Adding a script that plots images OD images from the raw hdf5 files and a script to carry out some calculations for the Accordion Lattice.
This commit is contained in:
parent
9b22207a2d
commit
d57cc41f87
114
EstimatesForAccordionLattice.m
Normal file
114
EstimatesForAccordionLattice.m
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
%% Physical constants
|
||||||
|
PlanckConstant = 6.62607015E-34;
|
||||||
|
PlanckConstantReduced = 6.62607015E-34/(2*pi);
|
||||||
|
FineStructureConstant = 7.2973525698E-3;
|
||||||
|
ElectronMass = 9.10938291E-31;
|
||||||
|
GravitationalConstant = 6.67384E-11;
|
||||||
|
ProtonMass = 1.672621777E-27;
|
||||||
|
AtomicMassUnit = 1.660539066E-27;
|
||||||
|
BohrRadius = 5.2917721067E-11;
|
||||||
|
BohrMagneton = 9.274009994E-24;
|
||||||
|
BoltzmannConstant = 1.38064852E-23;
|
||||||
|
StandardGravityAcceleration = 9.80665;
|
||||||
|
SpeedOfLight = 299792458;
|
||||||
|
StefanBoltzmannConstant = 5.670373E-8;
|
||||||
|
ElectronCharge = 1.602176634E-19;
|
||||||
|
VacuumPermeability = 1.25663706212E-6;
|
||||||
|
DielectricConstant = 8.8541878128E-12;
|
||||||
|
ElectronGyromagneticFactor = -2.00231930436153;
|
||||||
|
AvogadroConstant = 6.02214076E23;
|
||||||
|
ZeroKelvin = 273.15;
|
||||||
|
GravitationalAcceleration = 9.80553;
|
||||||
|
VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability);
|
||||||
|
HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius);
|
||||||
|
AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3
|
||||||
|
|
||||||
|
% Dy specific constants
|
||||||
|
Dy164Mass = 163.929174751*1.660539066E-27;
|
||||||
|
Dy164IsotopicAbundance = 0.2826;
|
||||||
|
DyMagneticMoment = 9.93*9.274009994E-24;
|
||||||
|
|
||||||
|
%% Lattice spacing
|
||||||
|
|
||||||
|
Wavelength = 532e-9;
|
||||||
|
theta = linspace(1.5, 18.0, 100);
|
||||||
|
LatticeSpacing = Wavelength ./ (2.*sin((theta*pi/180)/2));
|
||||||
|
|
||||||
|
figure(1);
|
||||||
|
set(gcf,'Position',[100 100 950 750])
|
||||||
|
plot(theta, LatticeSpacing * 1E6, LineWidth=2.0)
|
||||||
|
xlim([0 19]);
|
||||||
|
ylim([0.5 21]);
|
||||||
|
xlabel('Angle (deg)', FontSize=16)
|
||||||
|
ylabel('Lattice spacing (µm)', FontSize=16)
|
||||||
|
title(['\bf Upper bound = ' num2str(round(max(LatticeSpacing * 1E6),1)) ' µm ; \bf Lower bound = ' num2str(round(min(LatticeSpacing * 1E6),1)) ' µm'], FontSize=16)
|
||||||
|
grid on
|
||||||
|
%% Scaling of vertical trap frequency with lattice spacing
|
||||||
|
Wavelength = 532e-9;
|
||||||
|
a = 180 * (AtomicUnitOfPolarizability / (2 * SpeedOfLight * VacuumPermittivity));
|
||||||
|
Power = 5;
|
||||||
|
waist_y = 250E-6;
|
||||||
|
waist_z = 50E-6;
|
||||||
|
TrapDepth = ((8 * a * Power) / (pi * waist_y * waist_z)) / (BoltzmannConstant * 1E-6); % in µK
|
||||||
|
thetas = linspace(1.5, 18.0, 100);
|
||||||
|
LatticeSpacings = zeros(1, length(thetas));
|
||||||
|
Omega_z = zeros(1, length(thetas));
|
||||||
|
|
||||||
|
for idx = 1:length(thetas)
|
||||||
|
theta = 0.5 * thetas(idx) .* pi/180;
|
||||||
|
LatticeSpacings(idx) = Wavelength ./ (2.*sin(theta));
|
||||||
|
Omega_z(idx) = sqrt(((16 * a * Power) / (pi * Dy164Mass * waist_y * waist_z)) * ...
