62sWf12wTyMiVloJykPC4OtrS3cuHED3//+92NhmlpAMw58e8e14BaQMsVLz+OuDTBZBZK7GmUPtNCvVb/UMRgM8Mtf/hKvXr2KvLtaiFnw+3JuaGVRxiGbzWJxcRE///nPo1BJFt7WqifTiKZRKVOfnsuCiA1ii1+xUsVtHo1GePHiBX7zm9+YJ09y27g8/TwUQoU4G4f379+fOEBM+i/APECvxuuVUZ+xwSBjphW50WiEo6Oj6AAxl/KpwfU+ifdzOj0nRRFYXV01+w7Y/dd05MrL/zmqidvEp+VzZInFb3SfXf1NMoa4DF2e5O31erG9iS6QveDaiciKHDtQ9DUpHOrOSp3kWV5exvLycgwf0xomLlyEgOCED2HUPEz3w5rvmUwm2kNvjS2nBeIyiJ1Zogusrq7io48+ilbG0yicrn662p6UR/LJOL948QIPHz7EeOzezqGNMebLWj4wHXFe4cuyFWM8Hkdh45q362iu7e1tnJ6eYnV1FWdnZ1PpObrv8wZpu7RZzqT55S9/iQ8//BA7OztROpFD1kKQ9EuPhbUNUMoTXYL1UJ7jvM2Ry2OHt5TFbZE5tLa2hp/+9KdRFJc4gphPMX2EABt+afK5YNr8kq/f76PRaOCXv/wlHj9+jM3NzZgRDcR1SW2M8pyw3mlea6WzZIjIH6Z5LY+1bSO4/Yd/+Aecn5/j4uICgJv29Xy1fltgRW4lwXt/CrdmeCEGjO+/gGtw9e/QNkmo7u3bt7GxsYFyuTxx+JDVBiFU/s3GsW5/iDKtFTotuPRqpOUF1HgC4vusddutfnK/jo+P8eLFC9Tr9diJz1Y9LpjWWTIvCDWeM5m31/zcv38fCwsLEysLvPJuGV2uel0MRSsNVlqOVOj3+5FCK0q/SwkTRa9er2Nvbw/NZjM2fpoG5zFOGjdpQNN/sVhEtVrF9evXzevjkuqXb6Z1PjXZZ5Twc1bO9J5YSXN5eYlGoxGdPJmm79oQdfGA0DI05HI5lMtlVCqV6HomBu4XCysXXbvA4s1amDNP6vV66HQ63vufQ/s/D2W1WCxieXnZ3BbB7dGGsjiw5Eo5l4LJH803tKGURlkAwlZ7dT+S5qieM3puW1uEJK08s2jYGlMtw8RI4PSVSiVybut54ivbB7qNLp6g341Go4h2rdPSLV1D16HTyTtdhiVjtBGSzWZRrVaxs7Mzcc2iC98u0GWnAasfgqvz83Ocn5+b/I77wU4Cl+HjoymLf4cYUPl8Hmtra9FZGz66cskNX5uscpLK9KWT+dbv97G/v4+zszNcXFwE0bC0RfN+5leWnsPj4+qPtGs8vopc7HQ6sXLY0OP2CA0/ePAAW1tbTlnowlGoLmrRjsWrfLxrmrnB87jdbmN/fz+66tJK59K1fTqntRKv84XwOnnPdXC+TObqTKSjo6OJ0+A5rUCSLmy9C523Frz3K9A8UPzM+q2FsCuPq440yGXveDabjfa+3Lp1C0tLS1G5OvRB1+tiltaA6/QaN1pwMBEy0XO7rMmuhRb3Vepg5YwnmxbMw+EQl5eX2Nvbw8uXL3F5eTlxn7ALQoTFNDCNMNdMw0ojuMnlclhdXcXNmzdx7969CRyz8q9xp1eodRt8SoymGSvkSurgledCoRAzoPW+ofF4jFarhePjYxwdHUUHh/lgFkPEpcS7wDcmIkzX19exubk5IbhddVv1C/551YLHSs83Hg9LYRiP364QAlfjVa/X0Wg00G63vW3xtXfe80XKzOfz0d3GOmqF08m39Mt1CIyA5r96PyhHzrDyJMqBGCA+A9oHvnmdNOflm38vLCxgZWUl4pE6vNqnQFoKv57PLrCcn/pk2xBw4dAlk6z8Vn3scLLK5TbzPLNWi7SxpMO+rbLlvRjQPsUqZO5ZkIQPTesSmizOTEtxTcK7Szm26pf/Pie96DKFQiEW8TELT08DPn1vMBjg9PQUBwcHkXGk82iezDoP99sH2liwdBz5zfJAfq+uruLRo0f44osvUp/GHQpJurF+Zs0P7qPsMT8+Psba2hrK5XKUztIL5blvtVnj35JRlg4rdUg+2e7HDvBMJhPd5MAgsurRo0fo9XqxLRLyXvNS1xxztdMnF0LB0u9cY+riH/1+P9rutbm5iWKx6FxpZb2KPxKxw2Np8UOeOzwndLuz2cmbJHRUKtNEu93GwcEB2u12jNe47DnmbyGySJeRxtZ77w1oDZbwtZDBBJmmXJ8Atv7n83mUy2X8yZ/8CarVauzkXUmrQyC0QSr1++qy3usVBr3KqYWIhMZYDE/S8Snf3EbNYKxwTcaJ7GHo9/v467/+6yg0wxLGaQRzGuKfF/iYqoDgSFbp/uzP/gwrKyuxsHcO49fKIBA/hVfKsuoH3hoZOjTWVTb/F6+4rIzncrnY1VVa4A+HQ7x58wZ/8zd/g8vLy5ih4mNaXOc0Y5xWQFlKVC6XwwcffIAf/OAHpnNJKxc8FsDk3lU+8Mkycqz/SUZ7v9+P5t7f/M3f4PXr1xGO065CS/3T4M4S4IyXSqWCH/7whygWi+bqoOY53B5dl24rryToFQyeCxq63W50h7xWDELARashNKvTSZvL5TK2trZQqVQiR4NeBbBC7WRu8p5DntMu55puP9fh2kev6dx6FzK3rXpdIIaiNnb5GhV+LnjhrQwsw6Q92kktCiGn5/lcqVSiWzFCwIcP3ztfWdzewWCAer0ei1oTZVYbblZ9mh5kvrhWffjbcu5kMlf7oMvlMjqdTowGfXN5Vty4yuM+9Pt9vHjxAoPBAD/84Q9Nvp20osYrlpqWLL7FvFHTm3xr2Ss8YGVlBePxOLqaLZS36PpdBsA8DDnmAd1uF19++SXOz8/xX/6X/2U0f2S7iBUVI+2w9A6NO5f85TK4PVJOtVoFMHmLjZynILySzwQql8tYW1vD9vY2Dg4OJs7TsIxEDRZ+p9U/Z+GdrrEHrsbs+PgYv/jFL/CTn/wElUolGitOx9/6+lQePx4DzUN4DK3Qbu1wY16mnVeFQgFPnz7F+fk56vX6RF8tXcTCw7uE75wBbSksFswDuS6DlpXzzc1N3L9/PzKerb0bnFcbqVymrw3aqGDC1GmZcFlQctu5DJ4MOr9ul2sVxJo4Z2dnePPmTbQPRYfauJRsH8OyFHQXTCPA04Aeu2w2i83NTXz44YdYXV1FsVhEJvPWcWEpIDymWvn19VWei7LoAh1pIHQgedjjyIorG29ff/01Xr9+HXOASNs1zAvXsygF3Ne1tTVsbm5ifX19gu4FLCHO/605o9upFYU0iqbwhMvLSxweHkaeWF/4bxo8T8svuW/Z7NWBeHfv3o0dkMVl8p544Y/C61wgvMfFa6wVOXkHAO12G7u7u4mrz2mUl7S0p/l4oVBAtVqN+qbL1PyM/zMP1cYz59UyhuuXa6wkvF2DVsz183fFL2WM2NiRdmhli4EdCa7VLi4PiDsBLQevvkecwZJFSTiZVtbI2B4fH6NcLseupWGcWG1jg4ZpxJInugzuO8tl1hfkNGm5Msfq5zRzLgkfDLrdshrZbDZRr9dRrVYjh7CWn5Jfj7FW+qW/VqQD48TFdyWvnPUiTulCoYAf/vCH+PLLL7G7uzvzSnQavuRKq/VCHk/BSafTQbvdRqfTiZzsViQN59e6XdLc0jqmZXRZslTPCzbiWKcRkANDa7Xa1Idy6jlovbdw4tNpp6nP0stZTrRaLTx//hybm5tRvzkvj58rgiypTVrf0XJJn+Ug+q+kE51A9tzXarVou4CrXuu3tMGCWXRHDd+ZPdAu48NiBC5lUButrrpceeV3NptFsViMvFs7OztR6ESoQubqjw/STkLNgLj/LuNHG7iW4NEr3xqGwyHq9TqOjo6wu7sbW7VMI3hD8eYrJ01aCzTdMB3o/3Jt2d27d0168NGwxTRd+PIxFf3c9Z73WrKw0mW02228fv0aR0dH0eqRrw++tkwLafOzAbezsxMLR0tqa1J9WknVtOriMXruaDx2Oh2cnJyg0WjEFFZdhq/tSfwtFFj4SVnFYhGLi4vY3NyMOQo1T9Eea20MaYefzzjgdFYbJXz7+PjYew1QCP1Y6SxcJv2X1RpNb668Whni7RW6baH9YKWWDei08sYqOy0wH2IHi36m6caS5zrCKlSeaJBIEpdzRrc/iVeEjosLRqMRTk9P0W63Y30Xx4E2cF28QRsxVv0Wbq28YkAvLS05DfJ5KqousGi23+/j4uICBwcH5k0elg4TwjP19U0uGnPNY80TC4UCbt26hdXV1YktA5zXBT5dzeL1SeMeko7xe3h4GMkii/4smcayzUWzTHP8X9Ohr17OD8TP3+BnfPNGuVz2znkfTWt5ZBnJun+u/K6y0xjpGi9yT/rR0RFOTk5iRqnlMPH11Yqw4DyuvltjLWkZ771eD61WK9prr528STZaki3no2/Xexd851agQzvvI/BpgAmvWCxiY2MDP/7xj7G4uDgxKdkgsTydOl1IH7h+HQrB4ZRWWwD3vXqsxPgUT2mrXNuTzWajcHXgbRietEdO2xYBp4WcywBJwse8xtOC8Tj96YzAW7z/9Kc/xY0bN7C6uhoztHhfsZ70Mi7WfhIXM9KebF6p0/W4VqdlVVzyW9But/HVV1/hm2++QbPZjO3XDYEQwZCUNwQsxU7o80//9E+jK0/G43FshUDGm6MDWGhoRco3lziNzFEBa4WH2woAh4eH+OUvfxmdETBPOp9V0c1ms1hdXcXW1lYUSiegx9iKaGDgUFr+HSLgdfSDeLFfv36NbrdrKtIhMC2uLWU4n89jYWEB5XI5trKuI5FY2cvlctGWF5/i4DIEXKvTw+EwihoJUeCm6XMISPl87gLLBH11CuNKeJvgi1ec9FhrXirPdZvz+TwKhQLy+by5Qj+N7qDTWmVYsk7afHR0FK0a8XsOtbRuSNBzQvqvjRMuw3W6v+Ba2vD48WM0Gg28evUqCAdJRtqs+aXNEvL+V3/1V/in//SfolgsTqyoMR3o681c+8y1HODIB701z3LYZTJX26JEF8pmr07kvnXrFlqtVnStkqQN0X0sI8aCJHxb88ClDwp+/6//6//CP/kn/wQ3btyIXT0negWHTjPog0h5S4r0m1e0pU49/lwGX2vF46NvDuG6JH21WsWf/dmf4Re/+AWeP38ehdOH4s6HQx/46Nk15iHl63YwrhqNRuSEffz4sXMLEdMVy2FXOh43qd8ytK3+sAwcDoc4OzvD6ekpDg8PnX205scfAt57A3peimRIOZbByAqdhIRubGzgwYMHqFQqXqOOhZkmVK1QSf0upqY9OUKs1t46ayVc9odwOdwmi1h12LGsrrjwMxqN0Gw28ezZs2glzdpDoXFtgU+YvEvwKbECGkfFYhHr6+vY2NiI3U/JTJz3M+sVfBFGzGwsWnT1X+8HtBwvOq1WAiS9fMvJiH//938fXVml0+nf84RpnCVMi6VSCWtra1hYWIjtpQTejrGE/omCaYWhWcq4NVbaaJZnPmEncHl5ifPzc+zt7U1cAfGHBlGW7ty5gwcPHsScNdxHpmvhP9p5Yxnb1v5K1151zefkvZzOOksfZwVpb6FQiK3QM26YPhkXvKWH9wO7FH2tfAn9Wjxfb7vQ9aeFaRQ+yScHvenTuBm0vNBlCL1oR6EVXmr9lzLz+TwqlUrk4J03pFW2JWR2OBxGMtbSE6wtAQJMFyJT5D/Lek2XLigWi9Fe6FarlcrQmAZ8CjPjczS6Olvl/PwcrVYrujJOA/ffMh5Zf9IfScM8TJ87oh0dAGJRXfL+/v37KJVKePPmTexsCx4HV59DcRYCPprUsmo0GuHy8hJPnz7F5eUlPvzww1jf+Z5eF341n2KaZCeP7gvjR3gi41T+y75sTsu6FY9nJpOJxuEf/uEfJvReH8zbgPOVp/U+/h1iUI5GI1xcXODo6AjVahXb29vRlX2uOmSBx1rkcul68tsVOaRpQ9Lk83nU63WcnZ05++0CF274vyWfZtGj3usQbh+hhHpq5lWXrMJsb29HB8QwA3R9LKWGmbRP6FtKtCXwXAo3/3ft77HaYOHD1RaeQPV6HcfHx1Hoj+9aDheEjCtP1GnBNQFD80kbRBG7e/cuKpVKzEnhanOIwuZrn4XPUIOLGZsrnGk8HuP4+Bi7u7toNBrOFYuQPswyTmykup7zePC75eVl3LlzJ3aNiDaGrXmoy2EF3XJ6hfTBhTep/+zsDLVazXm6uWtuz9PA1v3VfV9dXcX6+rozTJTxyTTm6o/wDguXmq+4lFtXHXoMf1+QyWSi1TBNl9JOq0/yn7/1bw06vx4XqU8ihnxlJuErLa90laMdh5JO99mlBPvkiDZaXHJUvrPZrHkV2yz99oHGiW7fYDBAr9eL5KbOZ/E8/T7NFjLrnf6dzV7dLrK0tDQRnhxS9rTg0mM0j+l2u9EBRJpOrKg3q2x+7uIzSUq4FWHEv6vVKlZXV7G8vBxbgAiFUJ3I9duV35oj/BkMBjg5OcHJyUl0vZBeDLJ0TK0X6zokjU8n1fOYac+lY+myGAfZbBYrKyuR/l4oFFLpFy4ITet6l0ZGWWmtcZOtTaenp6jX67i4uEjM64OQNCF4Go/H0WnbWi658rj4maULWHlm1ZHe+xVoa9BDGYIuhxFuId+qR9LJfpadnR1UKpWYB5xPUQUwcUiY9raxF84Cizlxv5PaLqtAejWIlS1WmjTT14YGl6vTMsHu7+9jb28Px8fH0QQJFWDTgLQ9ScBZ+VzlhOaXj+yF/+STTyKnCjDpYXWVre/aBCYNZM0UeCXBElaa9iSP9NGKhGCaGI1GePbsGZ4/fx7b9zwNjuc53gJ6rLQBIHeyf/zxx7HQPn3gjp5TjGetlAqe+DoMveqlw5Jd48kwGo2wu7uLo6Mj0+GUFhe+NC4eqMHC5+rqKlZXV2OrMDoahvuqDdtQAWzRMpdnGUqhisCsEKIklEqlSDnTfeCVEgbGlc8Q5PTcX44U4nzD4dC5n96CEFqyeJV+xmn5mXWYjK6b56WmIQYd9q+3o/A7KyqHD3pLwvc0ECJLeK7IHsZ2u418Ph+tZEpfWa7wWDNPk3qZv3FbXMqob/yWlpawvb2No6OjRMX0Xc4/pgn57vV62N3dRalUwvb2trMdOrrIxQe140/LXKYVnoOavjTfk5s5rl+/jm63O3Hgoc+4cuHBSpNm7mp+refHeHxlQJ+fn6NcLqNWq0VbDHx6jchb5k+ie/JtJK6+cbkunq9DwnV9XIa8z+fz0Xx/9OgRfvvb38bGIUmHTNK5Q8Di+0k6vYteffiT8Tk5OYmcuTdv3pzAlW8hxyWPuQ1MQy4ZpPn/06dPndtmdHofrbvSuHAzLX9/rw1oCzn83GIEAkkTwoVkK4/so/jJT36Ci4uLmHGomTpgC3cJOdGn0rJypUMXdd+1ks9GssaZ9Zz7ZgkZFrycXit3evINBgM