Name change
This commit is contained in:
parent
ac47adcce3
commit
de6940f2e1
@ -138,15 +138,21 @@ var_widths = [4.97165, 5.7296048721, 5.93178];
|
|||||||
|
|
||||||
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
||||||
EpsilonKs = zeros(length(k), length(nadd2s));
|
EpsilonKs = zeros(length(k), length(nadd2s));
|
||||||
|
ScatteringLengths = zeros(length(as_to_add), 1);
|
||||||
|
AtomNumber = zeros(length(nadd2s), 1);
|
||||||
|
w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction
|
||||||
|
l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length
|
||||||
|
tsize = 10 * l0;
|
||||||
|
|
||||||
for idx = 1:length(nadd2s)
|
for idx = 1:length(nadd2s)
|
||||||
|
AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms
|
||||||
AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms
|
AtomNumber(idx) = AtomNumberDensity*tsize^2;
|
||||||
as = (as_to_add(idx) * add); % Scattering length
|
as = (as_to_add(idx) * add); % Scattering length
|
||||||
eps_dd = add/as; % Relative interaction strength
|
ScatteringLengths(idx) = as/BohrRadius;
|
||||||
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
eps_dd = add/as; % Relative interaction strength
|
||||||
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
||||||
MeanWidth = var_widths(idx) * lz; % Mean width of Gaussian ansatz
|
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
||||||
|
MeanWidth = var_widths(idx) * lz; % Mean width of Gaussian ansatz
|
||||||
|
|
||||||
[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi); % DDI potential in k-space
|
[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi); % DDI potential in k-space
|
||||||
|
|
||||||
@ -181,11 +187,11 @@ legend('location', 'northwest','fontsize',16, 'Interpreter','latex')
|
|||||||
|
|
||||||
wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction
|
wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction
|
||||||
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
|
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
|
||||||
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
|
||||||
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
||||||
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
||||||
AtomNumberDensity = 0.0978 / add^2;
|
AtomNumberDensity = 0.0978 / add^2;
|
||||||
as = 0.784 * add; % Scattering length
|
as = 0.784 * add; % Scattering length
|
||||||
|
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
||||||
TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced);
|
TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced);
|
||||||
|
|
||||||
x0 = 5;
|
x0 = 5;
|
||||||
@ -204,7 +210,6 @@ fprintf(['Variational width of Gaussian ansatz = ' num2str(sigma) ' * lz \n'])
|
|||||||
|
|
||||||
wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction
|
wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction
|
||||||
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
|
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
|
||||||
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
|
||||||
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
||||||
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
||||||
|
|
||||||
@ -226,6 +231,7 @@ for idx = 1:length(nadd2s)
|
|||||||
for jdx = 1:length(as_to_add)
|
for jdx = 1:length(as_to_add)
|
||||||
AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms
|
AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms
|
||||||
as = (as_to_add(jdx) * add); % Scattering length
|
as = (as_to_add(jdx) * add); % Scattering length
|
||||||
|
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
||||||
TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced);
|
TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced);
|
||||||
sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts);
|
sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts);
|
||||||
var_widths(jdx, idx) = sigma;
|
var_widths(jdx, idx) = sigma;
|
||||||
@ -247,15 +253,22 @@ alpha = 0;
|
|||||||
phi = 0; % Azimuthal angle of momentum vector
|
phi = 0; % Azimuthal angle of momentum vector
|
||||||
k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector
|
k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector
|
||||||
instability_boundary = zeros(length(as_to_add), length(nadd2s));
|
instability_boundary = zeros(length(as_to_add), length(nadd2s));
|
||||||
|
ScatteringLengths = zeros(length(as_to_add), 1);
|
||||||
|
AtomNumber = zeros(length(nadd2s), 1);
|
||||||
|
w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction
|
||||||
|
l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length
|
||||||
|
tsize = 10 * l0;
|
||||||
|
|
||||||
for idx = 1:length(nadd2s)
|
for idx = 1:length(nadd2s)
|
||||||
for jdx = 1:length(as_to_add)
|
for jdx = 1:length(as_to_add)
|
||||||
AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms
|
AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms
|
||||||
as = (as_to_add(jdx) * add); % Scattering length
|
AtomNumber(idx) = AtomNumberDensity*tsize^2;
|
||||||
eps_dd = add/as; % Relative interaction strength
|
as = (as_to_add(jdx) * add); % Scattering length
|
||||||
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
ScatteringLengths(jdx) = as/BohrRadius;
|
||||||
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
eps_dd = add/as; % Relative interaction strength
|
||||||
MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz
|
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
||||||
|
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
||||||
|
MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz
|
||||||
|
|
||||||
[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi); % DDI potential in k-space
|
[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi); % DDI potential in k-space
|
||||||
|
|
||||||
@ -277,6 +290,8 @@ as_to_add_from_figure = [0.76383, 0.76766, 0.76974, 0.77543, 0.77675, 0.77828,
|
|||||||
figure(5)
|
figure(5)
|
||||||
clf
|
clf
|
||||||
set(gcf,'Position',[50 50 950 750])
|
set(gcf,'Position',[50 50 950 750])
|
||||||
|
|
||||||
|
|
||||||
imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes
|
imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes
|
||||||
hold on
|
hold on
|
||||||
plot(nadd2s_from_figure, as_to_add_from_figure, 'r*-', 'LineWidth', 2); % Plot the curve (red line)
|
plot(nadd2s_from_figure, as_to_add_from_figure, 'r*-', 'LineWidth', 2); % Plot the curve (red line)
|
||||||
@ -284,84 +299,17 @@ set(gca, 'YDir', 'normal'); % Correct the y-axis direction
|
|||||||
colorbar; % Add a colorbar
|
colorbar; % Add a colorbar
|
||||||
xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex');
|
xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex');
|
||||||
ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex');
|
ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex');
|
||||||
title('Roton instability boundary','fontsize',16,'interpreter','latex')
|
|
||||||
|
|
||||||
%% Roton instability boundary for tilted dipoles
|
%{
|
||||||
|
imagesc(AtomNumber*1E-5, ScatteringLengths, instability_boundary); % Specify x and y data for axes
|
||||||
wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction
|
|
||||||
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
|
|
||||||
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
|
||||||
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
|
||||||
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
|
||||||
|
|
||||||
nadd2s = 0.05:0.001:0.25;
|
|
||||||
as_to_add = 0.76:0.001:0.81;
|
|
||||||
var_widths = zeros(length(as_to_add), length(nadd2s));
|
|
||||||
|
|
||||||
x0 = 5;
|
|
||||||
Aineq = [];
|
|
||||||
Bineq = [];
|
|
||||||
Aeq = [];
|
|
||||||
Beq = [];
|
|
||||||
lb = [1];
|
|
||||||
ub = [10];
|
|
||||||
nonlcon = [];
|
|
||||||
fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500);
|
|
||||||
|
|
||||||
for idx = 1:length(nadd2s)
|
|
||||||
for jdx = 1:length(as_to_add)
|
|
||||||
AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms
|
|
||||||
as = (as_to_add(jdx) * add); % Scattering length
|
|
||||||
TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced);
|
|
||||||
sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts);
|
|
||||||
var_widths(jdx, idx) = sigma;
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
% ====================================================================================================================================================== %
|
|
||||||
|
|
||||||
alpha = 45; % Polar angle of dipole moment
|
|
||||||
phi = 0; % Azimuthal angle of momentum vector
|
|
||||||
k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector
|
|
||||||
instability_boundary = zeros(length(as_to_add), length(nadd2s));
|
|
||||||
|
|
||||||
for idx = 1:length(nadd2s)
|
|
||||||
for jdx = 1:length(as_to_add)
|
|
||||||
AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms
|
|
||||||
as = (as_to_add(jdx) * add); % Scattering length
|
|
||||||
eps_dd = add/as; % Relative interaction strength
|
|
||||||
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
|
||||||
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
|
||||||
MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz
|
|
||||||
|
|
||||||
[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi); % DDI potential in k-space
|
|
||||||
|
|
||||||
% == Quantum Fluctuations term == %
|
|
||||||
gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2));
|
|
||||||
gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2);
|
|
||||||
gQF = gamma5 * gammaQF;
|
|
||||||
|
|
||||||
% == Dispersion relation == %
|
|
||||||
DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2));
|
|
||||||
EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK);
|
|
||||||
instability_boundary(jdx, idx) = ~isreal(EpsilonK);
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
nadd2s_from_figure = [0.04974, 0.05383, 0.05655, 0.06609, 0.06916, 0.07291, 0.07836, 0.08517, 0.09063, 0.0978, 0.10459, 0.11345, 0.11822, 0.12231, 0.12674, 0.13117, 0.13560, 0.14003, 0.14548, 0.15127, 0.15775, 0.16660, 0.17546, 0.18364, 0.19557, 0.20579, 0.21839, 0.23850, 0.25144];
|
|
||||||
as_to_add_from_figure = [0.76383, 0.76766, 0.76974, 0.77543, 0.77675, 0.77828, 0.78003, 0.78178, 0.78288, 0.7840, 0.78474, 0.78540, 0.78562, 0.78572, 0.78583, 0.78583, 0.78583, 0.78583, 0.78567, 0.78551, 0.78529, 0.78485, 0.78441, 0.78386, 0.78310, 0.78233, 0.78135, 0.77970, 0.77861];
|
|
||||||
|
|
||||||
figure(6)
|
|
||||||
clf
|
|
||||||
set(gcf,'Position',[50 50 950 750])
|
|
||||||
imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes
|
|
||||||
hold on
|
|
||||||
plot(nadd2s_from_figure, as_to_add_from_figure, 'r*-', 'LineWidth', 2); % Plot the curve (red line)
|
|
||||||
set(gca, 'YDir', 'normal'); % Correct the y-axis direction
|
set(gca, 'YDir', 'normal'); % Correct the y-axis direction
|
||||||
colorbar; % Add a colorbar
|
cbar1 = colorbar;
|
||||||
xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex');
|
cbar1.Label.Interpreter = 'latex';
|
||||||
ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex');
|
ylabel(cbar1,'$(\times 10^{-31})$','FontSize',16,'Rotation',270)
|
||||||
|
xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex');
|
||||||
|
ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex');
|
||||||
title('Roton instability boundary','fontsize',16,'interpreter','latex')
|
title('Roton instability boundary','fontsize',16,'interpreter','latex')
|
||||||
|
%}
|
||||||
|
|
||||||
%%
|
%%
|
||||||
function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi)
|
function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi)
|
||||||
@ -381,4 +329,7 @@ function ret = computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, g
|
|||||||
Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2)));
|
Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2)));
|
||||||
Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2));
|
Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2));
|
||||||
ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz);
|
ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz);
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user