Added comments to explain the code.

This commit is contained in:
Karthik 2024-11-22 16:31:49 +01:00
parent 988df2b5f3
commit db398fe775

View File

@ -1,6 +1,6 @@
function [evals, modes] = solveBogoliubovdeGennesIn2D(psi, Params, VDk, VParams, Transf, muchem)
Size = length(psi(:)); % 2-D matrix will be unwrapped and the corresponding matrix of (N^2)^2 elements solved for.
% 2-D matrix will be unravelled to a single column vector and the corresponding BdG matrix of (N^2)^2 elements solved for.
Size = length(psi(:));
Neigs = length(psi(:));
opts.tol = 1e-16;
opts.disp = 1;
@ -8,8 +8,8 @@ opts.issym = 0;
opts.isreal = 1;
opts.maxit = 1e4;
BdGVec = @(g) BdGSolver2D.BdGMatrix(g, psi, Params, VDk, VParams, Transf, muchem);
BdGVec = @(g) BdGSolver2D.BdGMatrix(g, psi, Params, VDk, VParams, Transf, muchem); % This function takes a column vector as input and returns a
% matrix-vector product which is also a column vector
[g,D] = eigs(BdGVec,Size,Neigs,'sr',opts);
evals = diag(D);
clear D;