8e/YML1++RK1WixilriOUeC2cWmPjGvvfB4gS9vHHH+P+/fux1QzN+PXpxMViMZZGcK2vEGNBo2lGK37y3McULYVeQ7/fx9OnT7G7u4uzs7OY0itlhAqT34dCpUH2ne3s7Ezc+yzzRcaj3+9H+wI5VI8VcumDdZq0ZSAKflzht5qux+OrU8739vacY5fEy0LAxUutuhiy2auT5SW6gq8F0n2R/C7e6go/tQS0q53Mo87OznB2djYhzN8V+ISzfFZWVrC4uBhT8Jgfa8VQr9oAmFBQNQ/QivBoNJpYlRGFVaIafLyf69JtsXDAaV14sWhCQrf1fkdWyLi/2snFRjffFADEHVu6fTqcHkDk+LRWwVyQNk2osi28v9FoYG9vL+aI1eNqGS/SL70/lMvXskmPI+sdbPhsb2+j3+/j888/N3Hw+5S9mjZGoxFevnyJhYUFfO9735tIy/3mLQNaL3Kdji2413NM655cpsXDs9ksqtUqfv7zn6Ner+Py8tI0+DT45mDSfAvNZ71jGdbpdHBwcIC/+Zu/wX/+n//nsbuhNfAWHu1c5faJDJa2WvOdnUe6jzzXmce6znvhca9UKvjggw9wdnaGg4MDnJ2dJepN0s40uk8ShIytjz5cY8ltlDuwm80mCoUC1tbWIhuEwbfYI7Qv9M8ySts7LOuknEwmg2q1iufPn+PZs2eJ261C9RQrj9YBZh0j4D03oNMofJqBWAzFV56lPLDy3G638bvf/Q4rKyvRKoOkGY1G0X4Mq35X+fzOpZi5+uny4kkazRSYEbkmnv5vhUbqvO12G/V6Hbu7u9FeWWaa0yr/PgHxhzKY+ZPP5/Hw4cPopFJ9Z7Nuo7UyaR1aoq9iYBy66Jjr1IZ10iq4Fm69Xg9ffvll5AiZ1jBxGUvzBsaJGMMPHz7EjRs3oj1XGpfaWNblaUWCn2sGb42FKGXW6pCkA65wfXZ2hna7PbHSbwkDH4/jtFa/9HsLhxYOZP+zeO8130kyfFnxsOp3GWS+PspckdB3X1j5vMEyPBiq1SpKpdLEihUD05J2mlmgFRNgUmG3aGw0ujqFO1RRt2g9KY/130V7OoRb9zHpuSj1PrDkjj7LI5O5cn4uLy8nljcNuBRgi5fzu8vLS5yenuKDDz6IlaPD2V3bItjJp6MduO9a+eUydLsXFhawvLwcu5IuxPh7F6BpTMK4m80mTk9PsbW1ZUZUWQaya4xcTmtXCLuAywhnepR7idvtNmq1mrdvafGbRs4mzWum0/H4aqW/Vqthf38/2lPriy7y8T55r+eyj08Cbx0gSQsEPl4q8qtQKODevXvI5XJotVro9XpBRmsSuOZ7Urpp6nHZOFznePz2RPXXr18jk8nEdFUBS++w2qlpXLeB2yV6Vy6Xw7Nnz3B8fGwazz5cTGs7WGVPW857vQfaAk3oaZi5L63vndzR+uTJk+ieVsvbxZM3SSHgPTquicYgXj2dzrWv02Jqrn1BlkGQ5JEDrlYr6/U6Dg8PcXp6mnjXcxIkTeC0kIRTPV7Wx0ov19Tcv38/OqhKK64uhVGPgXhjXWH7XJ4GHmu9WqPL0vl0flHALi8v8fr16+guYh/eksq32joPcI2VHOh2+/ZtbG5uAojjm416vspGl6NPu3XNHV23PJN6rfwM/X4/uoqFV0hC8ZRkeKVNZ+XL5/O4efNmtCpmHQxm0axFY1Y+ixcxTi3FRnDK+x+nhXnT5fLycnQCtzzjb/mtVz4tOaDHzcKFTsN4lX210/QvREa48rmMaZ8BHQIap7osl/zTz8WArlarE/PW4vlpICm9jzd2Oh3UarUJ+pCVe5ET/J8//X4/uinBcioxn9dptBItzwqFAiqVCorF4sQ1T77+z2tOWeXyp9/vo91u4/DwMHZWh9UvLssl40XP0sadb8FC2uVybEjduVwOm5ubWF1dneiXr8+u+uaNY5fuJYcR7u/vo16vO9ti0VpIWiCu32qdTPJp/iFz2eIHLv4q5V6/fh07Ozve/f3zAlefdbveRZ3iRD08PMT5+TmazaZXFlufEJ6t8TwaXZ0E3ul08PLlS5yenk61RS2E3/hsriRdNQne6xVoBpciZaXRv9OWq0EIotFo4KuvvkKj0cDDhw/RbDaj060Hg4F5tySfIAjElQAO7dX7nVzEoE/MG4/HMSVAhypxuVK3DvnTeJMyxYskdfHVRwCwu7uL169f4/DwMDqVMY3yn4R3Xz4rr0vBnAU0jjKZDNbX13Hz5k3cvn0b+Xze7DePs8a3y1st4GK04tnlseTnWsngdNIOF0MZjUY4Pj7G3t7exD4tV3uScJYWrHws9Pi3zifhWXfu3MHq6iry+TwuLy+xsLAQK0efT8BlaOON8+hVG7lHmyGfz0fbOzhCxQK5K/3v/u7vIj4SihMXzELrFu/MZK62Gzx48ACLi4uxK3Dkvd6CwPl9h70AttGo+aeMuyXI9/f3cXh4+E4UEBckCfP19XWsrKxMjL/OZ/Eo+dZ76618vMImc9tSYOXwH2seufqUxD/1mIXiXww8nV9A5BWHaOq90i5ljulDhyTKe8ad7OvXK47cNj12Sf104cRFM3pMOp1OtCWBwed4sK40dEX/WONshXMKDxT+VigUcO3aNezv70dj46MZH62FQBK+tXw7OzvDr3/9a9y7d2+CfwivZvzx3JEVSd1+pgUtV4HJLQN8XZAuh+91f/z4McrlMl6/fp24mGHhQv93zaVpwCqHHS1ffPEFcrkcNjY2UKlUzAhFaZPLmaDTsV5s8RVNQ1oP4Hf6phMBwb0OMb9+/Tr+k//kP8G/+Tf/JuKTrv5o/CTpmj7a9c0dF7jks1U+2wTA2/4/e/YM6+vr+OijjyZuENJGs9U2l55p4a1YLOLk5ARPnjyJVp6tfr4Lh4UGa4xC+dJ3xoAO6fA0A5RkCGhi6na7OD4+xl//9V/jj/7oj5DL5SKvjniCgbjyyIQmBrcAG0KaObi8a9xuPVGYoC0FldMKsLGsD0KyvP6dTgeNRgPffvstGo1G7EqDJJy60lgCLE3+pHpduAiZwDwWS0tLuHnzJr73ve9NrFQyY7NC46w2uerX17xoehKwDnKSNjAdaOHBSrd4KV+/fo0nT55Mfeq2D0LwHKJ0cjrGdy6Xw/LyMj755BOUy+WJPVQy99jZZO0bFXywggXEw5wEt3ygluCTVzC0QanbLka0Xjn5Q4CFU1E+i8UigMlQ0vF4HDtAUdMnOyv0uRAM7BhyCThdvkRL6Ds9/1Ag7SuVSjF8cbsthUzThubn/F+HIjNYckBWAay2hvJPlxIbCloWuYC3OzAd+EJjXc4VSwHU/F/GygrhnnYO+vi8gDYe+HswGKDb7QKIK/t6dVjoxueItWSTtEOcvuJIsNqu5/iDBw/QbDZxcXGRiB8el2nAR5taJ8pkMuh2u6jX6+h0OigUCrGFDFmxt2hWt1PLTAu/QpuWo4+/BcR5zvxvZWUFt2/fxuvXrycOVErCWdK8TTLs0gDjRcLld3d3kc/n8eMf/9gMwbb4hcYv41zG0Ke7cISe3sPLfXPNB8G9jJ3w1UKhgKWlJTx69Aj7+/s4PT2daL/+dsmnUFrXOv4sYI2xT5/s9/uo1Wr46quv8NFHH2FhYcE8D8C1jYHT8Rjq68kWFhbw1Vdf4fT0NEbfGq8uh8M8jepZ9an3PoQ7LSO2vDsW8/UNkjVJWFBLmOvR0RGazWYkhFzhQpIvRJmQdxyuFbKy61PKuH6fos6hpi6Pd7vdxvn5OQ4ODnB+fh47pGaeyn+IMhJSxizt0gZaqVTCzs4Orl+/jrW1tUiQauOAn7tC731t4zHjsbDyME35aMw39qPRCPv7+zg4OMDp6elEOVbbXH2ZBt++Mvm/NX/ZsbGxsYHt7e3o5Elrm4XLEcVtt/qvHVpSlu43G4L6w3BxcYFmsxndla77nITTec03Fx/MZDLRPbCah1k0liQAQ2hDp3Hhfjy+Wq3rdrvo9/tOWvf1LyRNEmgalC0EfNiKTsv9Cqlbt9GiJdfz8Xg8sWLo4zeuuq32+niRq1wfX3GV4QMXvbj4Hj+TsXLh09UHDa5xDW0/f49Go4lILnaK67Br3SdLT9BzlZ06OmxWj62UJ6HH5XLZe00j1zdPJdgF0kZxpp2cnKDdbpvpknCm6cgnc4Hk1UidVvCcz+exuLgYRa/pee3inVaZaXDMBm6o7NB4E4fv7u4u6vX6xE0rFu1ZOok1X115tS46DV25eGcmk8HCwgKuXbsWRQ2F2AeuNvvqd/FnrdekKc/VHosnyfh1u93o8E1xhoXOWR/vl/fj8Ri1Wg3n5+doNBozbdnRZc+LT6eB78wKdBJYDA2IE9A8mPp4PI48OX/+53+O733ve/jjP/7jaO+SpOGJwcf3A5MHSllGLxvOmczVni1ePWNvjhWGJfVwWySvNvjEQ6q93tpzOx6P8erVKxwcHODo6GiuK2dJQigEkhTTUObIaWSMFhYWsLm5iT/+4z+ODmJgvAreOJ+Msw4h03XocrgvMj5a8dFGjV5R0OVadcsqab/fx//3//1/qNfr0QqIT6EOgXnNNw1cJq8G3L9/H/fv348MPo1PnUfwJ99yIreeo1In0w7TvPy3VrJk3KzVsdevX+PZs2cTh+6FwKxzzQLLGFxaWsL169cnnDicRytZ1qpECB0wL7OiN4RnSbSE3E2qcetSNueBM5/hKisaCwsLUUior+/8PpN5e0CYi09o3mXNL83rBVcuoyoEtOyYBSSUVcrU20ss0CHc0iYpT7eL28uGqc4rDlG9ZcqFmyTlzJoXaUDkbb/fR6/Xm4gG4zboPrLBJ/JC5pGOUGKdwgp1F1xzXblcDtevX0e1WkU+n49OUffJiHnzfkunkzbIFWCfffYZPv744yg035pT7Nwaj8cTW1J0HZZOwZEgLoesAEcQCJ2tra3hJz/5CX79619H18yF0I9Ppwl9HgKu+uWk+G63i6dPn+LRo0dYX1+fiFJkeSAr8BqfXIfMf8kvPIIjvCz+YD3Xuq/VN3GsS7vu3r2Ly8tLNBqNaK+ulU8gdGxcMC95FAraiB6NRvjyyy9x584dPHjwIMYDXZGO0m6NVx6nQqGAi4sL/O3f/m3k2NZtkHKSQNOHnqMh+LPSprVV3nsD2sc404JWOqxy0pTb7/fx7NkznJ6e4tNPP0W5XI68iqx06usPeE+GGMZ6sDOZDPr9fvScFXw2kmRfGXAV3qIP+vDtRdF4cRmAImhqtRp2d3dRq9WmOhDAB+9KwZ1HeeVyGTdu3MDPfvaz6IAg7cTQq8wuBcWqQwSNNj50KI0eV8G/7LPnE7yZ2cnHEgynp6f46quv0Gw2YydBM0wzNu/CeNblC8NfWlrCrVu3cOPGDQBvQ4fZ4STAc1IDKzoMrvBjxouMHxuS1vyQ8Xrx4kVkQLMCEsLj+F2Io8InEF3ps9kstra28MEHH0ShwK5ICv3fxbNdPEn3hQ1x7SgCrgynV69eOfetpRWuIThMgmw2G13xosMSWWmT/9pJwPXrPdCsqOvnFk55vmtFJg1YstKFK59iw8o090MbrlrJko92CvL2FuaTzO+0Us9p5D/ft+wz4rn/Vt8sHFjpLUXQKq/ZbEahkFa5QJzfaHxZ7dHbTfRzXb7k5/DX9fX1SAfw4cnVZ6uvPlzotFY6lm9HR0c4Pz/HxcUFKpWKWc5wOIydW8J0x+XzqePAW9nAhh6XKW3RjnTXXMnn81hbW8NgMIgd2DmrccZlJBl9Vr4k/jkej6ObOhYXF1EsFlEsFk0HMjApZ0WO6Mi8wWAQbX2RtvMihRXVY4F2fOvx5bJ4PO/du4fl5WX8xV/8RUwPcs3jNGCNhyXDdXuTygt9r3lsNpuNrrjqdDp4/PhxrB3Wth8AE3oK96tcLuPZs2fY3d2d+uBKVx8YT1KfHhcXb521He91CDcPUgjRWB9fmT7Qwkie6XLk4I+DgwP0ej0sLCxEgkkLehFIeg80K4dakeJvHdKi26j3zXKdvklvhYYxQ+/3+2i1Wnjz5g1ardZE2KRPQHIa67cvvwtcipalRCTl12AZrNevX8eNGzewuLgYvdcnmQJxo5YjCHyKGY+7pltZlUiiWfYg6qgGbo/UJ//b7TZOT0+jvVghdbkUgjT4d+UPqU/Pp3w+j7t372J1dTVSOCVdmq0FvrZbAslqF9ODjJ2OEBBHVKPR8O7fTZpTScqk75n0wYUD4ErxWVxcjN2lDUwe8sU8Sc9vzU8sHqD7wvhy8fPhcIiTk5MJQe0zSqzfvjxWmqQ5yPf3JtFdUjizNi5dKypJ4zvtnLbqCQFt7Fn9cJVr8RA9/tb9sXp8rVVbVx/E6ezrT5JRkZTXRz9W21utlnNlMo1yGMr7kkDGcm1tDevr60E8Mun5tLLCVfZ4fGXYNRoNnJycOOeLpNVzytK7LHyzbqcdNqHjK/i8fft2tBVsGmN3nuPr4t3Ws/F4HJ3Kvbe3ZxrPrrG1br4AJuWK1K11V57bWu6k6a/+XywWsby8jNu3b0d8fBbadNXrGzdfP1xyfZZ2dDod1Ot1HB0dRXeTa+PZp1OIvpnNZiPnlbWFwqp/HmDNmXmP2Xu/Ag3YBJ8EIZ60pDq18LTaIfsKXr9+jfX1dWxvb0fX0uh2WEyCjV4+kIdBhyOxF10Mcq2gSh72UjPh8zO9+snEOBqNcHFxgfPzczx//jzas+lT/ixcvivQCsYsdVnGcz6fx71797CzszPhBdUh7pyP3wmjsdo+Hr893EKvmkga7TDRfdYCX6+86rEGrujo5OQEBwcH2N/fj4wRPa4+hhSKb6G5acDVDunnwsICvve970Unb0vfmNZdB+q4hLeun9vAONVzRrzZ8pxXfeT9YDDA/v4+2u127ERiC/e6v/p5ktLlGksLlxrkmh++K1f6xjSkDRqrDxp/ui/aQSjPZBVIlzUcDnF8fDxBsxYeQmVFKLhoOZfLoVKpRGPtcvzIb5Yv3A5e4ZJvvariKlOnEVxZaaYBbpcLz7p9nCdphdcC65Rp5nPa4cJprPbpNsiedR9Y8y5Ef7D65TM+ZbxqtRqWl5eD8+vngnfpq6yyy/xy9VfTooaNjQ20Wq1o64/LMWDRoqvP0wLTloz/cDjE2dkZ9vb2cPPmzRh/T6I9nyxwOWqsb5+cZ36Zy+Vw//59tFot7O/vmwaRj9/7YJ5GhNYX5Vm/38fe3h7G4zEePnwY41VsIFsh1pbzRIfFC51q3Ms71rNc+/L1HGRjUBvl2WwWpVIJH374IdrtNjqdTsyYnFaHceGP22XpdGnnhy+PbrvgQBbC3rx5g9u3b0f6LW/7cEWwavvo1atXqNVq0fYOn/zzPUtqO+dz9TlEdw2F74QBrYEnBCPREjaWwmwR9SwwGo1wenqKzz//HKenp/jxj3+MdrsdC9WWerXRy+9kIuuVZyZUDqcUxsF7mCWdELIA93U0iu+V1YyCmXm73cbTp0+xv7+Pbrc7sZI5b3AJ5RBwGR4h6eQ5C8BCoYAbN25gY2MDS0tLXmXGdR2IpNPGlSucUQtgy5hmeub90BbD4/L0dQ5///d/HxnPSbgJfe9KP4sRzcDCt1KpYGtrC3fv3o3RMxusXLe+5kJf5aZp3wJ2ZugwbSlDwgQtZarf7+OXv/xltErCZXIfXW0IwaHLUA7Nk8vlsLOzg7W1NRQKBXS73ShMTxv8WvBrp4GADh3V/Eies/NDBDrPFblbslarxQ5gk/xpwSdsXe80LWezVwdSyWq9Tsu0qI0UxjvTj0vps5RTbWjLu9AIjBC8aeeIT3mxFCh5J0aEtdVI52NDUNOdxg0bSZaBZ7VZoiwajQba7bZTXs6iK4TmYzrZ3d3FxsYGNjY2ovpd5co3h6VqWcK0o6Oa9FV8VoSA5F9aWsLq6qp5laavX/M06LjP/Fv0orOzM+RyOfzRH/1RVK++DUHknZ43+jRhKV/TAs9VSaP30lt5tTNrdXUVW1tb2N7exv7+vpP+uK38PwS3s8gRV1kyV1utFmq1Gnq9HnK5XCRf2YHFPFTmstCOHNoldC+HkklZrNvoNsi3XBeoQXiAbr/wV0nD45zNZrG2thadpfL8+fPUOLLwZY2l1SfrHT93PZt2fomdcH5+jtFohFqthvv370+0zdLJhZ+cn59jf38fJycnidezct4knOj6QsoIeZcW3msDOokw0jAPn6EdWobvvRDgcDhEuVzGrVu3UC6XowNBAEwYvrodVpijfOvn7F1mps5l6tUM18RgQ4CZTLfbxddffz1xYE8STnRdrv8uBczK4yvf147Q51qxLRaLWFlZwePHjyPj2accai+3NR4sRATHenXUUiT5vU+gsLHBQl6ei4LQ6XTw5s0b1Gq1aFy1oh4Cs4xBCFh0I5DL5XDt2jV89NFHEziUb0vJ4Lmjr1mS9xZ+rfHXbdMGjU7X6/XQbDZRr9ejfVYaXDgNmXOu56HChHFx//79mEHoWsGxHD4W/Wr+y7TpUgT0XBiNrq5Suby8dCpHSX1OQ48+PqVB7hXm+591n13yx1IcLOXLMqq5Lg1M67oN/D9JoUkayxADittsyRE28lx44flqtUfjRH53u90oVJuda8PhEJVKJVLkrXBQn4yaJ/DYykFNelx53mi5brWJDUPGu3bmshGjx5XLlYPXlpeXcX5+7jQQLLDoKzS9K61F971eL1q80IYu045lrEr/rRVryzjm55r/cBp+x47EXC6H7e1tfPjhh9GhrJI/RA7r9iTNS37moiEXH9H5xWHRbrfx5Zdf4oMPPpg4A0K3j+ed6MICHC05Hl8ZdrwwxOVa/ZH/tVoNALC+vm72gf9bvDGXy2FrawsAcHx8HNufHoKXUPDh2QcunhyaT9cvuG632xiPr84RWFtbQz6fj9GD1g9zuRwODw9xdnaG8/Pz2FkuSf2YVjZb84/fWXNwVnivDWifwcKQRIwuxuBT0HUZSe/H4zEuLy+jA25WVlaQy+ViYaX8zd4vXZb24Ol3/FsYPrdPKxOaUWqcaOITI6ter2Nvby8KSfeFQVl4sQyNWZWPNBPDpXy6yhFa4/2ft27diq1csqKXhA9Jp8dQ/7fwpN+52szjyeGMQl+aDsbjq70vr169Qrvdju1nfxeKIdebJp3PIMxkrhwcW1tbuHXrlimoXYqSnj9AfPWGy0hqv2u8XG2/uLjA2dlZFB5m0cW8IandjCehVzl1d3l52Wu0cX4uz4eDEAOF32n8dDqdmFIzjfKi25vmvTUfM5mrrR5yOr/ms5b8cc153R+WgZYCYRkHPppyyZU04MsXIotdjiPLcOD+h+JR/+ZDBbWSVyqVzFWsWekqDWhF9eLiIrrOSm8b4nQcEcJGi8tw4We6LKstOr3cCb+2toZGo+G8Is2i4XlAiGIuB+d1Op3YPd8+o5T1Hu4D62eWPLHKYH0sST5kMhksLy/j5s2bKBaLUfutORCCi2kNFwuS6F9oSnSJmzdvRndwi/7BZQHx8zIsfVLzJs5npdN9ymQy6HQ6zltPLJ1Y2spRCsvLyxgMBlhfX0ev14siFlz4CNVtrLRJ4xxSj4uuk4B5hzjsTk9PUS6XUS6XnVvbxAFycnKCRqOBi4uL1HWHtDdtn5KcRtPAe21AzwI+o8RKF1peEvT7fezu7qLVauH27dv42c9+Zq7ysSEtZetwWyvsUTMBHZ4kv1mo8jPdBhYsIpBln+azZ89wcXEREyxJBo4GF/5DxifJsAxhRloB89UjOMjn83j06BE++OCDiTFwMXUGxq+uk8OHdFu5LWwgZDIZU8nTShGHOlrhwcPhEK1WC8fHx/jqq68mrgHSuHDBu2BUun7f80wmE4W+SZgjMIkD68ArSceKjrxzhSBxqBnTE5ep69NjPx6Psb+/j9/97nfo9/teBYLzzAtCnDTSB7myrVqtYjweO8PpNG8JaQPjTfMhAf2MlS65g97ihWn7HdJebpMGoSGZn6urq7G0rDAyTeq9+kw37Mzhj+S19te7QPBo0aKrr9b4huCHy/bl4zGTb97LzGUz77VWobge3jLA/E8Od5P6er1eFLWVzWaxvLwcu/puFgVXQxoFkPvV6XQiA1qPL/Mo13U7mle6VtbZuSCgDR9t8FUqFTx69Cja0hVCLzwuoXIiBHfsEJFyJXLuzZs3uHbtWnQuge6Tay+utJf1IosGtDwAJhdJNH+0ZHixWMTi4iK2t7dxfHwc3c2rcRGiJ1nPffTse+7Kx3xCDK/Dw0McHBwAQMQDLdplhzWf0aPrEZrlaDq+M5uvHuN2DofDaPWYb43QbQYQrbDqA+EymasFlPX1dfz0pz/FX/zFX6DRaMRuxAnlAxaufWXobU9W3pDxDNF1Nci8OTo6QqlUwurqKtbW1mL8GrjCW6vVwvPnz3F8fBzb/umaJ9OA1QfNa5Jw4UrD8iEJvhMGtDUYaQT9LHWGtMVK02q1cHh4iG+++QY3b95EPp+PrpxihVTnsxi6/NfhlNlsNrpz1NdGFlwuw0KYy3A4xOeff46zszNcXl5OhJVb+PER8rwMK64rTZlJBi/jVpTbTz/9FLdu3UK1Wo3q5LTcFnnu8niyksP7hCQvO0oymUwsPdOC0I1laMhvUca14OCQ5a+//hrPnz+fuLLKEkgucBkTs4KFZ03DIkx/9KMfRddWMbgYLyvrehx1KL2k4/pdhgE/53r0uHS7XZycnGB3d9c8YNDCwzwhRKBmMlfXUVy7di3mNOD8omDIM91/LlMbuUK/rnt9LTwKyHjInivtkHTJg1lwmaTMsDLO9wpzPmlnv9+f2G+qy2GlXN5ppyrjW/fTpcAk8ctQGrTmQqiCDsQVaC3nhKZ0mLYOB2Wa07hiJZj7zmMiirikW1lZiQxoX9+nAR8OfSA3JDQaDayvr0+MrTVPtDHIfE5wynNF3ul9v665Ke9LpRJ2dnYi/mCt6vtAG5caQvQ6n0wfja7uPn/69ClKpRJKpdJEmXw9kq5HXzcnbWK86XZZ0TAi+5nWNS+VuV0qlfDxxx/js88+M29mSMJrGjpzGSFJdMlzThuk/X4fT58+RafTwaeffjoxPlq2Cm5czj/RY5i+hS7F+cyOSJf8YAOddSXg7bk/rKNpPlksFvH48WO8efMGL168SFw0mdUOCeHRuo0+ue7j6xYvl7B8ud4KQLR9MZPJYGFhAa9fv8bp6Wlsz7Nvblh1hrxLkr3Wf5c+ostNw9/f62uspiVIS6mS8nyMJa2S4Usj+wrk3mRhjNog1YKPy9HPWVmz7nx29SdJQRXlo9Pp4PDwEKenp7FTgl34DAWtJGrlxwXT1Jk0ma3n8qxYLGJ1dRU7OztYXl6eMFhdE9PCEa/8sBBwGQa6HAsHfHWWfCw8WaFo4/E4YnxnZ2cTBsi7hFnL18ZKPp/H+vp6pBzp+eSq1xpLK611eB8LWknP80tHA8gz8XCfnZ2hXq9H10XoMmaBtHzS4jnyv1Qq4dq1axN31ycps9Z/PTZ6nmj+xPlHo1HkwOPnl5eXaDabvxe6DQVxWolRod/5eBEQx4vLYSng4g/WRyt8VrnT4nAec5p/+2g4VFbo31qhkrqYV1Qqldj1d78v8Okm4/HVdjC5EkY7BPi35o3W/LPq8RmhPrnAp82H8p2k8XXlSQPcZuG3l5eXpqPYp9No/Fj5rP+6HYDtrLXyZbNXd2wvLi5iYWEhyJnj4uFWOh/O0oAlt4TP1Ot1nJ+fRwdSJZWTpItbIAbeYDAwdSldRpLuyvxW5wMQHSq2traWeIisD3x0lgShaSxnUNr2CT46nU7sgDh5d3x8HOkxEiHjo3/5Pw3MS7bPWs57vwLtUnTTMG/Ol5SXJ/c0yobkH4/HaLfbeP78OfL5PK5du4bt7e1YKIq0hZV0S6nUwGXoPZ1ctnjgdH85dJBXtRuNBp48eYJmsxkp/iH9ntXzZpXlExzyrcfU104f8xPlY2lpCbdu3cL169fN1SLADiFkZVWPp6SXcZB9bfJM8kvbXV5bSadD7qx26BNpJd+zZ89wcnISM+JmgSScT1Ne0jNZ6atWqygUCuZWCGDSY54ksHiuZDKZWAgYO0M4DM9S1PVYCu5fvXqFs7OzSPBbwsfq+7zGyfVMK+CVSgX3799HoVBwhpRpHsVlWDyMw78t5cqa83Jf9vb2dmw14uLiIjKgdRkhvHMaSOJv4tRhniH0oM+6kL4wbi1Dj/mypl3dT0uxdTnIfHxVt4HBZSxoGuUyrLKEBiSEUiviWr4LL9OyTId/WkqwZSxyWWIMvqs90Ek6hAvfojvU63XcvXs3em7NR8aJlv1We4C4bGF8ayegxTMzmUxE677V57R6V5o0STrgaDRCs9lEu92eOCFa3nN9Wg67dE75rfvM77UcYTyMx2/v2dVXj1arVaytraFer5t3gHN/ZzHG5s0bgbdn5pydneHZs2f40Y9+FOFUb/0J1d+1bOG6+AAynU73z6JP5h2sz1lzq1KpYGNjA5eXl7i4uIiFjzO46g/F+bTjMo3BLPW50stWv16vh8XFxUiGffHFFxPXe3Hdrr66eJyLbl1yJuS/S1b65rQP3nsDmiFE+PjyTFNPCLgIRxjmN998E222//DDD9Hr9WJXCjHxMXOXE7zZCAIQCwPX7bWMSt5LInWK8BsMBhiNRvjss8+iC9Vde0ySIC1zTPvO996nqLjaw0Lu4cOHuHXrFu7duzehTDKztZQPXZ5+z4a0rEoKaKWby3K9Y9Bh/VrADwaD6GTS3/3ud9EJxqGKNb+blgmFgq5HM8VcLocbN27gj/7oj5DP572hh1b7dPs5dEsfCifzbTQaod1uR1cmlctlLCwsxJwgluHD8/vy8hK/+c1vYqdV+gxT138XpE3H/IrbvrCwgNXV1ehgNtd1SvzRjh7tSJK82sgW0Iak5JVDuYC3kRtnZ2eRUhxKu/MCH28rl8uoVCpRyKbwW96qI7+1waONEDautVNC4/HZs2eoVCrY3t6Ori0UwzDEQSPgUkZC+XloWeKUFaNGgK9c1H1mw45lJRspzPOYd8tvjqRip9ZoNEKxWIycRaHKVygk4d+qS/p5cnKCfD6PTz75JNZnK2zSVQY7yrkM37Ysy3BhvAme19bW0O12Ua/XUxtHacFXroXj0ehqb+6XX36JZrOJn/zkJxEe9NV4+Xw+hlPLoPbVyXNW5jnTHTAZhaJpcjy+uk7shz/8ITY3N/Gv//W/ntAFXX3V7zSuLJ3ZSuPSl1zlcTmiR56fn6PT6WBtbQ2bm5tYWVmZiJRzle/rh/DVfD4fnWfA/eF2W+VZ0WEClvOEx0/2Q1erVQwGAxweHqLRaDjD9jX4+GkIf9Z9dKWZJ0jfR6MRvvrqq4hXy0nd09aXRh5pnCbp8xZdzgPeawM6CREupKb1+kzD8NMocIPBAPV6HZnMVcjY8vJyFDYmxqyUoQ0iURq0cJQ8LAA4n56kGldiyA0GA+zt7UVXGqUxnkMYOtf5+4Kk8WdlLZ/PY3FxEbdu3cLm5qZ35dlVj6V4WIyP8ZrERIV5W3m5DF0WK86iLJ2fn+PNmzcTpz+HKCbWO4vBaZy7jLS0wAZDtVrFysoKNjY2TBxLOl71dwkgjXfr2hOdjh0PrNyLYaQjQICrkOODg4MJx5SvLfMGV/na8F9dXY3ueZV8Se3lPvNKMeNf8mjHiKtNkpavhBqNRjg9PY0damgpfvPCZcgclT4uLCygXC5HeOO+6/mhV065PknHyrZ2QjCsrKxEONI8wGUkWfNU91HXFcrnQ+a5nj/6v8YFK+A8n11Gji7XSqPbyeXp565+zkJnVrl6Nb3b7Ua3X+iT3bkMxh+XwePPjgdLZjGwEcH1cP3ZbBabm5vRKrnVJgvmzec0v9V8qdlsolarod/vxyJqOI9VhsXHXWHJGpd63ktePb7WKrYcKHb9+nUcHBzEHIWWTHIZZj7QY5A0JqHG23h8ZXRdXl7i5cuXkV7F+pQlW6V8n37Fjly+a9qa+zqvhWfWkyxdSB/wKafP7+zsoN1uo9lsJvKAad8lQdrxCylLzwd5Jo4oSRsSmi95XXqh1WaXjun7H8JjmI/x+zQ4e68NaB/4JqO8l+dWeoZ5M3ZrIssqVrFYxL1791AsFs1DwUKUfVbEmGFbzMRFrGI8t1otvH79emLPs1X/vL078y5PIKRMmVwLCwvY2trCtWvXsLi4GCtDFCtmwi6B4qI/bg8rd5ImqUwGNo7FaSLhdPKcFU7g6tCNk5MTfPvtt9H4ujzbLkEcyrxmhSTDanV1NfIGW+9dH8a7i0foMZLfAGKGkR5XlzImeS8vL/H69evYniHX3Px9guV4WF9fx+rq6oSDxDf+TE/acHEBK/su/pTJZGJhvsPhMHH7wbzw6eq7S9CXSqXo2g+eQ7yyqhU4piVfu11zcTweY21tLXpmhTOnVRYYkniCK0+Iwq1XUS2DRYD3Ouo57HJ2WXToKl9wZ22Z4XJdZYfgxSovCQaDQeTw1HSly7HwqPkM05zVHwuYRvW5EJubm6jVanjz5k0QHVs4CMWdTydylSORP+12G5eXlzFHk+bZ3DeNZ8aX9Uy3Qzt95Lk2ovVYSfpSqYSbN2/i7OwMvV4vtY7k4xcuHFr50tQh7Rd87O3tRavQi4uLibRrtY/7zVF7+lo31zwXQ9hKp9urQ/rlHbdB7oc+ODhAsViMnUA/Df37YB56cZo2+WjDsgnS0Epo/T7+7IOkfs7Cp4HvmAGdJEBD8s+rDWlhPL46ifXVq1fI5XIYDAa4desW+v0+gMnrI/T+ZDbmRKDqexh1fczItUI6Go2wu7uLvb09nJycRCEbafCQ9P5dGghJE8c3IbXx/POf/zx2aBIrU3rPsWVgCW6T2qWVEOBtWLjgi69X4JUDBi57NLo6BZP367Jxsr+/j729PRwdHcUEg1VWCP586VzCO4