|
||||||
|
((2 * (cos(theta)/waist_z)^2) + ((Wavelength * sin(theta)/pi)^2 * ...
|
||||||
|
((1/waist_y^4) + (1/waist_z^4))) + (pi / LatticeSpacings(idx))^2));
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
nu_z = Omega_z ./ (2*pi);
|
||||||
|
|
||||||
|
figure(2);
|
||||||
|
set(gcf,'Position',[100 100 950 750])
|
||||||
|
plot(LatticeSpacings * 1E6, nu_z * 1E-3, LineWidth=2.0)
|
||||||
|
xlim([0.5 21]);
|
||||||
|
xlabel('Lattice spacing (µm)', FontSize=16)
|
||||||
|
ylabel('Trap frequency (kHz)', FontSize=16)
|
||||||
|
title(['\bf Upper bound = ' num2str(round(max(nu_z * 1E-3),2)) ' kHz ; \bf Lower bound = ' num2str(round(min(nu_z * 1E-3),2)) ' kHz'], FontSize=16)
|
||||||
|
grid on
|
||||||
|
|
||||||
|
%% Scaling of Recoil Energy - All energy scales in an optical lattice are naturally parametrized by the lattice recoil energy
|
||||||
|
|
||||||
|
LatticeSpacing = linspace(2E-6, 20E-6, 100);
|
||||||
|
RecoilEnergy = PlanckConstant^2 ./ (8 .* Dy164Mass .* LatticeSpacing.^2);
|
||||||
|
|
||||||
|
figure(3);
|
||||||
|
set(gcf,'Position',[100 100 950 750])
|
||||||
|
semilogy(LatticeSpacing * 1E6, RecoilEnergy/PlanckConstant, LineWidth=2.0, DisplayName=['\bf Max = ' num2str(round(max(RecoilEnergy / PlanckConstant),1)) ' Hz; Min = ' num2str(round(min(RecoilEnergy / PlanckConstant),1)) ' Hz'])
|
||||||
|
xlim([0.5 21]);
|
||||||
|
xlabel('Lattice spacing (µm)', FontSize=16)
|
||||||
|
ylabel('Recoil Energy (Hz)', FontSize=16)
|
||||||
|
title('\bf Scaling of Recoil Energy - All energy scales in an optical lattice are naturally parametrized by the lattice recoil energy', FontSize=12)
|
||||||
|
grid on
|
||||||
|
legend(FontSize=12)
|
||||||
|
|
||||||
|
%% Interference pattern spacing in ToF - de Broglie wavelength associated with the relative motion of atoms
|
||||||
|
|
||||||
|
ExpansionTime = linspace(1E-3, 20.0E-3, 100);
|
||||||
|
|
||||||
|
figure(4);
|
||||||
|
set(gcf,'Position',[100 100 950 750])
|
||||||
|
labels = [];
|
||||||
|
|
||||||
|
for ls = [2E-6:2E-6:5E-6 6E-6:6E-6:20E-6]
|
||||||
|
InteferencePatternSpacing = (PlanckConstant .* ExpansionTime) ./ (Dy164Mass * ls);
|
||||||
|
plot(ExpansionTime*1E3, InteferencePatternSpacing* 1E6, LineWidth=2.0, DisplayName=['\bf Lattice spacing = ' num2str(round(max(ls * 1E6),1)) ' µm'])
|
||||||
|
hold on
|
||||||
|
end
|
||||||
|
xlim([0 22]);
|
||||||
|
xlabel('Free expansion time (milliseconds)', FontSize=16)
|
||||||
|
ylabel('Interference pattern period (µm)', FontSize=16)
|
||||||
|
title('\bf Interference of condensates - Fringe period is the de Broglie wavelength associated with the relative motion of atoms', FontSize=12)
|
||||||
|
legend(labels, 'Location','NorthWest', FontSize=12);
|
||||||
|
grid on
|
||||||
|
legend show
|
||||||
|
|
||||||
|
|
||||||
|
|
223
plotImages.m
Normal file
223
plotImages.m
Normal file
@ -0,0 +1,223 @@
|
|||||||
|
%% Parameters
|
||||||
|
|
||||||
|
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", "/images/Vertical_Axis_Camera/in_situ_absorption"];
|
||||||
|
|
||||||
|
folderPath = "C:/Users/Karthik/Documents/GitRepositories/Calculations/24/";
|
||||||
|
|
||||||
|
run = '0086';
|
||||||
|
|
||||||
|
folderPath = strcat(folderPath, run);
|
||||||
|
|
||||||
|
cam = 5;
|
||||||
|
|
||||||
|
angle = 90;
|
||||||
|
center = [2100, 1150];
|
||||||
|
span = [500, 500];
|
||||||
|
fraction = [0.1, 0.1];
|
||||||
|
|
||||||
|
pixel_size = 4.6e-6;
|
||||||
|
|
||||||
|
%% Compute OD image, rotate and extract ROI for analysis
|
||||||
|
% Get a list of all files in the folder with the desired file name pattern.
|
||||||
|
filePattern = fullfile(folderPath, '*.h5');
|
||||||
|
files = dir(filePattern);
|
||||||
|
refimages = zeros(span(1) + 1, span(2) + 1, length(files));
|
||||||
|
absimages = zeros(span(1) + 1, span(2) + 1, length(files));
|
||||||
|
|
||||||
|
|
||||||
|
for k = 1 : length(files)
|
||||||
|
baseFileName = files(k).name;
|
||||||
|
fullFileName = fullfile(files(k).folder, baseFileName);
|
||||||
|
|
||||||
|
fprintf(1, 'Now reading %s\n', fullFileName);
|
||||||
|
|
||||||
|
atm_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle));
|
||||||
|
bkg_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
|
||||||
|
dark_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
|
||||||
|
|
||||||
|
refimages(:,:,k) = subtract_offset(crop_image(bkg_img, center, span), fraction);
|
||||||
|
absimages(:,:,k) = subtract_offset(crop_image(calculate_OD(atm_img, bkg_img, dark_img), center, span), fraction);
|
||||||
|
|
||||||
|
end
|
||||||
|
%% Fringe removal
|
||||||
|
|
||||||
|
optrefimages = removefringesInImage(absimages, refimages);
|
||||||
|
absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :);
|
||||||
|
|
||||||
|
nimgs = size(absimages_fringe_removed,3);
|
||||||
|
od_imgs = cell(1, nimgs);
|
||||||
|
for i = 1:nimgs
|
||||||
|
od_imgs{i} = absimages_fringe_removed(:, :, i);
|
||||||
|
end
|
||||||
|
|
||||||
|
%%
|
||||||
|
figure(1)
|
||||||
|
clf
|
||||||
|
r = 120;
|
||||||
|
x = 250;
|
||||||
|
y = 250;
|
||||||
|
for k = 1 : length(od_imgs)
|
||||||
|
imagesc(xvals, yvals, od_imgs{k})
|
||||||
|
hold on
|
||||||
|
th = 0:pi/50:2*pi;
|
||||||
|
xunit = r * cos(th) + x;
|
||||||
|
yunit = r * sin(th) + y;
|
||||||
|
h = plot(xunit, yunit, Color='yellow');
|
||||||
|
xlabel('µm', 'FontSize', 16)
|
||||||
|
ylabel('µm', 'FontSize', 16)
|
||||||
|
axis equal tight;
|
||||||
|
hcb = colorbar;
|
||||||
|
hL = ylabel(hcb, 'Optical Density', 'FontSize', 16);
|
||||||
|
set(hL,'Rotation',-90);
|
||||||
|
colormap jet;
|
||||||
|
set(gca,'CLim',[0 1.0]);
|
||||||
|
set(gca,'YDir','normal')
|
||||||
|
title('DMD projection: Circle of radius 200 pixels', 'FontSize', 16);
|
||||||
|
|
||||||
|
drawnow;
|
||||||
|
end
|
||||||
|
|
||||||
|
%% Helper Functions
|
||||||
|
|
||||||
|
function ret = get_offset_from_corner(img, x_fraction, y_fraction)
|
||||||
|
% image must be a 2D numerical array
|
||||||
|
[dim1, dim2] = size(img);
|
||||||
|
|
||||||
|
s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction));
|
||||||
|
s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2);
|
||||||
|
s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction));
|
||||||
|
s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2);
|
||||||
|
|
||||||
|
ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
|
||||||
|
end
|
||||||
|
|
||||||
|
function ret = subtract_offset(img, fraction)
|
||||||
|
% Remove the background from the image.
|
||||||
|
% :param dataArray: The image
|
||||||
|
% :type dataArray: xarray DataArray
|
||||||
|
% :param x_fraction: The fraction of the pixels used in x axis
|
||||||
|
% :type x_fraction: float
|
||||||
|
% :param y_fraction: The fraction of the pixels used in y axis
|
||||||
|
% :type y_fraction: float
|
||||||
|
% :return: The image after removing background
|
||||||
|
% :rtype: xarray DataArray
|
||||||
|
|
||||||
|
x_fraction = fraction(1);
|
||||||
|
y_fraction = fraction(2);
|
||||||
|
offset = get_offset_from_corner(img, x_fraction, y_fraction);
|
||||||
|
ret = img - offset;
|
||||||
|
end
|
||||||
|
|
||||||
|
function ret = crop_image(img, center, span)
|
||||||
|
% Crop the image according to the region of interest (ROI).
|
||||||
|
% :param dataSet: The images
|
||||||
|
% :type dataSet: xarray DataArray or DataSet
|
||||||
|
% :param center: The center of region of interest (ROI)
|
||||||
|
% :type center: tuple
|
||||||
|
% :param span: The span of region of interest (ROI)
|
||||||
|
% :type span: tuple
|
||||||
|
% :return: The cropped images
|
||||||
|
% :rtype: xarray DataArray or DataSet
|
||||||
|
|
||||||
|
x_start = floor(center(1) - span(1) / 2);
|
||||||
|
x_end = floor(center(1) + span(1) / 2);
|
||||||
|
y_start = floor(center(2) - span(2) / 2);
|
||||||
|
y_end = floor(center(2) + span(2) / 2);
|
||||||
|
|
||||||
|
ret = img(y_start:y_end, x_start:x_end);
|
||||||
|
end
|
||||||
|
|
||||||
|
function ret = calculate_OD(imageAtom, imageBackground, imageDark)
|
||||||
|
% Calculate the OD image for absorption imaging.
|
||||||
|
% :param imageAtom: The image with atoms
|
||||||
|
% :type imageAtom: numpy array
|
||||||
|
% :param imageBackground: The image without atoms
|
||||||
|
% :type imageBackground: numpy array
|
||||||
|
% :param imageDark: The image without light
|
||||||
|
% :type imageDark: numpy array
|
||||||
|
% :return: The OD images
|
||||||
|
% :rtype: numpy array
|
||||||
|
|
||||||
|
numerator = imageBackground - imageDark;
|
||||||
|
denominator = imageAtom - imageDark;
|
||||||
|
|
||||||
|
numerator(numerator == 0) = 1;
|
||||||
|
denominator(denominator == 0) = 1;
|
||||||
|
|
||||||
|
ret = -log(double(abs(denominator ./ numerator)));
|
||||||
|
|
||||||
|
if numel(ret) == 1
|
||||||
|
ret = ret(1);
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
|
||||||
|
% removefringesInImage - Fringe removal and noise reduction from absorption images.
|
||||||
|
% Creates an optimal reference image for each absorption image in a set as
|
||||||
|
% a linear combination of reference images, with coefficients chosen to
|
||||||
|
% minimize the least-squares residuals between each absorption image and
|
||||||
|
% the optimal reference image. The coefficients are obtained by solving a
|
||||||
|
% linear set of equations using matrix inverse by LU decomposition.
|
||||||
|
%
|
||||||
|
% Application of the algorithm is described in C. F. Ockeloen et al, Improved
|
||||||
|
% detection of small atom numbers through image processing, arXiv:1007.2136 (2010).
|
||||||
|
%
|
||||||
|
% Syntax:
|
||||||
|
% [optrefimages] = removefringesInImage(absimages,refimages,bgmask);
|
||||||
|
%
|
||||||
|
% Required inputs:
|
||||||
|
% absimages - Absorption image data,
|
||||||
|
% typically 16 bit grayscale images
|
||||||
|
% refimages - Raw reference image data
|
||||||
|
% absimages and refimages are both cell arrays containing
|
||||||
|
% 2D array data. The number of refimages can differ from the
|
||||||
|
% number of absimages.
|
||||||
|
%
|
||||||
|
% Optional inputs:
|
||||||
|
% bgmask - Array specifying background region used,
|
||||||
|
% 1=background, 0=data. Defaults to all ones.
|
||||||
|
% Outputs:
|
||||||
|
% optrefimages - Cell array of optimal reference images,
|
||||||
|
% equal in size to absimages.
|
||||||
|
%
|
||||||
|
|
||||||
|
% Dependencies: none
|
||||||
|
%
|
||||||
|
% Authors: Shannon Whitlock, Caspar Ockeloen
|
||||||
|
% Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and
|
||||||
|
% S. Whitlock, Improved detection of small atom numbers through
|
||||||
|
% image processing, arXiv:1007.2136
|
||||||
|
% Email:
|
||||||
|
% May 2009; Last revision: 11 August 2010
|
||||||
|
|
||||||
|
% Process inputs
|
||||||
|
|
||||||
|
% Set variables, and flatten absorption and reference images
|
||||||
|
nimgs = size(absimages,3);
|
||||||
|
nimgsR = size(refimages,3);
|
||||||
|
xdim = size(absimages(:,:,1),2);
|
||||||
|
ydim = size(absimages(:,:,1),1);
|
||||||
|
|
||||||
|
R = single(reshape(refimages,xdim*ydim,nimgsR));
|
||||||
|
A = single(reshape(absimages,xdim*ydim,nimgs));
|
||||||
|
optrefimages=zeros(size(absimages)); % preallocate
|
||||||
|
|
||||||
|
if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end
|
||||||
|
k = find(bgmask(:)==1); % Index k specifying background region
|
||||||
|
|
||||||
|
% Ensure there are no duplicate reference images
|
||||||
|
% R=unique(R','rows')'; % comment this line if you run out of memory
|
||||||
|
|
||||||
|
% Decompose B = R*R' using singular value or LU decomposition
|
||||||
|
[L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition
|
||||||
|
|
||||||
|
for j=1:nimgs
|
||||||
|
b=R(k,:)'*A(k,j);
|
||||||
|
% Obtain coefficients c which minimise least-square residuals
|
||||||
|
lower.LT = true; upper.UT = true;
|
||||||
|
c = linsolve(U,linsolve(L,b(p,:),lower),upper);
|
||||||
|
|
||||||
|
% Compute optimised reference image
|
||||||
|
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
|
||||||
|
end
|
||||||
|
end
|
Loading…
Reference in New Issue
Block a user