QWrLzykT2mcvK2dVIq94XzynPpNwtiaZdWdvRew0KhgKWlpYmwXB5Da+4Mh0PUarVo75AOq5234HWBbyzZgHj48CHu3r07gT+9JYDDIAHEHHlcn7Vfnw1iF31wHhmv4XCI169fo9lsmnnmCSE0Dbwdt6WlJaytrU3Qjb56RYCVQN/8ZjyxkSc45NUYLkvoUa++WP30KbdW/31lSF4rD9OEHOzkGkNtnLDhx5FZ/F7vNbf6xHxacCurSwsLC7i8vJxKp5iFDpkH8HyTw5La7XbEc7QBwKD1B6YV5vvaIOYy5aR4TRcSOs5tvXHjBs7Pz2Mh4aE4STJ+fZCkEOu502638fLlSzx+/Di2GsqLFeykkb3dVrmCC5EjrEvJnLaiAdkQ5Dzs+JZyK5UKfvCDH+D58+dR1JKPP/pwYcG0OjC3QRuX2tiVVejhcIif/vSnUZ95CwLTofAsBq6L+ZysiAro/bh8mr/kt06h5y1WTBfa6GYZVSwWcffuXZRKJfz2t7/16lEuvcSV3uq7Vd48ZF5IWYwvzhMCSfImhH5n5cM+/T9Nud8pA9qauNbE9uX3QQhhpSVgnX44HOLw8DC6qJ1PbtXeUN0uVhSY8bKA1O/YeBAYjUZ4+fIljo6OUKvVEk80/EODb3JMM9EETw8ePMCtW7dQLBZj7wB7NYOVEEvIak+mgBYGWuHU+3dZUEu52qixjD8gfjfmcDjE06dPcXR0NBF+/PuEkPp841soFLC9vR1dOWMBK9YiEDVe2eCTb5lz2lnBvIXnHNODRXs81rVaDefn59H+6XeJd5+gcwl3pqmFhQUsLS1N7DED4jSlT+fW5Ug+oU0dJcNlu4wn6/dwOESj0XAesBMKIQpBCC6lX9lsFouLi6hWqxNX0HG/8/l8pOzxHc6W8awPbxQFU/Mfpk8GzRt8hqr+DlGUtMzV7yzQfIqdvzqKiumJw9Elvcvo5PrZyaMVYU0/uVxu4vTjkD5Na4z4QBu05+fn0fVowCTvstrh2vPJxoSUwXjIZrOxfbuyl94yPsTxUC6Xzb2RszoWZgHmP51OB69fv8ZHH30US6MNN8aJpkf+CD50mC8bZNIGAcafjJ++4UNwKs7inZ0djMfjyPH9LvDpM9SS0rrmveCo0Wjg4OAAtVoNlUoldjaEpOc+WWdhWG3SRpjWp3gcmW8wP9RzR+SUz7CT8atWq9jc3MTGxka0PWCacUk7nrOMvZZnFn6TxtcHaYz7eTkCrDa7DHGuT9NdErzX11gBtodeIESR8uWftf5pYDy+Cuc+Pz+PTuXVzEen17+1AuUy8CzFtt/vo91u4+TkBPV6PVoZs+qzcKDxYQkZq5x5Mn+rPt1eC7gPCwsL2NzcxObm5gTztJR9WemVKxS0UZtUpwsvuj9a4bPyaQMbiJ8wC1wdQHd2dobj4+PYqcW+cbD64RrbeYynVZ8WlpnMlef3xo0bKJfLE3uquE+CP9fH1f7QcXTRCZfPZZ+enuL8/Ny5NSItrqZ5F1JuLpfD0tISSqVSFOroMlz0+LgOX2JaZtBjYL3Xz2VFTp/R8C5BOwN8fHFhYQELCwsTdKDT8kFiDBpf0l85dIufJ7VFfoduF5iGT0+Lf2t+8qn0sq3IUvhcc0yX73vngnw+77zKSrdFwOI90+DF1145iV6UdB99aXnFaUJoWfeRDUEL77L3f3Fx0ck3XbIkidf6IE0+kdmi5/BqpQsXlkzV8liPg5Yxmm/qOjXoOSp7zFdWViYiC6y8IXTHhkNInll4rKwUNxoNHB0dTeyj1fTENGH1yzdGLtlt0R6/sxaqXHVwW2Sf+vb2dsyx5YJZaD0Jkvqc9FwgRAZb9YWUHVJuEj8LKTPp2bTwnVmBtrxQ1nuXwHM9m1Vh8HkzXN6W4XCIZrOJzz//HP/xf/wfR/uheeWBvaAszLRCy55QfUiGMAphWHJS4ps3b3BwcBDty9Rlv2tIy0xCBUTSO8FZLpfDxsYGlpaWUC6XTaVecCn4EQVe8CuHZIgnWYSz5LGuzZCyk0KQJb8Y6fzOcmTwmEueRqOBzz77DM1mMzbOVn3zgKR5kDSH9H95Jnj+9NNPY3ufXfObvctWmKN4rGWctAB28QithHL5TDOsqHz99dd4/fp1LMLjXc0xn/B08SF5XywWcefOHRQKhShEezgcxg5H4/SyZcBSQiyjWdqgVx+AycOTdH2y3eXi4iJGx7rsNIrkPNIAb8e/WCyiWCzG+DDzYmkf48uKjnA5TzlElJ9JHTpUXnBtrYbxf9e8S0OjOj3PFV2XtF8OR5J02ikJILp6iJ0B0m8Bff0U82u9aqfpQ+TAcDhEsVg0z1WYZq5Kv7ScduFDgzwfjUbo9Xo4ODjArVu3oj32eisA5xOwIs+YHnz7vRl4PKTtTOOLi4vY2dnB8fFxrA0+I3Ea8Ol0STAcDtHpdKJTzVdXVyfaw7yIn2tc89jo2xT4vcx1vcgBvOWPloOCt2vcuXMHvV4vCoWWtGnnZxrwjZ+VltNpHVTC5z/77DOUy2WUy2UA8cgQKcfa2iY8QYCd15ZxzLTNOOU2WjfXaJ7rAkmfzWZRLpfxve99D41GA/1+H51OZyJdCLiM/CR57XMouOoIpRvNu0La7WpbiG0EuBeJXM/08xCY1oHxnTGg3xVoIashaaB8733vRqMRarUa/uqv/grr6+u4ffs2tre3J0JdgHholRjCYgyw0WAZSVzO7u4ujo+PcXh4OHERelLffR69UEgz8dNAmnKKxSKWl5fxH/1H/1F0wAUruiIcgbdMW1ZGOp0Ozs/PkclcHRw0Go1QqVQmVkW18NT7Q1lga+NEwGqD/OZratjxInB6eoq9vT3s7+9H+w1ZyMwKaR1R0wp8Objjxo0bUWixhLqFtI0NQcGhjI82mFnYsrDWc0DwL23hcR2N3u5rq9frqNVqaDabM+NdO86s90n5LZD+iELAOBZ6kT5p5RC4UnIKhYJpvHJIolYYec8+MHnXsRbijUYjUiSlLpdh9K5AG6jAFZ0UCgUUi8XoWjU2XjlMUzsQ5Fv3m/NrfsB7JjVOtWLIjlVLsdG/Qxw8IQq2yygXsPIOBoMoNF9OSxbakfmr55DeR871iQKvI6t47rKSXSqVsLKyMjFWaeSK1OubnyEOCh6H4XCIs7Oz6JwUjQPNCzn82pK17Exn+cEykI0Z3+paJpPBysoK7t+/jydPniRuA+NtMr8PYDz2+3188803GI1GWF1djc0d2fPsmgfyTuNO3umx5TkKTEbyuFY+Gd+yF31jYwMfffQRvvjii4gGNPjw6ZsfPph2jLTeOR5fRVu+evUKg8EAt2/fBvDWkc38z5IB7ECTd8znRBdm0NtoeF76+q4jDaSdLtmdy+Xw/e9/H2tra/j8888neI31Wz+bdS6EyD2dJqluxsE07dT2lE/2WHnTvPt98JL32oBOQqgmVC2s09bj84Ak/bfa5ANhxBJeK4xheXk58oYzM7GEoigXwNvJLisTWvlqNptR2PasezJdnrE/BLiUM8adfOdyOaytrWFnZweLi4vR/nNWOllA8sqOPsG60+mg1+uhWCya14z4jCahVV8a7RSRMkWp1Aq0wHA4xNHREQ4PD6OVnlmMjHc5rprBskCV8VpfX8eNGzcmViqtcbcYPhvLIeFw/K3T6npdbeh2u9jd3cXFxUXq8G2ND0sIzQoax4VCIXYlEvdNG2b6nbVKxb9dyoSec3rsgbdKTafTwenpqVMZeNdgjbl8i6FnOXXYMNHPXOW7+uQaB8ERnxQvdVgnWM8CWsZafWF6teaY5RywHAmS1gdcjm5TkkKrV7IrlUqQgSt1WXh18QZfO/TYayOk2+1GzgBtsHE50metJ/BKPK/OCz3pcGPXWFg4KRaLWFpaiuZA0njNQ5a4xseFT+l3vV5Hq9WauB5S53f9F2BDyyd35HlaPYuNxWq1ip2dHXz55ZcTMihNmZpnzGMcQnnYYDDAyckJisUibt26FUsTIoNd45JGplplWkaeLk87m7i80WiEarWK1dVVbG5u4vT0NCbLZuG1aY3edwG++WCNdRpbzVePlTfN85D2pRmb99qABvweEUuIJBlUvnp0WmuSuyabLsMqi/MLjEYjtFotXFxcoNPpRKf86fAsWeGw9kzzyqR1dH+n08Hx8TGOjo5weXk54S1OO1k0Lnz994GuJ6n8tMAGUzabRalUwo0bN/Dhhx/GTttkxUJWmy1hCFwpDXJieb/fj5QbWRXmdluKpkU/LNTY+aHDkdmo1mXzWL9+/Rr7+/sT+0WTlA9J867B1Q42dDOZq72lN27cwM2bN2PpfKGFwOS46/JdgpuVa61EMo4tQ5zzdjodPH36NDpch+vgb86v0/jSuZQPhpD3mUwmOghI7jHOZOLRDhb/Y+BQb8YT065eyeJVaR43XrFlxaXdbuP4+NhpFP2hQPhyPp+PrbbL+LhokvHC6TKZzMSKCqez5Nx4PI5Wp5mf6RBIDSE0pNPrvoeUJfms/gsIb5a+CA3qfLpcNgT5uU8OWzRUKBSiEFNuUwi9zUqHPkNCDOhut4vBYBCLdBJgp6rLgGPZxM91dAivCloOewaJvqhUKigUCuh2u15dIa3Bl0RPSel5DmYymej+3m63i2q1OuGokDz6UCorqo//C80yvvhbogWTdFWLX4qTP5/PR/vg0+hJlvPDhSurj2nA1SYxoAuFQhQxIXzf2oLBoHmANbcZt9phqMvWCw46AtOiWflonUvqXlxcxN27d9FqtXB5eRnruwtctJoErnQhep1Vt4/3JJXDz122jStvEi+YRe/xlTlN3vfagPYNsI/Bzmp4+eqah8DUIAxlf38fFxcXODk5wT/6R/8ousaAFQURbpyXyxWGLr+fPXuGo6MjnJ6eTux5Dm1vmgk6LfgEY+iYasNVnskpq//pf/qfYmVlBQsLCyYjBt4aT3KAjwjAfD6PcrmMYrEYGc2lUgkLCwsoFApevFr7blhRYdDKJRsS0h9W1JnBt1ot/Nt/+29jJz+HhA/Pc76EgB5PSzlZWFjAz3/+c1y7dg1APNpC/ruAr8qQDxsa2uC2nBo8ZnpsfVeV9Pt9XFxc4MWLF1H4PL9/V3zJB5q2+XPr1i08fPgwei+0ruvSURbaUB6NrkK9+dopxrvMQ37G5QNvozzYcB8MBmg2m9FJ8hwS+ftw9nD7NH/JZDLROQr6Gjud1zKmGZ8WPbNSrWmWywEQOf3EaJD7b7kNuk2zgFWmy+HCiieHa8tzphvmpXyysR5vdiwmgXUehbQtl8uhUqlgdXXVa6z/IWA8vtov3mw20Wq1ov273CY2EoG4o5WBr+8SWnLhTuYnp2VgfOZyOdy/fx+vX7/GyclJrG3T9lm+k4xol8LO9CZput0uDg4O8O/+3b/Dn/zJn8RuP5G0Qp+6rEwmE4VQWzIrm81G7xnPwJXDXZdttdmS8eKkuHnzJg4PD9FoNJyG3r8vYOlsvV4Pp6en+Lu/+zv85Cc/QalUitGt1gXYicuyS5xBUo/FAwQ/bFT7olGkTM1b2EiW8WC9UNpZLpexs7ODTCaDN2/eYHd3N+qHb1xCxsxygPjS6r6FwKxyNC3tpe2Lz/4K4Q+ztBV4zw3oJEjysMyrXNeATAO+iSWKz3g8xq9//WvcuXMH5XI5MuI4nW/VWb6bzSZqtRoajUbsnmefMTyLh4d/z0u5tQwPHw5ZuQWuGODy8jJu376NpaWlmHGglRDgrRdewjJlZUcMC1Yq5PA39hxbeNRCLwk3um9aIdCKdSaTQb1ex9HRUezQsDT1JnkiQ8czlI5cfcxkMlFo4Pb2dnQFhuDcEio6vFvTojZ4taJv0ZLrdHxWpuT6M2mDrD7zfLMUHh8eQiHN/HKtosiWhu3t7YloDGvlnlesNF45r6t9rjHz4Ukic2YNR3bR8jR8T/CRy+WigwR1OS6DEpjEsQ6p1e3Ucx2I33cqY6FXoK3V7HdBb5rnWvXxt6YbbrvlVNRlSTqXnGElmnm7LkfKEEOFHUuWg81qhw+0Yy5J4bOej0ZX27za7TbW1tYm+mflTXIwWXqAGAeAP1pAtzmXy+HmzZuo1WrRrSLvwqCbVckfjUbR4oQ4Ul1z06JnyzBnpyA7tZPay3Th02+k3Pv376Pb7aLVajlloA/S8EuXU4LfJ4GmTXFgHB4e4uTkBKurq6hWqzGcaiNaRzVx2Uy/Lpxb+qjVjyRc8nOX00nk6MXFBS4uLlCr1bzzMwR87bJwEtof1ztNh6HzLe28DMWJlU7Pv3nW54LvjAGdFgk+A2YeEOLd4DSasF0E0Ov1MBgM8M0332B5eTlmtOmydBnskZM7JFut1sRVVWkhZBL/PiDNpJHPwsICVldXcfv27cjg9bVbhCKfeitl6bHQnkvdRj3h9Ri6cGil88FodLXH6/DwMGZs+AThv48ggrNUKmFtbQ3Ly8sxjzOPB+dh0AJV0z07SiS9FQoq7/SeczkV2mpDJpPBxcUFGo1GkPE8LaQVWprnMD0vLy/HVraAyRB5faYCl6nzJbXRZVhqBUrSttttk39p/L8r2vYpXhLCx7zCt1dfg0sZm1bB4PJkewm3JY1ylBanvjJZORMD2jePrf3eVpkuxdklL3V7BPjE72kUQldbZ6VJ6Uer1UK73Y490zxL41M7CXQ7rW/tPLDC47VTJ5vNYmNjI7rSRztH5klHoWmseTceX62ENhoNXF5eRvdYu8bNoimW2fyfjWef40X3wWe08bhdu3YNBwcHODw8jELlrTENgVkcEdOA4EWuEzs+Po5C/315BKSverVZ8xRrvH0yxvXM4h+6Xda7crmMlZWVSP5LW13jnORgSfM89H1S+iQ68um6nD/puc84Tnqmn08j+9Pk+c4Y0ALTMM9pyvYJYHlmTahQw8hVtzCLVquFv/u7v8PW1hZ+9KMfxbxyksa1B0y8YE+ePIn2T6Xpu9UmX59DyrLKC3nnaleScBKl//bt27h58yY2NjYmcMUCkAWfeKf5A2BitV97JLUCZvWFVwPlv2Uc+IxEvbe51Wphd3cXz58/n7heI4RZTMPkXfnSCgbdz1wuh52dHXz66acTe2LlW4cia688489aceZyBPg3hyhKyBb/lztjrX2Hr169wpMnT2JjkIQPlyGQBGkEkcaBGH+VSiVa5df95PxWKHE+n5/gLVZfeLVU8ulxcoXFHx8f4/z8fCoHoKYJXxqL/1h4YxDjQehBK9ZWequ/wNs+875An9Og3+/HDm/Sxk2n04ndv+rqo1W2C9LIVRf/Gg6HsT29VqSD1cYkQ1CAlV+LN7Ps0GH1steU69N1TKNbpOGJFp86PT3F0tJSzEgTo4S3RejbIKTdvKVFgzYWZEys+cb1c1mVSiU6t8XSNaZRcq26fQaRi270vOh2u3j+/Dlu376Nra2t2MabswAAVylJREFUCTr18QPtbND5rEgHaaNl6DEtahxxXdVqFZubmzg/P8fu7q53+1JaGWLlcRlC04KUORwO8fXXX2M8Hk/oY4wDPQf13fDawaPns/yW9yJ/2KDlSAndDtd2Gt4mY43VxsYGKpUKTk5OomsX+b0PQoxF7iv/9+kBvvlh0aOvHlfZPvDp6KFlzAoWTw2F74wBnWZSTyvwXIi1nvsUuhAjM6mO8fgq7OX4+Bi//OUv8fjxYywuLqJYLE4oE5y/3W5jf38fe3t76PV6E8wgtI8uYZsGrMnrGg9fu9JMAGEocufj7du3sb6+PlEWl6kNTg6ZZyNBG7+6jRZjk9+Wcs3lacbGZWrFkmlvMBjgH/7hH6KryZIOiPPhz2d0z5MerPLk/9raGtbW1iKFkUE7G0JW6xhvfJhOkkHGyiKD3ofNq4+tVgvn5+fOFWifcme997XNym+VYQkq2Z5w8+ZNVKtVcw+Z5LWMDasfuj7BCxuM1lkA8s3PmN4PDg6ikLgQp4SrXUn07Jsneg5K/lwuF0VJjEajibknaayrCS1gYxjw06hW2PXclRDuWXm29S4ULNqWcyV4fulDgqx5Z42fTms5PHQdrETrOVEsFiecDhYOtByZRQnU9KJliYQey+GfLqdOJhO/pk/TbhItyTfv+dQORum7lM/5lpeXsbm5id3d3YkzOqbBRcj7JDnHbWd8vXjxAisrK9jY2Jg4W0P6Y8ld/uaDFqUOq21ssLloxZonnG40GmFrawsAsLe3ZxpHPp1T6xO6Xh/ukmSWr05LZ7m8vMTJyQlevHiBe/fuxXCtr+6Uvlt0pMu26JsNbS6Hy+OxAeBcbOJzhXQ/uax8Po+PPvoI3377bbSlwcKN9MGiYd/4Wm3wOVp1HitvCK931e+i6TR6p/UuyW5zjYMV9m+lCwX3RX7vEfiIlsESLPzcJXzm3Vaf4pzG8yIe09PTUxwdHaHdbjtDTYfDYXRYw9nZGZrN5sS9qaF4THpnQShOp1U2QtrDynupVMLOzg6Wl5djB3nocXExaGHKohjzym4STpNAG9eh9KmZ9WAwQL/fx+npKS4uLmLKd9rx+0OAdmZkMhlsb29jdXXVeeKsBt9YcNnTtEuDFcosbRgOhzg5OUGz2YyuD9NpLPh9j5HQVzabxdbWVnT6sEvB0MAKi55LSX3Re9e4HBfPlNNN58Wn0oKPpmS7gRgo3I+0xj7XF2JsS1oLb8Ib9IFIv29ac9VnXe2mcRdSjssJl8RLLfrLZDLRFp959HGeIAevWbcq6D5bbXL9t/SSkHlt0Xi1WsXa2tpU/Naqw3JYuSDU2SNtlj3lcsgjf1w8UDtsLD2AHTm+vvmMC1c/JUS4Wq3GDiycRZe1+hhSbhpewjQpfKnZbOLw8DB2UwCPAdftWgCy8O7imZaOZzkB5iFjstksVldXsbKygsXFxaA8rjrnmTep//Oua971pIV51fudWYFOY3iGIG8Wz3FoW7Rn0KozyZs3Gl3tZ/7666+RyWRw48YNdDqd2HtmTF9//XXs9O60fdLtCMWR1b9piTjEw+nKl8m83ff8+PFj86AeXa5PadJeeF5x9LXLMgastvr6YpUpZQ2HQ/T7fbTbbbRaLdNoS1P2NGl0+mnmk179ePToEdbX1yOjxBobHXLF5YxGo4kDYizlUPePV1xkbHSIp66Xwyfl3IJarRa02sNtTwvTjB8bFBKueuvWrZiQt4wazieOAgHXKjuvJgDJhxL5FB82oNPIAA0ux+q08kTwKHs/re0c0lbdP73/XvoWyq99Rg3wVmbM8xAxF4TINAZxSEo6yc/OFVc5giOXgWz91zxEnnE7BBYXF9FqtWL7TF19nhVcZVh9llX7TqczcQWThQeXAcg05jOqrUNJuXyLTldXV9Hr9fDFF18k9tElG7VDlee8fu6qw9K5dJqLiws0m000Gg2sra1NyAXeKsdlcJQJRz8xzvR97Jaz0RoroVO9+iq4lkWB69evY3d313SmaNzwuyTeqY1nxoflSEgCl/NjOByiXq+j3+/j+9//fnSGBPNB3qao+2bJGwEdvcSgebOlr/qcJlb/uAxpdyZz5Yjb2dnBwsICms2ms1wfnvSzpHehuijw9rBbF9+YRvdz1eVqu6990+qnPBYuek+rQ3xnDOgQcCnHVpppgCdUyCCHtCe0TXK37NHREf7ZP/tn6Pf76PV6yOVyuLy8xNHREb799ltcXFzEju6fpr/T4mgeuJVy0ihmWqF68OAB7ty5E93PCtihKi7li8fXUhwsJj0evz1ASOdnxq+Fsu4jt9dSBNg4OTw8xOeffx5dWRXq9AhxclgCdF7zSuM5k7kKdZX7iPlaG8Z1oVCYULY1Q2T8sFAT4LAu3ScO/5G8QDx8SysD8i33b0vkhwsn8zZgdLk+QStQKBSwuLiI1dVVLCwsTNAV06w2MqzQziT+xld/AJi4l1aH2EkeWSVifLqUp2lglvy5XA6FQgHFYjG2Z15wyaf2W44gq08WLXMa6/orTs9l8R5oVsgZfMpEKG6mMZ77/X7UB31ProZMJhMZC7L1QOoVB4GLBzA+5Fufliy0l81msbKygtPT04l+hRoNaSC0PMFZp9NBvV5HuVye4F1CYy6F3yWD5J3lkNS/xYC0oiPG46t9uqurq7EbE3xl+ejGmhO+9vkUeP1f2r+/v49MJoOf/vSnE2VYfeQzIgQX+mwHeaf5Jz/T9XBf5T/zQy67VCrh448/jg6GdYUbh8h3Bj1/NF41HwoBlw4HXOHr8vISv/rVr/C9730POzs7E4awVZ7GFW+h4tsINL7lY+kNOq2LR7qc76yP8POlpaXovBS5tk/3xYI0xmtIGRYtuOrX+mZIvaG8MQ3/tPQ6ri+pbF9daWgY+A6EcFvGSpr3DNZg6PzaGOPnVt2zQOhgSrper4darYYvvvgCR0dH6Ha76HQ6ODw8xPHxcWQ8hxJIGtyFwrRlJk1aX338e2lpCUtLS9HeTq0sWQwxacJZq48+ZZQVCEvp18/lt0/R0Xg6OzvD6ekp6vX63K4O8SnU8wDXnMpkMlHIveXZtzz4rvBfy/iwFD+NY16VstJLXXpFYTwe4/LyEqenp9EJ6NyOfx9A465cLmNzczM2H0IElTYCxaDR4+rquzU3rFBnMYDkOrB3icskHqzxwAYyrxixIaKVaItfzKsdVjqZN3zvrMVf0yoTIeBT3l2KuuaPmj64rTrc1qpfb7mRulnZ04ZjJpOJhcfq9vsMfG7fu4Dx+OpgJSu6xeJdlszQ/Eu/98kofi/91bgTh1GlUnFGeln/mY5DcDgPnWU0uroutFarxerVOGBw7WW1+uaiXVd+oVmuiyMkGPeVSiUKD/Y5HULw5EsTkncaYNzUajXUarVolTYJrPbyyrWmo6RxtfiydSWmq3ytJ2hdU3QaObdI98Xqn27jNGDxVZ981o6S0LGflnZ0WpdRnBYP8yqH4Tu5As2CUDN2/cxCnibUUK9GqKKYVN+0eUajqz3R//AP/4CHDx/i2rVrKBQK2Nvbi8JiLGPC6pfPSzXrRHYJzKSJpdOFerdEgBcKBWxubmJxcTE6zZZXyLhf4r10lSfpZHVCK1y8quRTTKfx0LloT8odDAY4PDzE0dERLi8vncqkq3yrzRYkMUpLKee8Ggc8h7jsXC6HarWK27dvTxyAA7zFtdVHvaI8Hk9eJaTb7AKuV9rHNGIJ28FggFarhYODg9jdz0l1hYAPvxq0sm/NOcF7tVrF9evXJw714nHSwFsh5L+MncwTTet6tZrHk+uy0gyHQ5yenkY4tZR+3VcL0uAwJD8bEHwPuDzTebmP2ojTdSTJMg06HZdh7TPmPLPSpg9cOJdnlkNM04PlbNN05pLH0nfuq7XKnclkYqvY1Wp1IgRXl637Mi88+hwk4/GV81xOo+e+uVYheaWe+8AyzXddmGV4aJ7Izk4pc3l52bs6moQDF71bNOWSCbpMDePxldOz2WyajnAtv4F49Jl8W5ElzL80Dl16gsazdRWYfOfzeaytraHdbkfXJXG9nD5J9iXNU50vrf6m28Q8SpwYZ2dnKJfLqFQqE3qfy7kq33qOypjo9mj9id9bWzzknaYDLkPLLm6zwMLCQnRH+mg0ivTzNPLISm/pVla7Qw1hq5wkCDWemU/PooO6eJRVlwvS6uTAd9SADu38rOn0gEyrjPmIKAm0s0CE6VdffYVvvvkGhUIhtmqWps/TtEe3iQncpRzOAq6JzYpsJnN1Cuj29jZ+9KMfxQ6D4Xzao8v7lnTojwtE8dCHXMmqh7RHxkNfxaSNc8u4l/+WF7rb7eLg4ABPnjxBo9GYENQuhSEUQhmpFk6usnx5M5lMdBXQjRs38PDhw4l7nwX0fjBfvyzBrcec6YNXEXW91lkCHNo9GAxwcHCAX//619GhNPNQqkPwm5RXgPMLvr///e8D8O8b4/I0DoS2eb9gr9ebSKPr1+1y8Yxms4nf/e535gFirCD4cD0LDl3lSZnlchlra2sT5bPCzfTERp3L8LXGIWluaX4iPKPX60Uh3JLOp2S/S8Na+iZKJJ/hIaCjhawxthRdrsNSbH1OIn2A0crKSmy1KIS25gWWriHtle0M+/v76Ha7MZliGXaSX/Zzyz3vXL70WQ7YdPEtlj++QxSz2SwqlQo+/fRT/OIXv4jCVkNwqBX5JOdFkuJslSttyWaz0fy4vLzE/v4+1tfXY1fRcVssOQQgJuc5jbxneaVPBpZv6wrATCYTO1tDlyvnhFSr1SgK0Yefaeg0SR+2+IiVzlem8ILnz5+jVqthdXUVS0tL0VVo4/E42obCxrUuR7Z7accS1yNGMssw5iWypUTKZz7KEVbMX6RsyaMjCESvWFpawuPHj3F4eIhnz56ZzmAXjgQsOgzJ66ILLm8ecjEJfPaPr0/T6LKz2DUWvNch3CHeMQFN3ElluphACKH6FNSk+qYhWBchDQYD9Hq91AeGhbQjCQes7GnBMCsk4Vf/L5fL2Nrawp07d8yVZ2Fwo9EoOvmRlX/grWGslVjtYXYpevxeDGkuWxgqK3RsIHNei9FL2xuNBp4+fRqtPLtW5tIC98OlnE5TnlUuf+dyOdy6dQu3b98ONh70/mh2Nujx0SDXCvF4czu5TP5Ieh3mfXBwgLOzs4noj1lgljI0/TKuBd+yd1fn4X7qsbP6xgaIZYixMmLNaY17DjOVQxH1gUaz0nea/BYuBUelUglLS0sT6bj/OiJBeI+e35zfwpfQnKV8MB8R+pXICOtaLc5nlTVPcNUj42uFHluyxJqPmr8wrTF+GZ9aOdZtFMfrtDJ6VmXUmnNskHU6nRheNA+TPJK+WCyiXC575TPjS7ffd98w0x07NpeXl1EoFIJPM0/S50LyW3IjRM/r9Xp48+ZN5GgKcdC46E/zANneIrJGvxderGWR5NX0ypDNZlGtVmP6zrS0l8QXXfidBbhvEsH11Vdf4eLiIka/uVwucmzougUnFo+zdLg0+jGPH4+35tMu0HRUKpWwvLyMnZ2dIP6i25+WLyc5pN4laFrSc3EW2gnlsWnssyR4rw1ohnlNZJdQd9UZ0q7QtLMoKS4FIsRosMpJaqfOMy1YDG1W0AbY6uoq1tfXo9ObXRDq+QvBDyv8ScIndMx1uRra7TbOz89xdHQUGWxW+13t0MwszVzwlZkGtJJRKpWwvr4erZK40qdpI6/K+4w3S0hZZWsFiBWb4+PjiX3o2picFiwlME1erbBlMhkUCgXk83nTWeQaTxeNW0aLNrj1PHE953ES45NXsabhSS4anYcyUSgUUKlUnGVqw1ZAG8iuOanxmIRDDdo552qjD6aVV76x4TYLblzGs4/u+L2Whb6++FaAxKCx+jFP+cXtCQVZsQtxlku5uVwudoWjVbeL3lx417THIMbCwsJCdBOCi6fMWydIAmuODQYDHB0dTTgmrLwWbfqijUS+WXxWt8nFo1zjzPtrxVnhwuW88BwiKyz91MV7mYYkqq7ZbMaiZiTSj8vTYBlsIaD5gFWOyxHjA2ssZIvaxsZGdOikCy9peU6S7pkmvy/PvPR43U9XeZY8cLXL9dyi2aTyNHwnQrh9E4jTuCANwiyDx+cNYiZh5Q1p8zTKoQaLWc0KPuJ8l+ArX96Jh3BhYQGPHz/G8vIy8vl8bOWZ9zn7BJKkZWGXybxd1RSGJ55MHZ4loMO1uV4rlJDL5TYA8ZVsCTF/9eoVXr16FVvZmocxIO2ZpSxffms8Zc/6jRs3sLS0FI2dvJOTmiUvn3iqw451tIG0RcZQ0upDsywhxsqnbv94PI5duTEcDvHtt9/i9PTUuQo7Dd5mmV/SL0vZyWSuDtkrl8sTuNP7xnmeyTONs/F4HIW/aQVVt4nzW8qnVmZkS4SFm3nRvJTnAh9PlVUF4G0opsxT5jXSF12fi/6YXvUc5xOrtZIqdCl4Ex5hyc554zAEeNz5YDi9+mmtenK4rOajwot5vlr79fWqtOCMo1l4xYl5iICFs7RKWRLuXUaKGHyXl5colUomf3K1ZTyOh18zXnQElM7H72Rl1HKWCUjY6tLSEnq93tT8LWR/s+5LGiNE8Hl6eorLy8uYQ5r5IbffchhI3VLmaDSKtnf5nBJaP+A+cNSBVV4mc3UQ5M2bN/H555+j1+tN4DrtHPfhyfc+DVj0Kfyx2WzizZs3GAwGuHXrVvSO5TiAmPzV+GWeKc85rZaLugytV2j9weUw0fqGnjeZTCZaKFhfX0e9Xke73XY6BHzl+9JZjgQXPfD/JNtBv0vieT7aC7FTrHH11edr66zwnTCgXYZC6LO0daUtM8RwSFOui2hCCc+XNk1fktr3rpQwVz9Yuclmr64d+fDDD7G8vBxdx8O04lJGRFli0GMlaTQzdBlkrkPJNGPWQo77q9sr9Q8GA5ycnODw8BDn5+fo9/sRo047Dr4xfdfACkc2m0W5XMb3v/99VKtVAIgpwqwsA2+NFBdzZSHH6fTBbxq000TwyfuYNIzHV+F/Z2dnuLi4mLiDO+14hCopaZQZLTilb3fv3sX29naUjunIMrxddVrjoB0UGnToMtcjRk42m0Wv14vRuKWoh+LmXdC1KER8hzYwafxZoZdchrSPFT3mI4wXbQRpRVsfvqdXWH6fRrM1FsyrXOc26DkNxK+ZYoNXG1jWHkQB7ZzRz7VckH2YGlw4nJb/ppHngpuzszMUi0WUSqWYg0lwZCm7YoBZh/rp9GzMud5x2Tyu8vv69euRcWop8CH48qUJMZBd5Wia7Pf7ODg4QC6Xw82bN02DS2QwYG/10vTmkwXa+a4dO5yPdQA2IKUfmUwG9+/fx+7uLvb29qaWQZx+XgaIVY6mfe0cev36NQDgxo0bzvYwzYsDSMaM9YdMJn4tI+sFljHKETu8sMH4d53ErvvGvI3HO5fL4f79+3j16lXk9NB5Q2DefDzEePbZOGnndlI6S09OKnfehrPAex3C7TKcpwGtJM8K8yTiWdqVxrngq3+aeudZXigInpaWlrC6uhqFxbACr5mzAAs/V5u1YTAtzJJf8oqy2e128ebNGzQajchYm5X+QmguTT2h6aTOcrmMpaUlLC4uTpzmanl62ShwGVXTMHEdGivPfR/g6jA3OdQnKZRvnvMhjfGs25DNZrG+vh4Zftp447wcacF9t1badZ2atrh+YNJpwQqRhPRJWGUSXmfhm9OCGCUcHmu11dVGbTDyxxfyqfNzP/Q88NEkty2pn/Pm5ZYBrd9r41qv8DFd+lZNXfXzN9OohIzyAZHW2M4DJ9PSbKPRiM0NCwcu0A4DF2+TtGJg8k0PPoNU/gtfn3Y/uauOECU6tD6Wr+fn59GVVjqNFfKv5zXjTxsTITLUem/xUCuP8HMJdXaBxY/5XUg+rlvP0ZCydLmahi8vL9FqtdBqtYKu5pTxk488k28dreKS8ZzGqsP3Tpely9ROTIlcWltbCz4nII1uZT0LHfckeRvSPlddFq24wKefc9muuZFUdpr034kVaIY0ExSIE3koI06q12LwXL6kYaKZpt1pB1sTsm6TVRe30cXI0+CLidpqT1I7uAyrTFF0tre3cf36dSwtLUWGsQhsPtyIgb2JlsIPxJmehf9pDU5NC1KPXjliA0YUmHa7jW+++Sa659sqNwksegodH3kfCknzTJSs69evo1AoxPrNB7BZCp2l+Mp7XYduM3v8LSUgk8lEIaZ6JVyP7eXlJZ4/f55oQIeMj0Vj0ygnGu8saMQ4YAPaVwZvJ5B5I+XqA28s5Vq3lb36rDwBb3EsKwrtdjt2oIwFmp+7cONSPEPAGhf5yEqlDvsL5flacRN+wIcOyXMLry4FVvfRpyBOIwdDwFJ2uE42SthATiqPV4Utw9mSZS7cWPxOtpXIvtK0xvm8wcJdrVbD5uamaZxZ9CZp2JgIkXUyp1utFi4vL6OoFRkv5o+67pWVFTQaDWdESlqdYp5g9f/09BTlcnmiLz7HRBq60nVr2tJzgKOvfLoIAKytreH8/BwLCwsYDAZBvMDXnySd0dWvkDqsPJx+MBjg4uICZ2dnuHbt2oQBrPOLAS0HJpZKpejdaDSKDljj7SzSV4tugcl7oJOcU5bupt/pNq+trWFhYcGM0PDx6SRZliRvXO9Dx9yay742SLlJdBfCw3ztDTHOp6FR4D03oNNO5HcJLmKwCMaVN01dSfksB4Gv3b56uMwkJuBqyzSMN00dUk8+n8fW1hbu3buH9fX12L4h2S+kFX6pgw0AzRg5fGc8HpsHPXBf2QD2CVxWdKzydFgre1J7vR4ODg7w+vVrXF5eTnhlpxFWobTAfZ3HPGTjo1Ao4ObNm/jggw8iIwR4Oy5awWZhKaBPyJQ+SHu5TAF9yJAOudfXwQm9MQwGA3Q6HTQaDZyennodGmnHR/cnDSSNkRjPpVJpwiFgrRQVCoWYMc1tFYWcx8tS1PU+Qlf/JDRXyjk6OsL+/n5s7szDAJwmvebvjDNe9eH+XV5eol6v49q1a+a46PMWgLdKtMxxwS+D3kLiaqfv7uwk55aFA4Fp+IDgjA0uvntZngnoPvvC4nVf9Jx38S9tbHPdpVIJ5XIZ9Xo9Na5CILRMnk/Sj9FohFqthlarhV6vN7Fnm/Pyt3ZG6jllGdTj8Ri/+MUvUKvVMBgM8Kd/+qeoVquRw9O3Ii08vlqtol6vT9CQC//T4m4ag4/Lury8RKPRwMnJSbQy6DKcZP71+/0I/5pG9S0c+p3VB12fJRNZB2X5uLm5ie9///v4+7//e3O7As8Dayx0+iSZb9Gafh4CGgcSDfCb3/wG//gf/2NvBAPrA+J0ZJ1MyhO8sU7IegDzCknT7/cxHA7R7/ej80JcuiQ/s3RypiV5n8/nUSqV8PDhQ7x58wbtdtuJI58OFqorhKaZRvew5KPWyWZtm6u+eZbrgvfagAZmN6Ln6e30CYI0ea22uYSDa/KEEmZI/31MNaSMkMky6xiIMVOpVHD//v0o9FfeCfC+QN1unzdR8Kz3MltChXFrCSzLeHApDFwutzmTyaDT6eD8/BwnJycTpzxPyziThKPO56O90LmpldStra1o3zoDCz+ph5lyaJstxcGXXv6z8sht0nlOTk5wdHQ0cU2RSxmx8OBrhy9NiBdZp8lkrkLHrl+/HjkE9F48H2gnhlbANe7YUNbp5L028OTdaDRCs9lEo9Ew2xACofQ5jRLP6V17mvP5PBYXFyfoXu93FKVPK8VSDkcB6DlvyQ4Gi27172n6PG1epgGXEaGdEQx6Tlv4CHEO6i0ILC+AK8cR8yU9j13tctWr+zSLHByPx9G1lTzPuO++9vIck/cWvwWujA852FGMRd0PH28uFArY3NxEq9WacIbqdvn6q/+7eGjashlGoxEuLi7w5s0b80BLXbfQL89P3WarzyGg+2BFN2kaLpfL0WKCVZ+rfotW3pVB46pb/5eD8vb29rC1tWXezmHRPf/mOW31x+LDunzrPBtpp6V/+fiV1f58Po+VlZXoBo9Op+NNb7XD9cyS/6H6oi4jSfeaVa+3yptF1vhkyjTwXu+BZrC8rEnCS6cJVcZnAUuw+9K6/ru8fCGE4Mo7Lcx7kkwDIihWVlZw/fr1CeNLwFLMXaC9xD5BI4qHy2AKqc9Fsy5lsFaroVarodlsOj3+vrqS3lmCaB5gMeJM5m0Y8bVr1yYMDBfztrzFOo+lzGmjTcAyMsfjcRQebykr8pH3YkDzmLjq0/X+PkCPp6ysaQNawDJkrd98wjTfM6znhv7IO87DSg7nE2XWOqV0Hs7UafNxXlGwLD47Hl+tdvAVVy6wVom5PGv1lWnRwjmXmSTrQvAxb94gbddg0Y02+Cz+YPFNLpPTMd64PVL+aHR1dzIfSDkt+Ph8qAy3+jkYDKLrrISn6pU65oXa2JX9oj45Kb+r1Wp0N7Y+CdqSg9yGYrGIzc1NpyEyi+E1T5qUce90OhNnWmj+x3kEtAGmaYvnZEg4sEtntdossLCwgKWlpYkrknwOJRcNptWzkyBNXumXHOwm0Q8usIznkHqT+iTziqOwrPyu+RzS52w2i0qlgsXFRVSr1SBn7yzjMOt80X118WB5NmtdacAaf0tmW7+T4L1fgU6CJCUBmN4LYSneSfWEKs+6bFc+lyAOqSMUQiYv4L9aIknh0O/TKG+isN67dw8PHz6cEMq8v0U/T6pPmKUlNLUXWAsuYbDaY+nyfHJaKctFm6PRCH//93+PVqsVrTikoV+f8EybZxYYj9+GIS4sLGB1dRUPHjyITpHVq2w6dE1AhxFbSrgAh3C5vNXAW/oYDAb45S9/iQcPHmBjYyPaS8Vtku/Ly0vs7u5if38/yKmRhFNfuGBoGdxWmWdMa4VCAYuLi7h37x7y+Xz0nk81lvzAFd5k/5ilJOttC1KGDndnvFj1WNDr9dBqtXBxcZGICx8vcgHzoRC5oemGQ7cFj675zmVYwGc2cEg8j52EdetrvVhR1vOk1+tN8D6XnLT4suW4mJbv63Tj8Tg6Y4DliS6HaVnw61rx52/9TCt6sldS8K5P2a1Wq1heXp4wYH3yI0Qez4O3SvubzSaOj49x//79CRpgfHG9zMOseSplC03mcjncuXMHmUwmiraRfHxok4Be/axWq7h37x5+97vfRfQYoqsx6DFOmvvT4lgM6OPj4+gwMaERqUvzVV2v8NV+vx89E96g9zPLez1mScYa59WhwYVCAXfu3MH+/j7q9fpEGUnwLmR/CFiGb7/fx/7+fvT/7t270W8eE5/zkaP5dDreNga81Wv13OE2SlnMp33Go5Sfz+fNFW7hg7du3cLi4iIajUZEO1Z5eg6kcRikhVAHFePF9V63z9XuaW20JLsiVNa74DtlQM/bcEwCX9lpPWu+8mYhmiTjXP7Poy++dEll+LxUPuVEhLkYNxxKxsaZVQcrbfxeK0c63EqHf1vhrnriaiatmQf/t/bNcjsvLi5wdHSEbrcbhQm78JgEszKQWYDrzGazWF1dxaNHj5yeXeAtrlx9ZoUwidHzmLHjQpeVy+Xw0UcfYXFxEcViMVYn00mv18NXX30ViwiYFeYp+KQ8LWSXlpawsrISGcWigDFY+/iAt1eLCf54TmmaF2VR18/70ySdtJXLHw6H0UnzaSJJ3jVovlEqlSKF2UenLuVZAytklkHNaQS/ulz+5r1/lmEp7dPPrP+uZ74yfcC8mPkr81PfHmYeC3aQ8XtrtY8VWZ73TPcSqcEONG7HH5KXCozHV9EytVpt4vokeQ9M3ovMBoBVJoAYfxQ6v3nzJjY3NyOc+O7plnzyTG7HkOcuWkzqL5crEOq4CS1bHAhv3rzBeDzGzs6OU7nXbWEnMOOX9y8zsIPX1QcLVy7nlpR5586d6BRr38qt1ac/FFg4lrl9dnaG0WgUHSimIwYtOcZ6gYU35hfsQLdomPUyX3kahy45qHmZ/C6VSrh79y5evXoVu49c81YfP58nJOnT/C7Jrgi1edLKEVc5Gix8p8Hbex3CbXl4BFzKs8+L50onZfEnLaTNE1KXRaR/KEPIEmDvqi2MG9n3vL29jWq1au5PZkgzOVxhVSJMrdArzaCtMEofWGk472AwQKvVwsHBgZOZMoSOgU9QT+PASapXCw85VGZ9fX2iTWnwpgVISNtdocXc1tXV1Sh0UxvH8nswGODg4CC6RobfJUFaPM8iHHl8MpkMVlZWsLKyYhobLtChwLpcV540/eS0Mpfq9XpM+XsXSkIa3mXVL6GSIQqNGLQWXnj1Xr/nFUPAfwUfOzTk8Jt3CUm4S6IBaSt/W/PJZ7RqumFw8XQpR9fB6SViw8rLoOfYuwJLVkiUhsXXuH2SnvHsKtvCu2xFWFtbc4Ziu9oJvD1oL+mMhTRlMsyir1l1jUYjnJ2dmbjldNZzS5ew6NDaMmaNix4vS/nXxqRcH1Yul539TIsvK/27Mty0PtDtdtFoNFCr1WJOVVeERWjZVlrX/HDxJV8dVhlWOawbraysoFKpTCwuWDzQmuvTzgWdxzLUfeDiz0n1+NLpPD4j/F3RosB3agV6GgjxVI7H6faKuSYKD7Y1UULLnyekZZbAdF4dVz7X+9AJJ8bztWvXohAy7QnjSW8pSlZ7mWFaiul4PI55+KVsHcbOCjCPv7Uvjb8tY2Y8HkcHh3377beRAW3lDTXgLFxZkDQHXGX6nvG7paUlLC8vo1qtAkAUxqnbx4YJM1A25nyKq0tZE6+weJu1IsOnBEta3Z/hcIijo6PoLu5pQeNqXgqKy6G4s7ODW7duxZw/jE9rLHWYm4s3WKun8lyH5rvqEgNT7ta+vLwMUlhCIVTI6zSufKLoaN6j68xkMlEEiRjdAhz1olexpT59WrdeMbWMUDGwLCUxRMYl8XDrnY8XWTzOZ9Tx3JM0Lv7MtMNh9YxDDi22HAsa98ViMbZymkZmvStg2SPhxuJoSrr/V9ov24D0KjxD0uoyl2fRsm7veDxGqVTC5eVl5BRLM5d9BsOswDQiZY9GI5yfn2NzcxP9ft88Z8XFw5jXcVqrP1IXl2cd5sY0zO+YtzLPzefz2NjYQK/XQ7vdTjQqpwGXHhMyrml0cdG/Op0OvvrqK3z44YdYX1+P6WT6WlKXvOJ3Ui7v6ddGuKTnCCLdf37nGnPdJtmOw/8lAqtSqWBjYwPZbBbn5+fe8HSN01D8h4LWZXV9Vnt43EJAz71p7QSd3pdvGhx9pwzoaZA5DdL0AFqGi9W2JEXN15ZphYLP8ElbZiiu5jlZXZDJZLC4uIjr16/jgw8+iOGXT8rWY2XtJRIGy6d2s/JlCVPXBBSmKGVphUTql0NeNIMTAcjly//BYICvvvoKh4eH3n3PIULI6kNaBToN/VhtYuX/4cOH2NramlAKtMARAWMJNY1Pi/ZdgocNYlbSeRXQurpM6un3+7i4uJg4PGsaCOEDacu2xjqTyaBYLGJ5eRmLi4sxA9qiW/mvBT+/c+Hbeq7LYmXHUkx4hf8PBS765xDCtbU1VCqVmKInadjoBRAZODyuWrljg1HXzSvQ/F4bz1xmv99P3GIQIictZS2tfGXFiulBR/eIQssOGe6//q3bxb/Z+WOF2LsOMZP6eY+wS+bPSwa6dA1+xt8A0O/3o2sNeV+y4FhvVQEQ274hc1PTnXUmgubHTJeu7VOMcwmF7na73nMrND5cfDBJJiXpYDqtnpuDwQC1Wg1v3rzBvXv3JraMJbVTG5acl8vQskyf9q1pgcdIt4XPTtja2kIul8Pr168jBzzLSwuXuq60ekLauWDVpfHJPOD8/BxnZ2fI5XJYWlqKOcWYj1jOoX6/j16vh3K5HBnf1vxgXsqr3BJBIWOiIw00D5d5ZaXhMbB0Fzlz4Pz8PBFvumzd7xDw2TL8PqRczR/0fEjTFl99vjZNY3clwXttQLu8ILOWCbgVCC2MXYwitF2hROiq3wU+ZcbFMH1lzBvP05TJxpWc1ry5uRl5gl0rNSF1+tK6cM7M0Mds2CBxGXb8ziprOBxGp25bJxCHwDSGdRK+rDwhdMW4zefzqFarE3sLfe1nwW+1SePYNTe1cSGg913qvrIAGI/H0b3PvjBlH16mnQuhwIqX5BWFQ/bsspKhr2tLqpOdDprmXXv8XP1yGYrD4TBarZqXgaJhVn6XyWSi04m5PHmnV4t4THxzzVLA5b8rJNlF83oFel68xFWOC6d6jmrlmJ0DVn55x/Rs4UMbciF4dvUnl8tFB5yFpE8L85C3o9HVifZyFzQb/GL0hl7DI7+t1baQdkgZunz5vbKygvPz8wmD8t8nYJoZDodot9s4PT2NDBo2aH1yRr61c9hlTDA/ZWC6821HkN+snxQKBZTLZayuruL8/Dy2DcwCl56SZESFOiisPllpfHp5v9/H+fk58vk8lpeXo3cuWaxxJ05MdjRwOi33xUhO0o957vB7X0SGS2/v9Xo4Ozszz1dJY8Ba/dG/fWUm2Uec7g89j0P4yaztfq8N6BBIEkiWEAzxcOjf07RJP7MGPGlAfQwmjVET2k4Gi9GkEfyuiczlW/3J5XIolUq4fft2jGEKuIxV19i5wnBYODJz5TItwcH168MtRIFx4Yk9+tzubreLg4MDNJtNdDodkwnPCzQjn0WxSVJcM5mrVdBSqRQZHVrh5dVgbYBYYVmuPkn7rZWRpP1pegVA0ki6RqOBg4MDJ435GHWaeTOvcc5krjzt6+vrUUiqxqXeQ+drE+dnj7z81+8kn6Vk63rlXb/fj1aqklZQQ8HHH5LGROeV/GJAM81aBrKlVGvQPHw8fruNQXCueRIrZBavkqt4dJ99/dRtcbXPeh4C2mDz0YN8S9/0M2DyRGMdHpkWmHdks9nEPb/zglAaZHyJAd3pdGI3QUh6zsfP5LdenWecWnwMiM9xF03xuMr36uoqyuVyTMZy+iR8hCq8aXUTVxtGoxHa7TZOTk4mtqOwPPCdxWIZ2760/M41VpyO26WNyGw2i4WFBVy7dg2tViu2bcFlvM0Ks/AFFzDtDodDnJ6eYjwe49atWxMOI0sH4RXkkLbzHJJx1lGOmr5d8k2Xb9EC8zahuW+//RaXl5fBup/LqPf91v0NodG0aSy90uLhLvDV59M3LV7JMA1tfqcN6FADcFpvye/Dy5I06JzOB5YxGtL2tH2cRlCFtJ2N56WlJTx+/BhLS0tRWK0+1ZCFvvYqcvussFzdJmGELiOOmZ2k0eWycqAVGv5Y+2C63S7Oz8/x+eefo9frTdxVGjo+86TX0HIso4THqVwu49GjR6hUKrGTShmvUoacbCxgnVbOv/n0Zja6xHjkPdYcxq/HLZN5u1dVDH4GEeBv3rwxw7d9uLIU2lnAZexoI0r68cEHH6BUKsUUAsDtVJK8ur0ces1GI58BAMB0HrFyJ/+1YtHpdNBsNr0n06YFjXurXxZo441xms1e3d+Zz+djJ5W7gJ1DXK/lZBBlikPtgbjCzG3SSpG0RRxwTCvTGCEuYybEyLEcSFrptOq12in7Z11XsI3HVys4Vn807XF9gm+NP+Dqbl12ROg++drrg6SxcBk5Guej0QjHx8coFAqxQ88sugHeGnz60DqZ03q8hFeynHUB07Zuf7lcRqVSQbFYnDjbYF4wK4/VukO/30e73Ua9XsfS0hIKhcJEKLv8FhqS/xxNoWU9pwUmnUAyN/QJ2pwun8+b29eAt7xGZO7h4WF0kwfP3XkaGiG0PI1ThMc0m81GZ8M8ffoUDx8+jKLZNN1ZtOAytiSfy3HEeifLJYuHabmn28JzSsqXcWk0Gnjy5EmqyKuQMfLh+V3ZNRbvkm89Rq4+uNod0uckXSwtf/hOG9BJClGIQZlGoIWk1XW/K0M2pIxQIW8pBiH5pm2Xq/xsNov19XWsr69jeXnZuTJhKZDaeNN1hDJxS1GxgPfNjkYj9Pt97+R0KY+j0QhHR0c4ODiIjOdZ8D4PI20ekMlc3U1ZqVSws7MT25fIygIwacxpB4SAZsa8ksIOEMYBK4F6zx8bgJZiI99yMqt1NYiLx6Sd//MAbejJ6Z4LCwsTc0njV88fbr/mCYJ7yyDm+n2GAL8bDodotVo4PT2dHzIUTGPoSD7mOYJX14oyP2djmK9K0Yq01McKmzbcx+O3kS36ECF5x3XqPrhw4eOPPryEPPfxIr5r3GqXpmW995CdZS4e7TLqpC5LmRO8y4n8LmC6mJa2fO+TFMHhcIh6vY7NzU2zXO2AZQNQz23uO4N25HB5enw0TbFhvrCwgOXlZXQ6nVT6lIB1RgDX5YIkRd2VR4zY/f19ZLNX1y9yGdYc5X5zmzQOXUaWS2a5aFvaydtouH45q0Gug0pyMiQZM9PgMiR9aHnj8VUo9/HxcaRPCP9IwpWk8fEJ1iHlgEjOG6JDc3rrt9YPut1udPc4630+vT0tLVuy21Wmr5+WbeFrn6tefh5qF+h8vvYnPU/Lq997A9plELqY/jRglWERU6iRGTKZJJ3P+OOykurW+HgXSnsorvXECGG+mczVauX6+nq079mnAFrKi6YLF+N3MZYkIWLlZ+btUqpdxvN4fHWn5+npKY6OjszQVR8eQ4VaErNLU5avDvmWT6VSwerqKlZWViZC3BmS9tBaApL38mqjlevRDFveuYSJrmc4HOLk5AStVmvCueEzTBjmwaPSlJXJXK0+y+oPn17P46TDzyz8uMKTAft6MAH9X9OsVjIvLi5wfn7upNNp+FkSn56mPNlzajkIXGPDc9/Ft/TBghYIj9ERN1y+RGO4eGZoP0OUJR/o+nR7mcYsWWvRnE9BturnenWb9Jhwmmz26j5olzy2aNjqcxqeGjI+XO9oNIqcelbepPKmUUjlmatf8lyHPlcqFaysrODk5GTCiRrSX5d+ZinjTFOuPEnliuw4OTnBxsaGiUsXjvSqshUKrOvSegvzCH2wm+SzZKZewdzY2IgORbO2N7j67+ufhTuXAebDtY/+XPNoMBig2WyiXq8jm81ieXk5Nidccz5EZvM46NO9dZ9ELjK4Qrk5v9DVcDhEr9fDxcUFjo6O0Gq1TB6YhC8XnnxlpJEDvrq5vKT0Pt1b04hLprrmM6d5F7bPe29Aa2BiTBJw8t/6rcubp5L77zO8a2MqTR4m/GKxiO9973vY3NyMTri12iSMjVdg+ORbDq9mGuEVICC+38snALTCyoySjcLRaBTz8uuVKO6HlDUcDvHFF1/g+PgYjUZjYpUlFEKYYggjSgsuhidC6NGjR7h161ZsBUHayu11hUm65rHOo09E537xqrF4rGWs2DjUod0i7Hq9Hp48eRIZ0PJunkw6LYSM9crKCm7duhXtkRQaZdyz4cZKmd7rp0+v16sewGR4tjgvtEIoZbOSDQC1Wg27u7tRKP288TsP/p7L5VAul2MKMTsiOGSTnQ8Cev8k49xS7uW/3vPIwKcvy8rZxcVFDIfWHE0yIt4VSH/kNHuJTLH2cjK9CW6ta9J0uwUXvn4zDUp58jyTyWB5eRmHh4ex0HAtUyzF3GfAheAmlE5lW4mE6/Pc9jljeN+sjiKRPsq3pj9JJ3xDy2Rr+9NoNMLy8jLu37+Pb7/9NpXCL5AUUaEhrYyzDBG5snBnZwerq6uoVCoTeSxjSdMUr5Lquaz5roDIIstBIfxRwKWbDIdD7OzsIJvN4uDgABcXF1PhbZa0en6k4cHaqOLP559/jps3b+Lx48cT24ksuuS6JR2nsRY+BP98GwrPL0tP0/xct380GqHX62F/fx+Hh4e4vLyM1Wf1PQk/Ln4TytfTjmNSu1xlar0uqX1paSW0v2l583fKgLYYlkAIc50nA/Gln1Z4MrgGOqROl3fQyj+LwE9qh/XO8k4tLS1hfX0d29vb0YFHmolYoc9AXPHRSpDuFws91wS1xoGNK1EUhDFbh4JZDJkVPjkAplar4fDwEBcXF7F9z2nHwhK0SWk4XajRGgrZbBabm5uoVquRgsy40YqyvpqDDTiXMshKlevwIMvoZqGqV7QZB8PhMIoO4FON0xrPswgFV76kMrPZLDY2NnD79u2JlQkeB+lzNpuNTul2KQbaEGSlQMplQ1vjiZVsfZfxYDBAt9t17mMNwZEPLNkQOhaseOVyuSgc3sWjtINOO9MARNcPcXuSHGeaXvXeSk7X6XSCQwKTIIRnhpbDoM8SsH5r3s+4tOYE8wzee85liiGuHRfaMbq4uDgxziHOzWmNBP3MSsvjOB6PY9cUcTqfTNfOSsuJIOnYEWE5wnS/RU5yNMR4fHWQU7FYRKFQiOb7PCCUntMYCdy/4XCI4+Nj5PN5PHjwYEK/0DRnzfV+vx+TYfocCh4rxpuWe5p3sUEpz7g8iTpaWlrCRx99hN/+9rcmf7XKDsVZWnCVGWIocrtEf2o0GpFjgw96SypfO/T1AofWC5ivA3HeLnl8c5jp6enTp2i329FYzGpzpLUTuL3Tjvs87BvN42etK026/6AMaD2w0xDMvOH3Wdc0kFbhSWuUp4GkiZnL5bC4uIjNzU0Ui0VzP1XSiolVn+4DC3ZWiuU7RHGx3vnqtt7J98XFBY6Pjyeu7fHRluV80HlmUXLTgh4TUbDy+Tw2Nzej1TqOCnCBVg5D63YZKa48rrBlS4heXl7i6Ohobtcq+ehlHkaK5JeV0qWlJbNumQu8+sQKMhvZ1nxyGTpJfFmPmUC/349WJN8FcP9Cacuaa2JA8zP+lt+6ny6nhOuZj9/5lB5R0vQ1VkkwL9pLW59WYJNw4irLUs4ErDlmOcMY574Qbhe40oaUkQb/2rFgtd81J5NksZ7bVttcciqJt+dyOVQqFecWgzTgmsd63kxrsHFfW60W6vX6RDprG5LLuaNX5iWNjpJgA1DnCeVdklac0sViEWtraygWi7EIjrT4T1P/tBAy1wFEsvn4+DhyEmv57SvH1xfGv6+d1ryw5kQmk0Gn00G328XFxQWazWbqq8XeBV8OqX/a8Q6hFZcu4ErrcyZZ9c7LEfTeG9ACGlEC0yDoXTEDn7ITmjcNk0yqiwkvBGeztt8yfF1li9FTKBSwtraGmzdvTigxlhD3GT5ctlW3Dp+S+wGlDkvZ54N7uD4OhZP04l3WXmm9B2o0GuH8/BzPnz+fWB1MS5cuRcIF1rt5Okqy2SyKxSLu3LkTnZTpupeU87jCuK02itKtacUXuqgVdU2fHOIvCl673cbu7m60YjVNeH3aMWVjL6Rs/T+TudoOUalUUC6XY04jboceD3ZEMD1yWwSHPPdkNdVnKGqlVMqQ6IPLy0un0edTli1IwnUofXObmV+Uy2VnmZYwt5S58XgylNO3PUCPgW6nNqB5X2ySMWn1ZVbZ6KJLrlfoQCIkmEfqsGL5rXm1xjGDlMMrSD7ex+90qP67ghBcu3ghOx/EQSnpAXvbkCXjeDXOWlmzgHmpBn3FkIAcatXr9SZWQqcxdF1tdCnUSeVZIAa0vpVBy37GuZZB1gF48pwdCcILec+ztcqf1F5JJ+NYKBSwuLiIcrkctD0mxGGi5UMIpMF9kgE8Go3QbDYxGAxw8+ZNJ33zwaVJNMZzwAIZL91nl47KsrNer+Ps7AzHx8cT2yGSIIlH+Oar9Zzbp8uZF4T2a55laxkcYpiHwHfGgLbAp1il8XCEKqsWgSZN9pBy31WeJGNJ0oQoU9MIIhfuRbHJ5XL44IMPsLGxMcF4NDP0HWbEQssafymXhTvvG+N+sSGgFTVdt97vZSlz1iEgX375ZbQHRu/9Sws+YzNUYdTjnETXLgEqB3tsbW1Fh8BJOBrn0yFUAhoXlsInHx0GLOVa9z5adGO1nce91Wqh2Wzi4uIiOELAAt98c82PUObP6Vhgb29vo1qtToQV6jmiccD416vT3Bd5ps8U0PNB6pCwTXnP+YbDId68eYN6vZ5qHqQZh1l5rNRVKBSwuroK4G14qnUfLPeDcSw403sYgUml3Gq3pcSK0iftGY1GiSsc07ybRRlx0TOH80q9QkcWLTAda1xZ7dYRRzqdHj92mPAhlsz/Q+nOlzZEofX1S2A0GqHb7aLT6aBcLsdoQuYbX/1lbT1gXGo5xbTKjjWev9rocF3BlM/ncfv2bTSbTTSbTWefQnQRXz4fnfrG0MWH5W76y8tLFAoF83wVBmtuW+3jbQRSnisCR69MM5/OZDK4vLxEu93G5uZmjIYlTy6Xw4cffoiXL19ib28vyBHso8lZeUEShOgtEsb98uVLXL9+HSsrKxP90qvtlnMpk8nEwuyZD7Pjn68CE5pnfqR1CRmXb7/9NtoGNk2E1bT6hovOtWwS0I6EpDJ0/ncFlt42L+M4BN57A3qenhHLMPPV4TIgdb5QQ9VXX5Jh40ubRPAu0AqC1WaXdyu0bKu8TOZqlWx5eRkrKyuxO/30YUTaSAAm92q52sfCXR/M4TMQLANSGxZW3yxjj/f6SXtOT0/RbDZN4zlUUeC2TcvoplHarPzyLXd4b21txQxZHz4thwXn49WjEAOLnSIaL7od2sjjNhwfH+Ps7GxmB4cF1njNKhB4DLa3t7G4uAgg3Bi3ViaYbl1gjZnrvWXQAFcHiMkdsZx+Vpy7eK71PARHuVwu4lVWGy2HHD+3VkT0HGCw6tD40f/FmHaVFWJgMPC8C6XRJNpmY0FH9shvrZRyuczXmTe4+uHqu48vyuF7/MySFT4Ixdc0SqHUf3FxgXa7HTP42UHN6S1Z6eOrbFBo+kwqT0M2e3UaNx9qaIHP2RECIekE1yHyT5w89Xo9us6KaS7JiBbQuqRFry46TVqJlsgYjTsub2lpCdVqFcViEZ1OJ9bPtHojQxLdTqs/+uqTcuWKrsXFxchhrOvmqArLoQHYZ9a4nltjpHGQz+dxenqKWq2GWq2Gfr8f5LSYdRxCYVo+njb/tODj0y4ZxTAv/QH4DhjQaWGeiu48ygpRQN6Vcp5UbpJS5cpvKaNpjC5h+Jubm1haWpoIP5M+8F3LrBxob5+AXgVj5sl9TRKeLqVMj6HLSSDKBacXxbbT6aBer0cn5XL5LkgSUtMoFxovFqQxvEXpXFxcxNbW1sTBYJYyZBlsun3sAPF5cIUuOIzOZdz5+i5jJ/czho5RWkgSQj6j1AWiNG9tbaFarQJAbP+5jy9oA9oXysZgrVpph4eMiVXmaDRCvV5Hp9NJpTCnUdxmFfjSFlmZtOrgb61kswPB5wyyytP9sPa9spNH+GYI79b1vkvQfXE5UwA7FFbTBq+Mcj4BHeWgn1l1M155e4+un2EapTdJ9qRJf3l5iVarhdXV1chw1u1n2rBoymXw8js+2IppTsrhtrr0ilKpFK3i+gyKUGfFNMZZWlk5Hl+tQouhJiv6roMEk+YXj4OvXT7+pesqFAoTdyID8flQKpWiaw273a6zPlcffODSmdKU58trGVBCg41GA61WC8vLy6hUKt76Be/6nB0XP7bO4+E8ukwB2aJ3dHSEi4uLoL778JBE59Pi18JtGrBsmzTyNqluLedc/UhTj68+C957AzoEYTrNLJ6ckPYA6VYuXGXwf5/wDOl/aB6u613iSI+HfLLZbLRK+eDBg2ilUhiiGNN63zD3kZV29rKL0SZpRdhJ2XIK6HA4RKFQiClUei+yVoJdRrWrzzrNcDhEq9XC8+fPY6fkWow7DfjyhjIoK49mjL7yM5mr1bXbt29ja2sLhULBWR87FjKZTOyuZi0cBcQAFCNat8u6gorbyE4MAS5H6FKMj8vLS5yfn6PZbM48Pha+kmBaASEG3urqanRoDBA3IDRepX8SoiZ45rZwu7Xiq+eY7ifTv2Ww9Ho9tFqtmFIXSrc++tTzNI0zyALZ2y8OP8YVbwdxKUPs3HPxRm4v52P61UYil6P38M8L5q0Q8aqz5RRznWXA2wCkPH0auXVWhWsVVd7rlVRrtfVdgw/HlqIrz2q1GkqlEm7evBnRivAy4bXsRGOlV/eTnZRanvGp8drg4PbxGGnDBQDK5TIWFxdRq9WC8ZpEf0m4s9JZOooFo9EInU4Hz58/j24JsfDJc5T/s1OD3/MY+owbGUvNIwBEeoyU6zvdPJfL4fr16yiVSvh3/+7fpT4J3TLiuN26jT7dwipHv3eVoZ/3+33s7u6i1Wrhk08+iaVjnqzpnhdn9Fyw6FZ/A7bzrt/v48mTJ6jX6+h2u4mHm7p0fldaLSNdxrb1TM/bNHaDBXrMQ1bZZ4UkPVbPp2nsM4b32oCe1gNhMaNZIInIQxix1R49CSxBKenmLcRdhuAs5QDutoowKJVKuH37NtbX1yc8fABiSoDk8ynwkobbo5VSPT7WPlk2BLgMNib06o9eUeJ2aCWw1+uh0Wjg6Ogo2qMYgneLceu++sbS9d9neKRhOoKjYrGIGzduYHl52aQBFtisgABxh4g28iwBpPFttZlxo9PqdPI9Ho/R7Xbx5s2byKCb57xLKmtWZr+wsID19XXzxHNrBVgbH6wUarxb807fD+3ik67VZ9nHpu82nTfeNYQKV+6X9EOcQ1ohlnLFUBbD2jU3mR41fVoGDhuCAnoVlvdBW8rfvPCSpMS5QDsCdD7L+JU5zHtAdXncBk1nOipJg966oWlPK9+ueqeBNEqei8d1Oh202+3YWMhpy9JvfRiaK5KH8/BvfdCYgGX8uc5BkHSrq6vRFY5JsisEXDqiD6z3PhkiRnSr1cLCwkIsXF50AKFnTWsaZxb+LD2I26nPBJDfrnySR1+xWSqVosgkC9Lq1SHvQ56l1Z85z2h0dQ5Aq9XCyckJVlZWUCwWTcNXfrND2aVzJ9Gl5tvD4RAnJyc4OjpCvV5Hv9+P2hdqJOs6teFrpXXZRpZ8kXc+urHqcvE/Xa92hMxLhk9Tzqy6lMB7bUC74F0YlGnKDpnw/Nw3mK66Qgg81NgJJSafBzBUabAmmQiJYrGI9fV1rK2toVqtOlcEJJ9mUK5+WPvomDnqfmhlQBvslhLlY/oW0+W2DodD1Ot1nJ+fo9VqxVaI5kHHLppNq9jqNvnohpmlXJWxtLQUKRehipE21sSQ0+MjIEYEKxcMrjnhwo8ep263i+PjY6+TI43iOw1MM6dFQdre3o4Z0JYxrMGi2yQD3Dq4j8vTuLWM6H6/j0ajYd4J7IMQBTmNMWgZAro8OZBJ018IWEqcPkgvqQ1JhiDXZRmns8Ks5Wn5oVfJ9UF3QPoVDUsuWnJLP7MMZ0n3ruZ4KLjkvXzLFXBs7Gl+KjCrse9yXljt1TxAcFmtVqM7tl2r3fMEbUj46tP0wX0cDAZoNpsolUqxcxAso0yPmY8XWXpiiK7h64cL5Bq+SqUycTimLm8aJ8S04OpHqGNJHLFnZ2dYWFiY2LIk6YDJsxZ8xiTn0+3JZq9uD+j3++j1elGY/8nJSeLqfhJP4neWnJ8HLw61HbiNIe/StC+J1qbpq5Yps+LqD2pA/6t/9a/wP/1P/xP29/fx+PFj/Mt/+S/xj//xP56qLIuQfP+tgfW9D6lz1nS+9C5BN02707QtxEjyPfc5ADhdsVjE6uoqPv74Y2QyV2GGcvqhAO99Y+WFFUzLIOZ69KmqUh4bZVrBZGNM0kl7xuP4icSsPGvhyAYfh3ZeXFzgm2++wfHxcYy5TkODLtoIVZR88yaUYWnjbHV1FY8fP47u8dYKiBX2K+M2Go2i/1rg9Xo9s725XM7c685jwW3QypxWBgV6vR6azSYODw/NVdF3AfPgHbI6uby8jI8++iiivSQDQONb6FVHf/CKoC8ChMuTcdXPpZzhcIh2u42XL1+aipzVxiSY1gBn/mKVB1ztIRT6BuJ7QgX/ep8o06A4AF20J2VIevnoMjm9lCPK+2AwmKBbzTNdSrqFlxDcTQtysI7l/JT2udrsaoPQr5yeq2WIjhhy7eMV8O2ZnpciG5rOMqIBRHJ0MBhE25J4K5Sk4b7wVibfHAUmT5KWj+v0eQ3aoF9cXES/30c+n5+I6LL6m4TnJB3FZyi7gGW+/B8Oh3j9+jUGgwHW19ej55puub16pV/LLZfjRoOlF0mbdJ94GwfrNUL7hUIBDx48wMuXL1Gv1xNlnIv++RnLCCttyPiFGstW+bIK/erVq8i5UalUJtJYZVn95z65dIpyuYzd3V2cnJxgd3fXe/PBLDq7Cz8unpik3wmkNS5dure0IUnX0GW9S97p4kehPIXhD2ZA/x//x/+B//a//W/xr/7Vv8LPf/5z/G//2/+G/+K/+C/wxRdf4M6dOzOXP43CFepdS6pjGkgqK9QQtZShpPw6rVbwXGX4hFAISB2j0Si66/Uv//IvI0Ei36y4l0olZLNZ9Hq9WAiZhMSIwioKkigAooQvLCxMeBklXbfbRS6XQz6fj+2nlTbIKpO8E2NXmHK/348OEdJ77ABEd9mycjsaXZ263Wg0oja6VlZC8DwNEwgpb9q8cpJ6pVKJ9uNVq1UMBoPIMJbD0+TwuH6/H915CbwN6ZZ3rCjIHq9WqxWNjYTbS/m1Wg0LCwuRUiYgHnfxEHe73agMObVUaOny8hK1Wg1HR0fRFSOz0D1gC52k9D6whCaHaZZKJaysrEwcyifpBZfcP0kjRofMAaF9a+VZ9ktb81fqy+fz0YotgFhIvBj4stqvFcFQHu6aC9rgsNL78Mp9lfYvLCygVCqZ97SyMsZ3n+v3glOrLYJDq7+8UiegQ4+TwuDZkWTBLA6MEMNSaI2NBuGFrj33uk16BV7mO9/Pqh0Yej+u5JF3vHJoGTy5XC71flHdb40j672VxnIiaBiNRuj1eqjValhbW4v4m1W+dhoAk9dOhfRDaFLap5V3PX7a0ZPL5bCysoLz83PzbmLXb1+bXO8sCDHKrbIvLi5wcXGBTqcTzXPhf+wg880zl0zQefR7l84g+pW1xUHnFT3o+vXrOD4+RqvVSozy0HiYVf+w+u0zzPiZTqfbNhgM8ObNG1xeXuLBgwcxp4POo/mRq0yGfD6PN2/eRAshFxcXkW6RFgdaB0+j+80KSeWEtinJueLK4zJsk9Jzu1y2igVp6tPwBzOg/5f/5X/Bf/1f/9f4b/6b/wYA8C//5b/Ev/7X/xr/6//6v+J//B//x+ByZjVcBdIyZf4dyiysND7m7uubSwlMypembe8ij6sMUSibzWbMcNEK+MXFRWQwM/NjJVKv/ABvFVDZo8jGO3AltHu9XqQUSb3agOa9hpK3WCwCQOTl14qNtEe8kDx2o9EIrVYrWnFJMhDS4NUSDPOaL1ym732320W9Xo8OR8vn8yiVShOrS71eD/l8HgsLC1HkAa/2y/5SVoYHg0GkDHY6nchok2eC94uLi5jiyGMuxqB8pAy5TkXGu9fr4fDwELVabcKA9hkF0+DPV65P8dL8QPoqTopGo4GnT59GtCF5JI21N5rnp88AYYeRPnBM6pDx47QC2jgZjUY4OjpCs9mM4Tt0fmg+naSM6PQufOo8QscSbv7y5csJo4wdPgxsyEg0hdA9GxOaF7GzkKFYLMacUgsLC9E9wMKX5HT/pL75IFQ+hhouemyEb8icFocbR/eIYspOsWKxGHNgiryQQxnlKhtxZBaLxcjQkWfaASqOWuEHMi7sANKKts958/sCpmE5+HBlZSXGV6XtQh8sD6UMSQfYB92xg4fHUAzvXC4Xla8P/tR02O12USwWUa1WsbGxgVarNZNzQuMiRPa5dKgkXg0gcgTXajVcv349toon85jpQUcw8Ao0j4XmX1yuHjOrXZpHa91A5ymVSlhaWsLFxcXEYW7T6g9pDEFXu9LWZZUhp9I3m00sLi5O7P+3yrD4OL+Xe7bH4zFOTk5Qr9dj0T7znP9Mn5oukvrxLiGpHRqHofqoRTe6rjR9TDLGk9Jo+IMY0L1eD7/61a/w3//3/33s+X/2n/1n+Ou//uuJ9N1uF91uN/pfr9ej3yGMLeT5LODzdoQa5q7yQhTmWcGHq7TeWwEXDlyCSRu0oTAP5p4EIRMrSeC6mIZLkXV5XdNAGmPcqku3N4npWWU0Gg00m028efMmlpbH2uUFduFdCxHOpxm1Tqfr1fW5jB4xXPSqoW6TC0++9AyhxonGtUVHXMdgMMDu7m60qqMNaFaUxdkgBgMrvFw2O6gYtDMLeHvPqxgzkk7qF8eHOJqKxWJ0sF4aOvbhLknI6/TWf2tMZRvG/v4+zs7OUC6XzXylUimSXbJiLcaxOHny+TyKxWLkIGSnkkQBtFotAG8ddwLVahXVajUyitbX19FsNnF8fIytrS0AQLvdnnBITIMPhnnIIh4f2U8qjrVCoRD9F3y12220220sLi5G99aurKxgaWkJACIaOjs7i+4Rv337NorFYrSvXvbaZrNZNJtNDAaD2P7VwWCARqOBYrGIcrmM8fjtthExntnJ55PbFn54DobgL5Q3CIhR2+/30Ww2oxVodghnMhl0u91ob6ie4xLeLY4xiejSvFsbqUKr+XwejUYjOkiSDQp2DIlzR+h9c3MTb9688eLUJR9mcV5MMw7CO2Ue7+3tYWNjI+Y85Eg4jjSxtmUAb0+gF/zw9gJNc/qwR208S5l8boflKGA6XFxcjKKuXDpKEk5C0ofqQrPWJ9Dv99Fut3F4eBhz6vhAh7szTofDYaTfCA/ROkJao83nvE2yDdLwEy4jNGQ7Lb+a1Q4LxaFVl4u2OY+vriB8jOdlhaWAvb093Lx5E3/1V3+Ff/SP/lH0/H/4H/4H/O//+/+Or/7/9u4/tKr6j+P46+r9oS63tOXuLouxSjKbTru3H1PL0BpI6wdBWPRD6K8bzhzrj7L+2ApqI0gorMUsIim4/pELg0xvpNckJJ0b3mbYYOaW7DISzbVqy+39/SM6X++2O29X23X6fMCB3c/nvcvnsBd3933PueccPZpUX1dXp1deeWWilwkAAAAAuEJ0d3erqKho3JqsXkRsrKN2Y33atGHDBtXU1DiPh4eHdfz4cS1atEjd3d3Kzc39z9eKy8OZM2d03XXXkRv8K+QGmSA3yAS5QSbIDTJBbv7PzNTX16dAIHDe2qw00Pn5+Zo6daoSiUTSeG9vrwoKCkbV/3NvvXP9c+pLbm7uFf8Hx79HbpAJcoNMkBtkgtwgE+QGmSA3f8vLy0ur7vw3jvwPeL1eBYNBRaPRpPFoNJp0SjcAAAAAAJeKrJ3CXVNTo6eeekqhUEjl5eVqampSV1eXwuFwtpYEAAAAAEBKWWugV69erZMnT+rVV19VT0+PSktL9cUXX6i4uDit3/f5fKqtrR11ajcwHnKDTJAbZILcIBPkBpkgN8gEuclMVq7CDQAAAADAZJOV70ADAAAAADDZ0EADAAAAAJAGGmgAAAAAANJAAw0AAAAAQBpooAEAAAAASMOkbKDfffddlZSUaNq0aQoGg/rmm2+yvSRk0d69e/XAAw8oEAjI5XLps88+S5o3M9XV1SkQCGj69Om655571N7enlQzMDCgdevWKT8/Xzk5OXrwwQf1888/T+BeYKLV19frtttu08yZMzVnzhw9/PDDOnr0aFIN2cFIjY2NWrhwoXJzc5Wbm6vy8nLt2LHDmSczOJ/6+nq5XC5VV1c7Y+QGI9XV1cnlciVtfr/fmSczSOXEiRN68skndc0112jGjBlatGiRWlpanHmyc+EmXQO9detWVVdX6+WXX1Zra6vuuusurVq1Sl1dXdleGrKkv79fZWVl2rRp05jzb7zxhjZu3KhNmzbpwIED8vv9uu+++9TX1+fUVFdXq7m5WZFIRPv27dNvv/2myspKDQ0NTdRuYILFYjGtXbtW+/fvVzQa1dmzZ1VRUaH+/n6nhuxgpKKiIjU0NOjgwYM6ePCgVqxYoYceesh580FmMJ4DBw6oqalJCxcuTBonNxjLLbfcop6eHmeLx+POHJnBWE6dOqWlS5fK4/Fox44dOnLkiN58801dffXVTg3ZuQhskrn99tstHA4njc2bN89efPHFLK0IlxJJ1tzc7DweHh42v99vDQ0Nztiff/5peXl59t5775mZ2enTp83j8VgkEnFqTpw4YVOmTLEvv/xywtaO7Ort7TVJFovFzIzsIH2zZs2y999/n8xgXH19fTZ37lyLRqO2fPlyW79+vZnxWoOx1dbWWllZ2ZhzZAapvPDCC7Zs2bKU82Tn4phUR6AHBwfV0tKiioqKpPGKigp9++23WVoVLmXHjh1TIpFIyozP59Py5cudzLS0tOivv/5KqgkEAiotLSVXV5Bff/1VkjR79mxJZAfnNzQ0pEgkov7+fpWXl5MZjGvt2rW6//77de+99yaNkxuk0tHRoUAgoJKSEj322GPq7OyURGaQ2vbt2xUKhfToo49qzpw5Wrx4sTZv3uzMk52LY1I10L/88ouGhoZUUFCQNF5QUKBEIpGlVeFS9k8uxstMIpGQ1+vVrFmzUtbg8mZmqqmp0bJly1RaWiqJ7CC1eDyuq666Sj6fT+FwWM3NzZo/fz6ZQUqRSESHDh1SfX39qDlyg7Hccccd2rJli3bu3KnNmzcrkUhoyZIlOnnyJJlBSp2dnWpsbNTcuXO1c+dOhcNhPffcc9qyZYskXm8uFne2F5AJl8uV9NjMRo0B58okM+TqylFVVaXDhw9r3759o+bIDka66aab1NbWptOnT+vTTz/VmjVrFIvFnHkyg3N1d3dr/fr12rVrl6ZNm5ayjtzgXKtWrXJ+XrBggcrLy3XDDTfoo48+0p133imJzGC04eFhhUIhvf7665KkxYsXq729XY2NjXr66aedOrJzYSbVEej8/HxNnTp11Kcfvb29oz5JASQ5V6wcLzN+v1+Dg4M6depUyhpcvtatW6ft27dr9+7dKioqcsbJDlLxer268cYbFQqFVF9fr7KyMr311ltkBmNqaWlRb2+vgsGg3G633G63YrGY3n77bbndbufvTm4wnpycHC1YsEAdHR281iClwsJCzZ8/P2ns5ptvdi62THYujknVQHu9XgWDQUWj0aTxaDSqJUuWZGlVuJSVlJTI7/cnZWZwcFCxWMzJTDAYlMfjSarp6enR999/T64uY2amqqoqbdu2TV9//bVKSkqS5skO0mVmGhgYIDMY08qVKxWPx9XW1uZsoVBITzzxhNra2nT99deTG5zXwMCAfvjhBxUWFvJag5SWLl066pacP/74o4qLiyXx3uaimfjrll2YSCRiHo/HPvjgAzty5IhVV1dbTk6O/fTTT9leGrKkr6/PWltbrbW11STZxo0brbW11Y4fP25mZg0NDZaXl2fbtm2zeDxujz/+uBUWFtqZM2ec5wiHw1ZUVGRfffWVHTp0yFasWGFlZWV29uzZbO0W/mPPPvus5eXl2Z49e6ynp8fZfv/9d6eG7GCkDRs22N69e+3YsWN2+PBhe+mll2zKlCm2a9cuMyMzSM+5V+E2IzcY7fnnn7c9e/ZYZ2en7d+/3yorK23mzJnO+10yg7F899135na77bXXXrOOjg775JNPbMaMGfbxxx87NWTnwk26BtrM7J133rHi4mLzer126623OredwZVp9+7dJmnUtmbNGjP7+5L9tbW15vf7zefz2d13323xeDzpOf744w+rqqqy2bNn2/Tp062ystK6urqysDeYKGNlRpJ9+OGHTg3ZwUjPPPOM8//n2muvtZUrVzrNsxmZQXpGNtDkBiOtXr3aCgsLzePxWCAQsEceecTa29udeTKDVD7//HMrLS01n89n8+bNs6ampqR5snPhXGZm2Tn2DQAAAADA5DGpvgMNAAAAAEC20EADAAAAAJAGGmgAAAAAANJAAw0AAAAAQBpooAEAAAAASAMNNAAAAAAAaaCBBgAAAAAgDTTQAAAAAACkgQYaAAAAAIA00EADAAAAAJAGGmgAAAAAANLwP7l3gaea0u7UAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "