From cdb25d5395dc3000841b8f428b59fccc1f221a9f Mon Sep 17 00:00:00 2001 From: Karthik Chandrashekara Date: Wed, 22 Jan 2025 16:10:46 +0100 Subject: [PATCH] Folder renaming, restructuring. --- Dipolar-Gas-Simulator/+Scripts/run_locally.m | 8 +- Estimations/RotonInstability/AnalyzeResults.m | 364 ++++ .../RotonInstability/DipolarDispersion2D.m | 251 +++ .../RotonInstability/ExtractingKRoton.m | 503 ++++++ .../RotonInstability/FeshbachResonances.nb | 1526 +++++++++++++++++ .../RotonInstability/RIBForTiltedDipoles.m | 146 ++ .../RIBForTiltedDipoles_TwoDirections.m | 318 ++++ .../ReproduceBlairBlakieResults.m | 335 ++++ .../RotonInstability/ScalingOfTheQFTerm.m | 89 + .../bwhpc_matlab_gpe_sim_cpu.slurm | 38 + .../roton_instability_project.json | 1 + .../roton_instability_project.tar | Bin 0 -> 266240 bytes 12 files changed, 3575 insertions(+), 4 deletions(-) create mode 100644 Estimations/RotonInstability/AnalyzeResults.m create mode 100644 Estimations/RotonInstability/DipolarDispersion2D.m create mode 100644 Estimations/RotonInstability/ExtractingKRoton.m create mode 100644 Estimations/RotonInstability/FeshbachResonances.nb create mode 100644 Estimations/RotonInstability/RIBForTiltedDipoles.m create mode 100644 Estimations/RotonInstability/RIBForTiltedDipoles_TwoDirections.m create mode 100644 Estimations/RotonInstability/ReproduceBlairBlakieResults.m create mode 100644 Estimations/RotonInstability/ScalingOfTheQFTerm.m create mode 100644 Estimations/RotonInstability/bwhpc_matlab_gpe_sim_cpu.slurm create mode 100644 Estimations/RotonInstability/roton_instability_project.json create mode 100644 Estimations/RotonInstability/roton_instability_project.tar diff --git a/Dipolar-Gas-Simulator/+Scripts/run_locally.m b/Dipolar-Gas-Simulator/+Scripts/run_locally.m index 2f72c10..26c662a 100644 --- a/Dipolar-Gas-Simulator/+Scripts/run_locally.m +++ b/Dipolar-Gas-Simulator/+Scripts/run_locally.m @@ -174,15 +174,15 @@ solver.Potential = pot.trap(); OptionsStruct = struct; -OptionsStruct.NumberOfAtoms = 4.0102e+07; +OptionsStruct.NumberOfAtoms = 4.148e+07; OptionsStruct.DipolarPolarAngle = 0; OptionsStruct.DipolarAzimuthAngle = 0; -OptionsStruct.ScatteringLength = 101.9903; +OptionsStruct.ScatteringLength = 101.35; OptionsStruct.TrapFrequencies = [0, 0, 72.4]; OptionsStruct.TrapPotentialType = 'None'; -OptionsStruct.NumberOfGridPoints = [128, 128]; +OptionsStruct.NumberOfGridPoints = [256, 256]; OptionsStruct.Dimensions = [100, 100]; OptionsStruct.TimeStepSize = 500E-6; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s @@ -192,7 +192,7 @@ OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; -OptionsStruct.VariationalWidth = 5; +OptionsStruct.VariationalWidth = 6; OptionsStruct.WidthLowerBound = 1; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; diff --git a/Estimations/RotonInstability/AnalyzeResults.m b/Estimations/RotonInstability/AnalyzeResults.m new file mode 100644 index 0000000..95703ba --- /dev/null +++ b/Estimations/RotonInstability/AnalyzeResults.m @@ -0,0 +1,364 @@ +%% Across range of a_s, n + +% load('.\Results\ExtractingKRoton_Result_Below1000.mat') +% load('.\Results\ExtractingKRoton_Result_Above1000.mat') +load('.\Results\ExtractingKRoton_Result_Above10000.mat') + +PlanckConstantReduced = 6.62607015E-34/(2*pi); +AtomicMassUnit = 1.660539066E-27; +Dy164Mass = 163.929174751*AtomicMassUnit; +VacuumPermeability = 1.25663706212E-6; +BohrMagneton = 9.274009994E-24; +BohrRadius = 5.2917721067E-11; +DyMagneticMoment = 9.93*BohrMagneton; + +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + +% Create a tiled layout with tighter spacing +figure(17) +clf +set(gcf,'Position',[50 50 1800 500]) +t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid + +% First subplot +nexttile; % Equivalent to subplot(2, 2, 1) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + eps_dd_values = data_struct(idx).eps_dd_values; + plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('$\epsilon_{dd}$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Second subplot +nexttile; % Equivalent to subplot(2, 2, 2) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + n_values = data_struct(idx).n_values; + plot(theta_values, n_values * 1E-15, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('$n (\times 10^{3} \mu m^{-2})$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Third subplot +nexttile; % Equivalent to subplot(2, 2, 3) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + k_roton_values = data_struct(idx).k_roton_values; + plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex'); +grid on +legend('location', 'northeast','fontsize', 10, 'Interpreter','latex') + +% Adjust layout to minimize space +t.TileSpacing = 'compact'; % Minimize space between tiles +t.Padding = 'compact'; % Minimize padding around the layout + +% Convert to units relevant to experiment + +% Create a tiled layout with tighter spacing +figure(18) +clf +set(gcf,'Position',[50 50 1800 500]) +t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid + +% First subplot +nexttile; % Equivalent to subplot(2, 2, 1) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + eps_dd_values = data_struct(idx).eps_dd_values; + plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('$a_s (\times a_o)$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'southeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Second subplot +nexttile; % Equivalent to subplot(2, 2, 2) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + n_values = data_struct(idx).n_values; + Lx = 10e-6; + Ly = 10e-6; + AtomNumber = n_values .* Lx * Ly; + plot(theta_values, AtomNumber * 1e-5, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('Atom number in a trap of area 100 $\mu m^2 (\times 10^{5})$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Third subplot +nexttile; % Equivalent to subplot(2, 2, 3) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + lambda_roton_values = (2 * pi) ./ data_struct(idx).k_roton_values; + plot(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$\lambda_{roton} (\mu m)$','fontsize',16,'interpreter','latex'); +grid on +legend('location', 'northeast','fontsize', 10, 'Interpreter','latex') + +% Adjust layout to minimize space +t.TileSpacing = 'compact'; % Minimize space between tiles +t.Padding = 'compact'; % Minimize padding around the layout + +%% Fixed Density results + +load('.\Results\ExtractingKRoton_Result_FixedDensity_phi0.mat') + +PlanckConstantReduced = 6.62607015E-34/(2*pi); +AtomicMassUnit = 1.660539066E-27; +Dy164Mass = 163.929174751*AtomicMassUnit; +VacuumPermeability = 1.25663706212E-6; +BohrMagneton = 9.274009994E-24; +BohrRadius = 5.2917721067E-11; +DyMagneticMoment = 9.93*BohrMagneton; + +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + +% Create a tiled layout with tighter spacing +figure(19) +clf +set(gcf,'Position',[50 50 1200 500]) +t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid + +% First subplot +nexttile; +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + eps_dd_values = data_struct(idx).eps_dd_values; + plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('$\epsilon_{dd}$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Second subplot +nexttile; +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + k_roton_values = data_struct(idx).k_roton_values; + plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex'); +grid on +legend('location', 'northeast','fontsize', 10, 'Interpreter','latex') + +% Adjust layout to minimize space +t.TileSpacing = 'compact'; % Minimize space between tiles +t.Padding = 'compact'; % Minimize padding around the layout + +% Create a tiled layout with tighter spacing +figure(20) +clf +set(gcf,'Position',[50 50 1200 500]) +t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid + +% First subplot +nexttile; +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + eps_dd_values = data_struct(idx).eps_dd_values; + plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('$a_s (\times a_o)$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'northwest', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Second subplot +nexttile; +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + lambda_roton_values = (2 * pi) ./ data_struct(idx).k_roton_values; + semilogy(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +% ylim([0 2]) +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$\lambda_{roton} (\mu m)$','fontsize',16,'interpreter','latex'); +grid on +legend('location', 'southeast','fontsize', 10, 'Interpreter','latex') + +% Adjust layout to minimize space +t.TileSpacing = 'compact'; % Minimize space between tiles +t.Padding = 'compact'; % Minimize padding around the layout + +%% Fixed Density results - compare two orthogonal directions + +data0 = load('.\Results\ExtractingKRoton_Result_FixedDensity_phi0.mat'); +data90 = load('.\Results\ExtractingKRoton_Result_FixedDensity_phi90.mat'); + +PlanckConstantReduced = 6.62607015E-34/(2*pi); +AtomicMassUnit = 1.660539066E-27; +Dy164Mass = 163.929174751*AtomicMassUnit; +VacuumPermeability = 1.25663706212E-6; +BohrMagneton = 9.274009994E-24; +BohrRadius = 5.2917721067E-11; +DyMagneticMoment = 9.93*BohrMagneton; + +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + +% Create a tiled layout with tighter spacing +figure(21) +clf +set(gcf,'Position',[50 50 1200 500]) +t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid + +idx = 4; + +% First subplot +nexttile; +theta_values = data0.data_struct(idx).theta_values; +eps_dd_values = data0.data_struct(idx).eps_dd_values; +plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']); +hold on +theta_values = data90.data_struct(idx).theta_values; +eps_dd_values = data90.data_struct(idx).eps_dd_values; +plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']); +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('$\epsilon_{dd}$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Second subplot +nexttile; +theta_values = data0.data_struct(idx).theta_values; +k_roton_values = data0.data_struct(idx).k_roton_values; +plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']); +hold on +theta_values = data90.data_struct(idx).theta_values; +k_roton_values = data90.data_struct(idx).k_roton_values; +plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']); +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex'); +grid on +legend('location', 'northeast','fontsize', 10, 'Interpreter','latex') + +% Adjust layout to minimize space +t.TileSpacing = 'compact'; % Minimize space between tiles +t.Padding = 'compact'; % Minimize padding around the layout + + +% Create a tiled layout with tighter spacing +figure(22) +clf +set(gcf,'Position',[50 50 1200 500]) +t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid + +% First subplot +nexttile; +theta_values = data0.data_struct(idx).theta_values; +eps_dd_values = data0.data_struct(idx).eps_dd_values; +plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']); +hold on +theta_values = data90.data_struct(idx).theta_values; +eps_dd_values = data90.data_struct(idx).eps_dd_values; +plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']); +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('$a_s (\times a_o)$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'northwest', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Second subplot +nexttile; +theta_values = data0.data_struct(idx).theta_values; +k_roton_values = data0.data_struct(idx).k_roton_values; +lambda_roton_values = (2 * pi) ./ k_roton_values; +semilogy(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']); +hold on +theta_values = data90.data_struct(idx).theta_values; +k_roton_values = data90.data_struct(idx).k_roton_values; +lambda_roton_values = (2 * pi) ./ k_roton_values; +semilogy(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']); +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$\lambda_{roton} (\mu m)$','fontsize',16,'interpreter','latex'); +grid on +legend('location', 'northwest','fontsize', 10, 'Interpreter','latex') + +% Adjust layout to minimize space +t.TileSpacing = 'compact'; % Minimize space between tiles +t.Padding = 'compact'; % Minimize padding around the layout + +%% +%{ +figure(13) +clf +set(gcf,'Position',[50 50 950 750]) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + eps_dd_values = data_struct(idx).eps_dd_values; + plot(theta_values, eps_dd_values, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$\epsilon_{dd}$','fontsize',16,'interpreter','latex'); +% title([''],'fontsize',16,'interpreter','latex') +grid on +legend('location', 'northeast','fontsize', 16, 'Interpreter','latex') + +figure(14) +clf +set(gcf,'Position',[50 50 950 750]) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + eps_dd_values = data_struct(idx).eps_dd_values; + plot(theta_values, (1./eps_dd_values) * (add/BohrRadius), '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$a_s (\times a_o)$','fontsize',16,'interpreter','latex'); +% title([''],'fontsize',16,'interpreter','latex') +grid on +legend('location', 'southeast','fontsize', 16, 'Interpreter','latex') + +figure(15) +clf +set(gcf,'Position',[50 50 950 750]) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + n_values = data_struct(idx).n_values; + plot(theta_values, n_values * 1E-15, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$n (\times 10^{3} \mu m^{-2})$','fontsize',16,'interpreter','latex'); +% title([''],'fontsize',16,'interpreter','latex') +grid on +legend('location', 'northeast','fontsize', 16, 'Interpreter','latex') + +figure(16) +clf +set(gcf,'Position',[50 50 950 750]) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + k_roton_values = data_struct(idx).k_roton_values; + plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex'); +% title([''],'fontsize',16,'interpreter','latex') +grid on +legend('location', 'northeast','fontsize', 16, 'Interpreter','latex') +%} diff --git a/Estimations/RotonInstability/DipolarDispersion2D.m b/Estimations/RotonInstability/DipolarDispersion2D.m new file mode 100644 index 0000000..b487963 --- /dev/null +++ b/Estimations/RotonInstability/DipolarDispersion2D.m @@ -0,0 +1,251 @@ +%% Physical constants +PlanckConstant = 6.62607015E-34; +PlanckConstantReduced = 6.62607015E-34/(2*pi); +FineStructureConstant = 7.2973525698E-3; +ElectronMass = 9.10938291E-31; +GravitationalConstant = 6.67384E-11; +ProtonMass = 1.672621777E-27; +AtomicMassUnit = 1.660539066E-27; +BohrRadius = 5.2917721067E-11; +BohrMagneton = 9.274009994E-24; +BoltzmannConstant = 1.38064852E-23; +StandardGravityAcceleration = 9.80665; +SpeedOfLight = 299792458; +StefanBoltzmannConstant = 5.670373E-8; +ElectronCharge = 1.602176634E-19; +VacuumPermeability = 1.25663706212E-6; +DielectricConstant = 8.8541878128E-12; +ElectronGyromagneticFactor = -2.00231930436153; +AvogadroConstant = 6.02214076E23; +ZeroKelvin = 273.15; +GravitationalAcceleration = 9.80553; +VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); +HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); +AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 + +% Dy specific constants +Dy164Mass = 163.929174751*AtomicMassUnit; +Dy164IsotopicAbundance = 0.2826; +DyMagneticMoment = 9.93*BohrMagneton; + +%% 2-D DDI Potential in k-space, with Gaussian ansatz width determined by constrained minimization +% With user-defined values of interaction, density and tilt + +% w0 = 2*pi*61.6316; % Angular frequency unit [s^-1] +% l0 = sqrt(PlanckConstantReduced/(Dy164Mass*w0)); +% % Defining a harmonic oscillator length - heredue to the choice of w0, l0 +% is 1 micrometer + +wz = 2 * pi * 300; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length + +% Number of grid points in each direction +Params.Nx = 128; +Params.Ny = 128; +Params.Lx = 150*1e-6; +Params.Ly = 150*1e-6; +[Transf] = setupSpace(Params); + +nadd2s = 0.110; % Number density * add^2 +as_to_add = 0.782; % 1/edd +Params.theta = 57; % Polar angle of dipole moment +Params.eta = 0; % Azimuthal angle of dipole moment + +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +gdd = VacuumPermeability*DyMagneticMoment^2/3; + +x0 = 5; +Aineq = []; +Bineq = []; +Aeq = []; +Beq = []; +lb = [1]; +ub = [10]; +nonlcon = []; +fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + +AtomNumberDensity = nadd2s / add^2; % Number density of atoms +as = as_to_add * add; % Scattering length +eps_dd = add/as; % Relative interaction strength +gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength +TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); +sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + +MeanWidth = sigma * lz; + +% == 2-D DDI Potential in k-space == % +VDk = compute2DPotentialInMomentumSpace(Transf, Params, MeanWidth); +VDk_fftshifted = fftshift(VDk); + +figure(8) +clf +set(gcf,'Position',[50 50 950 750]) +imagesc(fftshift(Transf.kx)*1e-6, fftshift(Transf.ky)*1e-6, VDk_fftshifted); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +cbar1 = colorbar; +cbar1.Label.Interpreter = 'latex'; +xlabel('$k_x l_o$','fontsize',16,'interpreter','latex'); +ylabel('$k_y l_o$','fontsize',16,'interpreter','latex'); +title(['2-D DDI Potential: $\theta = ',num2str(Params.theta), '; \eta = ', num2str(Params.eta),'$'],'fontsize',16,'interpreter','latex') + +% == Quantum Fluctuations term == % +gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); +gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); +gQF = gamma5 * gammaQF; + +EpsilonK = zeros(length(Transf.ky), length(Transf.kx)); +gs_tilde = gs / (sqrt(2*pi) * MeanWidth); + +% == Dispersion relation == % +for idx = 1:length(Transf.kx) + for jdx = 1:length(Transf.ky) + DeltaK = ((PlanckConstantReduced^2 .* (Transf.kx(idx).^2 + Transf.ky(jdx).^2)) ./ (2 * Dy164Mass)) + (2 * AtomNumberDensity * gs_tilde) + ((2 * AtomNumberDensity) .* VDk_fftshifted(jdx, idx)) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK(jdx, idx) = sqrt(((PlanckConstantReduced^2 .* (Transf.kx(idx).^2 + Transf.ky(jdx).^2)) ./ (2 * Dy164Mass)) .* DeltaK); + end +end + +EpsilonK = double(imag(EpsilonK) ~= 0); % 'isreal' returns 0 for complex numbers and 1 for real numbers, so we negate it + +figure(9) +clf +set(gcf,'Position',[50 50 950 750]) +imagesc(fftshift(Transf.kx)*1e-6, fftshift(Transf.ky)*1e-6, EpsilonK); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +cbar1 = colorbar; +cbar1.Label.Interpreter = 'latex'; +xlabel('$k_x l_o$','fontsize',16,'interpreter','latex'); +ylabel('$k_y l_o$','fontsize',16,'interpreter','latex'); +title(['2-D Dispersion: $\theta = ',num2str(Params.theta), '; \eta = ', num2str(Params.eta),'$'],'fontsize',16,'interpreter','latex') + +%% Cycle through angles + +% Define values for theta and eta +theta_values = 0:10:90; % Range of theta values (you can modify this) +eta_values = 0:10:90; % Range of eta values (you can modify this) + +% Set up VideoWriter object to produce a movie +% v = VideoWriter('potential_movie', 'MPEG-4'); % Create a video object +% v.FrameRate = 5; % Frame rate of the video +% open(v); % Open the video file + +% Loop over theta and eta values +for theta = theta_values + for eta = eta_values + % Update Params with current theta and eta + Params.theta = theta; + Params.eta = eta; + + % Compute the potential for the current theta and eta + % == 2-D DDI Potential in k-space == % + VDk = compute2DPotentialInMomentumSpace(Transf, Params, MeanWidth); + VDk_fftshifted = fftshift(VDk); + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + EpsilonK = zeros(length(Transf.ky), length(Transf.kx)); + gs_tilde = gs / (sqrt(2*pi) * MeanWidth); + + % == Dispersion relation == % + for idx = 1:length(Transf.kx) + for jdx = 1:length(Transf.ky) + DeltaK = ((PlanckConstantReduced^2 .* (Transf.kx(idx).^2 + Transf.ky(jdx).^2)) ./ (2 * Dy164Mass)) + (2 * AtomNumberDensity * gs_tilde) + ((2 * AtomNumberDensity) .* VDk_fftshifted(jdx, idx)) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK(jdx, idx) = sqrt(((PlanckConstantReduced^2 .* (Transf.kx(idx).^2 + Transf.ky(jdx).^2)) ./ (2 * Dy164Mass)) .* DeltaK); + end + end + + EpsilonK = double(imag(EpsilonK) ~= 0); % 'isreal' returns 0 for complex numbers and 1 for real numbers, so we negate it + + % Plot the result + figure(10) + clf + set(gcf,'Position',[50 50 950 750]) + imagesc(fftshift(Transf.kx)*1e-6, fftshift(Transf.ky)*1e-6, EpsilonK); % Specify x and y data for axes + set(gca, 'YDir', 'normal'); % Correct the y-axis direction + cbar1 = colorbar; + cbar1.Label.Interpreter = 'latex'; + xlabel('$k_x l_o$','fontsize',16,'interpreter','latex'); + ylabel('$k_y l_o$','fontsize',16,'interpreter','latex'); + title(['2-D Dispersion: $\theta = ',num2str(Params.theta), '; \eta = ', num2str(Params.eta),'$'],'fontsize',16,'interpreter','latex') + + % Capture the frame and write to video + % frame = getframe(gcf); % Capture the current figure + % writeVideo(v, frame); % Write the frame to the video + end +end + +% Close the video file +% close(v); + +%% +function [Transf] = setupSpace(Params) + + Transf.Xmax = 0.5*Params.Lx; + Transf.Ymax = 0.5*Params.Ly; + + Nx = Params.Nx; + Ny = Params.Ny; + + % Fourier grids + x = linspace(-0.5*Params.Lx,0.5*Params.Lx-Params.Lx/Params.Nx,Params.Nx); + Kmax = pi*Params.Nx/Params.Lx; + kx = linspace(-Kmax,Kmax,Nx+1); + kx = kx(1:end-1); + dkx = kx(2)-kx(1); + kx = fftshift(kx); + + y = linspace(-0.5*Params.Ly,0.5*Params.Ly-Params.Ly/Params.Ny,Params.Ny); + Kmax = pi*Params.Ny/Params.Ly; + ky = linspace(-Kmax,Kmax,Ny+1); + ky = ky(1:end-1); + dky = ky(2)-ky(1); + ky = fftshift(ky); + + [Transf.X,Transf.Y] = ndgrid(x,y); + [Transf.KX,Transf.KY] = ndgrid(kx,ky); + Transf.x = x; + Transf.y = y; + Transf.kx = kx; + Transf.ky = ky; + Transf.dx = x(2)-x(1); + Transf.dy = y(2)-y(1); + Transf.dkx = dkx; + Transf.dky = dky; +end + +function VDk = compute2DPotentialInMomentumSpace(Transf, Params, MeanWidth) +% == Calculating the DDI potential in Fourier space with appropriate cutoff == % + % Angles of the dipole moment are defined in and away from the X-Z plane + % Interaction in K space + QX = Transf.KX*MeanWidth/sqrt(2); + QY = Transf.KY*MeanWidth/sqrt(2); + + Qsq = QX.^2 + QY.^2; + absQ = sqrt(Qsq); + QDsq = QX.^2*cos(Params.eta)^2 + QY.^2*sin(Params.eta)^2; % eta here is the azimuthal angle of the dipole moment (angle from the x-axis) + + % Bare interaction + Fpar = -1 + 3*sqrt(pi)*QDsq.*erfcx(absQ)./absQ; % Scaled complementary error function erfcx(x) = e^(x^2) * erfc(x) + Fperp = 2 - 3*sqrt(pi).*absQ.*erfcx(absQ); + Fpar(absQ == 0) = -1; + + % Full DDI + VDk = (Fpar*sin(Params.theta)^2 + Fperp*cos(Params.theta)^2); % theta here is the polar angle of the dipole moment (angle from the z-axis) +end + +function ret = computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced) + eps_dd = add/as; % Relative interaction strength + MeanWidth = x * lz; + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); % Quantum Fluctuations term + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2))); + Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2)); + ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz); +end + + + diff --git a/Estimations/RotonInstability/ExtractingKRoton.m b/Estimations/RotonInstability/ExtractingKRoton.m new file mode 100644 index 0000000..bb7ce0f --- /dev/null +++ b/Estimations/RotonInstability/ExtractingKRoton.m @@ -0,0 +1,503 @@ +%% Physical constants +PlanckConstant = 6.62607015E-34; +PlanckConstantReduced = 6.62607015E-34/(2*pi); +FineStructureConstant = 7.2973525698E-3; +ElectronMass = 9.10938291E-31; +GravitationalConstant = 6.67384E-11; +ProtonMass = 1.672621777E-27; +AtomicMassUnit = 1.660539066E-27; +BohrRadius = 5.2917721067E-11; +BohrMagneton = 9.274009994E-24; +BoltzmannConstant = 1.38064852E-23; +StandardGravityAcceleration = 9.80665; +SpeedOfLight = 299792458; +StefanBoltzmannConstant = 5.670373E-8; +ElectronCharge = 1.602176634E-19; +VacuumPermeability = 1.25663706212E-6; +DielectricConstant = 8.8541878128E-12; +ElectronGyromagneticFactor = -2.00231930436153; +AvogadroConstant = 6.02214076E23; +ZeroKelvin = 273.15; +GravitationalAcceleration = 9.80553; +VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); +HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); +AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 + +% Dy specific constants +Dy164Mass = 163.929174751*AtomicMassUnit; +Dy164IsotopicAbundance = 0.2826; +DyMagneticMoment = 9.93*BohrMagneton; + +%% Extracting values from the roton instability boundary for tilted dipoles + +%-------TEST-------% +% nadd2s = 0.05:0.005:0.25; +% as_to_add = 0.76:0.001:0.81; + +%-------DEPLOY-------% +nadd2s = 0.005:0.005:0.5; +as_to_add = 0.250:0.001:1.15; + +data_struct = struct; + +% wz_values = [150, 300, 500, 750]; +% kvec = linspace(0, 5e6, 1000); % Vector of magnitudes of k vector + +wz_values = [1000, 3000, 5000, 7000]; +kvec = linspace(0, 15e6, 1000); % Vector of magnitudes of k vector + +% wz_values = [10000, 13000, 15000]; +% kvec = linspace(0, 25e6, 1000); % Vector of magnitudes of k vector + +theta_values = 0:5:45; % Range of theta values +phi = 0; % Azimuthal angle of momentum vector + +for mainloop_idx = 1:length(wz_values) + format long + + PlanckConstantReduced = 6.62607015E-34/(2*pi); + AtomicMassUnit = 1.660539066E-27; + Dy164Mass = 163.929174751*AtomicMassUnit; + VacuumPermeability = 1.25663706212E-6; + BohrMagneton = 9.274009994E-24; + DyMagneticMoment = 9.93*BohrMagneton; + + wz = 2 * pi * wz_values(mainloop_idx); % Trap frequency in the tight confinement direction + lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length + add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + gdd = VacuumPermeability*DyMagneticMoment^2/3; + var_widths = zeros(length(as_to_add), length(nadd2s)); + + x0 = 5; + Aineq = []; + Bineq = []; + Aeq = []; + Beq = []; + lb = [1]; + ub = [10]; + nonlcon = []; + fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + + for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + as = (as_to_add(jdx) * add); % Scattering length + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + var_widths(jdx, idx) = sigma; + end + end + + eps_dd_values = zeros(length(theta_values), 1); + n_values = zeros(length(theta_values), 1); + k_roton_values = zeros(length(theta_values), 1); + + for idx = 1:length(theta_values) + theta = theta_values(idx); + [eps_dd_values(idx), n_values(idx), k_roton_values(idx)] = extractFromBoundaryCurve(theta, phi, nadd2s, as_to_add, var_widths, wz, lz, kvec); + end + + data_struct(mainloop_idx).wz_value = wz / (2 * pi); + data_struct(mainloop_idx).theta_values = theta_values; + data_struct(mainloop_idx).eps_dd_values = eps_dd_values; + data_struct(mainloop_idx).n_values = n_values; + data_struct(mainloop_idx).k_roton_values = k_roton_values; + + %{ + figure(13) + clf + set(gcf,'Position',[50 50 950 750]) + plot(theta_values, eps_dd_values, '-o', LineWidth=2.0) + xlabel('$\theta$','fontsize',16,'interpreter','latex'); + ylabel('$\epsilon_{dd}$','fontsize',16,'interpreter','latex'); + % title([''],'fontsize',16,'interpreter','latex') + grid on + + figure(14) + clf + set(gcf,'Position',[50 50 950 750]) + plot(theta_values, (1./eps_dd_values) * (add/BohrRadius), '-o', LineWidth=2.0) + xlabel('$\theta$','fontsize',16,'interpreter','latex'); + ylabel('$a_s (\times a_o)$','fontsize',16,'interpreter','latex'); + % title([''],'fontsize',16,'interpreter','latex') + grid on + + figure(15) + clf + set(gcf,'Position',[50 50 950 750]) + plot(theta_values, n_values * 1E-15, '-o', LineWidth=2.0) + xlabel('$\theta$','fontsize',16,'interpreter','latex'); + ylabel('$n (\times 10^{3} \mu m^{-2})$','fontsize',16,'interpreter','latex'); + % title([''],'fontsize',16,'interpreter','latex') + grid on + + figure(16) + clf + set(gcf,'Position',[50 50 950 750]) + plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0) + xlabel('$\theta$','fontsize',16,'interpreter','latex'); + ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex'); + % title([''],'fontsize',16,'interpreter','latex') + grid on + %} +end + +save('.\Results\ExtractingKRoton_Result.mat', 'data_struct'); + +%% Extracting values from the roton instability boundary for tilted dipoles - fixed atom number, trap frequency + +%-------DEPLOY-------% + +N = 1E5; +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +area = 100; % in square micrometers +ppmum = N / area; +nadd2s = ppmum*1E12*add^2; +as_to_add = 0.150:0.001:1.15; + +data_struct = struct; + +wz_values = [500, 750, 1000, 2000]; +kvec = linspace(0, 15e6, 1000); % Vector of magnitudes of k vector + +theta_values = 0:5:90; % Range of theta values +phi = 90; % Azimuthal angle of momentum vector + +for mainloop_idx = 1:length(wz_values) + format long + + PlanckConstantReduced = 6.62607015E-34/(2*pi); + AtomicMassUnit = 1.660539066E-27; + Dy164Mass = 163.929174751*AtomicMassUnit; + VacuumPermeability = 1.25663706212E-6; + BohrMagneton = 9.274009994E-24; + DyMagneticMoment = 9.93*BohrMagneton; + + wz = 2 * pi * wz_values(mainloop_idx); % Trap frequency in the tight confinement direction + lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length + add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + gdd = VacuumPermeability*DyMagneticMoment^2/3; + var_widths = zeros(length(as_to_add), length(nadd2s)); + + x0 = 5; + Aineq = []; + Bineq = []; + Aeq = []; + Beq = []; + lb = [1]; + ub = [10]; + nonlcon = []; + fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + + for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + as = (as_to_add(jdx) * add); % Scattering length + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + var_widths(jdx, idx) = sigma; + end + end + + eps_dd_values = zeros(length(theta_values), 1); + k_roton_values = zeros(length(theta_values), 1); + + for idx = 1:length(theta_values) + theta = theta_values(idx); + [eps_dd_values(idx), k_roton_values(idx)] = extractFromBoundaryPoint(theta, phi, nadd2s, as_to_add, var_widths, wz, lz, kvec); + end + + data_struct(mainloop_idx).wz_value = wz / (2 * pi); + data_struct(mainloop_idx).theta_values = theta_values; + data_struct(mainloop_idx).eps_dd_values = eps_dd_values; + data_struct(mainloop_idx).k_roton_values = k_roton_values; + +end + +save('.\Results\ExtractingKRoton_Result_FixedDensity_phi90.mat', 'data_struct'); +%% +function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi) + Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2))); + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + Fka = (3 * cos(deg2rad(theta))^2 - 1) + ((3 * Go) .* ((sin(deg2rad(theta))^2 .* sin(deg2rad(phi))^2) - cos(deg2rad(theta))^2)); + Ukk = (gs + (gdd * Fka)) * gamma4; +end + +function ret = computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced) + eps_dd = add/as; % Relative interaction strength + MeanWidth = x * lz; + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); % Quantum Fluctuations term + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2))); + Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2)); + ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz); +end + +function [eps_dd, AtomNumberDensity, k_roton] = extractFromBoundaryCurve(theta, phi, nadd2s, as_to_add, var_widths, wz, lz, kvec) + + format long + + PlanckConstantReduced = 6.62607015E-34/(2*pi); + AtomicMassUnit = 1.660539066E-27; + Dy164Mass = 163.929174751*AtomicMassUnit; + VacuumPermeability = 1.25663706212E-6; + BohrMagneton = 9.274009994E-24; + DyMagneticMoment = 9.93*BohrMagneton; + add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + gdd = VacuumPermeability*DyMagneticMoment^2/3; + phase_diagram = zeros(length(as_to_add), length(nadd2s)); + w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction + l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length + + for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + as = (as_to_add(jdx) * add); % Scattering length + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(kvec, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) .* DeltaK); + phase_diagram(jdx, idx) = ~isreal(EpsilonK); + end + end + %{ + figure(11) + clf + set(gcf,'Position',[50 50 950 750]) + imagesc(nadd2s, as_to_add, phase_diagram); % Specify x and y data for axes + set(gca, 'YDir', 'normal'); % Correct the y-axis direction + colorbar; % Add a colorbar + xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); + ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + title(['$\theta = ',num2str(theta), '; \phi = 0','$', '(Along Y)'],'fontsize',16,'interpreter','latex') + %} + %-------------% + + matrix = phase_diagram; + + % Initialize arrays to store row and column indices of transitions + row_indices = []; + col_indices = []; + + % Loop through the matrix to find transitions from 0 to 1 + [rows, cols] = size(matrix); + for j = 1:cols + for i = 2:rows + if matrix(i-1, j) == 1 && matrix(i, j) == 0 + row_indices = [row_indices; i-1]; + col_indices = [col_indices; j]; + break; % Stop after the first transition in the column + end + end + end + + % Now extract the values from the corresponding vectors + xvals = zeros(length(col_indices), 1); + yvals = zeros(length(row_indices), 1); + for k = 1:length(row_indices) + row = row_indices(k); + col = col_indices(k); + xvals(k) = nadd2s(col); + yvals(k) = as_to_add(row); + end + + instability_boundary = [xvals, yvals]; + + %-------------% + + % Degree of the polynomial to fit + n = 5; % For a quadratic fit + + % Fit the polynomial + p = polyfit(xvals, yvals, n); + + % Display the polynomial coefficients + % disp('Polynomial coefficients:'); + % disp(p); + + % Evaluate the polynomial at points in x + y_fit = polyval(p, xvals); + + %{ + % Plot the original data and the fitted polynomial curve + figure(12); + clf + set(gcf,'Position',[50 50 950 750]) + plot(xvals, yvals, 'o', 'LineWidth', 2.0, 'DisplayName', 'Extracted boundary points'); % Original data + hold on; + plot(xvals, y_fit, '-r','LineWidth', 2.0, 'DisplayName', ['Polynomial Fit (degree ' num2str(n) ')']); % Fitted curve + ylim([min(as_to_add) max(as_to_add)]) + xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); + ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex') + title(['$\theta = ',num2str(theta), '; \phi = 0','$', '(Along Y)'],'fontsize',16,'interpreter','latex') + legend('show'); + grid on; + %} + [val, idx] = max(y_fit); + + % Round down to 4 decimal places + rounded_val = floor(val * 10^4) / 10^4; + % Find nearest from original vector of boundary points + [~, nearest_idx] = min(abs(instability_boundary(:, 2) - rounded_val)); + nearest_val = instability_boundary(nearest_idx, 2); + % Choose the scalar value between the two + if ~isscalar(nearest_val) + val = rounded_val; + else + val = nearest_val; + idx = nearest_idx; + end + + AtomNumberDensity = xvals(idx) / add^2; % Areal density of atoms + as = val * add; % Scattering length + eps_dd = 1/val; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + x0 = 5; + Aineq = []; + Bineq = []; + Aeq = []; + Beq = []; + lb = [1]; + ub = [10]; + nonlcon = []; + fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + MeanWidth = sigma * lz; % Mean width of Gaussian ansatz + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(kvec, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + DeltaK = ((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) .* DeltaK); + k_roton_indices = find(imag(EpsilonK) ~= 0); + if ~isempty(k_roton_indices) + k_roton = median(kvec(k_roton_indices)); + else + k_roton = NaN; + end +end + +function [eps_dd, k_roton] = extractFromBoundaryPoint(theta, phi, nadd2s, as_to_add, var_widths, wz, lz, kvec) + + format long + + PlanckConstantReduced = 6.62607015E-34/(2*pi); + AtomicMassUnit = 1.660539066E-27; + Dy164Mass = 163.929174751*AtomicMassUnit; + VacuumPermeability = 1.25663706212E-6; + BohrMagneton = 9.274009994E-24; + DyMagneticMoment = 9.93*BohrMagneton; + add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + gdd = VacuumPermeability*DyMagneticMoment^2/3; + phase_diagram = zeros(length(as_to_add), length(nadd2s)); + w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction + l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length + + for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + as = (as_to_add(jdx) * add); % Scattering length + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(kvec, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) .* DeltaK); + phase_diagram(jdx, idx) = ~isreal(EpsilonK); + end + end + + matrix = phase_diagram; + + % Initialize arrays to store row and column indices of transitions + row_indices = []; + col_indices = []; + + % Loop through the matrix to find transitions from 0 to 1 + [rows, cols] = size(matrix); + for j = 1:cols + for i = 2:rows + if matrix(i-1, j) == 1 && matrix(i, j) == 0 + row_indices = [row_indices; i-1]; + col_indices = [col_indices; j]; + break; % Stop after the first transition in the column + end + end + end + + % Now extract the values from the corresponding vectors + xvals = zeros(length(col_indices), 1); + yvals = zeros(length(row_indices), 1); + for k = 1:length(row_indices) + row = row_indices(k); + col = col_indices(k); + xvals(k) = nadd2s(col); + yvals(k) = as_to_add(row); + end + + instability_boundary = [xvals, yvals]; + + if ~isempty(instability_boundary) + val = instability_boundary(2); + AtomNumberDensity = instability_boundary(1) / add^2; % Areal density of atoms + as = val * add; % Scattering length + eps_dd = 1/val; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + x0 = 5; + Aineq = []; + Bineq = []; + Aeq = []; + Beq = []; + lb = [1]; + ub = [10]; + nonlcon = []; + fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + MeanWidth = sigma * lz; % Mean width of Gaussian ansatz + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(kvec, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + DeltaK = ((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) .* DeltaK); + k_roton_indices = find(imag(EpsilonK) ~= 0); + if ~isempty(k_roton_indices) + k_roton = median(kvec(k_roton_indices)); + else + k_roton = NaN; + end + else + eps_dd = NaN; + k_roton = NaN; + end +end \ No newline at end of file diff --git a/Estimations/RotonInstability/FeshbachResonances.nb b/Estimations/RotonInstability/FeshbachResonances.nb new file mode 100644 index 0000000..e43f15e --- /dev/null +++ b/Estimations/RotonInstability/FeshbachResonances.nb @@ -0,0 +1,1526 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 12.2' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 77877, 1518] +NotebookOptionsPosition[ 76510, 1486] +NotebookOutlinePosition[ 77008, 1504] +CellTagsIndexPosition[ 76965, 1501] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ +Cell[BoxData[{ + RowBox[{ + RowBox[{"PlanckConstant", "=", + RowBox[{"6.62606957", " ", + SuperscriptBox["10", + RowBox[{"-", "34"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"PlanckConstantReduced", "=", + FractionBox["PlanckConstant", + RowBox[{"2", " ", "\[Pi]"}]]}], ";"}], "\n", + RowBox[{ + RowBox[{"FineStructureConstant", "=", + RowBox[{"7.2973525698", " ", + SuperscriptBox["10", + RowBox[{"-", "3"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"ElectronMass", "=", + RowBox[{"9.10938291", " ", + SuperscriptBox["10", + RowBox[{"-", "31"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"GravitationalConstant", "=", + RowBox[{"6.67384", " ", + SuperscriptBox["10", + RowBox[{"-", "11"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"ProtonMass", "=", + RowBox[{"1.672621777", " ", + SuperscriptBox["10", + RowBox[{"-", "27"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"AtomicMassUnit", "=", + RowBox[{"1.66053878283", " ", + SuperscriptBox["10", + RowBox[{"-", "27"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"BohrRadius", "=", + RowBox[{"0.52917721092", " ", + SuperscriptBox["10", + RowBox[{"-", "10"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"BohrMagneton", "=", + RowBox[{"927.400968", " ", + SuperscriptBox["10", + RowBox[{"-", "26"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"BoltzmannConstant", "=", + RowBox[{"1.3806488", " ", + SuperscriptBox["10", + RowBox[{"-", "23"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"StandardGravityAcceleration", "=", "9.80665"}], ";"}], "\n", + RowBox[{ + RowBox[{"SpeedOfLight", "=", "299792458"}], ";"}], "\n", + RowBox[{ + RowBox[{"StefanBoltzmannConstant", "=", + RowBox[{"5.670373", " ", + SuperscriptBox["10", + RowBox[{"-", "8"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"ElectronCharge", "=", + RowBox[{"1.602176565", " ", + SuperscriptBox["10", + RowBox[{"-", "19"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"VacuumPermeability", "=", + RowBox[{"4", "\[Pi]", " ", + SuperscriptBox["10", + RowBox[{"-", "7"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"DielectricConstant", "=", + FractionBox["1", + RowBox[{ + SuperscriptBox["SpeedOfLight", "2"], " ", "VacuumPermeability"}]]}], + ";"}], "\n", + RowBox[{ + RowBox[{"ElectronGyromagneticFactor", "=", + RowBox[{"-", "2.00231930436153"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"AvogadroConstant", "=", + RowBox[{"6.02214129", " ", + SuperscriptBox["10", "23"]}]}], ";"}]}], "Input", + CellChangeTimes->{ + 3.9462898535670986`*^9, {3.946289960548875*^9, 3.9462899947154675`*^9}, { + 3.9462971681147823`*^9, 3.9462971786756124`*^9}, {3.94629883673812*^9, + 3.9462988374090405`*^9}}, + CellLabel->"In[3]:=",ExpressionUUID->"62f7b3c0-151e-42a7-bd14-2c7024749c6f"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"scatteringLength", "[", "B_", "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"abkg", ",", "resonanceB", ",", "resonancewB", ",", "as"}], + "}"}], ",", + RowBox[{"(*", + RowBox[{"Set", " ", "background", " ", "scattering", " ", "length"}], + "*)"}], + RowBox[{ + RowBox[{"abkg", "=", + RowBox[{"85.5", "*", "BohrRadius"}]}], ";", + RowBox[{"(*", + RowBox[{ + "BohrRadius", " ", "should", " ", "be", " ", "defined", " ", + "beforehand"}], "*)"}], + RowBox[{"(*", + RowBox[{"Resonance", " ", "positions", " ", "and", " ", "widths"}], + "*)"}], + RowBox[{"resonanceB", "=", + RowBox[{"{", + RowBox[{ + "1.295", ",", "1.306", ",", "2.174", ",", "2.336", ",", "2.591", ",", + "2.74", ",", "2.803", ",", "2.78", ",", "3.357", ",", "4.949", ",", + "5.083", ",", "7.172", ",", "7.204", ",", "7.134", ",", "76.9"}], + "}"}]}], ";", "\[IndentingNewLine]", + RowBox[{"resonancewB", "=", + RowBox[{"{", + RowBox[{ + "0.009", ",", "0.010", ",", "0.0005", ",", "0.0005", ",", "0.001", ",", + "0.0005", ",", "0.021", ",", "0.015", ",", "0.043", ",", "0.0005", + ",", "0.130", ",", "0.024", ",", "0.0005", ",", "0.036", ",", "3.1"}], + "}"}]}], ";", "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{"Get", " ", "scattering", " ", "length"}], "*)"}], + RowBox[{"as", "=", + RowBox[{"abkg", "*", + RowBox[{"Product", "[", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{ + RowBox[{"resonancewB", "[", + RowBox[{"[", "j", "]"}], "]"}], "/", + RowBox[{"(", + RowBox[{"B", "-", + RowBox[{"resonanceB", "[", + RowBox[{"[", "j", "]"}], "]"}]}], ")"}]}]}], ")"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "1", ",", + RowBox[{"Length", "[", "resonanceB", "]"}]}], "}"}]}], "]"}]}]}], + ";", "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{"Return", " ", "scattering", " ", "length"}], "*)"}], + RowBox[{"as", "/", "BohrRadius"}]}]}], "]"}]}], "\n", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"scatteringLength", "[", "b", "]"}], ",", " ", + RowBox[{"{", + RowBox[{"b", ",", " ", "0", ",", " ", "8"}], "}"}], ",", " ", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2.5"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "150"}], "}"}]}], "}"}]}], ",", + RowBox[{"FrameLabel", "\[Rule]", + RowBox[{"{", + RowBox[{ + "\"\\"", ",", "\"\\""}], + "}"}]}], ",", + RowBox[{"PlotRangeClipping", "\[Rule]", "True"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"FontSize", "\[Rule]", "14"}], "}"}]}], ",", + RowBox[{"Frame", "\[Rule]", "True"}], ",", " ", + RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", + RowBox[{"TicksStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"FontSize", "\[Rule]", "14"}], "}"}]}], ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"{", "Thick", "}"}]}], ",", + RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",", + RowBox[{"ImageSize", "\[Rule]", + RowBox[{"{", + RowBox[{"800", ",", "495"}], "}"}]}], ",", + RowBox[{"AspectRatio", "\[Rule]", "Full"}]}], "]"}]}], "Input", + CellChangeTimes->{{3.946298626684884*^9, 3.946298627172211*^9}, { + 3.9462986848238554`*^9, 3.9462987262215877`*^9}, {3.946298822465828*^9, + 3.9462988704810686`*^9}, {3.946298989364349*^9, 3.946298992368571*^9}, { + 3.9462990341129494`*^9, 3.946299053088297*^9}, {3.9462991029805555`*^9, + 3.946299104687995*^9}, {3.946299143481086*^9, 3.9462993374952354`*^9}, { + 3.9462994016976433`*^9, 3.94629940724636*^9}, {3.9462994625206733`*^9, + 3.946299472231315*^9}, {3.9462995502251225`*^9, 3.946299611028179*^9}, { + 3.946299685440056*^9, 3.946299719781707*^9}, {3.946299802805818*^9, + 3.946299822797445*^9}}, + CellLabel->"In[21]:=",ExpressionUUID->"461e8a7b-9e39-408e-a5f3-38960ab44ff7"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.24720000000000014`, 0.24, 0.6], Thickness[Large], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwVkgk01fkbxmmVJLsYiRb9m3QtjTV6X25RlhJTvr+LGxcjLUO2UEgJhWnG +VsaWdVBUQmlclCUtiEnK2ujat7soldL/znvOe97zOec5z3nPcx51lo+95xIR +EZFrwv3vWnmOddSPX9r9lVcj+se8Iy6jK/sOKnlAPhk8PC/kndnXM+4pBYDZ +S+6YyydHtG7tLs9UigJHmdWt2z87oqPHPDtRKRmsv7umPPviiP1aMfQEpXww +NjhzXG7REW/IH4y+olQB1gtu7r3LCEaK3dt6WakRzJQtUqxkCf5o+UdsuW8j +DHb9da5VyJ2XfMZ7nzSC4tXnT+3kCG5eqnmTFtQE4fPsa0SeYPO3fNqrzmbo +8XeRPaVIUEKQqrch/ikE70xXKPmB4PX+UHrlYhvEO2xdHrKZoJkKlT9wuB0u +H3EaX7WF4ATDYLlYaTu8+Oy0P13IqlMh7qU7XoJN9nxEnQZBH2/9LSJ9LyHj +c9DAmm0EZTxuFxUYdoIG55Bqww6ChMq5zeW9gi3XOyVSDQjO9v4snqvcBX1e +gcwdhgSjmWKeDvQuqKwR128S8j13H+Wq5C7wM8oL/WhEUPJX00tnDV7D2KKG +/1ETgk0X3jJWhHVD9KjaR2szgrq3pFeoiPWABs3dN9Wa4FNak2urdg8s0iVO +og1B17vBf4dTPeDjuGftpJATqgZ9/y3pAfXVzofMDxAcqy/tLbTtBaPu5tFP +dgSzuvbf1Unqg8Ys7+iYIwRXf490tlQdhOhb2nk/sYR5eTsyNS0GwbBUNoAv +5M2vNF2lfx0EZXqS7F13gruLu9172YNgar65SduTYHVxauV92jt4rd+x0fgY +wWmHqRrrtndw1ELVOehXgoeLrj33XzMEG5g/ZeSeJZjhcsHmF/Uh0CAKs2Hn +CA7JnGolekMQKvX0ECNMmHeYebupyxCcDcyyU4ggeNl+unNl6RA8se86m36B +IPureU+6zXsQTbXi9F0muOXQzFhDHAe41mTcLo2gcoSlsVcOBzTUHz/2/pOg +VOmNOPH7HGC4Cuyi0gl+EXOgHRriAM379+zaTIIv6+/7DxgOg/TF8yn7cgmG +akcufhoeBuBfu1l1U/gPs+dgxsIwaE786TB9i6BH/M4ckB4B/WRdcY0yggfH +hunRJiPgzVnJzrwjzOuG1WXZpBGw2rTkQ2Elwba1cnI0HIWs0mK+Rj3BBtNT +nh2HR0H5/cyLyEcEH5xorgo4MQpzBf9sH3xMMO9JMPV36ijkq4+m5TQRDI7o +z9o3PQoq9jY6Fs8Jbpwt3Ob+5xj0Ba0sV+gmeKbNCK7PjYN9VOLHjTxhn2iV +w0/FJmATf1VlI59gfoJ2/ILKBGjb/zjlPUeww2brW+beCdhNuX2unSe4/bmc +/5bUCeAdWS+Tskhw8MlsYbnBJGTVdR5YlKAwaOsJW471JPBd+44PSFIoETMi +kHedBFU9h/nHUhQaWfRjSOwkFPh/uJkmR2FS47MeeDsJdt+/5UeoUGj5qECy +NXQK6lKWHMMdFA6oqVcu/jYFhRURBqe1KAw4n+GknTcFFUYv3vylQ2EOJBUl +PZ8CVlHXVw19ChfY580ZKtPQP6U67AMU3n7oFDTKngYRm7Wxlg4UWih3qyh1 +TkNnTUTh+8MU9oXYN1iNTEP6EaWcGELhKqP9UmWSMyDxz7PWURcK3e/rlwQc +nQHTsv6Ha7wpVKyQHhAVnQXFgqF2pUgKneMXfuYozEJR85jWb1EU5noMP2/W +nAWPXYFRa2Mp1JSvro4js6C/VOew8VUKzYNcU+TvzMKJXLaJcRaFsQesJD41 +zcJFXNG9IZfCVo2fLvb0zsJ4ed4++UIKb01efNC+lAsOk/3uOmUU6mc4FiZr +cUFc2thkVx2FVOyLfy8Zc4V9yDe+1UDhuQCz9Wf2cmEiS42j3ULhI5vtyZQT +F0ru3As/00GhzbfFSNUYLtw4Prtq9TCFbsxCl6IBLpR5cFZMSTEwyuqHtLRx +Lvz9omR4XIGBhfq/v7oyx4XKRwWvVq5n4JRkqPUpcR6MZbBsi7YxMKjO1khX +nweP1p38PXMPA9NuPg7YZMYDKF9zmW3NwJprBnfkbHigOBPCWenAQFFf9a3z +bjzwW2Kot5HFwHi1D3I1CTyIVGzWyb7AwDKJ43al13lQYd35gB7HwI5PA3FZ +eTzo1EybU09moEJHy5LIah54qno7pBQy0IhtutuvkQct13Qrte4w0Lm4PMS9 +nQelteEHJB8yMCcyg7t3mAfujPpT+W0MbDwlrWnA5cHr3e9+Y71l4AgV7fW/ +BaH++IEtfhwGaur6DohL8yExM8w2ZYGBVUP0F+0mfDDUuf3Yi+aEr/dF8hIs ++aB7NXHN5C4n/FhWq2Bjz4dGuozJ0H4nNDhr5NbixYerjOk9e72ckPwbFB3t +x4dlFoVNtUFOGGxZcXNPGB84uVXxT6Kd8IGs1sf6RD44qMfQi4qc8E3IyR8i +MvkwdVf0UuJDJ/w0WIymRXxgH7zYqd3qhIa3NsdVs/lAzj1aen9O6C/DunOm +hQ+ZDqMyD1Y5Y3BwdpfeP3zIaZGpyd7gjNV7lNXKx/hAP90YyDrgjD0ljnt9 +BXxgrbOXcfNyxi9SKcdpi3zo1StkJ0Q6o3H/2soSWQF8S9WSbK12RgbdtueY +qgDqtuUmyb5xxtDiK981tgmgOGU+jjvvjA8Dl1vl7RaAIEuJNW/igj295j5u ++wUQE2uy3Jflgl/Mzidv+FkA24NvvFl/xQWVi9jV/UwB8O5VqOtVuOAuyYWB +dG8B9EdptHPfuaBzgOEyRoAAltyu+CNJionnegK3rYsQwFumH82bzsSaQq5/ +crIAymbaPGUrmNgnQUuzzxZAXKvRTjafiV/9TtRKlQjg2L7EzP36R1HlbdH7 +tgoBnDwd4G8fcRRNYUQsoU4AG6x7e+PajiKzYBPN+pkAJNf/ouop44rhq90c +VnUJoLnh5XCUmStmnc4KfjIo9HP8oGkS6Iq13b2ZlyYEkE4CFc3KXHHAVKmB +/kEAKZtC4k9Pu+Ji3pExUZE5aN/lWDWw0w1VxZPX1IvPge26nfV9F9xwt2+H +brj8HLSokcZ1fW7IfC1JTNTmIDQp/+N9MxaGm9iEfflxDqS+r5uJqmKh/qhp +0cPtcyDy39Sz8P/bgH9e + "]], LineBox[CompressedData[" +1:eJwtkQs0VQkXx8+hB3mVxEWIhKb08Ka0N3lF8rz3nENKRqIiUZLy1jRJEymi +kaYyGr6ICl9FRYPkOVN5xqSihwp17r2uxx3fWt9ea6//+q/1+6/9X2trBxzw +3C1BEETm7P5Pox3lOu7Ks0D8f04EdfqEKbHwKapxqZeHJka9KyiK1GShWOsd +Zzp3PQYFHhJFG7DgOlF/aW2KJVJvbJ3jjFiQo/LqxsYBnQIW5SZvZOHVKkjn +/G6Llq8HPvzswELC6tpmnw92+IN/ieUv7iwoV+8dCu1xQPWB46cyfViwORhl +KpnqhLI7XLovBrJg+XpZXMwcZ5zuU115OYyFfrNwUwsvF/zi+z76WjQLUutW +vk+M3Yr9PRWNN5JYKO20cF90yhXbmBOckjQWFEw6wo/GbMNHXV7Bt7NYOCGz +uy+U64a3KJ2qqissDKhkzT0m746/vRydX1PEgsTb8pSnIe54jvuQqrvDwlfH +vqab1e6Y/PxMYWMNCyHqLhVSMh54yGu7oKWRhejAB20XPT2Q5zGR1dXHQtGF +8qpnf3mgY3vD0KshFiaJntMRsp5o4ZZl9mZ01h8fLvWz9URVV+OXn+fwwbc6 +9VTAdU9c0EzqfZPnw5p9mWcUOzxR5Nx+WMjhw+Wiq9lmk57Y5xS6RNKQD2nR +fzqVOXlhS8OG3VLmfJA40TgQuN8LaxwW3JWz4cPHqfO9jr94Yb5doTeHywdZ +P4XKFS1emF53+LrGTj7Y90vq+n30wgRbu+86IXzYmNXXZT3PGwPwdaZhLB9W +5l9Ipay80eth6Rujk3ygaqOL/+vpjXab4owtMvgQn2fXrLLXG1dsVP/btoAP +4gvXgqWyvPG9OVeRbuFDb9vwqMVbb+yuWB7g18kHrp7bqCTfG5tMx8sCXvNB +4/CGJWvnc7HY+KxHKMuHlrB57Q36XPy13O+3CDEfunOMR+zMuZi2fvXYEWkB +uJGUt40DF8PWPk1P0hCASZdkfkcAF3eWZP9zUl8Al2hy88FwLrobBq07s14A +JYGv6gtjuWi0SrI9214A2+U95D9ncZHVs1a4GSqAwd9VRB5/cnHToG1DarQA +Nsni4wUdXPwpzyk+OFkAcdJKdFgfF5WVvL8uzxHA33G59vbjXDQj97XlPhGA +p4mRR4YaD+MehJ+MbhPAjXbbbFKXh/VHooDXIwAZzjEDM0MeUl8SSxeNCsDV ++nYru4mH0b0Xz/6sLgQlQrZdxp+Hj7IuOwbpCaGuW0Glbw8PpTyvizevF8LV +t3LihAM8zGksPSB2EIJBbb+8WxwP792td4uKEEKPz/XfdXN5OHX2u0LgUyF8 ++vimsv4ZD+1cRA02z4XwecuMcVwHD9PmEQlaA0KIcxgeWtrJQ41YmdGe70Ig +O3myiwd5uGmvTrvHsglwbNsfzOfzMN7OPR2OTEDDBrNTuhoUNoq5ThpJEyDx +3ibpsjaFC+/7EpNpE/DXyTBzaT0Kr6zfE15xdQIigo1Ola+h8JFmnLth6wSE +JksN7wQKJSaKF6qvEMEPh++tPrSDQvUW22+wVgTKu/QvD++i0OS37heBliIw +0PoY6bmbwt1b5l8qcRVB36aIZQr7Z+/nBKywjRJBs46PaOVRCs9aqVqFNIgg +dJlehNw5Cpce/+nHypBJ2KabnZb5kEJTdw2HvshJ8C9xjLOrpXCb7h0DMm4S +PsrdOTD2hML45tefnc9NQkVy2G1oonBwqXV0/71JiFTnuN16TuEf1d/S5spO +waKVjSPf31NoJvav8CqZgsKanMAMBRq3uj5Ksq+aghirLuv+RTT+eEnLzbx2 +CizlDsWvVKIx3bx/WO3lFEQ9e3HwPofGDwd8VQenp6BunHOiVZvGX//hHg93 +nQZj438SHxjTSNY6254ZmYZPm8K2ylA0chYWycfzpyHfaK62NUPjmh3SveHE +DCy449Ab5kujj6gh0ltpBmT8NA3/2knjHSP7AvWNM5ByyD42J5jGoGsgVXR6 +Bpo6uQUmMTQ2p5i01v8gBv/cmndf82i0UngmkWEqhibfktigKzTeyNll7oti +mKv6orH/Ko3JJb9c+coVQ7WQ0/i8cJbveh/BSRRDhdrF8q6yWX5VnsreTjGM +WCVnetfTqFxhvNVkUAybn1WOjjbSmIJNCTMjYogeKTiT/ozGW0WTh7aQBJ4O +tJPtaafx9EOD/lfKBHarLFTL7aXR9kPSrXm2BI7vzv/6fYzGo2tam/Y5EqjU +B4Nd32fzkarv2rcSmJa/Tq9OQKPmTKnqJYrADlnFV8XTNE4ovkpaG0og90nW +WKc0g+tog7zzEQS2aP9sLZRlMCgvsnLiCIEjMVxCZyGDz/UXjNQlEegWlKR/ +XpnBWxvNufRFAp06hsvm6jI4nJh0oDqPwJKdzLoUfQY1G1pO6VwjcH32tJ3i +KgbTPAJrRm4SyGYPjO8yYrAuq7TL4/Zsvq3VXs+MQVGvaLyiisAzqXtuii0Z +DA7K0E+sm+1n6GYxYcNgfnGfzVAjgZ/3Pr6v4cDgy1H97S6tBFZlWa3yd2bQ +7lhN+pJuAhPGUva5eDF47JF0cUw/gV8yq59OUgyWz+X+OfCGwNx7awO7tzOo +lf5p4o8vBG5THztsvIfBml3xf5R/I1Dg7abmt5/BHcaLmftCApcktI7VH2Rw +ek6h1JNpAm9IyE0fPcLgry+tqpolSDQXflZKjGVww43WPS/mk/hEmb/3QzKD +PUcDVPplSXxYIDCtS2XwqAu/fmgRidTy6TydcwxyNFKjviqTaDawYY52LoOV +XzT0hOokqj3v/bv/KoO8R2UvCG0SYdnq5T/9h0F+hv0JaT0SrW9oXdpWyeCF +H7tNFFeR+Pjc09DkOgZNTEPfqq0j0dfR8WFax+y/5pHnl5uSWOZYtlj8msHI +rvObV1uRaKFw/OldlkHFIoNvJkDi4rzD6pLyPlh27MFVazsSu4YzneUMfdDd +1d3TYQuJ+E77dibPB0c135Ju20iMjDEceZzhg2dHj5RRXiQucdqzA7/44Jpa +mV3+NIl5lS9nFmT5Ymtm/sIQPxK1CvPoodV+GL4x6fqynSQWTHPWlIfswH8B +7mM1NQ== + "]], LineBox[CompressedData[" +1:eJwVjH1MzHEAh/t+J0tcIzqytI7IxtSWbkr4yHlLOM7LfX+9TVM5L5cjyejF +eUmSjju6smxc6UTSWq68FL0petEqL6n0si7KS+U2cWnyx7Pnn2ePICRieyi1 +sLBwG+e/h5taNGoZAcQJQ4NRO+Db+r0+SUEQ06fZ3RO7G1/uKWM1UQT5ygaz +lifFhRj+koyTBD5ehtL+YClctua0Z8UTFBl+RM68LkWV08rkB+cIBC8KrXqe +ShE23OhtuEhwtKJGHNQqhWVF6NfSFAK/dR/La4akyLz2+0a1huBc0efWyZYM +ovDkTY1pBBJXuUlix9CzTGD+cJOg6bHIUTaPQWldmNOtI1hsTQ80uTII2jZw +A3qCZlW87U8vhue5bZNMuQR13ZZ2NmsZxsQTZJZFBGZjT+SfXQwZc7WzbJ4R +7DIYQ2yDGbxNi6r5ZQS1G56XFIUxnEyVuCysJch7GD3FHMkw0n6717eTQGw8 +W/bkMkNqnvCapJcgvnijpE7DIDz9ShTQT7DiRGNgVTrDMedh3SETwY7EMNWZ +OwzD+1eHqKwoVs25ODHzGcMV75ZpaTyKGSPitohyBjcb2YtbthSKtdEKUQ2D +PF/lVOBAkWlccpXfwjDw61NHixuFe65W9eYbw6PwlDJfIYVX79HX3SaG+Hcr +75Qup8g6XFq5aJSBb8g4dHcdxbcTH7ITJ3PoWrB5m6MfxTFZoZNhOof710eX +qrdR3DsVdGuzAwefKP/RUwEUnn0vE6xdOfCM1p1DeyiipLpEmSeH9zsfl4eF +U3iEfLbPFnHQVcqyPx6kaCgOx28xB7mHfZL4CAVP4tOpD+LgmVUtrzw+3r+d +3j5bzmGCXfR2rxiK0Dh/wac4Dg1nXYR5SgpViez4Kw2HdNNbe+cLFOu7WNL8 +BxxC957/q02m0A1sibWq5+DW7NHFU1MMTl2onTPCwbymt0KppRjqd+5QuPuj +qkCj/5VBEZfAFyal+OPKPNGlgzqKaen6jenCAASof0Z06SnkEWMOHY2BmNuq +8OvLGf/vU4+MrQ7GP6x6WKE= + "]], LineBox[CompressedData[" +1:eJwVjntQVGUAR5f7fUYtRigzIk8VBFITsUC0kP3xGkFjVeR1792L8k5nB5Qo +RCUfgAMGrLmMkokgUMrmCjiCwDrIaw2XAVcyBpsMho0WNg1wBIkRSc/MmfPv +WRWfFp7EiEQivze+bfUhrS/XwGB57MF3ZsWRuDNiZo9mBnKHSzlSSTROh9e/ +vtXKYJM00KgWYrC7Y9/Imi4GdZ5r5UMjMXD42Ore5fsMnicGkG0bWRiv3K2x +fsDgLrMjZDSJxc0laUX5jxgcTkjQRBeyyD7pdGj+MYPdPV/fWq9iETLVG5E+ +xCC+y9kjuYOFdVz2ZuNfDM4taGw6B1j8qf/IQWZi0Gjx+7AwxqIGfyzoJxgE +NSmvTbxkkVH3rSF4mkF2ymLJy0UcJCs/+6VljkG/l0dW31IO4rMm1QYRwck1 +zT2NThzK00LTbS0I9CmyonQvDgeGZiOLrQjCQ0Pd8v04eO28toUsI7DsE9Vv +DuGg8zA3e7aSoFm3X1rHcZh51qVo20RQm/XKNSSbQ7uQ8aW3L8G+u0rfyjwO +hb0u0Sp/gtYb0XamIg7O6lNOJZ8ThFzUJUVe5hAmhzolnqB/fOz6QiuHapNG +Z1lMMKwTTv9jxiP1wk6XA0qCbsWvoaliHj5BhqPaUgJJQ88Rc2seujLx+mNV +BJ6Fhqqc1TymdrGK8SaCsJ+qgh+G8GiZf2oMaiWQNrpovcN55KpOoKKT4HgG +G97K81hOr01F9RGcinaJC0zj4Xd7Zk+XgSBPo05nS3m8m3jm+opxgjiVaaVd +FY9+K6dFR/8lsDJW5Cy5wSPpQHDjxv8ILrXrTXVdPAodS5aXW1KMGm4obKd5 +ROncD81ZU7S9943rjJkMKzI19yNtKdY9GFiz7gMZbupHjixeTVHmP3qvaa0M +j3M2PsnaQmHeG3A1LEWGSk+t929+FOIdY1UDmTLIn8QUewZRfHq7clBcIIPI +54TEKKVwlsc0dKpl0BmsSwMiKAJfjLFZ7TIoz16dLGMpnhdptvkNyOBm6rsS +kUixdau9axkRMHk+fq52P8W5Rq3/jw4CWgJnwi3SKH6IHcur8BGQO1nwc3IG +hdVDheJFhICwMkfakUUxwecvuH8lYNn2epnj8Te/11O5qVIBwzNBDYdzKV43 +ct3SdgGqqsH3HxVQ5Pe6FKknBGTskidvUFBYXDAMebjFwm9+ofVMCUWojVLi +/kUszFVKm7+/p/gu87zeXhMLfZT7Qf9yCsng9NKnH+7FRaLpvlRNcay+o2y9 +di8S66SrZmsoEhbsPHNj98FDGMnaU0vxqmTozuXtcQi7/Yk68iaF6C1t8fgf +YlKrLQ== + "]], LineBox[CompressedData[" +1:eJwVj30s1HEAhy9+35Vm5vVICDVOZ7cV/zhmnyhZOxt68XYvv995aazNy5i3 +pJCRyoomtqhYZhFuixJHXPJ27tKLvOStI8xLdZcyvfFsz56/HwdpfHC0HovF +ct52p43+sQ1lnRQcwhNHq6eCcMb4yGSXgsJqp84lqDYEdh0Kd5sBCgqDvNge +WRgWY0NvpKoorM3Hj/6Wh0PGXpkfeUfBs0k+IzofgcyebG/eOIULTBm7ZioC +xxPMygqnKRTUW60G8oUwsq1d12gomDQpG82uCoFzuZ8+L1HoGDWyUXUJkVQs +GZxbo/DN1WXf0g8havo8n89qKbQV22pOOYnwYZdV7cwvCh4tPlu+p0XY46kr +nf5DYUwy4daTJQI/WZ0zpUfwpSGMn/ZIhMqFAvGkIcFc6NCVDJ0I6gPRggkT +AjU3mJ1jLYZe2DH+OJugLqa1ygdixAxuWny0J9hMPPq9v0gMXlOc8q07QXJ/ +tbbCWQJ6ye/FiAfB8DqXKwqU4Lbjwbo33gRe+pr7VhkSbJRO5Kn8CUoEG/qb +agk4w61JwwEEr3ObLcR/JQjfXUorgwluLQ/1VrJpyNMFXoNCAtN2m6Q/J2l8 +lXEODzAELMtDW6ZSGo4rlFV/DEFRnyDKLYtGvrhD25tAkN48ptC20HhWVj77 +KoXAwlvR2/eexrI6RaXIIDC8Jss126AR4Mt73J1HsN90SHfHk8Gli3vLXxYS +XHfV2dsxDJqeLuR33SQ4a+5UIi9gMLfWndxZQvCAF2D6RMbAnFMlld8lWJyM +TOVOM/BjMgM77hFYJvy8nG0kRVpFiHf7Q4LIqFmvf5Bi0tDYuq2eoOKEQSyn +WQqj2TjlYsP2zw5dUvwHh1IY7A== + "]], LineBox[CompressedData[" +1:eJwtlXlQkwcTxiPS980bKaDlA1pCOVQah0OqXIrIw1kDFElIQkgIJCCMVMsl +akGUs8GjyKGW8kkpRUBEioQGkEIpCgJyCH6KGZRaFJQKQkGRqlBtOv125pn9 +Y2f39+z+s2bhsdxIDRqNFqXWPznXdPWdskICtP/HN9MruMNnCZxwLPtJo9QQ +i1df7cP3BOa/ZO88/uMG8P47f+ZiJQGjUA7Dq3AT6uOfNOnXEKgwOl/ue8YR +OuwHI+kKAlVt20yaXjljr+nI0tNGAl1hPE7emCt6/xwyFrYSGK3eb1twyQ2s +wR7XjisEHDJLbr5x94C8sl1m000gwz4kyVDhiYnDlzOL+gmEKV9Gm771ghu/ +rkLzfwRkNoUI/fgTlFhVdceqCDzbmf2n0HcHlleWPrk7SsBwraKEFsCG6F7h +Ku+HBMp9ZxMG3HxwuT7XWjFJQI+jilaZ+0L/ePZO5gwBccTQjt8XfLFPlhqf +/YxAwBGL5mPNfrDRjW2Q/EWgz5lVUW7ij68mo1Q9GiQOSIW/sTv8MdUW+moz +ncQLF2p5XLITFZ/7uzDeI9HXsVae4RIADS/vsP2GJJg/WJfEpAZAytyePmZM +grMmKHBDWwCYfdbXGlkkggLn92ls5iC5bP2kmQ0J+eOg0znRHKiSjKmczSQ6 +jcocr37LQQHr3U8jtpOIbov0GXjLwdxbzdgbHiSq4y1sZ6y58Fct521hkzBX +ynk+Ii4o+dPbOjwSeZ0m+htruYiSTCwmB6v5RfWeU8NcdNqNGj4OJdEwcMrP +Z5mLtPG+kNZoEhbXs7x8vQKxiIsTu1NJhCStO4jeQLSWT589mEViqpflYDAZ +iAy6VaD8GIkWbcs+25U8aA/VXDl3isRfTim23C08WITVltw/T8L6ebGOUwkP +T6/O8mdqSKQsbbXXa+Sh3mLju8sKEiO3ph/ED/CwffbSofdbSSgXG3Ouv+ZB +cFgh5A2RoNprV6cF8MF8MK8TMUxieNdcBy2Sj4eem7rj75Kg2634wjKJjxit +H+1zJ0hURBuPnyzlQ35Wuab3JYkj5smShWk+Gpqb+l3N6Fj7uLZq+aAAycYv +M/0t6CiQD87UHRUA6U7OEks6EnVaB1yLBOjf0Xwh2Z6OP762dF1sFmBC9ZO8 +gU3HglXaNO21AHqLP8MygY6pMpskHAhC4qZOpX6Huj8mLVa5R4goO9PS/B41 +b3/eM0WKEEKHlBNaN+i4YZMz0p0jhPNWu3CNEToKPzIReNcJoeFerjM7S8et +3w2ybi0KseBBW9q9QMfG20VhI/RgPPIKeTz+Su3nedx6LaNg9LD1fh7RpNDl +afwfTQQjl5P12bUPKOzKUH1z+qtgpAWO8WFKYW56TaCwNBgJ/G1uLespeDt0 +6UUogyEIXjBQ2FLIV1W5Sn4NBlO261qxN4WLKxQrxZtF0I5orzPwo/Bh48k7 +/WwRaJHM4gIOhbFK+uAFqQjju28nHA2h4K67vaYlV4TqOE/TxAR1/WL5/Mxz +EYoTSlf9cZDCxqpJ8yhtMXISlxejD1PYtkvOT90gRtwXyoGwoxRKhvtqmmRi +hCfrNt/NocCXMKueHBGDl7K3nH+KgtHJVZ89LBbDMW3dId8SCpHHbzH498Rg +ZaRFdZ1T7xfQ5ji5JMYHWaMctwsUaooeTsUZh+BN9mmWo1LNr9RKrYgIQWeu +5h3zXgpHr07YxbwJQWO+9Mq3gxR8mvOH81kSVJ1qrTEcpmASkDfrwZPgRGFi +pvaY+p7MM1a/1EmQUjQUc+wRBYGTrUHnAwlizlqJNKcpuKia8gb1QsH9bsL2 +9QsKDo4HXAvSQ+H5PZj7lyhk5VX+UtISCvtzxeQcjYHSIbdAyctQGJ7n3X+0 +ioHurVnzN5LDwLhQd126mgFccl1PuxKG5Wqthnv6DMgOJTTGvSPFb7WdJ26a +MbDFycw7ky/F0Izm000fMZA5epzukCZFu5WX32kr9Xwiw3jvD1LU7fmy5sXH +DIjujvtE/CpFafU1rSBHBu5rEwkyXRnynrzz+eVtDEToOs81eMuQzvIeeN+d +Acqnnt2SJkN4ZVfOqB8DVh2N9OwV4eA+ImZduAzk7dkz788Oh8e6T/y/C2KA +1d9TefPrcGQsNXa4ixj//pP2cPwNZf+2KQ== + "]], LineBox[CompressedData[" +1:eJwtVmk0lQsXJlS85xzO++YqjUijWyqFkp4i83CcwZkcx3FDKSRDhoqUJHJv +xJWURrrRJUqiDGWKlEQyJdV1FUlFGtDnW9+319prr2c9w9r739Zy92N7TJGT +k8uc7P/OSMOHSlhDQO7/VW10osjQgMBJ65WGr/4c2lS498nMU8YEklTUqLdp +M5FZyAz9bkqgv21aQIWfLv4ccWoTmxOYttdzvO3SrzhqkGh815qApU36gZyY +1QgJaDo1z5GAl23C/cJ/1mJ7Pvk9gkugOSv5ss5XIwg/skU9QgJBAV7MpNoN +sNFPKt4iJWCVkHqBkppivd9TzUvbCCxJu5hkJAOW/U2FK3kTyJ7mVGC0bzM0 +33M6PP0IpI32t8gf2oIf3s2nl4ZN7tOTK9F2MQd3neTEiggCCXnTW8Z1tiJH +vvfImsMErA/p8oxfboVr6qj/xgQC5zwy6UXGlrj1W6TXliQCfCLj69XnllBb +qSyxTJ3M+86P3+ZnhYoqTSunCwQKsmsEWUesoXni4kbnLAK1j+aLLKfbYI+L +3hpxzqS+7x63+5ANFn7eOM+jkMBjpd64s9622F9aTXmXEDCbd6X64DNbPIt1 +VPYrJ2ByrFu5daMdYhbIhkPqCFiYM7aP/bTDy/63b/c/JmBUOa/TUWwPo1t7 +uqOaCbgp7sXcAnu8sz9cF/+CwFCZatEXgQPMZtHLT7yevFdlFkeW5YD0N8k3 +U/oI7Krruqrw2QH24Vnnzn2a5LVUko5GOSLTQj/l8iiB4fR/e/OqHTHBvB13 +dYwA545yuIMiC3lX6oJvTKXh6Wmv4FlmLFDP3tvVatIg6FtFP3aThV3ng7c0 +zKeh+L5KM9XIQuWun4ZNC2nwOZNV0fmWhWAFpk7nCho0yYY5DrOd0KZv8O3D +Fhp2cNinooKdsHrszuCwJQ3p+7wlXXFOOFaz9c03OxrWyg9P5J5zgokr/7EC +n4Y7d+Wcm2qdkBEXdlljJw2DioNZiRQbX50VTs/ZTUPIiYLetbpssLTj/9AK +oiHKd1Fo0Do2ptw+E748goaOvqimVj4bHr3lTpuSaPhlkNZ1KIWN5ZunTXiW +0NDuHxDaqcRB3tXsxc/LaahfRwTepDgwmMFysq6m4fOGAZGNFgcm/6ZeWv6E +hqVvPSvyNnDgcHyZ7VAvDV6B2hev+HDQ9OVRoGyABv6alb5poRzw3QLONn2c +5E1YifxoDtzW3Pl4Y4wGvbiOVevTOdjTZp8aStKhU/vP0Qc1HHzZ8qninQYd ++6hnTpuaOAjPSekXz6VDfuXcpLhODg5HdJuaLqGjMuPwnJwhDlJ0/f+ZYkqH ++icZb7kGF7f9T66O30HHRtPjC0YkXJh2GLmM+9KR/rzliLUnF/fMu6J9A+lI +rY9tj/Llok5jURsrgo4DSzs+Zh7govPurQj1ZDoe9jA51We4kFPpeHi2nI6w +D/2+L1q5sLyg5XVdg4H3xPyhVFMeDFIZi6rnMLAu80C9ljkPCxJ+vGnXYmDf +7vlmGdY8fA9tcVfUY6BHLbwvhMvDNadYVz4YSC4dGczZwQMl/5E3vp0Bclje +xiyRh25publ1MQNt3csU2F08PORdU3AtY4Brlnu7poeHItu0e3sqGXCdPW5s +2MtDomEg0h8xUPh6lKb4gYetqktMPrxi4MNIOymQc0Z26e9rkglVqNtNVMlp +O2PvXKl2j4sqFtay67/KnOHO0nfulKmiyKcvr9LDGQ6H5I+1eqrCoHeb2/Ed +zlj09uLHht2qqJpzV6ru74zmG33lxYdVwXiUnSkf6Qx9uz3SkzmqsBhu+kdw +xhl9YdHplmOq0FkWWejxzBl6Azyi1V4Nww1/v/rLnA9KdWh65Xc1bLlhJ/xk +KEDT3WMx1uNqGGJLN93aIEDiLt2pj3+qwaH2e/mBTQKQdSKFdkUmbDpWVKlb +TuLoqvEPDCbUix9oejgLoPYj7dNsHSYm9vETkoIEoP27tTPAlgndjsSDsYUC +PEx+Kfpmz0T4Bv3ZxcUCxJuHtx1gMRHxZ/nwYKkAxIW8Z7G8Sb9pzSWPGgFU +JLOfZEiZSEu7l3P0uQDTnw5V1QcwsSE3J6HghwCKZadzddIncZ4Ce6aFEO0m +5lbdZ5lQceyzF9kKkVs88DLtPBPxP698ucgSQlS4kSSzmHA8Qy93EAtx/Vp3 +oFw+EzO8S92V/IVwTddZ31XDRHDotm7mWSEMNB82pdYxEfb+XWvnRSGUUwN3 +chsm/fubg6//JcSNpKr0+iYmBnTeGYbcFIKI8/p5u4uJyOLTzyMahCgKza5M ++czEas8S/bSfQiSMciTsL0z8anSzmDlVhN+Cxkbo35iYuyo/KJkmAsPffnH0 +BBNW3Vnr780SwWP7h9gAZRJRN+w5hQYikPw1jqz5JNb75Dqt8xFhp0FJm7It +ibVTj1QbvxOhvLElp8iehMGYReH+TyKo+wxFeLFIGGo4KrZ8F6Hssu6iKh6J +3JaJKWWEGJTGH3si3UjwT814HbtCjJJv24jRIBLJ25ettAsRQy0l4sXlEBKe +PJrt0EExPFanXeeGk5ARnVXX4sRQ3fmYnx9JoqFEmBWcIcZvncaXfOJI6M+r +ENvXikGUMTa+OUdiKdPdJ2q+C9zES9WSLpJYMM3g8ddlLrg5avZ6cyaJvbqN +K0+sc4FUPzQ2I5tEnOGFpGUOLig4/7pFVEjChHZtBxXhAvHhIt8n9SQcgg0y +dvS5IG/B082Rj0ikl/hvE35xgdLd9zNWPiFRHz1AC1GUIHdEuyT+GQkrRyt1 +Cy0JFLyOT7PqIXHyZpiqmUSCbGv3c6VfSAQ7aXAauiUw0NMy3fSNBJV3Xzx9 +SIJSxsuOsh8kFqkpFOyXc0XjU4lGhRyFCqvEU3O0XTEsESbcV6EA2sB19nZX +7MdMPXM6hTNtfwtiwlwxVaf1QaUqBW7x0PQpx10xq4+rVD2DgtO9K46N+a4w +3cPaVzuPAvv2nFUKU6So4apqWmtRYDU9iE77RQqW4aNbD3QorF0YrRyzXAr3 +MdvPdUsoNGu6h293liLmiKV3w2oKO+yCMn/Pk6IxzVTQZEHhW2UYzdvEDcL9 +4yNsawp3lBZfGLN2wyvpnaSnthSuth9mPeG7YXjh+sfNLAp+75brWAe6YVbu +WotWEQVJnDl1Pc8NF04Mv+ZLKEws2CtKLHeDXmDBwedSCjfWv8qvbXSDqfGq +u23bJvWDDhJ8coP7fT2DTl8KWd75g4XGMvRf7n/i4k9h99JR09N2MgQeverX +FUBhecrMkiGpDDH2S7JfhFCYe1XZV/6oDDmtOto9URSUDok+27yQYW3xqzJZ +NIX2j7peViMylKafl7yKofDHr3Gdb2juaJTNP/U6nkLQeP3i2abuGOnXVOtN +oWA4cGnz73+5Iz/lWHlzKvW/f7LcHf8B9CpvIA== + "]], LineBox[CompressedData[" +1:eJwtVnk0lQv3pgwlKZz35Zz3lAwXZUhKQpcnJEM453DOMR5jVNccbjJliitC +0VwabpGUkjSJUAiVoZCrVBJKbsiXED+/9X17rWfttf/Yz9rPevbaayt6B3N2 +LBASEno0j//PhhqnRtS7aRD6X+juqs473EPDOnvTVN3knybxlin5ZZ9o8G/g +pfzuuxJtgp1uOkM0RG39fuFKnyJUImzoxV9oYPhJXj0fp4LG89JHLn6jIexs +/1KNiNWgTZ85cHiKBhH9/qZ8k3Xwk04wk/pFw4uMezPXbXRxT81XKH2OhhP+ +8k1CrPUQOK7ZlyBCYLF+e3SFqR4Kr5UHhkgR+NvHr+pp1yZM1Z5YM7ycwJxF +p7ZViQFsu2MG/GUJOHa6sUz2G2JMzMzLQ55AW3Nvub/MZmz2fOFop0SAyFRR +m5sxxqHIUulGFQJpiaHN+cUmeJ+R93yrGoFFwzbfZDWBA/dcLX/XJJCTHVVe +1Qq0yAwaaW4k4MWJIiLETaG0ummyYBMB2kjAzbssU0SYXL+tbERgql7yeOBx +UzACwtdSICBK12xwVzaD7xMhZQlrAmZxvedPq5uj/J++3pTtBF7md+Xf8jPH +4rG608L2BCYsIrxyL5rj+spM8qcDgchOnaBO+lZM/kmXGHQnYPdHuKfdz62w +PjRT5+NJQN4oou+ctgXO/N2b1Os9P8/xZ1a/vC1g2nrpV4c/AXNLQdBIgwUy +1uiOPgklsPBVTLtH+jYovrHuuphCYMnBvSpmg5ZIrzEq4aYRkLxcd5xDs8JY +geYB8YMEkv8a17toYoWaMKkNf2QTiKlWiaVyreC7qC1L9xSB9PG49YMbrFG4 +3nlb9Q0Co+/zlkU722A53XrlnlsEMkXZ8SejbRA1azihUk6A7K42NThjA+un +zItpDwik4pWPUK8NvgjezdrXEWgOv1Mk7L4d2un+5W//IeCm1DEwYW6Lo8FO +mdlvCdyZHVtk7GmLOUcrX9P3BMqm8rw1om3RoqAhc/kTgagCG9qvEluE3h4J +DBwlEKtxmLxG2KHsXcRvM2Ikwto+nDjXZgdmnd/MtcUkanPsaoWG7JByld/u +IUlC9GHKoZVzduBFGiTUSpPoiX768dgae/xY8qsnnUkiNuLlv+fj7GGon5xL +1yUx29hlLyTFQoc3feOZDSSSzVq3VZEs7Dl0vXOVPgntO0TcTgUWivu7GOqb +SbSuaBGO1mFhZa7W+Y0WJDLPMNOvsFlYMNpxzcGFxKK/WGEh2SycZQbYd7qR +KEk3Lp88xoKRpfCoiweJfYH134LzWQjP19jg7Uti2cYhC83rLHyy3X8/JGie +b6+XUl8jC01Fq+szE0l0xIe4RAuzsbOjcqd0yjx/8Y2dUovYEFngKJGXSsKu +paD/iBQbxs5xtqczSAyZRAxGUmzcEG9vLzpKopqpv/TCBjZyfWPe1ReRqE8y +0yv1ZcNt5Yufwu0k/Ot/16+pYEOKHnb7wSsSWdYuhp41bFTLEqERXSQQUHd/ +vJ4N1cWug4NvSLi0eFVPt7Hx7/injheDJCrdYy8fGWQj8ensrTOz83qWnifn +pDkoDNcOMlgjh4ViGYsOCThwCW5dPa4ph0LzziHSh4Olu8P7i9fKYbGQ8fPj +/hyEedx3W6Unh5Fa6x+pIRwYWVvYiEMOO5plGWQiB88VBOqvuHJouvdDd+Hf +HEw0Zn4ISZDDkT0Bs/l9HPQsebVzJkkODrk1o1oDHNRsZ/6bekAOOtYxlXc+ +c5D9vGj67EE5FI+9k6ka5WBNWz3tWZ4cati1A2fmOBC8Ft62ukgOJDur9xLD +AXUDEVfft8lh2JgOVTsHHBcRhHNU5HH00rOqzmIHzPrI6bWqyoNeGVR+osQB +vrUtE/ar5ZEW2tXoXOoAnUSzP2215fF0cm7HyzsOaJhT32e5SR4i0iyZshoH +/JgajzfeLg9dLeV0pS4H8Eb/OrgmXB6T+k4pH4UdIfv29oUFj+VBxM/qaXEc +IRqb4GgQSoeJyu6c3TOOKBsd/lm1h46GaZ39E7OO8PVzyreIpOM/a2tDE4S5 +eGy/9rNDNB1LrBZFnRbjIlnpTXxQCh3NV/a/6V3OhUjDpqsXT9AxmkVzv/Ab +FwtkvwlL1dBxoxA921lclKa6FuQ+pqPzQ9BLMQcuvGfqtlP1dNA7zr+o4XJR +03/mmHozHWbjk9/hykXiXRstsw46puPaJPh+XAgLCpz2fqbjzemDW8ZjuBC6 +Iij5IMPAZ2WJboNiLuqGO4PyCcb8/ak9m17CRYYOW9tNnoHdmo1hvaVcyN01 +u/ZqBQM2aq9z8u5xoV2vfrVBnYF3qe4VevVcuPWPXb5uzEBi1lk2v4+Le4qp +Z/ftZiCWdt23SoGHuB1CAv1ABn7LypesUObB/ErUiu/BDCSnXaupUuOhRSfg +dGAEA7bL+a971vIwaMI+6bl/vq6N5oWCB1JAHbU4ykDI1xUSyj48hJ0syZSp +YeAAzWa4pYSHOzMnU2seM+C9PudNXxkPM4IDCWH1DNx8abNw4X0eUpXdI9qa +GUDJ8Bu/xzycLpZwP9zJwL37XyqbXvPwpHKHpsxXBtreLp+1EOdDQpGtWvMv +A1Ea67o2L+WDlbR5VdgYAwaNG4PNZPno3iZLa/vBgJEh3ShZgY+RlkfTOQso +MGdWXHq7iQ/5PqpJWp6CaEJZBieYD/et4k+qGRQUskRakiL5uFAwVhm6gkLO +KZnS5lg+NAOelrYqUfC/uS2hIIOPLRORJ3O0KByc9U/OucrHAb537hYdCtG0 +iH+ybvHRfM/20KguhbG95y8WPeCDF6eSyN5EYTZWzH5TMx+7xdt2SZtR+MWz +fd4wwkfJroc+1VspLFPot6j6wcf3pkL3UEsKJeemBV1CTojPjme32lLY3Zok +FinrhFy6lkGOE4XyLUO/7TN0wkONtEXSQRRuTrY0ncp2wsaXcs8Oh1DQrgj2 +Cz3lhBsxBTm0PRQuPcz3iLjshAvP6hjyeykkF6blLn3ohLRgUS2FRAqeiXWv +Lg07QVg+b/RcMgXVGY0B2k8n7HukUq6USmGmfGzmoagzAqXNTVQzKFToiao+ +UXAG51YiW+sohWPxhFAPzxlNrjJkyXEKtz8EutjvcIa5yIVunVPz/b0bDkuG +O0OfW+2z4RwFow8mWkGHncH8MRdhVETB9eNnhly7M47mZxk+LKbwNbOsUfGj +M5ZZKswZl1DwlaZFZUw4Y8EJ4zTTMgrdDLtdWXQXDBjGnrSqpCDxma9Q5ucC +zz5Jj6ZHFIbGk/iq0S7oPnha2baWQp7LgT/ks13Q3POgmNVAQfx9FzP7gQtK +46Yq+W0UWt8xCnbSXaGhlp70+iUFsYqpzXt0XfH3C7qlayeFrVdbrbS2u+LY +KoNWQQ+Fzk4G53mCK2Jq/uzb8YlCQf86tbL/uGJit3jhwCAFBl90Wo10Q5Ds +sYBdXyiwSmVu5G10g5dv+UTAt3l/lql9ytrnhm5Ji/sjYxTGZ5eL6591g+Pt +V3EhExTY3ZEBS2vdYCE2IR4+RWHXY9rr1OXueHQ9uXlihoLz0bUX7QzcYcCn +5fw5N78fnkkB6T7u0Cxcz4gWYWKyIsHvdoU7pK3DNBOlmCiaqjVKSxbgXPWy +JYbSTCjmN3LcHwmgY3BtaFSWiehLMQEjswLYqQ9e9qIzQdSsDV2e4oE3+Skp +dCYTj9RKvsg+80CAnLJv60om6me8htwkPZEuJlDcosJE15ezoZICT9Djpucm +VZlguJ3yNE73ROHE8bc3VjNx8582/693PbEpcOPDnZpMSJHDPuzPnqj/2H5q +1VomLh9KGC5c6QWeW+i+rnVM3FBv8zDkeeFTu5Rz9gYmqvR+KnJzvCBSa0UK +GTLx03V/6klZbxwxHPh+ZzMTX3m/FM+5ekOpNLk92ISJjKtXXg4VeqN65q7I +OjD/++8/8sb/ASmiIlE= + "]], LineBox[CompressedData[" +1:eJwVk3s4lfkWx91ymyK3GXXe3/uelKQkGQyZ9I3dtm3bvryvaXehvV1Kj3HJ +uBSHqI7STR6nVBpOzY48pewhqUjG0K4xXczuYpQyipSMHIxuOHv+WM/3Wf+s +5/Nd37XmRCayGw309PS+1dXfap+4mtqppbCw5M70K/7zgG9Us6I7KPisnvp4 +TrMERja9zYOdFCjXq2NfLHKH5t78uK1dFJQ5Y0cYPw/sy99sp99NweUX3llv +Zy9Ymb+Jse2l8Nqq8sGCkz64r1lsVfqSwjvn/SXVX/riWG7iVafXFPqth0+J +1F+D1h+Z7jtE4e2yhzuH41agp9HjUsswBdX2iW63NUBZZppCPErh5bafB/qG +AZd373+MeE+BjYpRnbf0x1Ct7/qBjxTGLo6O3Tjsj+rkLKPUSQr+Te9mjdoE +wGdIT55nSNCV0ttpb8ADv8/k04UZBAErf69Tla+C2emgMu+ZBJMPVxo1TePj +14j94mZrAqe8Aokkgg+uy+LUgy8ItLtr7+ZbBOLzE1KhYjZBeNydjuPKQHSu +KRzppwiMBH943KkKhPK+Hf/THILfFDz3QL4A8wrlQ7nzCJpsxbV3DwrwUnL8 +mKUTgfVSs3ozrQAJbdSAgwtBY5W/1kAehH81zy0I8iIoW+hv2RgohF/ORh+t +N8Eq8ki/KFsIA78zPWG+BHqvPBZ01AqRd2Wh5xYQ7G3eseUZCUaRemlnkZDg +uHDBprKuYKxNSN71zxCCzV4a+53mIlAutS5nJQT81flNvl4iqM54Z18LJfBM +zh5M2ieCunTFvBcbCP4zdMBIzykEIxkjJhERBCEehYVOwSHwkp8Z6IoiCC0f +zMhOCEG9pWXNo80E8ryUoCfVIbiR83Rl23cEaQXeBz+5i2EaXugoSCVwO3zT +IkwmRrAP36x1q84/LzWBShTj3vD5e42ZBC0pezZpK8R4HJmlqN5NsO3Dr5XH +7CSgVywNWLKXYE2LvkP2EgmU/+idX7mf4Eh08pt+gQR9WtGfZQUE+uo4dWiG +BG95VNbxYoLBdWXj/Y8kMHaqL865oMs3VDU/AFIEGSZun1AT1MzN6jAWSnHg +mUNkRg3BVzy4/cBJYXVsn3PKZQJh37W2qE1SUGbrLsc0EygarjW77JPCfeDd +A/FDgtVT6rr8NilSNZVX2jp0+/Utb/XQSnFZpSwRPCY4ueeD+/VOKZaH3Yz2 +7yaY5pRQuOuVFILbR0c8X+vu4XLFis5pMoRXeVmRSR3/26qEpctkuLTuncU9 +PRqavvj0HshgYXx1+i5DGusC40IyA2VoCltu+sqUxp/uPby4UBkczHlTF21o +sDXq9cJ4GfqiZYMiZxpj0i3RYSdk8JtpMzC1iMbaqTTjOydlOFp/v7/alUZJ +1tgfruUyCKzXvLD3oJEkMtl7XS3D2esbHr/wo/FG4qfv2CpDwuy4W5mhNNy3 +f//X8gEZbrQu1iyR09gzzXtV65AMTNJQS89aGi2njGdgVIZ7mu+aBAoazIDt +85kTMrinptfZxtKwPG+odLRgMX53d1lltq6/1FsW4MoiJ/fUjidnaShsYq4l +x7CYsdVEGHGeRtVrWpwXy6J4c7x1X5WOx7pCVBTPoibYRzV0kYZnlddgaTKL +Pqv2FoPrOn9f2VEbs1kEl+qZOmtptGsC/3p4hMXndYr81I80EiZjK243slBV +tK7+MEGjVuow6vETC7fiRUy2HoNfVsU8Ofozi6Cs8aq8aQwOvmi5JL3JIjPg +UPsJSwa8/B9GD7Wz6LnbaNs8l8FiSYWh5DmL8/3khIWIwbmfHunPNuKQV5Kr +fCpmcEsxU8oz5hDNDjpekDHgt0VrYk05UA0N6hA5A6P/emyonM5h36H1Nw5E +Mkg/UxxmaMfp/vT4sHk6g8n3zkVmjhwc/m0rMClnkGQf+XWdP4dJ78wZjyoY +eOeZ7Ezncfh98Plv5ecYZMxWzvThcyiQ14Tzf9TxsdRcdRCHqYVscm4Dg7Ak +82fbpRyetB8qNdQyiErbJj8dzuHy7vEo7QMGJS+Efn4KDod9Fc6qDt38Omgf +KDkEl7le9H/KIFU4i56M4nB12+1bO17pePoN2r+M5VC02POQ7A0DS/lEc/23 +HJJ6vg+dM8TAOiEwf2U8hwWiuGdNowy6q+1a+Vs4GOnfP10wzuDYmqJlN5I4 +dNf6xio/MNhKKUsCkjk0xKqWuE0wqBQH/a8xhcNR5rOxqSkGRfX2ft5pHP4P +lU3W/A== + "]], + LineBox[{{4.951551020408163, 139.37596259923768`}, {4.952725024990185, + 150.}}], + LineBox[{{7.196012175022929, 0.}, {7.19644978787316, + 0.680122364067862}, {7.198928048521438, 4.3576005303963}, { + 7.201406309169715, 8.366240097856897}, {7.201448979591836, + 8.448952703871816}}], + LineBox[{{2.794950454536869, 0.}, {2.7969872680162746`, + 52.52496966501432}, {2.7991671838755243`, 150.}}]}, + Annotation[#, "Charting`Private`Tag$11333#1"]& ], {}}, {}}, + AspectRatio->Full, + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + AxesStyle->Directive[ + GrayLevel[0], + AbsoluteThickness[0.2]], + BaseStyle->Automatic, + DisplayFunction->Identity, + Frame->{{True, True}, {True, True}}, + FrameLabel->{{ + FormBox["\"Scattering Length (x BohrRadius)\"", TraditionalForm], None}, { + FormBox["\"B (G)\"", TraditionalForm], None}}, + FrameStyle->Directive[ + GrayLevel[0], + AbsoluteThickness[0.2]], + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + FrameTicksStyle->GrayLevel[0], + GridLines->{Automatic, Automatic}, + GridLinesStyle->Automatic, + ImagePadding->All, + ImageSize->{800, 495}, + LabelStyle->{FontSize -> 14}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "PointSizeFunction" -> None, "ScalingFunctions" -> + None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{0, 2.5}, {0, 150}}, + PlotRangeClipping->True, + PlotRangePadding->{{0, 0}, {0, 0}}, + Ticks->{Automatic, Automatic}, + TicksStyle->{FontSize -> 14}]], "Output", + CellChangeTimes->{ + 3.9462995040442867`*^9, {3.946299583927579*^9, 3.946299611442181*^9}, + 3.9462996528493867`*^9, {3.9462996867124157`*^9, 3.946299720405142*^9}, { + 3.94629980609776*^9, 3.946299830136408*^9}, 3.9463000847462177`*^9, + 3.946301602975066*^9, {3.94654225425524*^9, 3.9465422604126263`*^9}}, + CellLabel->"Out[22]=",ExpressionUUID->"fe3d2ab1-2e60-4c87-b304-9af09b512293"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"scatteringLength", "[", "b", "]"}], ",", " ", + RowBox[{"{", + RowBox[{"b", ",", " ", "0", ",", " ", "8"}], "}"}], ",", " ", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"1.317", ",", "2.173"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "150"}], "}"}]}], "}"}]}], ",", + RowBox[{"FrameLabel", "\[Rule]", + RowBox[{"{", + RowBox[{ + "\"\\"", ",", "\"\\""}], + "}"}]}], ",", + RowBox[{"PlotRangeClipping", "\[Rule]", "True"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"FontSize", "\[Rule]", "14"}], "}"}]}], ",", + RowBox[{"Frame", "\[Rule]", "True"}], ",", " ", + RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", + RowBox[{"TicksStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"FontSize", "\[Rule]", "14"}], "}"}]}], ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"{", "Thick", "}"}]}], ",", + RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",", + RowBox[{"ImageSize", "\[Rule]", + RowBox[{"{", + RowBox[{"800", ",", "495"}], "}"}]}], ",", + RowBox[{"AspectRatio", "\[Rule]", "Full"}]}], "]"}]], "Input", + CellChangeTimes->{{3.946300123196314*^9, 3.9463001547081313`*^9}, { + 3.946300433237008*^9, 3.9463004333250217`*^9}, {3.946300466694854*^9, + 3.9463004847154093`*^9}, {3.946300534787926*^9, 3.9463005348354373`*^9}}, + CellLabel->"In[23]:=",ExpressionUUID->"e3efdc46-0d6e-4d16-ae45-a127d2ef7398"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.24720000000000014`, 0.24, 0.6], Thickness[Large], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwVkgk01fkbxmmVJLsYiRb9m3QtjTV6X25RlhJTvr+LGxcjLUO2UEgJhWnG +VsaWdVBUQmlclCUtiEnK2ujat7soldL/znvOe97zOec5z3nPcx51lo+95xIR +EZFrwv3vWnmOddSPX9r9lVcj+se8Iy6jK/sOKnlAPhk8PC/kndnXM+4pBYDZ +S+6YyydHtG7tLs9UigJHmdWt2z87oqPHPDtRKRmsv7umPPviiP1aMfQEpXww +NjhzXG7REW/IH4y+olQB1gtu7r3LCEaK3dt6WakRzJQtUqxkCf5o+UdsuW8j +DHb9da5VyJ2XfMZ7nzSC4tXnT+3kCG5eqnmTFtQE4fPsa0SeYPO3fNqrzmbo +8XeRPaVIUEKQqrch/ikE70xXKPmB4PX+UHrlYhvEO2xdHrKZoJkKlT9wuB0u +H3EaX7WF4ATDYLlYaTu8+Oy0P13IqlMh7qU7XoJN9nxEnQZBH2/9LSJ9LyHj +c9DAmm0EZTxuFxUYdoIG55Bqww6ChMq5zeW9gi3XOyVSDQjO9v4snqvcBX1e +gcwdhgSjmWKeDvQuqKwR128S8j13H+Wq5C7wM8oL/WhEUPJX00tnDV7D2KKG +/1ETgk0X3jJWhHVD9KjaR2szgrq3pFeoiPWABs3dN9Wa4FNak2urdg8s0iVO +og1B17vBf4dTPeDjuGftpJATqgZ9/y3pAfXVzofMDxAcqy/tLbTtBaPu5tFP +dgSzuvbf1Unqg8Ys7+iYIwRXf490tlQdhOhb2nk/sYR5eTsyNS0GwbBUNoAv +5M2vNF2lfx0EZXqS7F13gruLu9172YNgar65SduTYHVxauV92jt4rd+x0fgY +wWmHqRrrtndw1ELVOehXgoeLrj33XzMEG5g/ZeSeJZjhcsHmF/Uh0CAKs2Hn +CA7JnGolekMQKvX0ECNMmHeYebupyxCcDcyyU4ggeNl+unNl6RA8se86m36B +IPureU+6zXsQTbXi9F0muOXQzFhDHAe41mTcLo2gcoSlsVcOBzTUHz/2/pOg +VOmNOPH7HGC4Cuyi0gl+EXOgHRriAM379+zaTIIv6+/7DxgOg/TF8yn7cgmG +akcufhoeBuBfu1l1U/gPs+dgxsIwaE786TB9i6BH/M4ckB4B/WRdcY0yggfH +hunRJiPgzVnJzrwjzOuG1WXZpBGw2rTkQ2Elwba1cnI0HIWs0mK+Rj3BBtNT +nh2HR0H5/cyLyEcEH5xorgo4MQpzBf9sH3xMMO9JMPV36ijkq4+m5TQRDI7o +z9o3PQoq9jY6Fs8Jbpwt3Ob+5xj0Ba0sV+gmeKbNCK7PjYN9VOLHjTxhn2iV +w0/FJmATf1VlI59gfoJ2/ILKBGjb/zjlPUeww2brW+beCdhNuX2unSe4/bmc +/5bUCeAdWS+Tskhw8MlsYbnBJGTVdR5YlKAwaOsJW471JPBd+44PSFIoETMi +kHedBFU9h/nHUhQaWfRjSOwkFPh/uJkmR2FS47MeeDsJdt+/5UeoUGj5qECy +NXQK6lKWHMMdFA6oqVcu/jYFhRURBqe1KAw4n+GknTcFFUYv3vylQ2EOJBUl +PZ8CVlHXVw19ChfY580ZKtPQP6U67AMU3n7oFDTKngYRm7Wxlg4UWih3qyh1 +TkNnTUTh+8MU9oXYN1iNTEP6EaWcGELhKqP9UmWSMyDxz7PWURcK3e/rlwQc +nQHTsv6Ha7wpVKyQHhAVnQXFgqF2pUgKneMXfuYozEJR85jWb1EU5noMP2/W +nAWPXYFRa2Mp1JSvro4js6C/VOew8VUKzYNcU+TvzMKJXLaJcRaFsQesJD41 +zcJFXNG9IZfCVo2fLvb0zsJ4ed4++UIKb01efNC+lAsOk/3uOmUU6mc4FiZr +cUFc2thkVx2FVOyLfy8Zc4V9yDe+1UDhuQCz9Wf2cmEiS42j3ULhI5vtyZQT +F0ru3As/00GhzbfFSNUYLtw4Prtq9TCFbsxCl6IBLpR5cFZMSTEwyuqHtLRx +Lvz9omR4XIGBhfq/v7oyx4XKRwWvVq5n4JRkqPUpcR6MZbBsi7YxMKjO1khX +nweP1p38PXMPA9NuPg7YZMYDKF9zmW3NwJprBnfkbHigOBPCWenAQFFf9a3z +bjzwW2Kot5HFwHi1D3I1CTyIVGzWyb7AwDKJ43al13lQYd35gB7HwI5PA3FZ +eTzo1EybU09moEJHy5LIah54qno7pBQy0IhtutuvkQct13Qrte4w0Lm4PMS9 +nQelteEHJB8yMCcyg7t3mAfujPpT+W0MbDwlrWnA5cHr3e9+Y71l4AgV7fW/ +BaH++IEtfhwGaur6DohL8yExM8w2ZYGBVUP0F+0mfDDUuf3Yi+aEr/dF8hIs ++aB7NXHN5C4n/FhWq2Bjz4dGuozJ0H4nNDhr5NbixYerjOk9e72ckPwbFB3t +x4dlFoVNtUFOGGxZcXNPGB84uVXxT6Kd8IGs1sf6RD44qMfQi4qc8E3IyR8i +MvkwdVf0UuJDJ/w0WIymRXxgH7zYqd3qhIa3NsdVs/lAzj1aen9O6C/DunOm +hQ+ZDqMyD1Y5Y3BwdpfeP3zIaZGpyd7gjNV7lNXKx/hAP90YyDrgjD0ljnt9 +BXxgrbOXcfNyxi9SKcdpi3zo1StkJ0Q6o3H/2soSWQF8S9WSbK12RgbdtueY +qgDqtuUmyb5xxtDiK981tgmgOGU+jjvvjA8Dl1vl7RaAIEuJNW/igj295j5u ++wUQE2uy3Jflgl/Mzidv+FkA24NvvFl/xQWVi9jV/UwB8O5VqOtVuOAuyYWB +dG8B9EdptHPfuaBzgOEyRoAAltyu+CNJionnegK3rYsQwFumH82bzsSaQq5/ +crIAymbaPGUrmNgnQUuzzxZAXKvRTjafiV/9TtRKlQjg2L7EzP36R1HlbdH7 +tgoBnDwd4G8fcRRNYUQsoU4AG6x7e+PajiKzYBPN+pkAJNf/ouop44rhq90c +VnUJoLnh5XCUmStmnc4KfjIo9HP8oGkS6Iq13b2ZlyYEkE4CFc3KXHHAVKmB +/kEAKZtC4k9Pu+Ji3pExUZE5aN/lWDWw0w1VxZPX1IvPge26nfV9F9xwt2+H +brj8HLSokcZ1fW7IfC1JTNTmIDQp/+N9MxaGm9iEfflxDqS+r5uJqmKh/qhp +0cPtcyDy39Sz8P/bgH9e + "]], LineBox[CompressedData[" +1:eJwtkQs0VQkXx8+hB3mVxEWIhKb08Ka0N3lF8rz3nENKRqIiUZLy1jRJEymi +kaYyGr6ICl9FRYPkOVN5xqSihwp17r2uxx3fWt9ea6//+q/1+6/9X2trBxzw +3C1BEETm7P5Pox3lOu7Ks0D8f04EdfqEKbHwKapxqZeHJka9KyiK1GShWOsd +Zzp3PQYFHhJFG7DgOlF/aW2KJVJvbJ3jjFiQo/LqxsYBnQIW5SZvZOHVKkjn +/G6Llq8HPvzswELC6tpmnw92+IN/ieUv7iwoV+8dCu1xQPWB46cyfViwORhl +KpnqhLI7XLovBrJg+XpZXMwcZ5zuU115OYyFfrNwUwsvF/zi+z76WjQLUutW +vk+M3Yr9PRWNN5JYKO20cF90yhXbmBOckjQWFEw6wo/GbMNHXV7Bt7NYOCGz +uy+U64a3KJ2qqissDKhkzT0m746/vRydX1PEgsTb8pSnIe54jvuQqrvDwlfH +vqab1e6Y/PxMYWMNCyHqLhVSMh54yGu7oKWRhejAB20XPT2Q5zGR1dXHQtGF +8qpnf3mgY3vD0KshFiaJntMRsp5o4ZZl9mZ01h8fLvWz9URVV+OXn+fwwbc6 +9VTAdU9c0EzqfZPnw5p9mWcUOzxR5Nx+WMjhw+Wiq9lmk57Y5xS6RNKQD2nR +fzqVOXlhS8OG3VLmfJA40TgQuN8LaxwW3JWz4cPHqfO9jr94Yb5doTeHywdZ +P4XKFS1emF53+LrGTj7Y90vq+n30wgRbu+86IXzYmNXXZT3PGwPwdaZhLB9W +5l9Ipay80eth6Rujk3ygaqOL/+vpjXab4owtMvgQn2fXrLLXG1dsVP/btoAP +4gvXgqWyvPG9OVeRbuFDb9vwqMVbb+yuWB7g18kHrp7bqCTfG5tMx8sCXvNB +4/CGJWvnc7HY+KxHKMuHlrB57Q36XPy13O+3CDEfunOMR+zMuZi2fvXYEWkB +uJGUt40DF8PWPk1P0hCASZdkfkcAF3eWZP9zUl8Al2hy88FwLrobBq07s14A +JYGv6gtjuWi0SrI9214A2+U95D9ncZHVs1a4GSqAwd9VRB5/cnHToG1DarQA +Nsni4wUdXPwpzyk+OFkAcdJKdFgfF5WVvL8uzxHA33G59vbjXDQj97XlPhGA +p4mRR4YaD+MehJ+MbhPAjXbbbFKXh/VHooDXIwAZzjEDM0MeUl8SSxeNCsDV ++nYru4mH0b0Xz/6sLgQlQrZdxp+Hj7IuOwbpCaGuW0Glbw8PpTyvizevF8LV +t3LihAM8zGksPSB2EIJBbb+8WxwP792td4uKEEKPz/XfdXN5OHX2u0LgUyF8 ++vimsv4ZD+1cRA02z4XwecuMcVwHD9PmEQlaA0KIcxgeWtrJQ41YmdGe70Ig +O3myiwd5uGmvTrvHsglwbNsfzOfzMN7OPR2OTEDDBrNTuhoUNoq5ThpJEyDx +3ibpsjaFC+/7EpNpE/DXyTBzaT0Kr6zfE15xdQIigo1Ola+h8JFmnLth6wSE +JksN7wQKJSaKF6qvEMEPh++tPrSDQvUW22+wVgTKu/QvD++i0OS37heBliIw +0PoY6bmbwt1b5l8qcRVB36aIZQr7Z+/nBKywjRJBs46PaOVRCs9aqVqFNIgg +dJlehNw5Cpce/+nHypBJ2KabnZb5kEJTdw2HvshJ8C9xjLOrpXCb7h0DMm4S +PsrdOTD2hML45tefnc9NQkVy2G1oonBwqXV0/71JiFTnuN16TuEf1d/S5spO +waKVjSPf31NoJvav8CqZgsKanMAMBRq3uj5Ksq+aghirLuv+RTT+eEnLzbx2 +CizlDsWvVKIx3bx/WO3lFEQ9e3HwPofGDwd8VQenp6BunHOiVZvGX//hHg93 +nQZj438SHxjTSNY6254ZmYZPm8K2ylA0chYWycfzpyHfaK62NUPjmh3SveHE +DCy449Ab5kujj6gh0ltpBmT8NA3/2knjHSP7AvWNM5ByyD42J5jGoGsgVXR6 +Bpo6uQUmMTQ2p5i01v8gBv/cmndf82i0UngmkWEqhibfktigKzTeyNll7oti +mKv6orH/Ko3JJb9c+coVQ7WQ0/i8cJbveh/BSRRDhdrF8q6yWX5VnsreTjGM +WCVnetfTqFxhvNVkUAybn1WOjjbSmIJNCTMjYogeKTiT/ozGW0WTh7aQBJ4O +tJPtaafx9EOD/lfKBHarLFTL7aXR9kPSrXm2BI7vzv/6fYzGo2tam/Y5EqjU +B4Nd32fzkarv2rcSmJa/Tq9OQKPmTKnqJYrADlnFV8XTNE4ovkpaG0og90nW +WKc0g+tog7zzEQS2aP9sLZRlMCgvsnLiCIEjMVxCZyGDz/UXjNQlEegWlKR/ +XpnBWxvNufRFAp06hsvm6jI4nJh0oDqPwJKdzLoUfQY1G1pO6VwjcH32tJ3i +KgbTPAJrRm4SyGYPjO8yYrAuq7TL4/Zsvq3VXs+MQVGvaLyiisAzqXtuii0Z +DA7K0E+sm+1n6GYxYcNgfnGfzVAjgZ/3Pr6v4cDgy1H97S6tBFZlWa3yd2bQ +7lhN+pJuAhPGUva5eDF47JF0cUw/gV8yq59OUgyWz+X+OfCGwNx7awO7tzOo +lf5p4o8vBG5THztsvIfBml3xf5R/I1Dg7abmt5/BHcaLmftCApcktI7VH2Rw +ek6h1JNpAm9IyE0fPcLgry+tqpolSDQXflZKjGVww43WPS/mk/hEmb/3QzKD +PUcDVPplSXxYIDCtS2XwqAu/fmgRidTy6TydcwxyNFKjviqTaDawYY52LoOV +XzT0hOokqj3v/bv/KoO8R2UvCG0SYdnq5T/9h0F+hv0JaT0SrW9oXdpWyeCF +H7tNFFeR+Pjc09DkOgZNTEPfqq0j0dfR8WFax+y/5pHnl5uSWOZYtlj8msHI +rvObV1uRaKFw/OldlkHFIoNvJkDi4rzD6pLyPlh27MFVazsSu4YzneUMfdDd +1d3TYQuJ+E77dibPB0c135Ju20iMjDEceZzhg2dHj5RRXiQucdqzA7/44Jpa +mV3+NIl5lS9nFmT5Ymtm/sIQPxK1CvPoodV+GL4x6fqynSQWTHPWlIfswH8B +7mM1NQ== + "]], LineBox[CompressedData[" +1:eJwVjH1MzHEAh/t+J0tcIzqytI7IxtSWbkr4yHlLOM7LfX+9TVM5L5cjyejF +eUmSjju6smxc6UTSWq68FL0petEqL6n0si7KS+U2cWnyx7Pnn2ePICRieyi1 +sLBwG+e/h5taNGoZAcQJQ4NRO+Db+r0+SUEQ06fZ3RO7G1/uKWM1UQT5ygaz +lifFhRj+koyTBD5ehtL+YClctua0Z8UTFBl+RM68LkWV08rkB+cIBC8KrXqe +ShE23OhtuEhwtKJGHNQqhWVF6NfSFAK/dR/La4akyLz2+0a1huBc0efWyZYM +ovDkTY1pBBJXuUlix9CzTGD+cJOg6bHIUTaPQWldmNOtI1hsTQ80uTII2jZw +A3qCZlW87U8vhue5bZNMuQR13ZZ2NmsZxsQTZJZFBGZjT+SfXQwZc7WzbJ4R +7DIYQ2yDGbxNi6r5ZQS1G56XFIUxnEyVuCysJch7GD3FHMkw0n6717eTQGw8 +W/bkMkNqnvCapJcgvnijpE7DIDz9ShTQT7DiRGNgVTrDMedh3SETwY7EMNWZ +OwzD+1eHqKwoVs25ODHzGcMV75ZpaTyKGSPitohyBjcb2YtbthSKtdEKUQ2D +PF/lVOBAkWlccpXfwjDw61NHixuFe65W9eYbw6PwlDJfIYVX79HX3SaG+Hcr +75Qup8g6XFq5aJSBb8g4dHcdxbcTH7ITJ3PoWrB5m6MfxTFZoZNhOof710eX +qrdR3DsVdGuzAwefKP/RUwEUnn0vE6xdOfCM1p1DeyiipLpEmSeH9zsfl4eF +U3iEfLbPFnHQVcqyPx6kaCgOx28xB7mHfZL4CAVP4tOpD+LgmVUtrzw+3r+d +3j5bzmGCXfR2rxiK0Dh/wac4Dg1nXYR5SgpViez4Kw2HdNNbe+cLFOu7WNL8 +BxxC957/q02m0A1sibWq5+DW7NHFU1MMTl2onTPCwbymt0KppRjqd+5QuPuj +qkCj/5VBEZfAFyal+OPKPNGlgzqKaen6jenCAASof0Z06SnkEWMOHY2BmNuq +8OvLGf/vU4+MrQ7GP6x6WKE= + "]], LineBox[CompressedData[" +1:eJwVjntQVGUAR5f7fUYtRigzIk8VBFITsUC0kP3xGkFjVeR1792L8k5nB5Qo +RCUfgAMGrLmMkokgUMrmCjiCwDrIaw2XAVcyBpsMho0WNg1wBIkRSc/MmfPv +WRWfFp7EiEQivze+bfUhrS/XwGB57MF3ZsWRuDNiZo9mBnKHSzlSSTROh9e/ +vtXKYJM00KgWYrC7Y9/Imi4GdZ5r5UMjMXD42Ore5fsMnicGkG0bWRiv3K2x +fsDgLrMjZDSJxc0laUX5jxgcTkjQRBeyyD7pdGj+MYPdPV/fWq9iETLVG5E+ +xCC+y9kjuYOFdVz2ZuNfDM4taGw6B1j8qf/IQWZi0Gjx+7AwxqIGfyzoJxgE +NSmvTbxkkVH3rSF4mkF2ymLJy0UcJCs/+6VljkG/l0dW31IO4rMm1QYRwck1 +zT2NThzK00LTbS0I9CmyonQvDgeGZiOLrQjCQ0Pd8v04eO28toUsI7DsE9Vv +DuGg8zA3e7aSoFm3X1rHcZh51qVo20RQm/XKNSSbQ7uQ8aW3L8G+u0rfyjwO +hb0u0Sp/gtYb0XamIg7O6lNOJZ8ThFzUJUVe5hAmhzolnqB/fOz6QiuHapNG +Z1lMMKwTTv9jxiP1wk6XA0qCbsWvoaliHj5BhqPaUgJJQ88Rc2seujLx+mNV +BJ6Fhqqc1TymdrGK8SaCsJ+qgh+G8GiZf2oMaiWQNrpovcN55KpOoKKT4HgG +G97K81hOr01F9RGcinaJC0zj4Xd7Zk+XgSBPo05nS3m8m3jm+opxgjiVaaVd +FY9+K6dFR/8lsDJW5Cy5wSPpQHDjxv8ILrXrTXVdPAodS5aXW1KMGm4obKd5 +ROncD81ZU7S9943rjJkMKzI19yNtKdY9GFiz7gMZbupHjixeTVHmP3qvaa0M +j3M2PsnaQmHeG3A1LEWGSk+t929+FOIdY1UDmTLIn8QUewZRfHq7clBcIIPI +54TEKKVwlsc0dKpl0BmsSwMiKAJfjLFZ7TIoz16dLGMpnhdptvkNyOBm6rsS +kUixdau9axkRMHk+fq52P8W5Rq3/jw4CWgJnwi3SKH6IHcur8BGQO1nwc3IG +hdVDheJFhICwMkfakUUxwecvuH8lYNn2epnj8Te/11O5qVIBwzNBDYdzKV43 +ct3SdgGqqsH3HxVQ5Pe6FKknBGTskidvUFBYXDAMebjFwm9+ofVMCUWojVLi +/kUszFVKm7+/p/gu87zeXhMLfZT7Qf9yCsng9NKnH+7FRaLpvlRNcay+o2y9 +di8S66SrZmsoEhbsPHNj98FDGMnaU0vxqmTozuXtcQi7/Yk68iaF6C1t8fgf +YlKrLQ== + "]], LineBox[CompressedData[" +1:eJwVj30s1HEAhy9+35Vm5vVICDVOZ7cV/zhmnyhZOxt68XYvv995aazNy5i3 +pJCRyoomtqhYZhFuixJHXPJ27tKLvOStI8xLdZcyvfFsz56/HwdpfHC0HovF +ct52p43+sQ1lnRQcwhNHq6eCcMb4yGSXgsJqp84lqDYEdh0Kd5sBCgqDvNge +WRgWY0NvpKoorM3Hj/6Wh0PGXpkfeUfBs0k+IzofgcyebG/eOIULTBm7ZioC +xxPMygqnKRTUW60G8oUwsq1d12gomDQpG82uCoFzuZ8+L1HoGDWyUXUJkVQs +GZxbo/DN1WXf0g8havo8n89qKbQV22pOOYnwYZdV7cwvCh4tPlu+p0XY46kr +nf5DYUwy4daTJQI/WZ0zpUfwpSGMn/ZIhMqFAvGkIcFc6NCVDJ0I6gPRggkT +AjU3mJ1jLYZe2DH+OJugLqa1ygdixAxuWny0J9hMPPq9v0gMXlOc8q07QXJ/ +tbbCWQJ6ye/FiAfB8DqXKwqU4Lbjwbo33gRe+pr7VhkSbJRO5Kn8CUoEG/qb +agk4w61JwwEEr3ObLcR/JQjfXUorgwluLQ/1VrJpyNMFXoNCAtN2m6Q/J2l8 +lXEODzAELMtDW6ZSGo4rlFV/DEFRnyDKLYtGvrhD25tAkN48ptC20HhWVj77 +KoXAwlvR2/eexrI6RaXIIDC8Jss126AR4Mt73J1HsN90SHfHk8Gli3vLXxYS +XHfV2dsxDJqeLuR33SQ4a+5UIi9gMLfWndxZQvCAF2D6RMbAnFMlld8lWJyM +TOVOM/BjMgM77hFYJvy8nG0kRVpFiHf7Q4LIqFmvf5Bi0tDYuq2eoOKEQSyn +WQqj2TjlYsP2zw5dUvwHh1IY7A== + "]], LineBox[CompressedData[" +1:eJwtlXlQkwcTxiPS980bKaDlA1pCOVQah0OqXIrIw1kDFElIQkgIJCCMVMsl +akGUs8GjyKGW8kkpRUBEioQGkEIpCgJyCH6KGZRaFJQKQkGRqlBtOv125pn9 +Y2f39+z+s2bhsdxIDRqNFqXWPznXdPWdskICtP/HN9MruMNnCZxwLPtJo9QQ +i1df7cP3BOa/ZO88/uMG8P47f+ZiJQGjUA7Dq3AT6uOfNOnXEKgwOl/ue8YR +OuwHI+kKAlVt20yaXjljr+nI0tNGAl1hPE7emCt6/xwyFrYSGK3eb1twyQ2s +wR7XjisEHDJLbr5x94C8sl1m000gwz4kyVDhiYnDlzOL+gmEKV9Gm771ghu/ +rkLzfwRkNoUI/fgTlFhVdceqCDzbmf2n0HcHlleWPrk7SsBwraKEFsCG6F7h +Ku+HBMp9ZxMG3HxwuT7XWjFJQI+jilaZ+0L/ePZO5gwBccTQjt8XfLFPlhqf +/YxAwBGL5mPNfrDRjW2Q/EWgz5lVUW7ij68mo1Q9GiQOSIW/sTv8MdUW+moz +ncQLF2p5XLITFZ/7uzDeI9HXsVae4RIADS/vsP2GJJg/WJfEpAZAytyePmZM +grMmKHBDWwCYfdbXGlkkggLn92ls5iC5bP2kmQ0J+eOg0znRHKiSjKmczSQ6 +jcocr37LQQHr3U8jtpOIbov0GXjLwdxbzdgbHiSq4y1sZ6y58Fct521hkzBX +ynk+Ii4o+dPbOjwSeZ0m+htruYiSTCwmB6v5RfWeU8NcdNqNGj4OJdEwcMrP +Z5mLtPG+kNZoEhbXs7x8vQKxiIsTu1NJhCStO4jeQLSWT589mEViqpflYDAZ +iAy6VaD8GIkWbcs+25U8aA/VXDl3isRfTim23C08WITVltw/T8L6ebGOUwkP +T6/O8mdqSKQsbbXXa+Sh3mLju8sKEiO3ph/ED/CwffbSofdbSSgXG3Ouv+ZB +cFgh5A2RoNprV6cF8MF8MK8TMUxieNdcBy2Sj4eem7rj75Kg2634wjKJjxit +H+1zJ0hURBuPnyzlQ35Wuab3JYkj5smShWk+Gpqb+l3N6Fj7uLZq+aAAycYv +M/0t6CiQD87UHRUA6U7OEks6EnVaB1yLBOjf0Xwh2Z6OP762dF1sFmBC9ZO8 +gU3HglXaNO21AHqLP8MygY6pMpskHAhC4qZOpX6Huj8mLVa5R4goO9PS/B41 +b3/eM0WKEEKHlBNaN+i4YZMz0p0jhPNWu3CNEToKPzIReNcJoeFerjM7S8et +3w2ybi0KseBBW9q9QMfG20VhI/RgPPIKeTz+Su3nedx6LaNg9LD1fh7RpNDl +afwfTQQjl5P12bUPKOzKUH1z+qtgpAWO8WFKYW56TaCwNBgJ/G1uLespeDt0 +6UUogyEIXjBQ2FLIV1W5Sn4NBlO261qxN4WLKxQrxZtF0I5orzPwo/Bh48k7 +/WwRaJHM4gIOhbFK+uAFqQjju28nHA2h4K67vaYlV4TqOE/TxAR1/WL5/Mxz +EYoTSlf9cZDCxqpJ8yhtMXISlxejD1PYtkvOT90gRtwXyoGwoxRKhvtqmmRi +hCfrNt/NocCXMKueHBGDl7K3nH+KgtHJVZ89LBbDMW3dId8SCpHHbzH498Rg +ZaRFdZ1T7xfQ5ji5JMYHWaMctwsUaooeTsUZh+BN9mmWo1LNr9RKrYgIQWeu +5h3zXgpHr07YxbwJQWO+9Mq3gxR8mvOH81kSVJ1qrTEcpmASkDfrwZPgRGFi +pvaY+p7MM1a/1EmQUjQUc+wRBYGTrUHnAwlizlqJNKcpuKia8gb1QsH9bsL2 +9QsKDo4HXAvSQ+H5PZj7lyhk5VX+UtISCvtzxeQcjYHSIbdAyctQGJ7n3X+0 +ioHurVnzN5LDwLhQd126mgFccl1PuxKG5Wqthnv6DMgOJTTGvSPFb7WdJ26a +MbDFycw7ky/F0Izm000fMZA5epzukCZFu5WX32kr9Xwiw3jvD1LU7fmy5sXH +DIjujvtE/CpFafU1rSBHBu5rEwkyXRnynrzz+eVtDEToOs81eMuQzvIeeN+d +Acqnnt2SJkN4ZVfOqB8DVh2N9OwV4eA+ImZduAzk7dkz788Oh8e6T/y/C2KA +1d9TefPrcGQsNXa4ixj//pP2cPwNZf+2KQ== + "]], LineBox[CompressedData[" +1:eJwtVmk0lQsXJlS85xzO++YqjUijWyqFkp4i83CcwZkcx3FDKSRDhoqUJHJv +xJWURrrRJUqiDGWKlEQyJdV1FUlFGtDnW9+319prr2c9w9r739Zy92N7TJGT +k8uc7P/OSMOHSlhDQO7/VW10osjQgMBJ65WGr/4c2lS498nMU8YEklTUqLdp +M5FZyAz9bkqgv21aQIWfLv4ccWoTmxOYttdzvO3SrzhqkGh815qApU36gZyY +1QgJaDo1z5GAl23C/cJ/1mJ7Pvk9gkugOSv5ss5XIwg/skU9QgJBAV7MpNoN +sNFPKt4iJWCVkHqBkppivd9TzUvbCCxJu5hkJAOW/U2FK3kTyJ7mVGC0bzM0 +33M6PP0IpI32t8gf2oIf3s2nl4ZN7tOTK9F2MQd3neTEiggCCXnTW8Z1tiJH +vvfImsMErA/p8oxfboVr6qj/xgQC5zwy6UXGlrj1W6TXliQCfCLj69XnllBb +qSyxTJ3M+86P3+ZnhYoqTSunCwQKsmsEWUesoXni4kbnLAK1j+aLLKfbYI+L +3hpxzqS+7x63+5ANFn7eOM+jkMBjpd64s9622F9aTXmXEDCbd6X64DNbPIt1 +VPYrJ2ByrFu5daMdYhbIhkPqCFiYM7aP/bTDy/63b/c/JmBUOa/TUWwPo1t7 +uqOaCbgp7sXcAnu8sz9cF/+CwFCZatEXgQPMZtHLT7yevFdlFkeW5YD0N8k3 +U/oI7Krruqrw2QH24Vnnzn2a5LVUko5GOSLTQj/l8iiB4fR/e/OqHTHBvB13 +dYwA545yuIMiC3lX6oJvTKXh6Wmv4FlmLFDP3tvVatIg6FtFP3aThV3ng7c0 +zKeh+L5KM9XIQuWun4ZNC2nwOZNV0fmWhWAFpk7nCho0yYY5DrOd0KZv8O3D +Fhp2cNinooKdsHrszuCwJQ3p+7wlXXFOOFaz9c03OxrWyg9P5J5zgokr/7EC +n4Y7d+Wcm2qdkBEXdlljJw2DioNZiRQbX50VTs/ZTUPIiYLetbpssLTj/9AK +oiHKd1Fo0Do2ptw+E748goaOvqimVj4bHr3lTpuSaPhlkNZ1KIWN5ZunTXiW +0NDuHxDaqcRB3tXsxc/LaahfRwTepDgwmMFysq6m4fOGAZGNFgcm/6ZeWv6E +hqVvPSvyNnDgcHyZ7VAvDV6B2hev+HDQ9OVRoGyABv6alb5poRzw3QLONn2c +5E1YifxoDtzW3Pl4Y4wGvbiOVevTOdjTZp8aStKhU/vP0Qc1HHzZ8qninQYd ++6hnTpuaOAjPSekXz6VDfuXcpLhODg5HdJuaLqGjMuPwnJwhDlJ0/f+ZYkqH ++icZb7kGF7f9T66O30HHRtPjC0YkXJh2GLmM+9KR/rzliLUnF/fMu6J9A+lI +rY9tj/Llok5jURsrgo4DSzs+Zh7govPurQj1ZDoe9jA51We4kFPpeHi2nI6w +D/2+L1q5sLyg5XVdg4H3xPyhVFMeDFIZi6rnMLAu80C9ljkPCxJ+vGnXYmDf +7vlmGdY8fA9tcVfUY6BHLbwvhMvDNadYVz4YSC4dGczZwQMl/5E3vp0Bclje +xiyRh25publ1MQNt3csU2F08PORdU3AtY4Brlnu7poeHItu0e3sqGXCdPW5s +2MtDomEg0h8xUPh6lKb4gYetqktMPrxi4MNIOymQc0Z26e9rkglVqNtNVMlp +O2PvXKl2j4sqFtay67/KnOHO0nfulKmiyKcvr9LDGQ6H5I+1eqrCoHeb2/Ed +zlj09uLHht2qqJpzV6ru74zmG33lxYdVwXiUnSkf6Qx9uz3SkzmqsBhu+kdw +xhl9YdHplmOq0FkWWejxzBl6Azyi1V4Nww1/v/rLnA9KdWh65Xc1bLlhJ/xk +KEDT3WMx1uNqGGJLN93aIEDiLt2pj3+qwaH2e/mBTQKQdSKFdkUmbDpWVKlb +TuLoqvEPDCbUix9oejgLoPYj7dNsHSYm9vETkoIEoP27tTPAlgndjsSDsYUC +PEx+Kfpmz0T4Bv3ZxcUCxJuHtx1gMRHxZ/nwYKkAxIW8Z7G8Sb9pzSWPGgFU +JLOfZEiZSEu7l3P0uQDTnw5V1QcwsSE3J6HghwCKZadzddIncZ4Ce6aFEO0m +5lbdZ5lQceyzF9kKkVs88DLtPBPxP698ucgSQlS4kSSzmHA8Qy93EAtx/Vp3 +oFw+EzO8S92V/IVwTddZ31XDRHDotm7mWSEMNB82pdYxEfb+XWvnRSGUUwN3 +chsm/fubg6//JcSNpKr0+iYmBnTeGYbcFIKI8/p5u4uJyOLTzyMahCgKza5M ++czEas8S/bSfQiSMciTsL0z8anSzmDlVhN+Cxkbo35iYuyo/KJkmAsPffnH0 +BBNW3Vnr780SwWP7h9gAZRJRN+w5hQYikPw1jqz5JNb75Dqt8xFhp0FJm7It +ibVTj1QbvxOhvLElp8iehMGYReH+TyKo+wxFeLFIGGo4KrZ8F6Hssu6iKh6J +3JaJKWWEGJTGH3si3UjwT814HbtCjJJv24jRIBLJ25ettAsRQy0l4sXlEBKe +PJrt0EExPFanXeeGk5ARnVXX4sRQ3fmYnx9JoqFEmBWcIcZvncaXfOJI6M+r +ENvXikGUMTa+OUdiKdPdJ2q+C9zES9WSLpJYMM3g8ddlLrg5avZ6cyaJvbqN +K0+sc4FUPzQ2I5tEnOGFpGUOLig4/7pFVEjChHZtBxXhAvHhIt8n9SQcgg0y +dvS5IG/B082Rj0ikl/hvE35xgdLd9zNWPiFRHz1AC1GUIHdEuyT+GQkrRyt1 +Cy0JFLyOT7PqIXHyZpiqmUSCbGv3c6VfSAQ7aXAauiUw0NMy3fSNBJV3Xzx9 +SIJSxsuOsh8kFqkpFOyXc0XjU4lGhRyFCqvEU3O0XTEsESbcV6EA2sB19nZX +7MdMPXM6hTNtfwtiwlwxVaf1QaUqBW7x0PQpx10xq4+rVD2DgtO9K46N+a4w +3cPaVzuPAvv2nFUKU6So4apqWmtRYDU9iE77RQqW4aNbD3QorF0YrRyzXAr3 +MdvPdUsoNGu6h293liLmiKV3w2oKO+yCMn/Pk6IxzVTQZEHhW2UYzdvEDcL9 +4yNsawp3lBZfGLN2wyvpnaSnthSuth9mPeG7YXjh+sfNLAp+75brWAe6YVbu +WotWEQVJnDl1Pc8NF04Mv+ZLKEws2CtKLHeDXmDBwedSCjfWv8qvbXSDqfGq +u23bJvWDDhJ8coP7fT2DTl8KWd75g4XGMvRf7n/i4k9h99JR09N2MgQeverX +FUBhecrMkiGpDDH2S7JfhFCYe1XZV/6oDDmtOto9URSUDok+27yQYW3xqzJZ +NIX2j7peViMylKafl7yKofDHr3Gdb2juaJTNP/U6nkLQeP3i2abuGOnXVOtN +oWA4cGnz73+5Iz/lWHlzKvW/f7LcHf8B9CpvIA== + "]], LineBox[CompressedData[" +1:eJwtVnk0lQv3pgwlKZz35Zz3lAwXZUhKQpcnJEM453DOMR5jVNccbjJliitC +0VwabpGUkjSJUAiVoZCrVBJKbsiXED+/9X17rWfttf/Yz9rPevbaayt6B3N2 +LBASEno0j//PhhqnRtS7aRD6X+juqs473EPDOnvTVN3knybxlin5ZZ9o8G/g +pfzuuxJtgp1uOkM0RG39fuFKnyJUImzoxV9oYPhJXj0fp4LG89JHLn6jIexs +/1KNiNWgTZ85cHiKBhH9/qZ8k3Xwk04wk/pFw4uMezPXbXRxT81XKH2OhhP+ +8k1CrPUQOK7ZlyBCYLF+e3SFqR4Kr5UHhkgR+NvHr+pp1yZM1Z5YM7ycwJxF +p7ZViQFsu2MG/GUJOHa6sUz2G2JMzMzLQ55AW3Nvub/MZmz2fOFop0SAyFRR +m5sxxqHIUulGFQJpiaHN+cUmeJ+R93yrGoFFwzbfZDWBA/dcLX/XJJCTHVVe +1Qq0yAwaaW4k4MWJIiLETaG0ummyYBMB2kjAzbssU0SYXL+tbERgql7yeOBx +UzACwtdSICBK12xwVzaD7xMhZQlrAmZxvedPq5uj/J++3pTtBF7md+Xf8jPH +4rG608L2BCYsIrxyL5rj+spM8qcDgchOnaBO+lZM/kmXGHQnYPdHuKfdz62w +PjRT5+NJQN4oou+ctgXO/N2b1Os9P8/xZ1a/vC1g2nrpV4c/AXNLQdBIgwUy +1uiOPgklsPBVTLtH+jYovrHuuphCYMnBvSpmg5ZIrzEq4aYRkLxcd5xDs8JY +geYB8YMEkv8a17toYoWaMKkNf2QTiKlWiaVyreC7qC1L9xSB9PG49YMbrFG4 +3nlb9Q0Co+/zlkU722A53XrlnlsEMkXZ8SejbRA1azihUk6A7K42NThjA+un +zItpDwik4pWPUK8NvgjezdrXEWgOv1Mk7L4d2un+5W//IeCm1DEwYW6Lo8FO +mdlvCdyZHVtk7GmLOUcrX9P3BMqm8rw1om3RoqAhc/kTgagCG9qvEluE3h4J +DBwlEKtxmLxG2KHsXcRvM2Ikwto+nDjXZgdmnd/MtcUkanPsaoWG7JByld/u +IUlC9GHKoZVzduBFGiTUSpPoiX768dgae/xY8qsnnUkiNuLlv+fj7GGon5xL +1yUx29hlLyTFQoc3feOZDSSSzVq3VZEs7Dl0vXOVPgntO0TcTgUWivu7GOqb +SbSuaBGO1mFhZa7W+Y0WJDLPMNOvsFlYMNpxzcGFxKK/WGEh2SycZQbYd7qR +KEk3Lp88xoKRpfCoiweJfYH134LzWQjP19jg7Uti2cYhC83rLHyy3X8/JGie +b6+XUl8jC01Fq+szE0l0xIe4RAuzsbOjcqd0yjx/8Y2dUovYEFngKJGXSsKu +paD/iBQbxs5xtqczSAyZRAxGUmzcEG9vLzpKopqpv/TCBjZyfWPe1ReRqE8y +0yv1ZcNt5Yufwu0k/Ot/16+pYEOKHnb7wSsSWdYuhp41bFTLEqERXSQQUHd/ +vJ4N1cWug4NvSLi0eFVPt7Hx7/injheDJCrdYy8fGWQj8ensrTOz83qWnifn +pDkoDNcOMlgjh4ViGYsOCThwCW5dPa4ph0LzziHSh4Olu8P7i9fKYbGQ8fPj +/hyEedx3W6Unh5Fa6x+pIRwYWVvYiEMOO5plGWQiB88VBOqvuHJouvdDd+Hf +HEw0Zn4ISZDDkT0Bs/l9HPQsebVzJkkODrk1o1oDHNRsZ/6bekAOOtYxlXc+ +c5D9vGj67EE5FI+9k6ka5WBNWz3tWZ4cati1A2fmOBC8Ft62ukgOJDur9xLD +AXUDEVfft8lh2JgOVTsHHBcRhHNU5HH00rOqzmIHzPrI6bWqyoNeGVR+osQB +vrUtE/ar5ZEW2tXoXOoAnUSzP2215fF0cm7HyzsOaJhT32e5SR4i0iyZshoH +/JgajzfeLg9dLeV0pS4H8Eb/OrgmXB6T+k4pH4UdIfv29oUFj+VBxM/qaXEc +IRqb4GgQSoeJyu6c3TOOKBsd/lm1h46GaZ39E7OO8PVzyreIpOM/a2tDE4S5 +eGy/9rNDNB1LrBZFnRbjIlnpTXxQCh3NV/a/6V3OhUjDpqsXT9AxmkVzv/Ab +FwtkvwlL1dBxoxA921lclKa6FuQ+pqPzQ9BLMQcuvGfqtlP1dNA7zr+o4XJR +03/mmHozHWbjk9/hykXiXRstsw46puPaJPh+XAgLCpz2fqbjzemDW8ZjuBC6 +Iij5IMPAZ2WJboNiLuqGO4PyCcb8/ak9m17CRYYOW9tNnoHdmo1hvaVcyN01 +u/ZqBQM2aq9z8u5xoV2vfrVBnYF3qe4VevVcuPWPXb5uzEBi1lk2v4+Le4qp +Z/ftZiCWdt23SoGHuB1CAv1ABn7LypesUObB/ErUiu/BDCSnXaupUuOhRSfg +dGAEA7bL+a971vIwaMI+6bl/vq6N5oWCB1JAHbU4ykDI1xUSyj48hJ0syZSp +YeAAzWa4pYSHOzMnU2seM+C9PudNXxkPM4IDCWH1DNx8abNw4X0eUpXdI9qa +GUDJ8Bu/xzycLpZwP9zJwL37XyqbXvPwpHKHpsxXBtreLp+1EOdDQpGtWvMv +A1Ea67o2L+WDlbR5VdgYAwaNG4PNZPno3iZLa/vBgJEh3ShZgY+RlkfTOQso +MGdWXHq7iQ/5PqpJWp6CaEJZBieYD/et4k+qGRQUskRakiL5uFAwVhm6gkLO +KZnS5lg+NAOelrYqUfC/uS2hIIOPLRORJ3O0KByc9U/OucrHAb537hYdCtG0 +iH+ybvHRfM/20KguhbG95y8WPeCDF6eSyN5EYTZWzH5TMx+7xdt2SZtR+MWz +fd4wwkfJroc+1VspLFPot6j6wcf3pkL3UEsKJeemBV1CTojPjme32lLY3Zok +FinrhFy6lkGOE4XyLUO/7TN0wkONtEXSQRRuTrY0ncp2wsaXcs8Oh1DQrgj2 +Cz3lhBsxBTm0PRQuPcz3iLjshAvP6hjyeykkF6blLn3ohLRgUS2FRAqeiXWv +Lg07QVg+b/RcMgXVGY0B2k8n7HukUq6USmGmfGzmoagzAqXNTVQzKFToiao+ +UXAG51YiW+sohWPxhFAPzxlNrjJkyXEKtz8EutjvcIa5yIVunVPz/b0bDkuG +O0OfW+2z4RwFow8mWkGHncH8MRdhVETB9eNnhly7M47mZxk+LKbwNbOsUfGj +M5ZZKswZl1DwlaZFZUw4Y8EJ4zTTMgrdDLtdWXQXDBjGnrSqpCDxma9Q5ucC +zz5Jj6ZHFIbGk/iq0S7oPnha2baWQp7LgT/ks13Q3POgmNVAQfx9FzP7gQtK +46Yq+W0UWt8xCnbSXaGhlp70+iUFsYqpzXt0XfH3C7qlayeFrVdbrbS2u+LY +KoNWQQ+Fzk4G53mCK2Jq/uzb8YlCQf86tbL/uGJit3jhwCAFBl90Wo10Q5Ds +sYBdXyiwSmVu5G10g5dv+UTAt3l/lql9ytrnhm5Ji/sjYxTGZ5eL6591g+Pt +V3EhExTY3ZEBS2vdYCE2IR4+RWHXY9rr1OXueHQ9uXlihoLz0bUX7QzcYcCn +5fw5N78fnkkB6T7u0Cxcz4gWYWKyIsHvdoU7pK3DNBOlmCiaqjVKSxbgXPWy +JYbSTCjmN3LcHwmgY3BtaFSWiehLMQEjswLYqQ9e9qIzQdSsDV2e4oE3+Skp +dCYTj9RKvsg+80CAnLJv60om6me8htwkPZEuJlDcosJE15ezoZICT9Djpucm +VZlguJ3yNE73ROHE8bc3VjNx8582/693PbEpcOPDnZpMSJHDPuzPnqj/2H5q +1VomLh9KGC5c6QWeW+i+rnVM3FBv8zDkeeFTu5Rz9gYmqvR+KnJzvCBSa0UK +GTLx03V/6klZbxwxHPh+ZzMTX3m/FM+5ekOpNLk92ISJjKtXXg4VeqN65q7I +OjD/++8/8sb/ASmiIlE= + "]], LineBox[CompressedData[" +1:eJwVk3s4lfkWx91ymyK3GXXe3/uelKQkGQyZ9I3dtm3bvryvaXehvV1Kj3HJ +uBSHqI7STR6nVBpOzY48pewhqUjG0K4xXczuYpQyipSMHIxuOHv+WM/3Wf+s +5/Nd37XmRCayGw309PS+1dXfap+4mtqppbCw5M70K/7zgG9Us6I7KPisnvp4 +TrMERja9zYOdFCjXq2NfLHKH5t78uK1dFJQ5Y0cYPw/sy99sp99NweUX3llv +Zy9Ymb+Jse2l8Nqq8sGCkz64r1lsVfqSwjvn/SXVX/riWG7iVafXFPqth0+J +1F+D1h+Z7jtE4e2yhzuH41agp9HjUsswBdX2iW63NUBZZppCPErh5bafB/qG +AZd373+MeE+BjYpRnbf0x1Ct7/qBjxTGLo6O3Tjsj+rkLKPUSQr+Te9mjdoE +wGdIT55nSNCV0ttpb8ADv8/k04UZBAErf69Tla+C2emgMu+ZBJMPVxo1TePj +14j94mZrAqe8Aokkgg+uy+LUgy8ItLtr7+ZbBOLzE1KhYjZBeNydjuPKQHSu +KRzppwiMBH943KkKhPK+Hf/THILfFDz3QL4A8wrlQ7nzCJpsxbV3DwrwUnL8 +mKUTgfVSs3ozrQAJbdSAgwtBY5W/1kAehH81zy0I8iIoW+hv2RgohF/ORh+t +N8Eq8ki/KFsIA78zPWG+BHqvPBZ01AqRd2Wh5xYQ7G3eseUZCUaRemlnkZDg +uHDBprKuYKxNSN71zxCCzV4a+53mIlAutS5nJQT81flNvl4iqM54Z18LJfBM +zh5M2ieCunTFvBcbCP4zdMBIzykEIxkjJhERBCEehYVOwSHwkp8Z6IoiCC0f +zMhOCEG9pWXNo80E8ryUoCfVIbiR83Rl23cEaQXeBz+5i2EaXugoSCVwO3zT +IkwmRrAP36x1q84/LzWBShTj3vD5e42ZBC0pezZpK8R4HJmlqN5NsO3Dr5XH +7CSgVywNWLKXYE2LvkP2EgmU/+idX7mf4Eh08pt+gQR9WtGfZQUE+uo4dWiG +BG95VNbxYoLBdWXj/Y8kMHaqL865oMs3VDU/AFIEGSZun1AT1MzN6jAWSnHg +mUNkRg3BVzy4/cBJYXVsn3PKZQJh37W2qE1SUGbrLsc0EygarjW77JPCfeDd +A/FDgtVT6rr8NilSNZVX2jp0+/Utb/XQSnFZpSwRPCY4ueeD+/VOKZaH3Yz2 +7yaY5pRQuOuVFILbR0c8X+vu4XLFis5pMoRXeVmRSR3/26qEpctkuLTuncU9 +PRqavvj0HshgYXx1+i5DGusC40IyA2VoCltu+sqUxp/uPby4UBkczHlTF21o +sDXq9cJ4GfqiZYMiZxpj0i3RYSdk8JtpMzC1iMbaqTTjOydlOFp/v7/alUZJ +1tgfruUyCKzXvLD3oJEkMtl7XS3D2esbHr/wo/FG4qfv2CpDwuy4W5mhNNy3 +f//X8gEZbrQu1iyR09gzzXtV65AMTNJQS89aGi2njGdgVIZ7mu+aBAoazIDt +85kTMrinptfZxtKwPG+odLRgMX53d1lltq6/1FsW4MoiJ/fUjidnaShsYq4l +x7CYsdVEGHGeRtVrWpwXy6J4c7x1X5WOx7pCVBTPoibYRzV0kYZnlddgaTKL +Pqv2FoPrOn9f2VEbs1kEl+qZOmtptGsC/3p4hMXndYr81I80EiZjK243slBV +tK7+MEGjVuow6vETC7fiRUy2HoNfVsU8Ofozi6Cs8aq8aQwOvmi5JL3JIjPg +UPsJSwa8/B9GD7Wz6LnbaNs8l8FiSYWh5DmL8/3khIWIwbmfHunPNuKQV5Kr +fCpmcEsxU8oz5hDNDjpekDHgt0VrYk05UA0N6hA5A6P/emyonM5h36H1Nw5E +Mkg/UxxmaMfp/vT4sHk6g8n3zkVmjhwc/m0rMClnkGQf+XWdP4dJ78wZjyoY +eOeZ7Ezncfh98Plv5ecYZMxWzvThcyiQ14Tzf9TxsdRcdRCHqYVscm4Dg7Ak +82fbpRyetB8qNdQyiErbJj8dzuHy7vEo7QMGJS+Efn4KDod9Fc6qDt38Omgf +KDkEl7le9H/KIFU4i56M4nB12+1bO17pePoN2r+M5VC02POQ7A0DS/lEc/23 +HJJ6vg+dM8TAOiEwf2U8hwWiuGdNowy6q+1a+Vs4GOnfP10wzuDYmqJlN5I4 +dNf6xio/MNhKKUsCkjk0xKqWuE0wqBQH/a8xhcNR5rOxqSkGRfX2ft5pHP4P +lU3W/A== + "]], + LineBox[{{4.951551020408163, 139.37596259923768`}, {4.952725024990185, + 150.}}], + LineBox[{{7.196012175022929, 0.}, {7.19644978787316, + 0.680122364067862}, {7.198928048521438, 4.3576005303963}, { + 7.201406309169715, 8.366240097856897}, {7.201448979591836, + 8.448952703871816}}], + LineBox[{{2.794950454536869, 0.}, {2.7969872680162746`, + 52.52496966501432}, {2.7991671838755243`, 150.}}]}, + Annotation[#, "Charting`Private`Tag$13001#1"]& ], {}}, {}}, + AspectRatio->Full, + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{1.317, 0}, + AxesStyle->Directive[ + GrayLevel[0], + AbsoluteThickness[0.2]], + BaseStyle->Automatic, + DisplayFunction->Identity, + Frame->{{True, True}, {True, True}}, + FrameLabel->{{ + FormBox["\"Scattering Length (x BohrRadius)\"", TraditionalForm], None}, { + FormBox["\"B (G)\"", TraditionalForm], None}}, + FrameStyle->Directive[ + GrayLevel[0], + AbsoluteThickness[0.2]], + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + FrameTicksStyle->GrayLevel[0], + GridLines->{Automatic, Automatic}, + GridLinesStyle->Automatic, + ImagePadding->All, + ImageSize->{800, 495}, + LabelStyle->{FontSize -> 14}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "PointSizeFunction" -> None, "ScalingFunctions" -> + None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{1.317, 2.173}, {0, 150}}, + PlotRangeClipping->True, + PlotRangePadding->{{0, 0}, {0, 0}}, + Ticks->{Automatic, Automatic}, + TicksStyle->{FontSize -> 14}]], "Output", + CellChangeTimes->{{3.9463001299682417`*^9, 3.9463001551784124`*^9}, + 3.9463004341960926`*^9, {3.9463004674544535`*^9, 3.946300485191087*^9}, + 3.9463005365743866`*^9, 3.946301604695448*^9, 3.946542264199359*^9}, + CellLabel->"Out[23]=",ExpressionUUID->"61a6f7d5-c877-497e-90e9-8dd81c619ca2"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"scatteringLength", "[", "1.317", "]"}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"scatteringLength", "[", "2.173", "]"}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"BValues", "=", + RowBox[{"Range", "[", + RowBox[{"1.317", ",", "2.173", ",", "0.001"}], "]"}]}], ";"}], " ", + RowBox[{"(*", + RowBox[{"Define", " ", "range", " ", "for", " ", "B"}], + "*)"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"asValues", "=", + RowBox[{"scatteringLength", "/@", "BValues"}]}], ";"}], " ", + RowBox[{"(*", + RowBox[{ + "Compute", " ", "scattering", " ", "length", " ", "for", " ", "each", " ", + "value", " ", "of", " ", "B"}], "*)"}]}], "\[IndentingNewLine]", + RowBox[{"ListLinePlot", "[", + RowBox[{ + RowBox[{"Transpose", "[", + RowBox[{"{", + RowBox[{"asValues", ",", "BValues"}], "}"}], "]"}], ",", + RowBox[{"FrameLabel", "\[Rule]", + RowBox[{"{", + RowBox[{ + "\"\\"", ",", "\"\\""}], + "}"}]}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"FontSize", "\[Rule]", "14"}], "}"}]}], ",", + RowBox[{"Frame", "\[Rule]", "True"}], ",", " ", + RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", + RowBox[{"TicksStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"FontSize", "\[Rule]", "14"}], "}"}]}], ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"{", "Thick", "}"}]}], ",", + RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",", + RowBox[{"ImageSize", "\[Rule]", + RowBox[{"{", + RowBox[{"800", ",", "495"}], "}"}]}], ",", + RowBox[{"AspectRatio", "\[Rule]", "Full"}]}], "]"}]}], "Input", + CellChangeTimes->{{3.946300369035057*^9, 3.9463005626365848`*^9}, { + 3.946301228472893*^9, 3.946301357506851*^9}, {3.94630141955521*^9, + 3.9463014214585342`*^9}, {3.946301914200554*^9, 3.9463019301266484`*^9}}, + CellLabel->"In[24]:=",ExpressionUUID->"329ec9a4-f739-4bf2-bff9-e5d541d4c8fa"], + +Cell[BoxData[ + GraphicsBox[{{}, {{}, {}, + {RGBColor[0.24720000000000014`, 0.24, 0.6], Thickness[Large], + LineBox[CompressedData[" +1:eJw12ndcTu8bB/DzGMkKycrIikL5oYzIdSsjSvN5zsjeK1siEUKKhKxkUyoi +e++klBGVkZVVyYxnr9/pfK/7+cfrvDyvu3tc9+d9dV51mDw/cFoNhmGEmgxT +/W/tv6Xd56lsyHu/uN3zrJVQ37ru48i8TmRkgxrdo5srIbhej75ZnXuQ8zlL +bx60VULao+duAS96kXbrKwMut1PCo/S7OZZDXUnMkIlfnnZUQvsgJ+7D1P7k +r7FwWUUXJWyt/Lj1pedAMv5q9YhK2OghNOxW4U6k4XoqYczi97eKnAjpI32U +cOLJH48t/kPI/l/Hs737KWHvBKss5wkexPJkm+CpA5WwI7aq5aMxnmTRzG0/ +IkAJLQNWt3X1GkredrZYs9NTCbfOq6KV9sPIiNJwm1MjlOBiccN6tmoYOSsN +KI4f437o3tXhpHq0935KmNBi6VOrJSNIdPNXj9VBSmgQvXfigE5e5M+z0ZMb +80r41unXrua5XmRs/F2lw1gltMozf588fSQRJycuWRzvQnK7B/qRpJc0QSVc +Nhy79jpmFEnKap+5aKYSCuXOQV2aeJPq2W0KUYL9n+Pe9tu9yQL3ei+OLlDC +8+PjQ0c09CEl2lWzry9Rwtf7r6ZUrfUhwy5W76ASfpwZuXvtXx+SKS1YXP/c +eyt9Jowmtj2rV6wErjIhcH/2aCIdx3olkGYvP1xz9CXS9sWI+1P3sFPFRl8i +LTdOCdsMvRtO+uxLpOltU8LgZlxK8CA/Ig23Uwmr1O5fLbf5kUTpo4T+bIOy +vR/9SC3WyunsfiXk6efYH2jpT+ZZR91+eFgJ22O9s2MH+5Pq3fuUrISjy+w7 +d5niT8TFlunTlLB44a0bazb4k1PSgSghetuG9xmp/qSlNKASZsRG3LiS60+q +Rxt2UQkPusfEnqvwJ+Lhuo6/qoRmypVxqZYBhB9QXYFKiGzeyCW5SwCpPg3x +SCB8q6HTBc8A4iQdsBK6ph4Y9WlCANktTVAJn1bXqBywIoBUV/Orx0oY2+Vm ++t2dAaR6dn+eieez/cD+DacDiHgY4okoYXU7X/8tOQFEKucSJfR0tXpW+iGA +SOX3Xglgs+/GRk0AkcrlkxKmHlIMiW0USKTjLVOCk8WZLj/sA4l0HJXi/uW0 +eHVpYCCRtu+X+P9WLiG//QOJtNy/Smi98MbhfdMCiTQ9tRLybQt+3lkeSKTh +9GJ9FLxfPS0ukDDSRwX3lwz02HwokIjFktCylgpOzPd553YukBSJt62XpQrO +lCy9H3o/kFTv3sgGKnDoe/F/Q14EknSpoFWw56ey8+HyQGIjHYgKai/qsTRR +G0gipQFVsPex+0OnekGkerSTbVRQc1t60iTbICL/lCyWtPjzGzYa1L9bEKm+ +vW87q+DU16XF5wcEEUfpgqjA1XPjwtdeQSRBOmAVNPsc8+cEF0RM1XHQSwX9 +/wy37TE9iEjX11UFfh2fbx23JIg8r75uA1QwOqXXW4+1QUS6Hu4qcNJ/mPMu +PoikShdOBb4XR8f33h9EpPIbpoIHTZ3XDEkPIiulBatgsv7BlIaXgoh0vKNV +kGfRyXPPvSASWH0cASrw/Ne1+ecnQUTaPlYFquenblWVBJGu0gVWwZhOKxtl +lwURaXrjVfD8j8u9CX+DiKF6uMkq+Ne0b/QdUxCZLn1U8EaxSP29rpwUdKy+ +wSqI2eR66JONnAyUAlUFST4fTSl2cpIiBYIKLrU6trZ/NzlpLBW0CjYmtYhL +dJGTFdKBqGD/gYpFeYPlpLr6tKtUIJsyN+KJl5z4V8dzlAo65Hf7mhIoJ1Kc +Rqvgd9XU0sCxcmIvBYwKuiYk7iicJidSXMWrYHeWtrXTfDnRVcdLggr6zHwT +M26ZnEhxsFsF3ie6lU1fIydPqq9vkgqO67L7jIqVE+m6HVRB8tWf0y0T5OSY +FFgq0Fvvnn8kSU6kcj6ugi0t7ru0OiYny6WCUcGshNKdc0/KiVQumSpYc8Fy +zqHzcuJbfbznq+tTsf7sdTmRjuOyCj6c6376WJacdJICUAXFZctOhuXLibTc +2+J+r9O69SiUE0319LJUkD861PpeiZxIw+WooEsH/edBn+TkUX71RwVeB1pN +2PtNTvpJIKlgrFMzhzd/5OSIFKgqqBHf+mMNrZxIvL0Sx7MJ7daIUZAwqaBV +QI6cS5TVURCJj1IVfE94f+91QwXxkQZUwZTUI/2TbBREiucKFcyuvTDKs7WC +dJACWgV1FmV2L+ygIFL8/VHBnTdvz492UBCVFFcq+OF55kCms4JI8aIV68GG +TDO6KIgUB0YVrLZpt8ZloIJI17eGGt58jZjBDlGQQ1Lgq+HKkFGxU0YoiHQ9 +6qnh2HsffuxoBZHK2UoNqwlxHxKkQM/VsHb4r8PWgoKMkhashps3Rn9/Ol6B +nqvBr2RrZMRUBXquhv23h19vNluBnqvBwmous3++gvyTPFdD9tYNx61DFei5 +Gto3z6wXFq5Az9Vwa+751Q8jFei5GtyT7cY3XK8gBySQ1DBifYASYhXouRoG +CfG7Jscr0HM1dKnbbGvoDgV6roaKOHvn5YkK4iUdiBpuZNtem3tAgZ6L37+0 +JDLoqAI9V0Nmn/I73VIV6Lkaftac++DvSQWpkjxXw6FI7+enzijQczXsPunY +dexFBXouru9ji5qGqwr0XA3J+n3JW24p0HM1lDa5622TpUDP1bCzqG2vuBwF +eq6GoeHv47X5CvRcDXlDXh0SChTouRp6pcUmZRQp0HPxPNy6XVS+UqDnamhS +97R973cK9FwNGcWv2k75qEDP1bDsh3vBxq8K9FwN7dJGLjz6TYGeq+HaJV/n +cz8V6LkaPJrG9rtcpUDPxfO52P3aWZUCPVeDqsn4r0d0CvRcDWr30V82mhTo +uRqM/5w+Ta3Boudq0PkNrdfPgkXP1WDp8y3KXJdFz9Vwt9WuZTcbsui5eF79 +PzRa0oRFz9VQe1LMgvbNWPRcDd0Hrb59ryWLnquh5++vnce3YdFzNRxe2fLu +LzsWPVfDqaqMa8s6sei5uD9Loly0XVj0XA3FHW74LuzGoufi/uTndS91YtFz +8XziF3736sWi52o455GdmerCoudq6JY7cA/Tn0XP1ZA4+Mgd/4Eseq6GwRY9 +vBMHs+i5GmZfWRj4egiLnov3TxP6r+kwFj1Xw712aaOHe7HouRoWvf6+fKE3 +i55r4Hra7h07fVn0XAM57ssunw1g0XMNBGa9NOfIWfRcAx6t1q57ybHouQZC +PtycUBrMoucaeLZxfPqncSx6roHCAZcj3k9k0XMNdD2R8bNwCouei8/lGS2y +prPouTie+ZJVxiwWPddAs4PjvsWHsOi5BiIP3L8dMp9FzzVQGnrquOciFj3X +wMljC87bhLLouQa+WcgM78NY9FwD/rZ/tyeHs+i5Brb1WRE3bSWLnmtg2LEF +ZrvVLHqugY7P/AyFa1n0XAPZMGj3uvUseq6BqOgan5w3sui5Bkq8bKuex7Lo +uQZuW6YWL45j0XMNjK8decRqK4uea2CkseOMY9tZ9FwD7pW5rq47WfRcAxUX +xtnd2c2i5xq4WrjSxWsvi55r4EHF6vUP97HouQYGBSzt6HWQRc81MCOla+s7 +h1n0XANOYBvpeoxFzzWwev/WcckpLHqugbwXm+43TmPRcw04avLvh51g0XMN +vAwsDnmdwaLnGuhR+D2nfyaLnovnObxV+fazLHqugbZbHF+Wn2fRcw2M+3gm +xe0Si55rYJam4aSNV1j0XNzf7pNtnl1j0XPxfPbve9TiJouea6DT6KWJwm0W +PRfP33HJut13WfRcA8fale8tyGLRcw0kNK8qr/OARc81cFO/Otwtl0XPNfD2 +dNCYWXkseq6BGmbtrh2PWPRcA7s2F/W//oRFzzXw+qqtz4cCFj3XgCyuoIQp +ZNFzDZRHFVe1LWbRcw28Ci1J6veSRc/F+U+aWTr6NYuea8DK7c2jiW9Y9Fwj +9iNz5yx4xxIpTn9oILZ2j6yIDyx6roFNaebS9R9Z9Fw8r1YnHm/6zKLnGqgf +nZew5SuLnmvAYfMrty3lLHquhT1vHR/FfmPRcy1c+fcjaN13Fj3XwtRLLi/D +f7LouRaqWldOnvebRc+1IM99YxhfxaLnWqhz/vwpn38seq4Fz0vG1f1ULHqu +hW/dOkXYaVj0XAuTly5MraVj0XMtmA82tyrTs+i5Fma96ngh28ii51roUDcm ++aiZRc+1UOFvV7ZSxqHnWvDadnCNoiaHnmth5bfjEd1qc+i5Fia4XXtvsODQ +cy2U7x5yNt+SQ8+18Clvoz6xHoeea4E8yLo7tQGHnmuhpHnjRk5WHHquhdfy +kLKqRhx6roUzu+8GXmzCoedayHv3iQtryqHnWhi0Msbo2oxDz7Vwd41iVFVz +juyTwNRCu7bPh55syaHnWuhiEfZ3ii2HnmvhYsnBsa3acOi5ForX7dqQ35Yj +w6WC0UL2li1hK+049FwL7jEprj06cOi5Fh5OLM9+2ZFDz7Uw6dLIXlGdOfJb +8lwLnQeeDO/ehUPPtRCuf5ta0JVDz7Ww5HrinVBHDj3XQpxX9MMW3TmyV/Jc +C7m3B+Ze6sGh5+J6KwfcUzhz6LkW3FZX3fjTk0PPtZARmnVzUy+ODJUKWgt+ +I40PO/Xh0HNx/iNflV1x4dBzLXQribL17cuh51oYc7fFzA/9OPRcC42mHixa +MIBDz8X9qddsptmNQ8/F83eY0nnzIA49F+t719RGLQZz6LkWCos+Ox0CDj3X +wrTRh9Z1HcKh51qI2TC0ZYYHh55rYeasBT/+N5RDz7VwPey85blhHHquhUSL +hHl9RnDouRaswlZ3OuvFoeda+Dj3U/eeozj0XAuyes02p3tz6LkWRtpO8uo8 +mkPPtWARaDFtny+Hnos/L6LvV2t/Dj0X6yOz+dPoAA4914HNmltd9IEceq6D +cc7uP0PkHHqug5Li+G5vFRx6roPE5BPvvTkOPdfBWWZ5kys8h57r4OXFwnud +gzn0XAc1e2zVbRnDoec6GLN+4RX1WA4918Gowj61Jozn0HMdPCLR77ImcOi5 +Dvr1aeLjOIlDz3XwPiLEf/NkDj3XweLVjr9+TOHQcx0IwuPuvtM49FwHUTVe +1M2YzqHnOlgRcWFzvZkceq4DVVXBpemzOPRcHK80dsud2Rx6roMD/VxtWodw +6LkObke08Vk8l0PPdZBStXbAw3kceq4D58uH39st4NBzHdz7ljpkyUIOPdfB +1we3Jj9YxKHnOtj3qNbwVks49FwHu17H/ZwVyqHnOrg6euaEK0s59FwH/e0T +k+os49BzHTRt2zZFvpxDz3VQ91H5mkPhHHqug/9ll/eqXMGh5zownZZdcVnJ +oefieqY2tl25ikPPdfC04TcuK5JDz3XQBMaG1lvDoec6cLF2CvVby6HnOlgz +pHVwQhSHnuvg+5B3XYrXcei5DtzHdXnXYgOHnuvAL2/fWj6aQ891MCDvU/M9 +Gzn0XAf6a7v2F8dw6LkOtrqMamWziUPPddCizebN/ps59FwHlnc+aTfFcei5 +Dnb8LpiSvYUj0vZdF/erYUG+OZ5Dz8XzsVf067+NQ891kGCZnzx/O4ee60A9 +fr9tSgJHJM7zdVB8vduekh0ceq6D/ZeftG+8i0PPdeBlLr3ouZtDz3Xwc+aZ +sUv3cETi6K0OLjbYaJOayKHnOjgoT//wci+Hnovzb8Lds9zHoefiz9v04Ga/ +/Rx6roMhST2Lph3g0HNxP87fsEw4yKHn4s837R1z6xCHnuvAc3Llk2+HOfRc +B+EHH81odpRDz/UQOWaMPRzj0HM9XOmTVm9mMoee62HS4+xWW1M49FwPAypv +yi8d59BzPbRZsvvG21QOPddDu7gAtmY6h57rIe1YRXuHExx6rgfHKM7O5ySH +nushPXhL0PwMDj3XQ4viiFvbTnHouR5CHRpOO3eaQ8/1ENXafnhhJoee6yG1 +XcrUf2eo53oYqJh7t+k56rkeHh0LmtT7PPVcD073nDz9L1DP9SAfmj9r7kXq +uR4qj+uLYy5Rz/Xwcvq6zcmXqed6WMp033z7CvVcD6frZL54fZV6rofCnk8X +/LtGPdeL+TNUaHiDeq6HRQfubLe/ST3XQ+AEbTv3W9RzPcz2TTQH3aae68V8 +8u47+w71XA/jp17MirxLPddDliri5I571HM93E4e/Cs1i3quh84Ldm+5fp96 +rof873abn2RTz/WQoJhbUfqAeq6HadubpP7NoZ7r4a9nUm6th9RzPSge7/Rr +lkc918OhKTED7fOp53pwsdJvcXlEPdeD8mqIt+dj6rk4vue4RQFPqOd6SA7z +qj3hKfVcrA+H47VDCqjnesjo+WvJsmfUc/H8IxLk655Tz/XQw7ZWSnwhR35K +nuvhgtup2XuLqOd6eAGGo8eKqefi97MUQadeUM/10PiYXfill9RzPey1uN7q +9ivquR68p8f2yXlNPddDbmJZzpMS6rkeprxxKil+Qz3Xw4Li83PevqWei99P +Lljx6R31XKyvL8UNKt5Tz/XgcNmm/c8P1HM9HM57ebGqlHquB37avGeqj9Rz +Pbyd0W6J7hP1XA/OY3ruN36mnushaMkXX+Yr9dwAhn1rY2uUUc8NoAwfHlCr +nHpugLVh847VrqCeG+B+tut6i2/UcwN8mVf0z6KSem6AQX7r/ll8p54bYGzX +sPUWP6jnBmh/4ENq7Z/UcwPM9fozodYv6rkBBme+OFHjN/XcAG3H3I5j/lDP +DdChoMjC9Id6boDhR0lLfRX13ADMoq731H+p5wYo/nvK8t8/6rkBDuu1Fb+U +1HMDVK5ynFmpop4boM++seu+qqnnBmh4OBNKNdRzA0xqPCSpREs9N4Aiteue +Ih313ABLZ0b0e6KnnhsgZLciPMdAPTeAc+6DSXeM1HMDrPj85ecVE/XcAD8c +7nQ8a6aeG4B3mWVKY3j03ABPLb+vPSzj0XMDlDVhz+ypwaPnBpjf7WxsfE0e +PTfAt8N1G2+oxaPnBigdMtUjojaPnhtgXlBOx0UWPHpugJXH3M7OqMOj5wbQ +b775Z6wlj54bwO+f4mNAXR49N0AgK1s/vB6Pnhtga86t1271efTcAMHmLZ+d +G/DouXgegXOOdmzIo+cGsMzya9ncikfPDXBN1ndo3UY8em6AxXObOxjE5/88 +N8DM9uVZPxvz6LlYb78PtS5twqPn4viLXZ2eW/P4+7kBBlgm6rKa8ui5AZyK +bqy7aMOj5wZQF+zIP96MR8/F9eY2fL6nOY+eGyB8UovEmBY8em6AWrYH7cJb +8ui5AZpx22bMbsWj5wY4M/nVwmBbHj03wN2Fk2BUax49F59TrQsGtOHRcwN8 +sCvq6tiWR88NcLIsfmjLdjx6Lt6fho4Odex49NwAvQ6uf64Un//zXBwvM2bE +5/Y8ei7ehwkt1z/rwKPnYn0XNY273ZFHz41gFThu4qlOPHpuhIVdi8xJnXn0 +3AhhWcEhMfY8em6EwIv5KUu78Oi5EQZmWGZO6cqj50aYv7pyo78Dj54bYVXv +gN7ujjx6bgR/pU2GYzcePTeCk3MTXbPuPHpuBPVyO9saPXj03AhNzrS0+ik+ +/+e5ETZUFha/cuLRcyNUruseet+ZR8+NsKv934rMnjx6boQFGbK++/7Ho+dG +MM3qERzdi0fPjbCofAS3qDePnhthmrWD87g+PHpuhMZOh96PcOHRcyPYvV0b +0tuVR8+NkNTtSFGbvjx6boSsdU9a1+nHo+dGGJBdAn/E5/88N8LB/rs9Svrz +6LkRzuwp6Hx/AI+eG6GRbXDZKTcePTeC+xxz7J6BPHouns+V+MZrB/HouRGi +z79cNsedR8+NkL/9eJZ8MI+eG6FGs9x/7sCj50Zwia1bryvh0XMjxD13qd14 +CI+eG8FvZvMyjfj8n+dGuCwszyz14NFzI7xjHSY/9OTRcyOsz/xhODuUR8+N +4DYuYU3SMB49N0ID48ffUcN59NwI694me4eM4NFzI6QZj22Xe/HouTj/JmnZ +g0by6LkR4qPDyzuP4tFzI3yOKdU08ObRcyN8q5Wi+Sc+/+e5WD9p8eVvfHj0 +XDyfv9Nys0bz6LkRDjj+Tjrpy6PnRtBPVU7c4ceTPdIEjVBzx6BWEf48em4E +n1Wb708J4NFzI3zPOTHdO5BHz40wSzfR2DuIJx7ShTPC31WLYm3lPHpuhMiT +KVY1FDx6Ls4v+15shfj8n+dGmFBrq/kpy5PvkudGaLGtYO5ljkfPjVBvh2/x +QZ5Hz41Qp8+jAdECj54bQburaeK8YJ7skjwX5/u77J9iDI+em6DXisa+7mN5 +9NwEPdYFJXcex6PnJvAOCdPXH8+T/wLBBMUZHgF/xef/PDfB3g8rjr+ewKPn +Joi/WWG6M5FHz00w1yGIT5vEk2+S5yZgu0We3zqZR89NMJJxtVk2hUfPTdCy +9aBlE6by6LkJGtmPLR0+jSc7pAM2wVmLcf7O03n03ARplRbZzWbw6LkJzozo +6GkUn//z3ATzS8JyPs/kyWApsEyw9cpTNn8Wj56boNBb9fPcbB49N4Edf3Zb +0hwePTfBjdpPICqER8/F9X1srps9l0fPTbCkXH4ncB6PnptgxVr5Lrf5PJGW +Gyx+f3vp8o4LePTcBK+X5oTUW8ij5yYIalQ8v0p8/s9zE0TfexH1ehFPJH5n +m2DUxqS0u4up5yYI/fKrNH0J9dwEZfqjTgmh1HMTRG6KjluxlCcSH+Em+J92 +do2pYdRzE7RV2MX5LKOem+DzxKXOrsup5yaos8ujrG04T6T422QCvx7cZYsV +1HMTjGm/8civFdRzE0x0S095GUE9N8EVm4T7d1byRLq+SSaw7dSKObGKem6C +gVeacjsiqefi/KzH5K1cTT03wSYuZ9yMNTyRyu+kCdJTXRsFrKWem2BGx1Uf +3KKo5yZY9nXls87rqOfi/DpZf7Vaz+Pv5yaANq3aaNdTz03w9n+LQj9toJ6b +4OcXY9WjaOq5CXx/7N95eSP13AR7nF3HH42hnpug4Mnx0Vtiqecm6Dy4ZOry +TdRzE9Tud/HY1M3UcxPwBe2t/OOo5ya4vaHWkYFbqOcm8HT3mdQ1nnpuApP/ +Z5+mW6nnJmhz4Oo081bquQnqbbp5snIb9dwEudalHV9up56bIOmJTW5WAvXc +BOdr+x46s4N6bobQU2vTDuyknpthR1T6l027qOdmOFPvlmL5buq5GeDwNd30 +PdRzM0zeuL9Inkg9N0PYnyllHnup52bYUq9xr15J1HPx/+snn7PbRz03Q76H +wwKr/dRzMxzqdHiGcT/13Az2Qa2Svh+gnpuhzaV99d8cpJ6bQR814GreIeq5 +Gax8mNRrh6nnZoi3qlV84gj13AwDRgQP23eUem6GYSZb9eZj1HMz5L2c+H1l +MvXcDMscR3aZn0I9N8Nj2b/kicep52Y457kuJDCVem6GpHN2K4amUc/N0KD+ +r2d906nnZkio3y7U8QT13AwTt5dMbnOSem6GQSeF/Y0yqOdmcE5/ZF/zFPXc +DBv7LjCqTlHPzbB99kr7ytPUczP8/uxy8H0m9dwMfh9ezSk8Qz0X5+N9bnPu +Weq5Gbze16956xz13Ay5A3s/PX+eem6GhcZlyvQL1HMzhL/qu+TwReq5GdZe +zh695xL13Ax9nkVHxV+mnpuhIvdt8+gr1HMz1Mj/X93Iq9RzM9ie/DEm7Br1 +3Azda21ovOA69dwMR+QLHGbdoJ6bgbd3SJ58k3puhqVdnTeOvUU9N8Nm3vI5 +e5t6bobTXTyiA+5Qz8X57gxJ8blLPTfDnqntenvdo56b4XPff92HZlHPxe9f +27qT3Keem+Hyi30L3LOp52J9Pntw0+0B9Vycb+SDNf1zqOdmGLmQv9Y3l3pu +hrqdB891fUg9N8OrXp6JLnnUczOsXDdgiEs+9dwML2J0010eUc/NMHj2jAau +j6nnZrAjs/r0fUI9F+cT+Odtv6fUc4YU+GobuhXQ+86QgbFR9wc9o74zpPHg +JAvynN5/huzLkz/3LKTeM6Qr89jJq4jmgTjeGOeWo4up/wy5EHx8R+ALnoRK ++cCQi7eXJPMvaT/AkO5idzXhFc0Lhpite8VNf037A4Y0vfVo5rwSmh8M2WK0 +/bj0De0XxPk+2qyPfEvzhCHrlx29FPOO9g8MiVZVttzxnid2UkEzpL8/0/Hg +B9pPMKTScmNReinNG4YYYvv3vfSR9hcMObmnaHjWJ5o/4nzv9Kr37DPtN8Tn +185RH77QPGLIyFU3z//6yuP7BIb4bP142FxG84kh2+9ljG5cQfsRhnx3HHqt +wzeaVwyxf1Dyo08l7U/E9Xa7UT78O80vhoRbDT0d/IP2K+L8TO+Hzv9J84wh +3Wo3y1j3i8f3EQw5Oj6icu9vmm8MqdX3fs2zf2g/wxCHmRe0uVU07xhyw69b +wce/tL9hyJvEVlsM/2j+MeRRp+0uLVS032HI1I/Xc3qraR6K83v+1tdPQ/sf +cT+18rwQLc1HhvSadtBjk472QwzJ9+SvpOtpXjLEv6abS56B9kcMWRZhd/m7 +keYnQxKcao9qZObx/QdDmkTV+9WbETBPGXKo5+KTnEzA/okhfXekRq+sIWC+ +MmTAgIEbjtUUsJ9iyB7hc0Z+LQHzliHvVkfXUtUWsL9iyCx3l63t6wiYvwxJ +KuvK+VgK+P6EIS8jn0xYXlfAPGbIw6O5mcfrCdh/MUTYX+7/or6A+cyQrZtc +Rlg2FLAfY8jS1B973awEzGuxnk9uCZrXSMD+jCFj/Z8sO9pYwPxmyMp/Kdav +mwj4/oUhv6f7OVo3FTDPGQLPR9z3thGwfxPvzyvu14ZmAuY7Q6wfb8+811zA +fo4hC53GWNdoKWDeM6RT/+ntPFoJ2N8xRJ9z612UrYD5z5CPEx6Pe9BawPc3 +Yr3N5FIatBXQA4ak34i6F9ROwP6PIY1CP9/eZyegDwzRVIall7UXsB9kSI79 +6c0uHQX0Qry/4YuXRHUSsD9kyIv9PeYXdhbQD4Z8qfkgtmsXAd//iPM/cbUo +oquAnoh5JLeeUOggYP8o7ofj4r7O3QT0hSHtKjqHxHYXsJ8U8yDBtklFDwG9 +Ycj5FH3fUc4C9pcM2WVw+p3RU0B/GHJ35Ac/m14Cvj8S95dtNntlbwE9YkiU +6nRQRR8B+0+GVLyO7Mi7CugTQ3zB70duXwH7UYbU3/knb3B/Ab1iyP2+QS8u +DhCwP2WII8Q69h4ooF8M8dxb/jZzkIDvnxjiOrdRkz6DBfRM3P8/NUsvg4D9 +K0OOfR0212OIgL4xZPXVsuInHgL2s2Je7Uolk4YK6B1DXMIaP1ENE7C/FfNn +w5bUrSME9E/cz7JEpfNIAf++hCELXIo+FIwS0EOG9FS67F7uI2D/y5BcX0ev +Lr4C+siQ6yPz7F/6CdgPM8SjttW0+AABvRTzZ8g/d58gAftjhsRceFhppRDQ +T7H+T83IeMEK+PcpDFFsX3A/hRfQU4ZUlSaHRwQL2D8zpO7yvi2FsQL6ypCW +JbY/B40XsJ8WxwtfHuAwUUBvxTyv3Wx/68kC9tcMsSq/36vFVAH9ZYh2MhPW +erqAf6/KkLDLM0scZgroMUNuDworgtkC9t9i/nk5f54YIqDPDFk89XP85nkC +9uMMcfKzn3NvgYBeM6RFjYymFosF7M/F/XFd3UcRKqDfYl7GdVl7JkwgeVK/ +zpDlHvWzW4cL6LmMtHhet3hHhICey8juyU5JbSMF9FxGzs1Mt760RkDPZaTT +49b+k9cJ6LmM+DlZrW4fLaDnMnLl15dvVTECei4jO0N6al5vFtBzGVnccU7v +1/ECei4jd+7O8a7aLqDnMtJ10MQO9rsE9FxG+i9Ky1qSKKDnMpLf7ciqT/sE +9FxG3ozc+GrxIQE9l5HyfnfSHI4J6LmMVHy/3bJ2qoCey0hmyPczDU4K6LmM +ZFz4utAzU0DPZcQt5/nLjPMCei5+P82DCbgioOfifKwPXeh9U0DPZeTF76C9 +wj0BPZeRonKZ96McAd8nyMiDtJfxux4LJFfyXEY6zFq+51ahgJ7LyOBer4bL +SwT0XEbSX6THTf4ooOcy8vvSxnJdhYCey0jJ4sWq/1UJ6Ln480vTPNroBfRc +Rgpjfvi8qhWMnstI+/K3FbGNgtFzGVlrnWk3tnUwei4jsY4nLqx1CEbPZeTU +yuJcj37B6LmMWAyp+vV3RDB6LiM5i1ZnWI4JRs9lJM/+2blWC4PRcxk59Pjm +AHVsMHouI0dqTrmZlRaMnstI253nRnd9Eoyeywj7YNWyXcZg9FxGXJ6OPFfV +fwx6LiMBcfVtzkaPQc/F9d1M+BuqHIOey8jcjAayNYlj0XOxviIjI1qlj0PP +ZYQc+Nze+uEE9FxGmg8bNSyr6RT0XEb+D/XJTrg= + "]]}}, {{}, {}}}, + AspectRatio->Full, + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{67.50782601366832, 1.2694444444444448`}, + AxesStyle->Directive[ + GrayLevel[0], + AbsoluteThickness[0.2]], + BaseStyle->Automatic, + DisplayFunction->Identity, + Frame->{{True, True}, {True, True}}, + FrameLabel->{{ + FormBox["\"B (G)\"", TraditionalForm], None}, { + FormBox["\"Scattering Length (x BohrRadius)\"", TraditionalForm], None}}, + FrameStyle->Directive[ + GrayLevel[0], + AbsoluteThickness[0.2]], + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + FrameTicksStyle->GrayLevel[0], + GridLines->{Automatic, Automatic}, + GridLinesStyle->Automatic, + ImageSize->{800, 495}, + LabelStyle->{FontSize -> 14}, + Method->{ + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, + PlotRange->{{67.50782601366832, 118.299952122563}, {1.2694444444444448`, + 2.173}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}, + TicksStyle->{FontSize -> 14}]], "Output", + CellChangeTimes->{{3.9463013099729557`*^9, 3.9463013581064157`*^9}, + 3.946301421896168*^9, 3.9463016066577034`*^9, {3.9463019162280746`*^9, + 3.946301930548483*^9}, 3.946302069709379*^9, 3.946542268549102*^9}, + CellLabel->"Out[28]=",ExpressionUUID->"b41db075-8f6a-413f-b3d4-d969247576da"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"targetas", "=", "71.54"}], ";", + RowBox[{"(*", + RowBox[{ + "Define", " ", "the", " ", "target", " ", "scattering", " ", "length"}], + "*)"}], "\[IndentingNewLine]", + RowBox[{"closestIndex", "=", + RowBox[{"First", "[", + RowBox[{"Ordering", "[", + RowBox[{ + RowBox[{"Abs", "[", + RowBox[{"asValues", "-", "targetas"}], "]"}], ",", "1"}], "]"}], + "]"}]}], ";", " ", + RowBox[{"(*", + RowBox[{ + "Find", " ", "the", " ", "closest", " ", "value", " ", "in", " ", + "a_sValues", " ", "and", " ", "return", " ", "the", " ", "corresponding", + " ", "B", " ", "value"}], "*)"}], "\[IndentingNewLine]", + RowBox[{"closestB", "=", + RowBox[{"BValues", "[", + RowBox[{"[", "closestIndex", "]"}], "]"}]}], ";", " ", + RowBox[{"(*", + RowBox[{"Index", " ", "of", " ", "closest", " ", "a_s", " ", "value"}], + "*)"}], + RowBox[{"(*", + RowBox[{ + "Retrieve", " ", "the", " ", "corresponding", " ", "B", " ", "value"}], + "*)"}], "\n", "closestB", " ", + RowBox[{"(*", + RowBox[{"Print", " ", "the", " ", "closest", " ", "B", " ", "value"}], + "*)"}]}]], "Input", + CellChangeTimes->{{3.9463020828630404`*^9, 3.946302083661174*^9}, { + 3.946302156269303*^9, 3.94630215681246*^9}, {3.9463034223154163`*^9, + 3.946303436732597*^9}, {3.9463035203877*^9, 3.946303520594941*^9}, { + 3.9465422755424795`*^9, 3.9465422880260324`*^9}, {3.9465428460626583`*^9, + 3.9465428496456966`*^9}}, + CellLabel->"In[31]:=",ExpressionUUID->"ab4fae22-f7a0-4405-95b8-21ba98484316"], + +Cell[BoxData["1.367`"], "Output", + CellChangeTimes->{{3.946302071185437*^9, 3.9463020838485684`*^9}, + 3.9463021572281528`*^9, {3.9463034228704424`*^9, 3.9463034369863443`*^9}, + 3.946303520848451*^9, {3.9465422768162155`*^9, 3.9465422889198856`*^9}, + 3.946542850289748*^9}, + CellLabel->"Out[31]=",ExpressionUUID->"538f6375-f1c3-4276-85ef-0fef1f723b6b"] +}, Open ]] +}, +WindowSize->{1904, 981}, +WindowMargins->{{1920, Automatic}, {Automatic, 0}}, +TaggingRules->{ + "WelcomeScreenSettings" -> {"FEStarting" -> False}, "TryRealOnly" -> False}, +FrontEndVersion->"12.2 for Microsoft Windows (64-bit) (December 12, 2020)", +StyleDefinitions->"Default.nb", +ExpressionUUID->"845021d5-1056-4669-8b9e-6ad0bd0c74a1" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[558, 20, 2766, 86, 395, "Input",ExpressionUUID->"62f7b3c0-151e-42a7-bd14-2c7024749c6f"], +Cell[CellGroupData[{ +Cell[3349, 110, 4164, 99, 143, "Input",ExpressionUUID->"461e8a7b-9e39-408e-a5f3-38960ab44ff7"], +Cell[7516, 211, 24540, 433, 512, "Output",ExpressionUUID->"fe3d2ab1-2e60-4c87-b304-9af09b512293"] +}, Open ]], +Cell[CellGroupData[{ +Cell[32093, 649, 1572, 37, 48, "Input",ExpressionUUID->"e3efdc46-0d6e-4d16-ae45-a127d2ef7398"], +Cell[33668, 688, 24453, 431, 512, "Output",ExpressionUUID->"61a6f7d5-c877-497e-90e9-8dd81c619ca2"] +}, Open ]], +Cell[CellGroupData[{ +Cell[58158, 1124, 2017, 51, 124, "Input",ExpressionUUID->"329ec9a4-f739-4bf2-bff9-e5d541d4c8fa"], +Cell[60178, 1177, 14370, 257, 512, "Output",ExpressionUUID->"b41db075-8f6a-413f-b3d4-d969247576da"] +}, Open ]], +Cell[CellGroupData[{ +Cell[74585, 1439, 1546, 37, 105, "Input",ExpressionUUID->"ab4fae22-f7a0-4405-95b8-21ba98484316"], +Cell[76134, 1478, 360, 5, 32, "Output",ExpressionUUID->"538f6375-f1c3-4276-85ef-0fef1f723b6b"] +}, Open ]] +} +] +*) + diff --git a/Estimations/RotonInstability/RIBForTiltedDipoles.m b/Estimations/RotonInstability/RIBForTiltedDipoles.m new file mode 100644 index 0000000..d5e398a --- /dev/null +++ b/Estimations/RotonInstability/RIBForTiltedDipoles.m @@ -0,0 +1,146 @@ +%% Physical constants +PlanckConstant = 6.62607015E-34; +PlanckConstantReduced = 6.62607015E-34/(2*pi); +FineStructureConstant = 7.2973525698E-3; +ElectronMass = 9.10938291E-31; +GravitationalConstant = 6.67384E-11; +ProtonMass = 1.672621777E-27; +AtomicMassUnit = 1.660539066E-27; +BohrRadius = 5.2917721067E-11; +BohrMagneton = 9.274009994E-24; +BoltzmannConstant = 1.38064852E-23; +StandardGravityAcceleration = 9.80665; +SpeedOfLight = 299792458; +StefanBoltzmannConstant = 5.670373E-8; +ElectronCharge = 1.602176634E-19; +VacuumPermeability = 1.25663706212E-6; +DielectricConstant = 8.8541878128E-12; +ElectronGyromagneticFactor = -2.00231930436153; +AvogadroConstant = 6.02214076E23; +ZeroKelvin = 273.15; +GravitationalAcceleration = 9.80553; +VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); +HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); +AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 + +% Dy specific constants +Dy164Mass = 163.929174751*AtomicMassUnit; +Dy164IsotopicAbundance = 0.2826; +DyMagneticMoment = 9.93*BohrMagneton; + +%% Roton instability boundary for tilted dipoles + +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +gdd = VacuumPermeability*DyMagneticMoment^2/3; + +nadd2s = 0.05:0.001:0.25; +as_to_add = 0.76:0.001:0.81; +var_widths = zeros(length(as_to_add), length(nadd2s)); + +x0 = 5; +Aineq = []; +Bineq = []; +Aeq = []; +Beq = []; +lb = [1]; +ub = [10]; +nonlcon = []; +fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + as = (as_to_add(jdx) * add); % Scattering length + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + var_widths(jdx, idx) = sigma; + end +end + +% ====================================================================================================================================================== % + +theta = 0; % Polar angle of dipole moment +phi = 0; % Azimuthal angle of momentum vector +k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector +instability_boundary = zeros(length(as_to_add), length(nadd2s)); +ScatteringLengths = zeros(length(as_to_add), 1); +AtomNumber = zeros(length(nadd2s), 1); +w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction +l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length +tsize = 10 * l0; + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(jdx) * add); % Scattering length + ScatteringLengths(jdx) = as/BohrRadius; + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + instability_boundary(jdx, idx) = ~isreal(EpsilonK); + end +end + +nadd2s_from_figure = [0.04974, 0.05383, 0.05655, 0.06609, 0.06916, 0.07291, 0.07836, 0.08517, 0.09063, 0.0978, 0.10459, 0.11345, 0.11822, 0.12231, 0.12674, 0.13117, 0.13560, 0.14003, 0.14548, 0.15127, 0.15775, 0.16660, 0.17546, 0.18364, 0.19557, 0.20579, 0.21839, 0.23850, 0.25144]; +as_to_add_from_figure = [0.76383, 0.76766, 0.76974, 0.77543, 0.77675, 0.77828, 0.78003, 0.78178, 0.78288, 0.7840, 0.78474, 0.78540, 0.78562, 0.78572, 0.78583, 0.78583, 0.78583, 0.78583, 0.78567, 0.78551, 0.78529, 0.78485, 0.78441, 0.78386, 0.78310, 0.78233, 0.78135, 0.77970, 0.77861]; + +figure(6) +clf +set(gcf,'Position',[50 50 950 750]) +% + +imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes +hold on +plot(nadd2s_from_figure, as_to_add_from_figure, 'r*-', 'LineWidth', 2); % Plot the curve (red line) +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +colorbar; % Add a colorbar +xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); +ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + +%{ +imagesc(AtomNumber*1E-5, ScatteringLengths, instability_boundary); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +cbar1 = colorbar; +cbar1.Label.Interpreter = 'latex'; +ylabel(cbar1,'$(\times 10^{-31})$','FontSize',16,'Rotation',270) +xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex'); +ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex'); +%} + +title('Roton instability boundary','fontsize',16,'interpreter','latex') + +%% +function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi) + Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2))); + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + Fka = (3 * cos(deg2rad(theta))^2 - 1) + ((3 * Go) .* ((sin(deg2rad(theta))^2 .* sin(deg2rad(phi))^2) - cos(deg2rad(theta))^2)); + Ukk = (gs + (gdd * Fka)) * gamma4; +end + +function ret = computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced) + eps_dd = add/as; % Relative interaction strength + MeanWidth = x * lz; + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); % Quantum Fluctuations term + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2))); + Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2)); + ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz); +end \ No newline at end of file diff --git a/Estimations/RotonInstability/RIBForTiltedDipoles_TwoDirections.m b/Estimations/RotonInstability/RIBForTiltedDipoles_TwoDirections.m new file mode 100644 index 0000000..03dfe28 --- /dev/null +++ b/Estimations/RotonInstability/RIBForTiltedDipoles_TwoDirections.m @@ -0,0 +1,318 @@ +%% Physical constants +PlanckConstant = 6.62607015E-34; +PlanckConstantReduced = 6.62607015E-34/(2*pi); +FineStructureConstant = 7.2973525698E-3; +ElectronMass = 9.10938291E-31; +GravitationalConstant = 6.67384E-11; +ProtonMass = 1.672621777E-27; +AtomicMassUnit = 1.660539066E-27; +BohrRadius = 5.2917721067E-11; +BohrMagneton = 9.274009994E-24; +BoltzmannConstant = 1.38064852E-23; +StandardGravityAcceleration = 9.80665; +SpeedOfLight = 299792458; +StefanBoltzmannConstant = 5.670373E-8; +ElectronCharge = 1.602176634E-19; +VacuumPermeability = 1.25663706212E-6; +DielectricConstant = 8.8541878128E-12; +ElectronGyromagneticFactor = -2.00231930436153; +AvogadroConstant = 6.02214076E23; +ZeroKelvin = 273.15; +GravitationalAcceleration = 9.80553; +VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); +HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); +AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 + +% Dy specific constants +Dy164Mass = 163.929174751*AtomicMassUnit; +Dy164IsotopicAbundance = 0.2826; +DyMagneticMoment = 9.93*BohrMagneton; + +%% Roton instability boundary for tilted dipoles + +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +gdd = VacuumPermeability*DyMagneticMoment^2/3; + +nadd2s = 0.005:0.0025:0.5; +as_to_add = 0.3:0.025:0.95; +var_widths = zeros(length(as_to_add), length(nadd2s)); + +x0 = 5; +Aineq = []; +Bineq = []; +Aeq = []; +Beq = []; +lb = [1]; +ub = [10]; +nonlcon = []; +fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + as = (as_to_add(jdx) * add); % Scattering length + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + var_widths(jdx, idx) = sigma; + end +end + +%% ====================================================================================================================================================== % + +figure(7) +clf +set(gcf,'Position',[50 50 1850 750]) + +theta = 66; % Polar angle of dipole moment +phi = 0; % Azimuthal angle of momentum vector +k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector +instability_boundary = zeros(length(as_to_add), length(nadd2s)); +ScatteringLengths = zeros(length(as_to_add), 1); +AtomNumber = zeros(length(nadd2s), 1); +w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction +l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length +tsize = 10 * l0; + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(jdx) * add); % Scattering length + ScatteringLengths(jdx) = as/BohrRadius; + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + instability_boundary(jdx, idx) = ~isreal(EpsilonK); + end +end + +subplot(1, 2, 1); % 1 row, 2 columns, first subplot +imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +colorbar; % Add a colorbar +caxis([0 1]) +xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); +ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + +title(['Along Y: $\theta = ',num2str(theta), '; \phi = ', num2str(phi),'$'],'fontsize',16,'interpreter','latex') + +theta = 66; % Polar angle of dipole moment +phi = 90; % Azimuthal angle of momentum vector +k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector +instability_boundary = zeros(length(as_to_add), length(nadd2s)); +ScatteringLengths = zeros(length(as_to_add), 1); +AtomNumber = zeros(length(nadd2s), 1); +w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction +l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length +tsize = 10 * l0; + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(jdx) * add); % Scattering length + ScatteringLengths(jdx) = as/BohrRadius; + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + instability_boundary(jdx, idx) = ~isreal(EpsilonK); + end +end + +% set(gcf,'Position',[50 50 950 750]) +subplot(1, 2, 2); % 1 row, 2 columns, first subplot +imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +colorbar; % Add a colorbar +caxis([0 1]) +xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); +ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + +title(['Along X: $\theta = ',num2str(theta), '; \phi = ', num2str(phi),'$'],'fontsize',16,'interpreter','latex') + +%{ +imagesc(AtomNumber*1E-5, ScatteringLengths, instability_boundary); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +cbar1 = colorbar; +cbar1.Label.Interpreter = 'latex'; +caxis([0 1]) +% ylabel(cbar1,'$(\times 10^{-31})$','FontSize',16,'Rotation',270) +xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex'); +ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex'); +%} + +sgtitle('Mean-field instability boundary','fontsize',16,'interpreter','latex') + +%% Cycle through angles + +% Define values for theta and phi +theta_values = 0:2:90; % Range of theta values (you can modify this) + +% Set up VideoWriter object to produce a movie +v = VideoWriter('rib_movie', 'MPEG-4'); % Create a video object +v.FrameRate = 5; % Frame rate of the video +open(v); % Open the video file + +for theta = theta_values + figure(7) + clf + set(gcf,'Position',[50 50 1850 750]) + phi = 0; % Azimuthal angle of momentum vector + k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector + instability_boundary = zeros(length(as_to_add), length(nadd2s)); + ScatteringLengths = zeros(length(as_to_add), 1); + AtomNumber = zeros(length(nadd2s), 1); + w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction + l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length + tsize = 10 * l0; + + for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(jdx) * add); % Scattering length + ScatteringLengths(jdx) = as/BohrRadius; + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + instability_boundary(jdx, idx) = ~isreal(EpsilonK); + end + end + + subplot(1, 2, 1); % 1 row, 2 columns, first subplot + imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes + set(gca, 'YDir', 'normal'); % Correct the y-axis direction + colorbar; % Add a colorbar + caxis([0 1]) + xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); + ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + + title(['Along Y: $\theta = ',num2str(theta), '; \phi = ', num2str(phi),'$'],'fontsize',16,'interpreter','latex') + + phi = 90; % Azimuthal angle of momentum vector + k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector + instability_boundary = zeros(length(as_to_add), length(nadd2s)); + ScatteringLengths = zeros(length(as_to_add), 1); + AtomNumber = zeros(length(nadd2s), 1); + w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction + l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length + tsize = 10 * l0; + + for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(jdx) * add); % Scattering length + ScatteringLengths(jdx) = as/BohrRadius; + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + instability_boundary(jdx, idx) = ~isreal(EpsilonK); + end + end + + % set(gcf,'Position',[50 50 950 750]) + subplot(1, 2, 2); % 1 row, 2 columns, first subplot + imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes + set(gca, 'YDir', 'normal'); % Correct the y-axis direction + colorbar; % Add a colorbar + caxis([0 1]) + xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); + ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + + title(['Along X: $\theta = ',num2str(theta), '; \phi = ', num2str(phi),'$'],'fontsize',16,'interpreter','latex') + + %{ + imagesc(AtomNumber*1E-5, ScatteringLengths, instability_boundary); % Specify x and y data for axes + set(gca, 'YDir', 'normal'); % Correct the y-axis direction + cbar1 = colorbar; + cbar1.Label.Interpreter = 'latex'; + caxis([0 1]) + % ylabel(cbar1,'$(\times 10^{-31})$','FontSize',16,'Rotation',270) + xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex'); + ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex'); + %} + + % Capture the frame and write to video + frame = getframe(gcf); % Capture the current figure + writeVideo(v, frame); % Write the frame to the video + + % sgtitle('Mean-field instability boundary','fontsize',16,'interpreter','latex') +end + +% Close the video file +close(v); + +%% +function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi) + Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2))); + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + Fka = (3 * cos(deg2rad(theta))^2 - 1) + ((3 * Go) .* ((sin(deg2rad(theta))^2 .* sin(deg2rad(phi))^2) - cos(deg2rad(theta))^2)); + Ukk = (gs + (gdd * Fka)) * gamma4; +end + +function ret = computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced) + eps_dd = add/as; % Relative interaction strength + MeanWidth = x * lz; + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); % Quantum Fluctuations term + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2))); + Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2)); + ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz); +end + + + diff --git a/Estimations/RotonInstability/ReproduceBlairBlakieResults.m b/Estimations/RotonInstability/ReproduceBlairBlakieResults.m new file mode 100644 index 0000000..f718de5 --- /dev/null +++ b/Estimations/RotonInstability/ReproduceBlairBlakieResults.m @@ -0,0 +1,335 @@ +%% Physical constants +PlanckConstant = 6.62607015E-34; +PlanckConstantReduced = 6.62607015E-34/(2*pi); +FineStructureConstant = 7.2973525698E-3; +ElectronMass = 9.10938291E-31; +GravitationalConstant = 6.67384E-11; +ProtonMass = 1.672621777E-27; +AtomicMassUnit = 1.660539066E-27; +BohrRadius = 5.2917721067E-11; +BohrMagneton = 9.274009994E-24; +BoltzmannConstant = 1.38064852E-23; +StandardGravityAcceleration = 9.80665; +SpeedOfLight = 299792458; +StefanBoltzmannConstant = 5.670373E-8; +ElectronCharge = 1.602176634E-19; +VacuumPermeability = 1.25663706212E-6; +DielectricConstant = 8.8541878128E-12; +ElectronGyromagneticFactor = -2.00231930436153; +AvogadroConstant = 6.02214076E23; +ZeroKelvin = 273.15; +GravitationalAcceleration = 9.80553; +VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); +HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); +AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 + +% Dy specific constants +Dy164Mass = 163.929174751*AtomicMassUnit; +Dy164IsotopicAbundance = 0.2826; +DyMagneticMoment = 9.93*BohrMagneton; + +%% Bogoliubov excitation spectrum for quasi-2D dipolar gas with QF correction +AtomNumber = 1E5; % Total atom number in the system +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +as = 102.515 * BohrRadius; % Scattering length +Trapsize = 7.5815 * lz; % Trap is assumed to be a box of finite extent , given here in units of the harmonic oscillator length +theta = 0; % Polar angle of dipole moment +phi = 0; % Azimuthal angle of momentum vector +MeanWidth = 5.7304888515 * lz; % Mean width of Gaussian ansatz +k = linspace(0, 2e6, 1000); % Vector of magnitudes of k vector + +% no = 2.0429e+15, eps_dd = 1.2755, as = 5.4249e-09 + +AtomNumberDensity = AtomNumber / Trapsize^2; % Areal density of atoms +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +eps_dd = add/as; % Relative interaction strength +gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength +gdd = VacuumPermeability*DyMagneticMoment^2/3; + +[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + +% == Quantum Fluctuations term == % +gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); +gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); +gQF = gamma5 * gammaQF; + +% == Dispersion relation == % +DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); +EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + +figure(1) +set(gcf,'Position',[50 50 950 750]) +xvals = (k .* add); +yvals = EpsilonK ./ PlanckConstant; +plot(xvals, yvals,LineWidth=2.0) +title(horzcat(['$a_s = ',num2str(round(1/eps_dd,3)),'a_{dd}, '], ['na_{dd}^2 = ',num2str(round(AtomNumberDensity * add^2,4)),'$']),'fontsize',16,'interpreter','latex') +xlabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex') +ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex') +grid on + +%% For different interaction strengths + +AtomNumber = 1E5; % Total atom number in the system +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +Trapsize = 7.5815 * lz; % Trap is assumed to be a box of finite extent , given here in units of the harmonic oscillator length +theta = 0; % Polar angle of dipole moment +phi = 0; % Azimuthal angle of momentum vector +MeanWidth = 5.7304888515 * lz; % Mean width of Gaussian ansatz +k = linspace(0, 2e6, 1000); % Vector of magnitudes of k vector + +AtomNumberDensity = AtomNumber / Trapsize^2; % Areal density of atoms +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + +ScatteringLengths = [108.5, 105.9, 103.3, 102.5150]; +eps_dds = zeros(1, length(ScatteringLengths)); +EpsilonKs = zeros(length(k), length(ScatteringLengths)); +for idx = 1:length(ScatteringLengths) + + as = ScatteringLengths(idx) * BohrRadius; % Scattering length + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + + eps_dds(idx) = eps_dd; + EpsilonKs(:,idx) = EpsilonK; +end + +figure(2) +clf +set(gcf,'Position',[50 50 950 750]) +xvals = (k .* add); +yvals = EpsilonKs(:, 1) ./ PlanckConstant; +plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(1/eps_dds(1),3)),'a_{dd}$']) +hold on +for idx = 2:length(ScatteringLengths) + yvals = EpsilonKs(:, idx) ./ PlanckConstant; + plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(1/eps_dds(idx),3)),'a_{dd}$']) +end +title(['$na_{dd}^2 = ',num2str(round(AtomNumberDensity * add^2,4)),'$'],'fontsize',16,'interpreter','latex') +xlabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex') +ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex') +grid on +legend('location', 'northwest','fontsize',16, 'Interpreter','latex') + +%% For 3 points on the roton instability boundary + +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +theta = 0; % Polar angle of dipole moment +phi = 0; % Azimuthal angle of momentum vector +k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector + +nadd2s = [0.0844, 0.0978, 0.123]; +as_to_add = [0.7730, 0.7840, 0.7819]; +var_widths = [4.97165, 5.7296048721, 5.93178]; + +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +EpsilonKs = zeros(length(k), length(nadd2s)); +ScatteringLengths = zeros(length(as_to_add), 1); +AtomNumber = zeros(length(nadd2s), 1); +w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction +l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length +tsize = 10 * l0; + +for idx = 1:length(nadd2s) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(idx) * add); % Scattering length + ScatteringLengths(idx) = as/BohrRadius; + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + EpsilonKs(:,idx) = EpsilonK; +end + +figure(3) +clf +set(gcf,'Position',[50 50 950 750]) +xvals = (k .* add); +yvals = EpsilonKs(:, 1) ./ PlanckConstant; +plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(as_to_add(1),4)),'a_{dd}, na_{dd}^2 = ',num2str(round(nadd2s(1),4)),'$']) +hold on +for idx = 2:length(nadd2s) + yvals = EpsilonKs(:, idx) ./ PlanckConstant; + plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(as_to_add(idx),4)),'a_{dd}, na_{dd}^2 = ',num2str(round(nadd2s(idx),4)),'$']) +end +xlabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex') +ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex') +grid on +legend('location', 'northwest','fontsize',16, 'Interpreter','latex') + +%% Mean widths of the variational Gaussian ansatz - extremize the total mean field energy per particle wrt to the variational parameter + +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +gdd = VacuumPermeability*DyMagneticMoment^2/3; +AtomNumberDensity = 0.0978 / add^2; +as = 0.784 * add; % Scattering length +gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength +TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + +x0 = 5; +Aineq = []; +Bineq = []; +Aeq = []; +Beq = []; +lb = [1]; +ub = [7]; +nonlcon = []; +fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); +sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); +fprintf(['Variational width of Gaussian ansatz = ' num2str(sigma) ' * lz \n']) + +%% Mean widths of the variational Gaussian ansatz - extremize the total mean field energy per particle wrt to the variational parameter + +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +gdd = VacuumPermeability*DyMagneticMoment^2/3; + +nadd2s = 0.05:0.001:0.25; +as_to_add = 0.74:0.001:0.79; +var_widths = zeros(length(as_to_add), length(nadd2s)); + +x0 = 5; +Aineq = []; +Bineq = []; +Aeq = []; +Beq = []; +lb = [1]; +ub = [10]; +nonlcon = []; +fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + as = (as_to_add(jdx) * add); % Scattering length + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + var_widths(jdx, idx) = sigma; + end +end + +figure(4) +clf +set(gcf,'Position',[50 50 950 750]) +imagesc(nadd2s, as_to_add, var_widths); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +colorbar; % Add a colorbar +xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); +ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + +% ====================================================================================================================================================== % + +theta = 0; % Polar angle of dipole moment +phi = 0; % Azimuthal angle of momentum vector +k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector +instability_boundary = zeros(length(as_to_add), length(nadd2s)); +ScatteringLengths = zeros(length(as_to_add), 1); +AtomNumber = zeros(length(nadd2s), 1); +w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction +l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length +tsize = 10 * l0; + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(jdx) * add); % Scattering length + ScatteringLengths(jdx) = as/BohrRadius; + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + instability_boundary(jdx, idx) = ~isreal(EpsilonK); + end +end + +nadd2s_from_figure = [0.04974, 0.05383, 0.05655, 0.06609, 0.06916, 0.07291, 0.07836, 0.08517, 0.09063, 0.0978, 0.10459, 0.11345, 0.11822, 0.12231, 0.12674, 0.13117, 0.13560, 0.14003, 0.14548, 0.15127, 0.15775, 0.16660, 0.17546, 0.18364, 0.19557, 0.20579, 0.21839, 0.23850, 0.25144]; +as_to_add_from_figure = [0.76383, 0.76766, 0.76974, 0.77543, 0.77675, 0.77828, 0.78003, 0.78178, 0.78288, 0.7840, 0.78474, 0.78540, 0.78562, 0.78572, 0.78583, 0.78583, 0.78583, 0.78583, 0.78567, 0.78551, 0.78529, 0.78485, 0.78441, 0.78386, 0.78310, 0.78233, 0.78135, 0.77970, 0.77861]; + +figure(5) +clf +set(gcf,'Position',[50 50 950 750]) + + +imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes +hold on +plot(nadd2s_from_figure, as_to_add_from_figure, 'r*-', 'LineWidth', 2); % Plot the curve (red line) +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +colorbar; % Add a colorbar +xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); +ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + +%{ +imagesc(AtomNumber*1E-5, ScatteringLengths, instability_boundary); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +cbar1 = colorbar; +cbar1.Label.Interpreter = 'latex'; +ylabel(cbar1,'$(\times 10^{-31})$','FontSize',16,'Rotation',270) +xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex'); +ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex'); +title('Roton instability boundary','fontsize',16,'interpreter','latex') +%} + +%% +function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi) + Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2))); + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + Fka = (3 * cos(deg2rad(theta))^2 - 1) + ((3 * Go) .* ((sin(deg2rad(theta))^2 .* sin(deg2rad(phi))^2) - cos(deg2rad(theta))^2)); + Ukk = (gs + (gdd * Fka)) * gamma4; +end + +function ret = computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced) + eps_dd = add/as; % Relative interaction strength + MeanWidth = x * lz; + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); % Quantum Fluctuations term + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2))); + Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2)); + ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz); +end + + + diff --git a/Estimations/RotonInstability/ScalingOfTheQFTerm.m b/Estimations/RotonInstability/ScalingOfTheQFTerm.m new file mode 100644 index 0000000..4c5ee06 --- /dev/null +++ b/Estimations/RotonInstability/ScalingOfTheQFTerm.m @@ -0,0 +1,89 @@ +%% Physical constants +PlanckConstant = 6.62607015E-34; +PlanckConstantReduced = 6.62607015E-34/(2*pi); +FineStructureConstant = 7.2973525698E-3; +ElectronMass = 9.10938291E-31; +GravitationalConstant = 6.67384E-11; +ProtonMass = 1.672621777E-27; +AtomicMassUnit = 1.660539066E-27; +BohrRadius = 5.2917721067E-11; +BohrMagneton = 9.274009994E-24; +BoltzmannConstant = 1.38064852E-23; +StandardGravityAcceleration = 9.80665; +SpeedOfLight = 299792458; +StefanBoltzmannConstant = 5.670373E-8; +ElectronCharge = 1.602176634E-19; +VacuumPermeability = 1.25663706212E-6; +DielectricConstant = 8.8541878128E-12; +ElectronGyromagneticFactor = -2.00231930436153; +AvogadroConstant = 6.02214076E23; +ZeroKelvin = 273.15; +GravitationalAcceleration = 9.80553; +VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); +HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); +AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 + +% Dy specific constants +Dy164Mass = 163.929174751*AtomicMassUnit; +Dy164IsotopicAbundance = 0.2826; +DyMagneticMoment = 9.93*BohrMagneton; + +%% Scaling of the QF term + +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +gdd = VacuumPermeability*DyMagneticMoment^2/3; + +nadd2s = 0.05:0.01:0.25; +as_to_add = 0.76:0.01:0.81; + +QF = zeros(length(as_to_add), length(nadd2s)); +ScatteringLengths = zeros(length(as_to_add), 1); +AtomNumber = zeros(length(nadd2s), 1); +w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction +l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length +tsize = 10 * l0; + +x0 = 5; +Aineq = []; +Bineq = []; +Aeq = []; +Beq = []; +lb = [1]; +ub = [10]; +nonlcon = []; +fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(jdx) * add); % Scattering length + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + ScatteringLengths(jdx) = as/BohrRadius; + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + eps_dd = add/as; % Relative interaction strength + + % == Quantum Fluctuations term == % + MeanWidth = sigma * lz; + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + QF(jdx, idx) = 3 * gQF * AtomNumberDensity^(3/2); + end +end + +figure +clf +set(gcf,'Position',[50 50 950 750]) +imagesc(AtomNumber*1E-5, ScatteringLengths, QF * 1E31); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +cbar1 = colorbar; +cbar1.Label.Interpreter = 'latex'; +ylabel(cbar1,'$(\times 10^{-31})$','FontSize',16,'Rotation',270) +xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex'); +ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex'); +title('Scaling of the quantum fluctuations term','fontsize',16,'interpreter','latex') \ No newline at end of file diff --git a/Estimations/RotonInstability/bwhpc_matlab_gpe_sim_cpu.slurm b/Estimations/RotonInstability/bwhpc_matlab_gpe_sim_cpu.slurm new file mode 100644 index 0000000..ad3e154 --- /dev/null +++ b/Estimations/RotonInstability/bwhpc_matlab_gpe_sim_cpu.slurm @@ -0,0 +1,38 @@ +#!/bin/bash +########### Begin SLURM header ########### +#Partition +#SBATCH --partition=cpu-single +# Request number of nodes and CPU cores per node for job +#SBATCH --nodes=1 +#SBATCH --ntasks-per-node=1 +#SBATCH --cpus-per-task=10 +#SBATCH --mem=2G +# Estimated wallclock time for job +#SBATCH --time=00:30:00 +#SBATCH --job-name=simulation +#SBATCH --error=simulation.err +#SBATCH --output=simulation.out + +########### End SLURM header ########## + +echo "Working Directory: $PWD" +echo "Running on host $HOSTNAME" +echo "Job id: $SLURM_JOB_ID" +echo "Job name: $SLURM_JOB_NAME" +echo "Number of nodes allocated to job: $SLURM_JOB_NUM_NODES" +echo "Number of cores allocated to job: $SLURM_JOB_CPUS_PER_NODE" + + +# Load module +module load math/matlab/R2023a + +echo Directory is `pwd` +echo "Initiating Job..." + +# Start a Matlab program +matlab -nodisplay -nosplash -r "ExtractingKRoton" + +# notice for tests +echo "Job terminated successfully" + +exit diff --git a/Estimations/RotonInstability/roton_instability_project.json b/Estimations/RotonInstability/roton_instability_project.json new file mode 100644 index 0000000..5036949 --- /dev/null +++ b/Estimations/RotonInstability/roton_instability_project.json @@ -0,0 +1 @@ +{"version":[4,2],"axesColl":[{"name":"XY","type":"XYAxes","isLogX":false,"isLogY":false,"noRotation":true,"calibrationPoints":[{"px":304.86283783783784,"py":633.6364864864864,"dx":"0.1","dy":"0.745","dz":null},{"px":694.7418918918919,"py":633.6364864864864,"dx":"0.2","dy":"0.745","dz":null},{"px":107.59864864864865,"py":573.8594594594595,"dx":"0.1","dy":"0.745","dz":null},{"px":107.59864864864865,"py":27.895945945945947,"dx":"0.2","dy":"0.79","dz":null}]}],"datasetColl":[{"name":"Default Dataset","axesName":"XY","colorRGB":[200,0,0,255],"metadataKeys":[],"data":[{"x":108.92702702702702,"y":345.3783783783784,"value":[0.04974446337308348,0.7638321167883212]},{"x":124.86756756756756,"y":298.88513513513516,"value":[0.053833049403747876,0.7676642335766424]},{"x":135.4945945945946,"y":273.6459459459459,"value":[0.05655877342419081,0.7697445255474452]},{"x":172.6891891891892,"y":204.57027027027027,"value":[0.06609880749574107,0.7754379562043796]},{"x":564.5608108108108,"y":90.32972972972973,"value":[0.1666098807495741,0.7848540145985402]},{"x":630.9797297297297,"y":102.28513513513514,"value":[0.1836456558773424,0.7838686131386862]},{"x":677.472972972973,"y":111.58378378378379,"value":[0.19557069846678027,0.7831021897810219]},{"x":717.3243243243244,"y":120.88243243243244,"value":[0.20579216354344126,0.7823357664233577]},{"x":766.4743243243244,"y":132.83783783783784,"value":[0.2183986371379898,0.7813503649635036]},{"x":844.8486486486487,"y":152.76351351351352,"value":[0.2385008517887564,0.7797080291970803]},{"x":895.327027027027,"y":166.0472972972973,"value":[0.25144804088586037,0.7786131386861314]},{"x":184.6445945945946,"y":188.62972972972972,"value":[0.06916524701873936,0.7767518248175183]},{"x":199.25675675675674,"y":170.03243243243244,"value":[0.07291311754684839,0.7782846715328468]},{"x":220.51081081081082,"y":148.7783783783784,"value":[0.07836456558773425,0.780036496350365]},{"x":247.07837837837837,"y":127.52432432432433,"value":[0.08517887563884158,0.7817883211678832]},{"x":268.3324324324324,"y":114.24054054054054,"value":[0.09063032367972744,0.7828832116788321]},{"x":322.79594594594596,"y":91.65810810810811,"value":[0.10459965928449745,0.7847445255474452]},{"x":357.33378378378376,"y":83.68783783783783,"value":[0.11345826235093698,0.7854014598540147]},{"x":375.93108108108106,"y":81.03108108108108,"value":[0.1182282793867121,0.7856204379562044]},{"x":391.8716216216216,"y":79.70270270270271,"value":[0.1223168654173765,0.7857299270072993]},{"x":409.14054054054054,"y":78.37432432432432,"value":[0.12674616695059626,0.7858394160583941]},{"x":426.40945945945947,"y":78.37432432432432,"value":[0.13117546848381603,0.7858394160583941]},{"x":443.6783783783784,"y":78.37432432432432,"value":[0.1356047700170358,0.7858394160583941]},{"x":460.9472972972973,"y":78.37432432432433,"value":[0.14003407155025555,0.7858394160583941]},{"x":482.2013513513514,"y":80.3668918918919,"value":[0.14548551959114142,0.7856751824817518]},{"x":504.7837837837838,"y":82.35945945945946,"value":[0.15127768313458265,0.7855109489051095]},{"x":530.022972972973,"y":85.01621621621622,"value":[0.1577512776831346,0.7852919708029197]},{"x":599.0986486486487,"y":95.64324324324325,"value":[0.17546848381601365,0.7844160583941606]}],"autoDetectionData":null}],"measurementColl":[]} \ No newline at end of file diff --git a/Estimations/RotonInstability/roton_instability_project.tar b/Estimations/RotonInstability/roton_instability_project.tar new file mode 100644 index 0000000000000000000000000000000000000000..9be76ad14c662404b6674997afca8e23e4d2903f GIT binary patch literal 266240 zcmeFYbyQS+yFW~~iIgZPD4^8zFdz~pQXIKre6HNqmbR7_n#LA3w%R(zX2!NonmB7q6MbD< zeuDqC9|-tCqmcyQ1Vtkuzn<|Q;eQCA2s9LiLL;D1@EQ$8z`@m#|7#rl7liDGOZ{XaBFiZT)ZcZ){;;$!B6?Y4Jb41-yb$D8#RN|6vFCk04MO z^f&#(AZQd`|B(OjmH!(A{(r827dCr+Ya3%r3pPPD1P?@=hYhcCHbFKAoZdI>v+=MQ zn`;~D+kh{y$?IC{>s#0uS=yd~L0|}8D3lk1Is?2F3WMi@V`-~x`wdxat?j@U zbhXWlb*#U=b=%U|!WNGxE^IhQHbFQ9!6$%%3Bb{R9S9yaoD-WM3J&K(!BGf-9|sSc z9{4&Ngbxa?uLr&XUZN35{4dUIf);jWW^O#+Nun?a@Cj4^^Vfm-PZVMQi6Rt&=0jqB zvLb*&ekX}U!}$b|7{reQy#3#0^52n!q4@+bKj`5Jqkq!;l}*gA_pR;*bf>3nt8Jri z`=|P@>Kka=nc1GX`u$_@XLu#c{GwZ3OEXLBJ2%9EN?;HO5B?tvi3AkQ^=-BBR3-JD z@cR1e8s9VrGy#PO@L^zR$lnJK8_)_If#mzCOYj1y(_Y)m4p@&Ggb#wipb-cJ&@CDc z5r88Ecz_O3Z~-_B3Pqs>@MoAhUX6JAFuY-)k$)fG=)*7qd;$VUDE!BP`t1TpKn$1^ z1_6Pi5oiH4>f0620D@p}IP%*W@$(9BBp>+ZPhkT};09nor>MW*L;~yiZcJ3U|`?L1A9mQDm9?rU+AMy5R8BT1dYHT zfeAyxe4Eh&B->5?&Fh1C?(*I4pPyyhuzewmCdAI;d00o6Zzn%Xkk4Ez$ ze&Z5|9twr>A^%1KaI?QLk3j;#p)djn6tERwci+hamVlq5ff!&=%n#Y1p=clm#Lok; ziKh=T6#;?Y-~LDP_>?2`#Z~0;Pa3rv(U)YBW zAR!Q-8{kL4Yd}H=EC+*z07+q>-_G!#1T)`rmp5`u*Fj1Q5W1{`R2nZUq$(;6weiO8kponFnfxqL45I8UhtS!!hu0vPT2g zhXQp8fQkXg?g#f!42BQ(3oM}jQZ5?c%TI-a7r&V%1lSs25>P^*fMnsA?>7Jg#)O6< z;rO$_j|;$nnIM096?pO8bD;(9|K_=WD;6#wfPf0gip+ANCEBe?apO`fwPq!(U_6cMW5pd?@7KXat4+N*@XV27y5#F+kGzAn;v2 z-vRSa-~^5a`2Qt{e5Wq}a9QA2x&1~T3IdM+39H2fWZV{XbgZc(5?7}`vN~8`P=!Y{lkGE1kg|vfRgXWH}Rt}e7~Xo z@6v(6;7|aQNCXrOM}zDFkIP74viJatH(kt6>qkH^e9*sj2$cDqJW%;Bcm)5=yS{Z- zPyqZfNC*;x`U}|r(qa%$6y*E)hj0)ufNYRoqT+Y!ME{rce{n1UKoS0(|9?#%0o3@5 z7XLf!!$Fuspn)WyXbAi-)BiWzqd?U99mD`|{>l7ro&|&nfg>OQ1&|OB!;yap|6emN z0Ky;S@7&`%^8z5`qW+HbzXvS@62w;|6u1i%ihv?u-$nBqvi%S}5~K#dNCplJ5HJre z3ICa*fEU16|Hfq~5(-13Q34>mel!2Sm95 zo#L(ace?=*@0SaF4~WPg;pE%-C+`51LFV!!S^q0yfjEQuJ4nJ|AV2SGxZ#Mb);kv(`7)xA>9x{$Cg3Kb3ty zKmYgj|9|TB{3P)oU;LN#KS;+>&_C*bkbS`b)&Hyi|D$OC$6xThEpy`#)k!Kq=#a$C zt9J+ph&u@gh?*(Lz&l1ha8m+;GXxS>#qK(4%tezwJEzdSADeVI#NOWCz^2K!UtcVk zjde;>g6xD`FcaxG?NJG$#}rhLgGUKzw`d7T&rO~av+gOa?mopaIemLgq*+ZNqg`0I zwI41lJY6)|HhtG_wnM(Xf33h0X4aeiQkw2I>0Lqv(SMwr-+R8q_3O^tUilXv;{W2r z?OYZT2BK(cnhHh|_V%+$L`j|(eM&Am#74TQ&UN8}7!Umw#7Up)E{9%) zBwlHJM^w0eBk+`OXefQ<=yKHhhv;`i_ocnQe7OSxm7%T2*q)_SBbP%!~HKWLXMuGcv#`MH6E7MYf(_= z9pb!q$UEbe?$i;|O_8O+gMB5@h(RCQfQ`G{itkJN@@%Z?&WBN08qG!!QFRKp@-C_g z?{AK7)@$zH8{AuPa9plp7;hfUY?Z0-XM!K~y}ELl1ze?Nkm^}j*l0DgW#y;m+{^K- zdp8LpLxs$fN^$a9b6shh>p3L>!s}hcHK%O+We|sQs6~Tvt`NF2(DSN#&!!X{_G92z z%4|pEltPRL^W5iSe(1J-kYXXcF$ig7tmkYU2Ptn%V<{2ZMvD(#(e?1 zAztWev0X_kJJck!Sc&Y!-ZzYKBI7SyB5J}+o`RsnBQHX*baCjKmGS!J*4X{KJe@sv zy@r!YeK}(u6|MJB$85T^no^2xYB`Wk%%{F6_5!ti#nH95cvJH2O z_bj&?oJuM>e3|q_3i%+W_1H!LP^4SDX}$(sO6vuL=w+o`mNT5<520}fzuIFjF1I_FidoZ;FI#K&*tf~*(Esq-0`lxcTmda_ z=M4SjXH7{glCr?P7JNR`I)^jabckM^vHUr5hwnFQu_M%6h<9 zRaI4?KqhRVKp>wWRVK2(e8hD|KK4tvX%WkVEFznUhNp|=oR^n<{cT&qXZ`hV6$F>t zsrr&tQ?Xz*-M7ZOvdtsUSqY9kxpG@h4hkWA8-JU0Tg*#I!--Ta+pKKz@&@K3A`GRV zm3t9abK2o1(MclG+2Pcm{l;u=K`4TxrCWqBdzl+S5=vx7(1l3xx@CW{6|Q!N#g&K!$KzgKQ&k;3dV+c(uUS>%Y@iyYj&-mkfX zHShQO6SQ1`=$jhzfNcf@x()c1+r>)07y1(=AG`s&%)`us|30TRyU67(*!bF!|ABy| zAA#}&(TQ$dWp*wuLb?8@Ffdb6-um*#bleb!g+7+^{%PjSYin!3AL|9{9+ca4Bub+H zywqJU8azj$uW1ySP&nX6mZQOvd{4)2G`!dte#km96(3X$obVZx3$EP|R2vU9M8jvpx?%?My`R5s_V7l*>Y1 zx;cmRupsSo+tdGm{8~jqpII|H$)f#_p0fZ+H9o6~5fj);8o#D^seVq<-G5cxxhZvl?CO zW$C^eNz|oLT}*uB((QEjLD$trruK6RxiT)!wxs{yWXcPVp+|YEIIggype+adX=N|T z@qEJH15vGp%Y2rOaPee}OC?)$N?P$(G4j*rmZbdPUOo3siuZw}K3a`l_nNBmWAO9Y zsbvp(CRli|-C0r@-Dk>Qy!py=uis&iclNa@Rp<1HFU<;n2F5r}DlY8C)vTso8mC=>dL%jvq#S2NKkUHwPkqoz_j==r&}%ki0e)BAXx_iT8mobpHs? zapZU|L^DrB(irC&jHEML79K0vZcoKk(J9?@%_^DiN+Yge^|+Ljl(gh=u;HPci_;EE zf+cJ}y}=?TaEji~#=2m8COOS{%>?VQw|1I!4~T&N?fy8w#|4~-PUR!-M#da<6_pFU zQ2T;{1YC3^wT6q_pJ{^ERnisG&aWH^4*Z9L%d~K{(GSiZ>I9BTlml>wKc#Tx)+w6? zC?)3;&QRRm*H+p3m3Ojk7vpK?s+3*0;R!q0y%x0fo6j!D3vS2NZ|R4rKcMC>JZc#0 zhPrj@*75CwF;0;S-8FfOMSxssIr76?)LTYjX9SU#==GC!ImbES0xD(RxSoHC$Ahkx z9BbL1PuF~ThsS6r3T_za-Mjw!p8UbZ_Pv3J2rRrKLZTr&I+C*bu+ZE`5@h%@f8T0~ zL43H28Zu+n&7bCwVOU&rofHag^SA0U^Dp91b}-D-$TE4J8dBNTY^92?~z z$SBUy9;>4z>7J=tV|AH>URrCDKVHz(Wo!Ni75wCg>4;nH*@w2lPgE)w3s+?bi}f~}t}d4Bj`I&y z-BgycIM}Qa!L8JBO4jjL+wSP5V00_|hci=J-|Xg&2F}_$Y&|fwgxDGm=Gi1looV?Z z)#W}KfNuHng^iXnQ=HXxsf2X;^ZihM% z9ecoD%SVGm_*kmmhuhA6$hl>agmtW5SM@w)2N@gQ27$HsST*d zC(qxTcBVX6VJIJOc3;mRNk$5pn3x=|7wFuX6gh|>c$(8^O&$Ir3inBcIi*v5)TcHV zS3b45JeqORP*$mUA%7M(=(aJ850o`s%qLHdg=@O4DfrSE#y(`W30kFWsONGo-(~z zfei6UqhZ+Fq3nFuS5Dc%OA($KLVmK53F z-c)FHuu*bA%E=K<)5MzG)NEXrphPh1Z8=!1E*iN!8iBH8{mOObS!@4p;c8R8t&O_u zKQi?6+n!q?0P&ES+1cfYMsHrGb%`tNi;YZ8f_5`)JkByDGeV1n#Lm?45;~`Zw{PF- z#*bkYr(Kx4OaX3iY(|4Tj>yA%Hq~w3l+y5iN+XGoIG^F|se@SKc%h9Tk6qn&=6fsk z{L~0e^rDVRp7onb1)J!V73+5{dw!a`L!^!DePSLbG@;PZxAqwgBV!STh$273F^})hQ+k>@Y3^eYa6^M1RXV_Fk zP@PIXH5HY&G019s@d<)8?|AyLzUephw{9T>509f>59g<)$?5o50(Z4a+#f#T5su@V zej!@F7HL_0AprT%83QWQq$*@mquJ4nRi9=qbRVq0I zK>Pir&$O(T8_s2v98=u7rrkeh>-I*dnw-`3_NP!ecs|ay-I=&kBlZ$GKBQGf!3nXJ zH8BfaUv2(y7OmV1qF4G}AWbVpC(moHBjPr=ZLU3)Xc9Sa1$D`X&XpGNh51DJvdLMelD`-|`~ZQK=T^Onkr$`Fz)$a?OK(-qF3U6e*swXK|AIw6 zcaiajgz>Gn@qxj)V<|m5izP=4&TFRYQHsC3U1L({C;~imv`aULZsU<{qhFqZaVjM( z$7{7BrPx-t=mlnf+C&aF%FemS5Efe(!>Ah$JG1R#)7AfgsV8>`2R7hsNF`{e)WB}b zl_L_4d==7RylNa~L7z!oBXPOsqhI@ByBc#yg;@Nx80)mYxSRkl}Z z0xu(>B`mvNqNBQJjUo)LFOJdJM{S+Wq!p)JXh6jzK~WKK1b@-j;B)NpZ#sL?x)GG^ z{%$t|J7wCHiqn07F3h$;Zo?P4vY^TlIx988<;Y@`mvFr74w z4ru0w?>dfv4R3EzYopH!coz86D@wLv}RTLUFdN`sWuiZ-a3Dhx$-y1ncC zQ?`3DjYFg^;fTDgSgw2scfHQ3taRs(sJboTg{{bPU}Q#_9nFq&xEK(2<=ET3M6=oo zJ*Gd^}E)9QK0BXij;^a z0d}*>voD}0HBjPBccFpXarY13nzd-IBWuE0mE<+u?vgE$%UAo;@NaXqDB&7kH;l!x z?oHjmXEbC!^hHc#A3aT}u5!a<`3NH=GL-X8mPe|Nqobqz{c$(XaEw8P9IRVJ)T52v zCg$oHN;azwQ=2EzmU-**cwVQ5HNdFY#Y=H5>?G9@oyD@&FGENk`1KMbx;HZL|JKlJ{iHz7(-^_33W zN>O*ahdZ_Kj-&S59Btyx0bf0wFx)(dMOaWb*-D9lP&=Y~E#JgFT(8Ha+*CzHC8yW6 zUFq_W^Xf!nuyC}+ob3@=L$P(86qO^3=#nkz#FsYr?sZt2G}4Uqi@{r0G;JD@cY5j< zUx~DpcsjfO;c22C+(2e-?Fvf1N<222pSdFXV0F!HgFSi~2ioMF-H+f;IvUBbttVw2 z>^M$pS*JmDt8KZx$U9HZZF-!znR_TuFoevd7`XFad#1!gDh6rSya7{QLO&s83J#?C#CeS^)< z|D%|SqtbgTs#%K9YJ7;Nrd@i?b9~7yt>dkN`otDhI*Jp}+`>AoOk1!^?+a5wrs+`U zl3n3iiiEqdT2&qk&WmJla^PFM^jK=>g%!QGKF3qtxiyeCY&|3T`0)}v(MHiv;z;o5 zkW0b~i#Pv3h3OMh)VT(^oQty&1TUbS?@nU8-UQ%5_d;)#_ZN^>1$sX}T%CXuzS*RD zdFTc73(vzWy}ILlcAe^X9=|ULrNqLaCrfxTl`~wKc4XVbcm3C@RaRfjn#%v-wRgRC zxmp--(n^-)$i-DAwjMfcsz#A&hi>>ZX#U8lstOtvDbuB_+7zuj^KW^YE|w?Mla*+J z5^WZVZ6(^DxAb84qvs8to7oo}-EUHXN7WsU0X-FqjMNR)oAdw7X^!LXtQh3*X`%9RKq6%^9td^&Zo7cL-xcv)7~}KUF7&J~K7H9=Puu=qV*t zs)>AUxpIg25^XNWBY1|UwXV5Uaf$1eb%f70s2zLt9ikd_gqJ|a?gDSy#`Ef))IUrL za*D2&6btuaN!6;Lac)VMzP#CBc=>tl@Yadc1m_whIYO>zuQ@|Z$u{cbTMxsA~J!v5g%ra^j#Le;C-IaR%4&SBS zyki*XF7Cl18 zXo8D2LmE=}T50`lZh(=q0hh_c8~J%go$wS0b)Mri+K>iR)k z#i8I6(vg4Ic^uW4rq@fd&bzqobp5V88&013a!?BU;ai!Tz~s+;R@FrM%og84)$C2s zrW8fQ;B#@%$qQQETl8QR*(^I^ZGBZ^Fj?_K@Z}(peaG&H|GfDrR?-J-*j6~+POH2r zY0t^Qi}W=ehkY*duD!wai*#CcxHNKNZE!3kBA{iRyT3haHR8*8tNR1?gsoBSVb#D9dKxFaVRALHi3rXR5fit6j1*Kl3F<}-Ua*PTo~ z3{EPc}q719%|zF{w+@UQd0)Yn?LUB zi6tq_%QSErboi=oux7EbG;dI-G}V@mUC;*Il;JLbSQ#e)bBfl7_MX$FJlw~0u;2Y7 z9Bp6mk{Wg%E-zZ%qeaDKwl&Q{4iOuf`46`%RgVna=P#|}^bktk1Q)MD2Y8g`)PI+?1V0|b<-WMJYVHs*ypie2ZCQ6XnKQAM^mivA^6&L*+d&NWF zXZEE>;2OoBxVV4&jBc)mBSDO#4w6HrA$9x(PW@VLvB@Ps;abp;bA2c;ur-F;ii#bE z$4$jEE{C9UPIF@?6=moD8GcTYrhCoSur7+^7C*)bpBKh*a$XYJU8;~%QSsHU4_%wS zpp?5H?_|@NS8lhE*%tGU#*kJRQFqyzs#N$Bk9s@lL;dA71|*%A(wQxC3H9CvFrz;m z54aB1|8znHpq>c6MT#jQ0no^2JZSqC*N@ION&O>(E5#|DVa|1*OUv3Dp^xFkDk&+& zzk5fSspAqbUP8VwwGo^cXbYa3k^@}$`SxzWqpdqpqG?L1-$`%C_$fS{{AoWc!F8|*8u z;ldtil!TPrc!P`9EV8rw2hVb6xO3f~fe-c1sX3aTQc}l|$+ufaYc4+=890&ha73kD z_a9}6rq|q%Gckw%;zMtPES{=sxtEpt%XbcfnfllP^!824-bnq!+i32Bv4@R~0b)WB zEx7Ik@&Gr!w1q!Y8OBg5J<`q~^GfeDr)(^_=gBl|kYfGX$3k%%*A{&0aJS$e$rj$~{d)}yVSEWT=+WB7ow z(Zm!l<3FuRnO+Z9otu}zs#R3fJmimEj|+JF6GYKNoYmQiB-~? z@wcH%A#Z$+6eUl>35&}5AC?3i9p^Wqh?CdO9S3vH5TDfEo}S|atC#(1Mu*BfNru+E=bi)w%WDZE698?Wq_wVVHu}TQ1R?9E>^H z*{|~QROlD8$je>LjEqFV?DXWxlb_q#{1d7`kLcw3%u zYLCA|N_L;fdmN062?w^foe6dMcuA&0>DxNmUgal{+1afbnVE^3s|zP3CCjO+b1$}c zAmg&$9TQdCc&J9e=p!lzy?vYF1OxFk(x&5wnJE~;DIU^zS8&{OrHP>MFVS2mj9HwK!f;ERbN7LTb`co4zG=39gAZraFy3|%c*WM6&O*_hI-dyFD3Cr1b}z>;;EF{sN39Oh}Cdracrb%)wfOu3q| z8|54;clglRXBPj?H&(^SG~;uJ!OJ(uz>d(|LJJe3nc35~EiLX5xaS)%vO}%MC{!+9 zy#Dglt5fmUmy7Ort)#;yx28VFlMYahlHkfQV*P2ELaCIaKZX!w2}IqcYokGCWx0=c zSsohZ70=9AOGUf`V7sH_ESnH_kW2-*@AYJ}BHv{5;hgMlATjz?Ek1&jpcFBzP8flItQ6v0hwl`muBI$4w|5uxu#NpvBzz!azc!oal|M zsKw8;QL#1W*(2a6k%|?}p@uJ*vnM|idmck*xeU$U%Q}tHTCx$xbWRFt%TVPWZJN}k zwI}q{A-?{Uu%N|flPIS|yw%ILm=ET8jO_L&cbd2s^^#hW+7NFyhCX4vje(b0eJWAJ zuXvhP$8s$fZO_RPZOY2CWzv?bsZx&m%aT(J+S$?f^ia-=nsN{K6512F>c$6blTkM| zHhpP3aYJ67=FnQ9yXS-JacQ5^VjTL7&huYWQF&MD=(NStDaHNsUNCXNfZUc(k^y2=;cFLms4$YtojuayS)s#DM6!2rq|z%3x(zKALo3 z2=>-WE@1Ss3|19tC+XD(<5kO+vM^%cReiRE>F2@h%X)0LhGT3DRDDmR zwBCBn{g$XggHSaRZP9)2lXT=q{T+L=?lfX%lx20tX`$N+YJPx)IQ>bP%A};DmS!iO zaFas@NDcNsSuxEQ%Rb?_yAyVtA>9vK%Ap6ZQVKfxp-HUNp7jm8>N8_24vLV}%1?8i z2yLdbx(xO!Hbl81B$3VW*lr(dC)>EbGvTXwJNY+s*WoGT9aSWztzM?$j%k#Ui*yA; zjg#?GP65Yh?R^Ogx=6T2ZqlwBO~PHgDVN}vZ>>J*bs67IUgcw-I2B}$so`IkeTO%Bl2a4x z2Zmc74U;p$1IgUVXhnRQdq&L5Y-s!QjcjdKC-)2=KQ%{nkijJ5qE{uuBy2!Zde;it z3ucHU4+foQd94f!!33!i$s4i``n;epmw7@Wm|@TuO!HwkLna2QnTtE?4(ch%um%{Y zHTM@4wZxT96h0GUi|3VIs`v%)dFio z#t*^e71`9q=onE{ciTI4rS;$N%%aW3$0r)!_N9|%2|2LI;0Dr&uiGKZ*Vc3d&O>P9 zihNRqsWUffHKq9w9rh-APzL%cakY{1bJCrzC8eUkKUXA&#so9>zr3p7sK{K;U+5+g zR(;%mgV5w&CP7?IZmL8r3uAEDR-R$RIvG=j_U7=5gEeo=<>Lw6n>{|a)7)vLm^d5F zx0pIdcd&_vAQW>SQq~F^osPJg+0kE#QG=X}A`L*b=#&`^>pnm;x5YDlloZZIoo=xo z?q#IxiYNM5FGZgH?m}!3)XTcn$wRO7^T{aOl4myqq-oSQufxNnvQtA+n{k1_=E$e5 zsp!~e%nK`Lj7+W6zp&e0;k4~FvaseE;U!s9q+VM?nV9gjwb#h0F<()4qY=uf`KU{N zTVX!;eWHaw1FP4{W0?PG`Lm%o@=D{=sYk9=0{&)ny!{Ag>@jb z!RNBN3X3P?7%$8XcClsk0G&3UATZwU_O5kF0#9H+H9I@<4GRPEGpJiwTEk_ov%EHu<8N#qJ`vC9conNaq7@cdYDAPr=yHc(J={~5ZqmhCCK#Em{fKTbYu~TF2>ob5tWT|; z(Ap46IZ8Ct}U+>~ z0hLdV?(W-|{Tmx*o~NOmozKBOnN)e3TG7rzfdE)hS}Hl%DIrSFRCNhZ9FpYABk`U9 zTQvOh76(fYMQ&F2^1BXGQ+Ak?!wziuK|7-%0!|LLsh)nVIwul)usbOhhCA}UDEebx z1Lz5|WsIQ*9Cd4oDYtFaW6_o|dcAMPoxzN^3qRV;{+I#xnaxa;SGr9~mPLe!E6%bw zJ+L!G{2mLm|6bMS)u&s}6ck>*O(4@vN`j=n6pM4ZN8RXccqC4!%qEY}pPGPHTFd0< zx&UnlBQ3p{Gm%#WUww)xO#K<9DMHPq!%#falvesg=&|wz)+ED2YyNNcZ&-{4`N{;o zoNx57F3;vGOms}`rGAyXm)M{?Ve@W%q{@dwU9up|u#mPyaA8{Kv>|Dly#b#M&p26Z z&eBs{Q@D*~npRskWQNBxbonIpTi=Q8h>{o^Mw;)!q&@8@x^sq_Y~zm~H8BrqG64JU5O)_d0wc za%ny{j<%W;j2o94eVV7`s&@!v(!b}eS^`{8=&%PaLe)a3>Ov%^n&T;@V=0Ew_vK}+ z%Du={;by^OXG}m0$S&p94x!gMlH$ZjvWVY*9NcPh!0oMdCJHCPn*^?GZ-SBKfN}rE zpa(11TziviZc`l@(6KDM(MJnr+EnyB$}JbNBk5`(bl13;wF4cO_d~SYq097j_axEv{OOP z&RoI}NF5@ux%V-FR7;wsltU`4V2EeABqb~2j5IEx9Yd){axbsNTsemM@J$J(BtE^h zzWn2tWjK<|WF?Nj@8+v@n5*9_R60;qC(usama>U*p9-B!=`GkOzMWW;W$^{oc}s@T zVW`7SAt<-Qy0}w^FpJ(_wKwhF;-iW#`iF8%_tS(qL=USr$|Ge`C~SqGLtNH{^p1NJ z-n7M-3vgiy(>ny=N9XkRLci!A>o{XmGp7Mh7m_t-J`bsvJWE(f{6M*q>B_)U=D^Th z#>(x+P0I^v6C603PoYrVe4nIf`fT%@kLEXM)X>+`ieZnXnd7^%PrtRi$#R#`3oJP> z__e!KQW#w34}EP$%OO?zS|UWSG_u1|Twt^uEGmMA1?0pD;MERaQ^!?@1s%dp^=HI7 zO)x>^l&#;xbYmx*V}n4y@-*1j!S+NKFIO|eBpXHQ#@4%=-RV7cM_JRr#*l++a~o%$wQZT2H(Dhn6C7@U>iPL7Q*Pkexo z)VkKcBG=7nzkVh!KHZkSxaVDyA?(@YY}AHMNq<=(tCa9mXoKE@)s}WNz5cx%Q>L&@ z8`YZWbQyv~pMs}+Q}iGE(>$3Ybs$RDwC5g`b)8%kle(EB7zDp> zE!;yJU1e;sj%gW@_7kS|D(H+k2$y$y=b$q2-fwlfQ6jgl_q9ddG>451a%_#8pvhE$ z<@79iP?vYPN03@AN2M#9_rW3NS6#|XWiv=QvtEPvd=94)??v%vq4f24?%a6iWR->m z8I+!^zoZ(w;kChhva(|QzLMs(9W_hso_xFT?yg690RfD1gPu>!DWz5!k}9Gj6(^hs zwQ>mF_h0#F91tTDHsGmDS4Gsgh4FQ=fA^~5(;Ok9(W(D*{A%80LZpebD#h%K`K1l4 zQ1S8_TNnLN-+YXOS=`&o(hgqw0cY-eReo2(1u>pn!zuE;Ncz;4yV-M@$@K%Om95bm zG(012#@#aLLfhCKv38rZ^^(cwPNnlnUfY~Nmt5E}d|QT@}3Rt_EF5YNHiT$oS%*FU5nl~+DlH# zUcOIj3Q2D(9b9C3sO&=Xnd0_cGYU`F9ijG-S1x;5<8Qgp<8VWf>7n9e!mp&45(y^? zORdQ!Yn8Hv`lrFf+TAZ#xy&tXjE3^e6_@T#Ufr+)^x5#GqKbPGOBxJ5d2B@SFe+V1 zhNb!E7vj;R>P?_`E0e09pNEQ;&ae$bn$Wk zNpe;Rd;Y^#(kMlfawP8Gh?9kRd1LB3y2{NVZVE-cm zP{kgPIytrS6j1@;Vpm1O{1~MwZ3_@o8NKp&h(<@b8Umn<%(?})UO80^RUXqVp7s)> z;B;)Qih>UKReYSVw&EFxsJ@UUVB(ya@>gfW zE~h?vV;!q21W_?oJlC>~GkiV;$lXl|8o9sGE0=dR@Y5%*?8T)ZS*l!W9K#9kqg14~ z@80DalAcPairhFtvKRq3ytSM2ecWgLK~xd9H`KJBfgKdB&jPcrvE5XajO%e|+T8sb zk^Rqd3EZvGA}h7*_-*b$FhAGSNw|X~x>WWeD-(?NmAwqAJ>b(!A@QFNMKN73>S!6# zlX|%mR^pEGinL4H=y%ZU*34hu91R*>C|IlpYXL4>73~S2kGv)C`7*42(B;VDr4*~tdYqvgElpfU+g1?|=Z#(mp*Mkz+aTlABa9S;ej zi50D@U)3!5#^w6a^{Auoi>S03X(%7{o|marya6Oq9CrHyJE6u#O`lzg z=iIdoPSw?O!G)eyIfc3AP%8D($m3aA%3bOG+1DJ9Y(pAsyKVP1WHoBIIXt&-o-)%8f$ZAKnHO;&ub{P|s`(#pE6(&S}E8yN=M zh5A9|`;n#1F#YYx7cy?Z0jD$w-3vM_`yU6zI1&XM5%&JfU+C$xwia$iEcW7^me7L< zIkLIED<4JV31(ZhyIe>-&xkC;9_Hm7Sf>t1iyG&|7U-^F3*q^T&DFxahRZV6vwU2T zkM`=P45Q`mbHX-1}aEchdXNTI6=(t4s)zH>VJ-T53-UJWl31>V1`5D+vjaD2LqtXy~KWOjX{KLD0c= z4=ve*>9BYa65VCZkZ*HN-Q-O3$m@KI$$_zxVv&?2(Ry|=uxz7-^7VQ8jt@cF{XG-| z2WK9)C&w%2@Nq28zi6`-)NMb}Iu?I+L&RpXiEb((D>BB)+d{R(?=fT4EBt&CJQRgE z`sGROsXP03s@v{se~=Z~L$E!iz%SoPv~(%Z=DNovvGR7l2^Uo3?Zo5-s;Q}2fo&a$ zx({F=pDQnQ-0Qgqmu>q5X}L&*6m!Vav_)C>m5@8`+DdfS1I3gtkCl5!jQs z;}V(HZcAzyZB7IkoTPyt^z8;PEMDH3Bd*55ck)EIosyt%iyg2o9O4&kG37lywolO? zWqvEhw)QSDSRV!tVzph5SKe6f?b=TDIQw#Lu5_yE86<}j&FMD>DL zq8Z)dGvhZQ2D#(OWL#1OX+6PuJcnpW?vtI2G{lV38_8ed%Agv)a~n7*NAukDYCigCW+&&+XFe?*FNp{MHL)Va_u~$#%zg0h9tA^IO_AUy9D~G|w*+E;B-JW_a6+=aihUZLil|Uh8FM47)Q! z$S0%a2$|9o9?Y#Pe_`jp95^!X&?Be9RMC?Ky=(EvjwzuGm-kLS@o`pUX_3)qwmi)d zn*pKCkerF_Pc8ePeW<0ybz4b^v$_mC1Vj094XudKNjGvX!#}k$+aakqw5_>E(`f?+ zm-Y&u^Q9Q3(SxoT@={3N9@`)t4og+%3}dNF*Ta@VWCSTEqihae_n)dA=I*c5fu_A^ zRgdzFPJ$|WrL{>tsP4jbjB?Ci`$dv}-X3)! zQWw-{Uc+xa`%r51JiXV=-GoshJ3JyPqVQQPPR>$bs=xAG$5N{HplMv3SN-@x-+OW z+G)0w-o!zQA`u+e-y8s~B2F@4h9f zZI#8$Q!N^w154HBAsyGXQ~b)hPT9ppoZODSA<(cw@V@)3M8b8+oFW&(k&G(@qeWFZ zQd0)lyvdFjTeJR#=NQxV{YpEsac|=C)Sd!kY~CR_=MDDm^4XExnd&=IpbzJp@P#tufx6T9 z^I)mDWX(O38Z+*YN6YuLPS1@73LORyA4t~7P*!I;ugbEWSoyNZ5$G%G)^FEY=YM$g zZAgZDD^;Vls{hmC%@IF&mKMR-=SAY~9xRK01H@7UVz zI{xW-^m5u%a-T6q46Hi%JMTM5*-BoO6tpzp zjiK{&Gh(zV|0;Ht(+#!Qc3$nNrqILEf(N3_R6U38Iw_82Zj3W2-yPo{P)T)Zk-dBn zy<;Grk#v$dY&YfbVi9W@TvkR@TY|t;=^Cyt$6hN)m*dX|AfwYYs-_))Q};9Z3?K158Mh}EI| zl3P|6u#@ZCZzMP6Zk#@^b!)?%|G^`RUi@Repy$um=QJ5DFco*dFH%Zvgqkr`Dj8ua zp9miMC_AzQcIXt|H(`U$ELhrBaGU`Tg4}lmZ6W#fGH>01;wc0CbD6Z>M(Z^qY#s$` z9cucohQPvAXx%+q@O)gf_;%jKCvQC&Qyp`<`ur1;E+Rx$C`=afna3@Q&x-PH6zh{g zK6z(3P^^blj4YT3QRmlQoy~M%AFzs-3SVd(M7Bvt`#q*3an|i?6&EpHMsOi7fbd+z<{s*czVJ-G!BVk;vpgM>qM7O5#%H9iL^mZuntpF~XS>YWoCvvQg|!P&O|fx*4l!n&RnG9IGnImK#irH2XWGLz zd`Og1%?FE5gJ=Fy3U5fFc?atF2C-pJ>c1#=YPft*jtLolG5e8(VJA`HMX1HT6>c!o z1TN!cF=V^OA>}d;o=Xc8VHFqtFdQ|l&qi47&}!1ywWPNsb3VM>u8E(09v62}w4`dr z1k54x;&rh{D-ahidJ@s+%@kL~%XI|=7=1{&zS=6wZokpb<+P>$%mzL{5kxpg>1n4$ z(eae@qX={8S3R8_or{Cv;Z=Ri1||CKmMJTP!Ub7QB>RQeET*Hq40NNL#u6@Z&)Pnq zw~T#F*jkx=8j5vMCvFl-Jr!Rsm6@rmslWB^$1cEWzBlLT2n*K+?JsTJr7m87e!L-q zuJ3tY!+c`R(RuPIsmz-W&~vT}@nKOL(Pg5rB*_>tk^E15q#)5;iPgLuCbj2n(fTfr zcTk#{EOnMHO}(WEtPQxGs6Nb)AKCXs^KxUv)yAHHQgsSbE5i5PVqh2~qwZXN9q#|s zV$PM156)*>A8w5sej{j5?*2eJuD6rCe|Xx2Y2r0u&AeU!tz~pil7Qlez~NE4`OTpU zF2xkp0a8q>1y}da@kq}nn zd%SSBR@JCJP>({f)^+DM!2>~$7Tp$IE>xX4n&HZ@qn($U(pN({>+P~H2O*0*S`3zs zC9u~WY{m0SnvgY)9V&*D-n0!{hT`>tXLs;R)MI)P2%lN0yI<_ciinWNQd(Jpjec?- z&BJZ&P@nS<7Zh&lWvSc^!q!C2QwBBW`U-S93JOL5+bb9H$X`yzlJ8xk8MrI^|Iu{T zZ&7t$AEvvzJEf6skdQ`@uA#fTJCqRV4r!^Oh7zO^>F#cZ?hts-^S!S3ADAEJoPGA* zYu%rFu|NG_CQ{u%G=;x3fh`_t-G7o zkQOn1rAw){xj`O{*5i~gsd6STe`Ei&IlFQOQC4}h2(AU8&IDJLyPVPBAoP~P%93-) zT6p)42^~m$RaPNEM50qA`tiL#=eB79G=w@b$y)&VP@5!6k<}?#qs3G{iWM9pWjQ-Fk80aTsXyGjx9i5U49XboNVFRz(>FdC^5 zM+2RjpycSBT}m$wMEZ3T-FwYcE({G8pbvU86A^wa^5Np#^~B)}-t97OUq8Qca!+Y{ zpD#+m3!2352C6qf%h?>&#^eJ-)bCUL5Yp1z99K#D=AC%>1mvbPT#9SgS%vrc`%o;# zbM-SNL#T+jOc=UVQOZkm($s7NFNhM3sQgXE#eeh^NsVtUKj$f42JDQxc^iLZjIzWC zz#ZY=@;}oTx@88)v9^YPn*bnRru- zKt-Hh0jA*Da=j;c#x~s6L>zUpUFv;d#~*lSoAAlR z!Fq3F3^rX^aG>93-fWjelD@lB9-uF*q3citnRmmv$~GeaZS_9lO#p{?nai6TiJ9>vY@y!4Soo)nZAW2P1zhDNeaLLx7WVbLUpObiDx#wJgI$<7N}$$`P? za)7Bqf~?V{yUMgU%?YQwL=;XGUv*?ZmxauPCEKK_wU`k5tdMqiKXXi-ut8rQk&`;f z1Io7op3hxT4lTIVpXHQ4q;yWRosN4&VSOEu{aTXJld*0X%qD1Dv1UCx2%1jI-Rn(P z0DYFvD`n#B&NC7ir6P}PX2EdSkkRu%&lNgzlU}S=>1ME}UuAHDTm8rCI`Z!^CjAIO zj#KKF7PT`)tIg5f3j-n?QZH@yZhsipa}H%QW7hJqHg4cQHv;OqM5RaW=z`gKd5z{7 zdCUWvpc=3%0}*@fx5w*!^OiNDkEr#-Da@#z_>iO9p{V@0|F|3)K{O1{R_}(WA=f#M z(*OJkdwm_mQP8cR*O-4(zaN=g|Il{N*QgnJxr1oV-5eaue%~_1Ux%PRpSCcnHm`0c z3WB((ke^d#Kp{sVpb&RB$Lg>sA5cpjOf^!Qbb5f6+wJ}s$$byZhw#Ro9~>zba1Hr; znFVd@EVWZL$@nsj5*(G$v6WD=NjS z5%+rgtS4_~qnuMFG?R}5&BISr#h_JC&df2PZ*ef$jAuymRG{NeXmbV3-8As%dcoyL zJ(2b#grUaHy_`PPYd5Yut;RX%t4%OIgf445ZM$P|mj3$XnV^sNgxBZF6n23U`{qXi zIB0ON2FC-+LrXOCWIlxfUI-2gQ^%A8`(s$1=c`MJHHIP|d_H{=-XG870Nw--9*=#` z$|2?Zt9pwew7~1O_H-L}S}0Ir|M4H;W)V`SYWkHe!+C3zUa_@Sw{;#Wpa4h-4nBT7 zwFbTGW(dV+f~oww+WE|RF>eT_4koyR|JEIu0-0YQ3-$U)d-6fPPsEemu@O<=otf-1 zXvj{VGdhghF|Kyr#Ie!g3!d%W+5DR52SKQJOy%E^?o<6xtMc_VFg6w%Rx z+~+3TV)y+(h$2?qX-`d+MPI+P5y|^aB1m=?|Ki$k;3Z^Q`1jZ6mG-r$fsLI0i`vf5 zp+^O)hhGMT7aG2as30#4r-)J3X~ibj*5y-#hY03A)4BTeyIRbA@9(=hfbuBt_{~Gs&fX7{zfBWMrQ4YPp)khSrnB{;f>s7YvWee#22}LP$>*} zPGo_&I1Ht8NQoaX1Uc>ganoz^rQILRXRTj*Z!?awxX)`nN)k^kDPi?vIX~BaO`eeC zCz>Vv!ne0hqMfH=0%EAqn;k+~h2eunC&smp5diwm7~Icdqp=&YTuv_r`Pdwc5{)PO zaCIWAKGT4$+t6o2JDX4juSm9S(rNB$aPi<(9TF)^QCVpe|MvH?BOJ~CCRA?B7+Z<3 zy7wrLPqRt5gTqK+ugWt|3(5)=cfH4VxOxhfI{!mA?#6ROS~Fb}I=9UvMII*AW5SIt zf%v`&MjiwQk_F|AQs|ryx(aqTK;Y-G^ybwTuL3*pM>sgxo%dAeb{VX%536%LaxfaQ zOpsnrlWVNRkLdj>mJ9|(>r=m>`HOU^B+@f3V!_x>Se~@2*&u4d*%CJr8~515xi%sY zfrzuzD!GT#KtR(Je+1H+4qR6xkSx$0JccOluLk>toE@A|=1t_lHZf+Z*uD7#o}hq0 zsZjFxh_W4(4(!&KokRO-)bkGVhmDclfWw%_&zH26FO0#sc^kG0c-CAtd1u@fQ*zAb z_aic=}M`v%1oD6CmpysVt>h#=RuUWuBXXC`rCa86JUgBPzcX#&h za^IyT?^&eV-85do@avO9UhO6;e#KwQ(V(S}+QH0WH_Jvf-FcJq>>uQ9yUKi`t6inC zi+4h!37_hn$;pek1^Z#TOb!e>p@H3$e4sJZ9_#5Q(!{8hdR%t*}Luz9SEVk8$*>C3c<}rq}RhDs%idUwrDL1nk4H&)p5kEK15rrPXpH& zd|46DIF4}23UkFCNB+rM=-ACqD)Bzb=WQ3xMfvKxMqYXj3 zSpQ@1EPwJ{0VMXw(A)9`A1mN0n zR`5|u(VF2WiuJYS6?0M>-sV{JwdxwDZf=EM6xAr)Y`V>aNk@_%JffOt%3VqP^K!x7 zuR$nmPn^|@y!j~IpnVSm$Qt`8DWVm?CUokLqp1MDr@*66GA$xS^LVAopI$wfF>p`2 z65J@!#XdM)rL8q(S0{3^HMoSf+_$#t(U|`cihLHj!^Gjd_b*%Cv9iOd`djZR82}(5 zS#UI_4S{NHBY^hzB>(C&Dw|iRAzqm(sz|pu2ZDnR$=xW<$@d#uH})PR<*#yqUag|A zjpqrq)z@owIlmI_Ma+Wh(38%E3KLByBdP5k33>8zE;J@X6$Smcri@1A=f;H~PQ{{a zQF+=tj_w@mY2?fG{@SARHSj-1m5(4A6%;czDueMyTHJQizF+q4Kmli~ZRUHN?3R`C zfMjn|7YGb>RZ-zzQFx3EHv!2cHY4oUDkm6MXco49Behqg1_45x^3gjr0izN-&YFCy_$P=1lipvy&7ubPx@AKq?_|Fd z-CCUOjuV~FZat#C#D8iy3EJz{!nuXD@1r*oRTPNYgNOI*4S#Y{+UI_{{y`+I)h7++ ziaO$b8;urGB8X@t1h*BQdz3e`s8Y(7F8+doq=*NM&fJSdETp`P+27Xmo4tM|`V&GQ z2_lKJfR~HH@O?Y!wfZ{;H+8O3KAoHRq12vNk0o8C4yb<`10E^&&heb|?c1Pn?->kU zE1UAK=M-jKDl`010ZvIwgtOz;P)OT*ESy%s)eFh$7KYf_H>ZFvsKz|aV zf(bO*uEK8Ev!tVknx=lr4ENWPhhWY|kuOU!zCJ0qlm(@dy5nTyg_LZ9ILQ=Aqi1J< z^ExiYKSdHLMRzJ{n>CF0^nNY4#DWGIfEFcbALR747}IRFq8=dW-!Z9C&@=V|-&Ll) zUhA>!sHH|5i<`qK{o!J^DmZxQu<9*;%V34EOsKsz5W3Q!lz_~Bo`7+As(Wha3J?!Jl6-w?4HF&^_SckoM< zbXyPl8FOCA}F|XV*&a^ev3gm=$$i#e$*Rf1Q%Q1s|W?t1C5y ziPhh;rX#4N;iBw!!MNkMwqxev&OO&~+PaRZBZ?V4G+&bqq8|!)vr$UuT0~L&$li z)vbFB2E|@EXS?h5_c}AGjAay+1=b4^%nIX*exu2+1E@D?34cc$XjmD_MhLU)*a{ha9<^^e7ae^ z2CoO{qA8Fn|HgtUM8%%pQ|rYUP_oJ3<2)GSkH#37otuU}e2Pj=8mef-^=-%8kKiyj z`(pAL*5MP1d~rk>q(4Kz>|1J+!)OUcqEiv5Pd|P6aZZ{Dm~FSj`U^05-4sKD8_tS<0^fwtvu;@rvAz3O6yMF!477)?;L&TamL zAM=SEsMM9;-7TZQokN7XJHIp8w?ttu>*VMUGsl2<(gRxH`ZI{S^Kp^B8u?u547v;% zLm}v^uSTeLVS*7*TI>ssGq>5e_C6$)W2X9Z0fTJE*}1__#x_Neb(yhol6mKN zv$19GzzY*}2?HVp)tWawc~CDxIvjbz<<1c3Z|X3xNSOd^HWbh$p!yOM)_ax+XcxZy zSFv%a8|wGuS?Dt4cw1O__Pcu1wsya1GSZ!Le_7a$=U5oNT+cdT_RBka`gogVjeh>+ z?+X|ZT}sB*c8sdQQh&alufDroFf$FnL^JirWF%h@PCtITC){Larf=WHT5ObzbUK5f zLt@huc5}mp-ygxvRB!GvBK^K#DFo20^U?$0S5w?-H(2JKnvI5>e@2DY8CAYAbPZU2 z4#{atHdAW9ux~c!yhhZb?KXmbOW%8$Dg(~Kh;fa5pSQ9|iJ|j;1bbt>0db-G1G?kZ zx;ws)s6OiqvJ|l`!WQVMa6LTcYw}xsg|=iT(*xkRL3nHYZKnzP^(&O>J3(5XseL^X z`Ag18HSJ)9n?v~6GyHX>?23zm(a%1xLA=qmUEZvPf;lhc9dSp;*Pbg@Pi#}BFE%1w zsUB!cD7i<8?fP7EB<(YjT8lT{N65~DuK2B4)8SeDsH+KXp{yh%BgUj*ZST;o2dpzk zmO-;;S9dv7*h9?I$0tP~Os3I3^ds++J7zYtq&US?ZfzhX*{l_{O<@kBA7d|w=hd5Bz znK(Jmp+=a=g=m)lPhC$r4yV8uoqgxGR0*QD*sf*GEzKk!2wAo8Z+Lx*mjR`VWk4!w zJZASkrdd@$49h)#m;X#xtHY3!D5|Asq0oRp6U&Ie8PDHhWCMwnh7d|v--WA_>(sMd zGR~ovs`JG4e;WCLTp42CK6;gqG@geApP{+R_Cy<8wME^Axg5^jPnEwphR5Jav22mw zfe6OnQopaRZ+qnc#^_lT|h!Be%9gdeT&U_GiVc z%^B0spI)zL|&c~W(M6uc%$H0WEWfY=Y+w$9=1dvdO(~GV_kw4- z)0Jt&*vdB028=a;v#{@Si27Ruwgd@~Vg{&-_vsvl(SU#r2X-*Zb4twi^`Z~k4UmXz zhr(lZ16eMPl~vCf)r#6$qL0*o$q)|2W^})&o!!?3+@e^@ywf}ovtg@4woy|}f(Qq@ zUYUBE=aLS%BHnvwdyVX8IbjPkHTshKsqf& zP%npvhewiYraGLB5FW%T+_o5dWKJ7{M=&gz7wqut$4duYhpP^@Id~AoRgo?EAVdIy4QS8Lwj-!Nn_Yi<) zC8P#|!RQLYs8iWzGQUn47cWJaYjf(C6MxHi?`ETeRiYP+Zk7PPmrd^s`m+Bor}4a&*GBUYc!wO4XxpRTX|R7BSNP9B>}aYiZJQQ zG}1BbRGpwVUm6NQr3X>~6S8*3R!r(10wVf(0S{5o%DG>n7v3qUGt<`DYP|e$R)Z@P zo6gRSQ|m}TjUMd$0pmPmGWveqxldta1svR0yJJm=-0Q7RO0DoUDyQ(jw2j5lbZN2_ zpfX8f`=6}gZ9X%k^=`HIO(&kUqqN0Hi&*9sP|vsm8Yo371ObC0VlI<-Ac_HRljo(= zay6wHbX-~f1F(eyVrtRB1af95Kq?}c{@W&Y1Dqf`B`Ion=zc?#<)6qgit4it3#wLjL(%KYa0MjGO2rZZo#SZ0VkUJ{aF|-i}C%&mt{r zE8B;;vS#9HWVWV5Q0^Y0y5)TmR?L;-+bjN=c~b3r{3xR11liiKdu|fN81iqbU(9;F zqQTyI%v}?Bp!`Xw510BadLCL~=h+L9n;+M(NFLb4$2CvPB>PWRUY?GVKZPqQe3TX_ zH3ZLl;8kjv9oYEk*6%2`$L{+QYvD)fNUYnmG{-_VJ6{flk)@c`B_1YLV4lXyEt*q5 zoYuU;A3oqmPt)_@{Z59zo&0BdkZN(_z)}wR6;gtXOP-P?m!;mzx)p^qqL_Xs&o-K2 z0P33AmukHqqc($MWXj}A06TGT%Kr0URD&D&&V-@%V><2ES{2-P62+O~>tt8)hvYh| zW&Nu=@wM^Om}^J_w|*OKGh_c>%DAQ2ekWOTq-Db$xYZFI*^4JO4&Q@LZ{X|}?HiMd z$im4fqo_zLAJ3Akve)E%-gc1Rz;4ilvc=ulXs3nPparVvxdrTOarB8oaR2!T-Ttzc z7Z!#NyXSe2@(hI%*>MJEoLLS~1>Jn2@S6Q31W;72Q*y+Nfhufw^EHNUfJf#(H9KVi z5YX*_)^5z}w4Mnbc@41=Y=-MegLS(TD27jlkyZ?bKwZ(jYx<*O?n><+Fu9W@Pd&MU-EWkqrMnpmK%5ge7Un zpcWy>Fh`D)`+lf^l|f@IL&hj0iEskNXF@KsY zLhc~~t-jql72mZAmR(OjiDo>nAWltlPQc5*s!fUgymZg1j+X(QBJZwGe2mKNKSCHw zj}(!>P?~Y>-h43=P>(RHjsE^B*fdTHEx`GI7C^ylS0YR%adK9A9!tDV=Jnhl^lPA; z$!OPTMuD&?L+8ngHzeP|}(-~0DN zV4f@)XNmI!*j=%K`e~4u762!^i;v<6Jv~M zTETY0)n1>p_`Ri}&A2aeq=!)(#VPD0yC3v9aZ4F?@UVs4r`*B2yR5?|J5>$%(U%u8 ztSvv1k z5q}(zg%#bM&0%?L^Wvu56%wUXiE;wY6!b^^BokWJm3Cg*NUKfgpR}TW%Ht+f##W#$ zFE3|C2K;`xv-r6Oc)_f2Ogevx)A)m`VjSFu8yUrn@byyg8-U{34zPQ>irZ>lG6^xk z{3nzOLJljl`_HLGQiyL^0N7P)JuPE``Y;7IfiFuRU;uS?i2uChPwrR#)3q}}tYX5A zpP1b=5n#Jw?103`puUtP1x`$`miTCp1q^z|GM3yD{?uW_WHWK0Ro$MHQ?l}MAjrEa zm^fJzxgtne%89-#^hQi0eMc+cq4>Zy(>x#}k_QFZl=rQ3^>-Cv@9T$x{=1AYGGx7R1M?o}j8<&>->h<+e_ zKIIB>hI~I3JW=`}tzH z>SGi`ThP3e`k*0t>NAWPh*-nGE$Q#Jn@0#4+LH5x68)1o@vM)Q29Z{#6dQ5bZV7jJ z`d}(Th9kAXP_TkWDmicYALow9#PeIddS?5|NxVVz%1I6--2172@2E{C3kW#be{d7N zsODgfnr03JoR?jWudt5hrwsfU_z^+Cf+j8af?!~1m~|?k*m}S0z{S*q?_J4wW6OVZ zP=egsd#k2(H}w0h1)ctDcF^R24gu!-byL9LeK9w7dgbhrkJD*vg-smveaUu<@&^-_pSVKAqiePFGHjnG5E-HO~V^o^ssNv*& z7UqLM#rE&wsbo#g&D3TxIUs>@ge3So?Ef-?WyRw=9n2u|tx;%-kiA&M(mSUL8$*T} z^Ha?B&fMXTT?*6Ov4aFiYq)YfgJWdr>~k0EqISQ8-$&gaSYHnRVCN;hpJ85^0gN_G zb4;7-J{v)#fhn^&y~Nse6F%6fNDFHuQycbM@4#+xiH5IrNc0~nq6*vwNqujo6fU2j zb&YQ9rXg?78~^Ri+%eWb*7?(BM9}q^;AP%&mZAgij9kdMln85E5)N+sDodS74u`ETzdfIQ7@G)=ws03N`)Um^w7;9Mo>-gN zo6u~{tkDCo%7hW74mr4Q=l)m)kN0FFR_?P&`k2VS3%|SUC`RLqXd3yFHCOEUjp4{j zI95C?&C~>i9Twa`>{@5zLVW}wuMmeUxUWT8F6(YP%&kmpWwCV*u?ZKX=b5D zs%o-gGq4uP086n86CwjErLbBtSaz2+E11X~LpwM|_xz-eiUqZn`f%`%L^QMs$?;@A znBa)+{5eOIU+lsXPxQo1A~g>%}Ds_7A9_qFD;9w0l@E zefydw`NFDZ1i?_OuOQNw{ZI&KV899 z($HSt;AH305Xpx0XAnbou-dStp^c!Ys4E$Jk$2&&!}~m&52tIzgpqdCbKa)v>&ba- zY$1|h&fTVJ9I*gzkFJ2G(5tJvQdrTxAI}o)-}rENrE1~J$dI$krAaS0G@>bBw3cFx zCh*f`0}`6at>{0y$L>?j@12Q$=%lEXHG3|*$$f@mWnhLdqH#R^8euOXxL~PAX%r0A zHrFRqHmQ(&I!FBDqGlS}N}`q8lH|BBlWieGt6=BiG3>p&#+NEbdX|-I?v76DBNJ6` zhzfFzu znt1P`=Y(%Pm^niDx=hdPNOHcGF!6EKB2 z4NEz#LDPaW;AS4p+N-@+xQ~%7skD6sy2881u*c&{hwdyHV*_)TG;>*h#er#_3k%T5Q;up~m$+P)X(fRotn5C-tA!M!rFv8T{l!OD=S?qT zGJH@ThDE8A(X;Iy7uOp?`pi&7t%K}QjxgGTo7w9?VkbUx?$}u*JlL*W`~JC;n9C@( zerILC&x@sq$}GRW88{Tue?oL?7^US8vUkc}ah>oNOz_zl1LK&*Wmrzt%PG9GqDynP zr$`ud++6pVsKjU;j?Q6N-8R+k{MEwsX=Cj-e-HnPu`GKC+&r5?G8EI$bM>DToKwp9 zP@5ztJK&P~S(VwxldOsV?=P|RC9v;~nCpfBvQyN#%F54ZfYzqB)oq8{ewM|$>IKli zZ>8y)n3+5dXh%Uc)`Ty<0NS~WiOp++2xry4V?wrz2TVaw3}88GsVwqhh)k637;mT& z@S;)vx@oeh^g+9vmaGl7?WXgO)mh9B$06fvv@~mClIKP3fYMo_*p6NU{Y&s#f&O}j z{_FI)qu?eC9z4Es)ne%thp-<0BT=*+b%4Xd>!8BGij|~;@WYS4%LT-+&MvQh&#Xs& z53o)5@1M`PH%BeNUzKyoV%DbX8`JPOp*+h}OR5}*mV$8g(i(=}WGrvKXxJNq4n2y> z%lrNW!_3$o)X$6&6eiV|#+DjafT)pO80VWKt=p23WZWgwOr1Nc?r+Vo3Bqb%BW}W? zFTpsReF9N;WCUB9i%r8YqP^Qr<%PjX(G4aRcdHn!H6xA*4U?u%Jzm`R6=A~cXbhh- zcO5y3+{vAl)YgYzPFjN)$E~_1Uoh9BO4g>A;1pYmKOypH&Xh|Ojc|iK6|v4I#zA+E z$*wkFTSctXQ(;d}lEV}C^(ot!wHbrVL`Vmwq( z^)nC_?(c5m#+u)yJL1R6{wc}=w(F$s*u1!yZ946<_Y-0%m0ks&(~2r7GDZl4v+F>t z(;PtIS|lg-+&SOi+G{ONmz%jUB4C>vnRx+UwnAZB8>!E_A2Sd+v<}gYg5n{qNio&* z-b&rQ9yB^m=Nfj{;lEz?k=Dyug!ZprSX`D5bV7U_S33NPAFc5JOBDOB;tu4r&W0B6!cMAjI(Bl;(bysF82> zBR-Xw7X8AB9VvGYnlfIuQ&VB+58ajSkdD%)Hk)?Xo54VTBg{$*=gl~Q@U!Ib`>=ow z5TE#z69T_6jN*QBZZR(IuGaR;pJi%LAlm9iYp&9~Fn0WhJXd5?*+K0)(p>{npBY|( zxk`|0IFu|WJQ~cE(00xH;A=*7EjeD)NgtO$uHxw>n)W%B#Cs)S+x2`nG)E@l`wSo4 zS#&fKpm^4$thgO`)?}Ed!L8kUHzSR$SnCobL}BEz2oCeREDHg|GxX$!+jKEOC4=G? zgBW+XJ=e*M%9#Y&C99U(QVYOrG&i7r)^I)?oHNL33=A})QxiSqTlI(52;D7O7>gT5 zL19UL?GfllLEZgp{M9wE9aYMC90sAjXUWPJw?69w8LVb;Xgd``O&ff@6og?vNV&Zx z{<4=$VMOuC(hYsk9+&eU(PigfvlL>sf~#PZYA*fD6ov9BDYoiQDdt&hZuhu%ERrle z8XYd8LAru@QB@%(|9f1nlcOB|VI9<)UDgl<)1{ZqddimHJN)L|E^)3eAVDd2j)R>v zfwEwP(nc=Lf-HC1)rk4W5k@eaVBT9K-pxYMxuqc zQkB%-Y@rJ{b}wkDvINlr`11SwnM-oqH>xmU0yC`ixCEz7%Ha`;K2EG& zY>ZAD5YVQ_Ic6&X`7->5$Q#)%Yu(LE=mpf_xl!ULyp^&Rj3Na3xmL+J6Qh>?{6>nA z{|b9XLt;#3spNxxj>ieaZl*H;Z_w;^(x)nnXTD*jRtqNlE)p)~if+grVdV#^+2E{H zxDTLk;cyDn$O`mpTvmD4aaj@mvC|7hT9FSvj(Gp#Oq7-A+w;yh54~Th@b}TT&ZsRv z7{DuM9iZiWt@`IPqh4{(Lk%QZRaI5MP-&?)^HX=@R!R||htTMAo@zORh2OWHO}dRx z?~v4w_z4|UpA*->4E$hXVXE8O^^C6t4C<)BOg^~AAtKP~+S-^S7^v1!C1tohDJ}pR z98y_qQr^hY^2G~>`D(NLK}GT0*>Njdo4Sv4hQ3n=4cZJ9y|+4-B#=j?q_pD>>cCLq zvo7-6`*rlMCkj*iqe0t~TvZXlpE0lDoULWGtRC>Ic%;>^zVgD>FFO6XUB%|OMP@nH zQ=nWWpIJtdX~BdP@1ItDuF^;v&(iy+kEJ!pjKf2CD17CqltXgm{qslXO1F)J2MLc* z^q?g|wDa)%p1Y;?rC76DRS;aVlkd$>?~!TSVdquE1@jiOuqKQ?UKD&IG_+=gYl;J}=p-SD9^`HMXiV$&*nys($?FXg~{E!o7 zH_YmLx+SgFcPi}sa8`!kz2ZcC0?Z*<^g9?{v@541b;YI<%k06b+|{Z3dn+~Ux;C`l z+sRS zQowU~$}L%rq4WlvUF)N>!-^f-*$%a4$daSOKQvCOdcF3LEKLtS18(xO{{}b32|9Kw ztBZwU*L5Nd)tN-VR}SycPpYZO{BF$`jxkF#HQGE(hww&P)#_-=S{%R(ntW`bM%7+h zhjW09#w+>y53M5jePvT~u)=4=D#1e`C~?7-gMz@e!kY_9yjq0cyBfvGsn&3|bG^7d zwuaWLp*|jKUkWn6STDsMzu@5f{yfTLE!})IJn5zKOSs*VOIm7*$)PBa!S2Y{WT#rW zV5%gdAUSHo0O29W94!9otH9CdEY=q6&|zx7-*?W5F9IW-kE84H(Me<(jh|XpEK1BQ z1!TU=(g~cn%EnMf+0G<#*CUki5L-Lbj^5B^wxxxBhnqD}_FBD#87V*r?_M~+{so_Y z6?b|s+9KD@Macftsm1mgROEf|${*9j1uaF-3z<5j>Vx^2yQ3Dj4Y) znN@b*s*rtL>QQ9}&zbcMBFuzz+AWgFuvK}VYs2!O;Hd`ZvG>!>lcT>@Wv{y7GbH8R4gdab9Wx~T|Pf1;KxHUy2 zUWMWi(Hr!d7~&8McEOHvSkU?MdiS=lF+A5HbIe7njNwd?H02hbMKd^f=O+d4Iulm& zsC6)xtN>%rtubr7{o%%NR1^I?u8}03nmfmb^NrU#!T&sJ1O?fSrHb0C=XB%_(@8WH zOdz63mHGx&Y}FZ8pc>IAwusdWKYv14tppSl?tw_a%Am(GnS)}YSV4{iWn=KOVUzeh z#dxXGAR&pVGB|T?@N;$2`V2`bK(%SZ2Jo`cQYdl`x;ICr|(;{ z*gu`ht*8`vgsVfp=E92I)nOThJd6C>UNsZiTlr9(xs2xQ3lgV#Td_8B8+Q%7PLc;G zkZk!-wYSWu){~Fy6QaVpZ~Ia%r*ywU**CaEsV#m7VAC-0yTJ|!s03^pS__kw)c9Xt z_C2o?r!uY_h}l9USP&)$K&maw9uZ5{Im<+{$vY&LLrB!2AJ=fC7{Mkm z@1JSoX9F{rm1^03YWfNqm6UG?jiqdem;!}7nr>|fL|MTXI^x_ z3mMpC`V(K2+wj*(ck%h3RJF$QQx&GfUaH3*9WXiEiY83=fNp;fe>$0P52yv!>r;9U zj#;!TWGlZ9pPf9i>RC!eY%YO>aoCrZL7ir#Yi& zUn7f~U<|iwkYp!`t7Q431dB7Qj8b#N-I)7}m|@b=ItA#%<8 z`KHgASm+C{uH=sIjUD@puu_Q|Cal-YFTf^c-{nezk^5sP5^b+dV&^f#$>?)V5V^zThCSkZkFD{+QxThp6G0QANItnLhL^&8-VF-q zjXVVm`Fc&w3812$Kh8S+44huAf%!AK6tx4_w}~l*6LFrLOGYUz7lzac#ZC*ZuHrZo zRcH(FQ&6i^;26s*a*7^^PI~|kSUu%@*1oXTO>|ez61x#Dzg2}@HX4wK4rV#=Pya|+ z)lg+K?AlGOimW=;>)#HMvG4mHDt#u2Kb}2Ik*4p*W7mMNqSC+$1~Tlf-JxMG zd#7QqEp}UnwR(Gj6mOsKqjRR)uN-s8>{+nesQePeumPVp;MBWt;gfI%WxOIC9Qjje zA0m0#fDMsrJ-!!emyyPK@tvyoHso(dF)2;J1|;gh+tiQm+Sv86XOqqcrTsb(>(o!0TOrIH@Z^sLHuGVo@IE2M6|JQj)f@&>wWmt)kl>uobG^c+Hy? zE2a{-r-8R2AC>+E_gbJ<7D+#GQjEM;#sf{X5KRd6a`j-k`T=f23x3K|!djWc68_V0 zk`)o6CpGA}<&HSnHQLei&@#W_>Gjdz`m-$TcIcAS*6+_WR#L`U5h9ZC>|;{Kxls*5 z=xJgpA@WrXUi=l@cOQE*jo>Ywg+@Q|WUdTkDG8%M6j9b|Je)Xaakx-}g9clK#IQvQ zT`9Q{!a8#Qh*m}g8$6=-?YW*NaLOPCX{N9&s*Rd&O`Ou`QoDDJoLI``pT6X z^&oV>bR5lx2aA2Jv94$g(g?*ACQxtWYeLy zube|_l(O3nsLH1|3Z7+ty1ul9^brOrEwBZ}lKwCY(8+s0yopp?kje&)ld9 zBh_kaB!o>PlH~sAuBaXLHyuVhSe-8zw=hB0ddH_wmKlZs-Z1?5m)^95##o>vdb49P z(|ho)QuTIdPUJ4nGI&=0;%(eCI;LPXv>;c4qGgSbN-sSuKV`I|8qzx3>m;?0W&L24 zHn7YNEB>segWs||N=E;oG4LBVQ|eix03zqL(-M(^V^Yb)u2cMjI0ifL{J*6fe8zBn zxx$$=Qj##gSbltTL_l};1?DrY=S0ZSZwX9o2SZV$py8EXQeUv811E!HTPWi7`bcCQ zJY{E9Cj-`_=O58VS9zI+b!O#RcD+`0Vq6{A7GLLN|&v+ER%b;E6NDM zu~h%qO`+bM7rI2TW%5T9lg3F37wq(i#OAkL&-h2Dd@)FihMCyckQ|A}`h=fX>eR^K z+A${I3>)q0*q(!6o|Zj;aG1wWRysa4k>xWP;Scgfu>8>1Jz;i}^gf#cK({Lvqn=TA zIUG(v6u2$XN4YM7C91YcwKMe1`fgI z8q%Y50r4?C{%DbY`QVmFiNS-^jlZ_LI8LXDe3o`AXYou|Xv@F-*Jqx$^#HfSYJD2z zR2BkTo7rBWf|5BNPCbt$otgcmj%h#bJUiNLI|2-Ox<{9i1!`2Sjo#9E6GeVTKCz$6 z82N1xJXjleV6woBLJ`Yh+I&*8%GTQ=uZMdFL)VMo1mDLwZ;Fr`P_ElFcj1SY&e(%J zyQ)U?9OtS8?=~V85C0^om1NEpydyf-vF#3DzMi0yQvI3gyWz1LI52ga3Vi$jvj7CT zWKGJj&g9uqvihFI?2jp+;>EJ2i~Drhsg8Os6w?8vR3=zfYN~nVnD0Ao^~GNJt+E|< zx(sAPbS8%Ia;C7I*NlgGTrmE`ICikJWKiMsU!|D*t-d1v`e0yqsVN}^iRz;!ftw~KF%HBkzLPeY-mYgD9Z!M!= zE^S;Stv_sLsGk`oB8urn<)^Tfp~%zh^D|7C7R%xpVU!Y|+gqtSH#KyLWb3gh#c~DA zxKew$^V8;#IrltXMapaO;HWWeQ#lITcVv=7mj}Zaxok^4sw8KsBAf&x!km;-m1?*1?M z`X9j)P;ES;H-V^6C3aKaGC10T*>$3z!6)|Z7oPh0d?4Wv-eK2XImx5G+3P`%_ zw9g7XyAv|&XiPZm0Na_~lsz2AaRFgGD(fYZhlA!&8^yc@_|pg9SMdlvBuNA9IDbOOGBXtsF1m7tI3(GPT;#fq9Y!gm5F#q?v+KBg|087AKr@J1z zgF}y?DqboPoLzq2!|xP7)@l3uwO2o|rWiT%LRo!ixoKPCIL$b+Wt)Q#ibzJ)O24rD zmvrflAao~UTNQ;hA=FNQjguOpD0up}w)l_TSL<$VyvwV~PMimCk zO68s;db78W-EDcPVrcD(U|4v;UVuV&T~~Irhi@U0%aCv)07hW*MKQD^qzVN3qW?$J zIrvrDwrx8bldZ{avfWgZZ5u0_Q%#<1P4;Blwr#gs*_vAxUag69e?3O~r27tfRh=ns>MBHwHGTM#`dKBE`9iNfhy?xdCaX|omG$Qn zMGiMNWgW@Wh0|{yQ*KROe>Jd&gGsK83jXsqQjgRquJp5xpv6EK&SHayfKbaQ^0`HN6j5p64l8+*fvM15aw9>dy4D7V>4Rr@5eUl2ocd0tVw{E@?R$fmuE zzQ*S^lKT>0s_mBJUSx}e#>|K2Dz(x;a{bl@-hDOyDds?Kq8rd@U-9K7gbf$i3P?d zV?O(Vu|*Q3g+i=sYX;%VJLh7Ckn#y%EnvBV%~Qrn=@8q>_k<9?W3e||A3DjH)=czl zwk?&gJfT7D;!6q&)U9a?+%d_%(9JgEAK&6Wy-VK-7*P!c$pfSUm<_i)bS#4`RQt^` zv#IYSz!ji;`^VTm%5nEj446^`bk!e@6 zMt~8LzS2Jc%`aUqi!51OU8ZR+*=o-ke$Gn!s{lyX%Kitu>wI`loz+j9_Sh>UCrDH9 zbVF_BZ(kane^u~il>%Fj4zw#ibA4>NHC-7C`IIK*!k1`+@I|YIyoy5m^jhkr)KbU2 zzhgJMAkk{%3g*aWHjAb`{sQBN@2F`zO@uoiKFDYrH5k?_#_34vQIR^8``xrFCUdta z0WSSczwILjisEUg{Bar1>(g8b^6olwCm61$uf+L5!QXYhn0z?MRRic7C>@*omZ9|P z+NQ!y|EMZnb*)@oy}v6QZ^qoFX@qVOneR=?hWVw5hZOd(d>proJ*MfOyira_D?ZU~ zUkznM3%vs(J@Wa;VOHVhq_$5|IX4zf&fOS_zh)ALYP$&9Wsd}^1?`Oq~$);Y( zjKCJ_7nUa-d~4K&kwsigs6@RliPhgV(qT40{Qp{H!^IWng~vtxo1)hM8+fwKBZH7g zFI>WC{&9r(zDxb-s?cBTpT5|uWdj1oJkrm{oDAphG29|BzGwA6eK72O&^_88dN2H# zP#-@KOsfM>G2!h=xC!}c9Bu~2tv4)+68*iHAW!@To z^~G^BsR?C}w9}Gg|6`I*aChg0L;o{%ed1@R6Teg8afdg0z>uWy(4$&$SJCnvmkU!- z8raI#Xi0_Xj-?{v<+zBxO=2q<(tTrMot1m|He-$Kd8>7g^aTrtABHZ|imUIW1fEJ( z@6Y0#lp@7f&k!_=G7vw)}K$h$tuWz435ITY9R!d?%d8EhBbPWezHSB0%l9xP% zRc%^0H{dG(9fwSbF?aEXFBYO#aFY=rK^=&Cyb2P;W|Spd{f#e7=f`EvdZ$xp2=cbk zu!n-wT0&aZO@*y#gh4Gu^Po~Bhst8TCpo)TEpgD&Mbm)shDUVlp_V-~O8izE)J>8V z8OkPm1fB+B3+nvVOEkN=-4Dn{#Xt4Qy2MbUR|zO5(F@pwBOh&VavG3SQgV zf!4gpwQM2U8N-ESlxQ>M=gBsNZ&1q=+$9~n!}_oLA_X@Og3}*ar)TW7wlQIGcvjzh zHPJ1newb`Sz4SJrNra>I$5VvNE^`wXeeVXVJWO)^A5C_J;`e%gga9Gq^&6DI0@A8} z_ZOhpgJLOI#r82of(rF_rN$`EY=$2>A@CiV=i%O1X`Y-imre;K?B)n&R#LixnA0Hs zH0WGVwkh|cSo*e-4zsobv&*LB-T8?Jl&65 zy8ab`RzH>M1NZz`-;Z?|J#K>7niWv&O4aO;(fB(7W?}!f!SfNS`ENCIpw&qq)r6uK z@uvWfSsLY?4~6ccEJB0!Taj<)##a$9T<`Xll}-(p?hC#jamq6FA5`m~NBly^!|(4; zdI8DXj=ptEm8+8Cc~ex2KTr~^u`<_VrGTqsqGtgFYfYa0@-yL>teMdLYQ&IyOBA3*xSL>v7+o+aG z?lZ?Ym$8wyq$+kNT$Fb%j%^Pce6pcNiC%W;*r=e)Y?<%={I{|Md@6R_TzNIT?;6b9E ztjpGn?H;@Sl{3pUU()`*y}uS0_R8{;yq_I-7XdgFdjKQGfoIh3yYF|-7ukHz1Q6Uy zm&8(!eSK`Dl5Gd3U6N&w4IFx=wrpF(dI{36_A{0%yo_LA6 z6Vwr{6)$wmSgcHAWsSKaFE4!i>vc0W%F0NO#IBkv?D zhJjFC_9131$`g8)V@4Sbl(*B2v#2&gzKYsmzZy2p%7(tj`=nDA>Z|?k4@hv+7ZmO} z(Pz1Tjp3MS$MB&`)e9HAM&nbA?ktqwFofl>poCdM!CLz*wl|Y;rl%Ah8<%RGER6{2@0KmnKI)3y4tXgz86OUaJe$Us znlKLz^qtlWiPx$okwakkCmKI}Bwht8o{5k#ULtUaNpPmhg>bNx1P3 zWDB1lQmFcf)Nhb@EofV@RXVI`IfY-JVPCx}xqc$(vbGmcJaP83I%^bi^cclnzw{vF zMW<7!0p1aeBxbh}6vj2XAd%It#J9G>jkbroCLnHS*A;;gTgtZk^ z1_d4OpYLd%GHI>&6z$AnL|#T~-(wyM3t|2!TB>Vm9(UbWzgy}rW^u4n)N7t+`Pm$y zB#dpm<6FGs!r#NYBz{?nrZlL|v@LpLeX$j9?xD3z~A zQ(R9p)TAi?dt#a6Dl~J|NP+jMin1%Caia)o*9WWUBL_KqM0qOuA59fnl#j?CdhA z`;lMNrg0@NO0Ife0>LnvU2KWMT>rU?5qy$U1g2i z^<$J)r)W_L!cuC@RHoOr=$&oPui&z_-^P>J=ngri2$zuULI-?6vvn92r?aN|d)#Cm zr5L=Y&b|$^F3WF>RH5?7WdBHpM)2SKHM{oK*!0yHza0v)E*s<%>Mi?&ev%eo1m$Ja z*W&&M5b|xvmu7XlOd=;KnBO1yYmK{v4pkrbjjlX+Y}H4uCsF}9+^CyJjZ}nEEzV+K z5d*#RnEHY;;a%f{JZoaoHA^hEBfAdyBm1Hq$9x`6_=Pjvb6at*DucfBMiU7+E&d|w z3LddcLqqIqLT@s?TI~p_@9wMwx&`JXsClD$mmD2^<;~=EYPeUXnjRak?_sgxusw}K z^WhQvO??}N7^?1m&9rk`stE{fP{87WkVzzb-b1whw*u9m5JYd|I94zWUdf}59R;bP zk2$Al59?B8S&173(8n8220OiqbFEp7Db7M==kOKbe}B*`kXCv>CuiMhL`y+hG>lIL zl@Ij0#j9s7jcCGKm0djRG^{ApfbrVuJNbj5wQ#Gu{S@oFc^FfH$dA1BCJRJ}lg>B6 zMDwd=+J9HO29kBYU55#t0rJRn%iK&p>!1!)DnPRl6iA(g``)5naEYmXK~aMTVI??^?;=Yh}Z3U_~*7KF1G z6Yz@tYWFq@l#w8$3_|On*5vJ3UFK{Vi6<6>Z;SJ=>T%Ugvadp{=;Gc8JHpAX@)SlJ zGq-87?_^w)n>cC>D2>-zt~{>KO3hBhNmBL=TB|$;`S#S9ucHpVkWb_Jp{=4FuAg0m z8mvRX$`t0j!4B)agsT2~L|`81ZQx{m?c;US`5Y%p*6cJEQ`V2VZ`U@|8=BB>#MGxU zIkh=m2dj1!2T$v)%ucWW1-Bn*qyw))GYlchni6{+3o;xm5TjIfMb%q=$GnTGH?U5i z_%P|+@lA^cc@>khT-;3x;Fr&OJwQ5Ixg)9Y$w9(XEz#&*w1SW9dD9o)506-m6S7Sm zIO1vIj!e5Ygb+Vweek6@dspk=WGeLQ71CxkAGuX@@gx?RL}dA{fm6lVp844>zP{jc z*mu>R)-VxEbjpc`&6|VcM}(F$ihD5x^qpLcp)bhn);p%63-Z=X7lb{!dKJXKgIaLKcx|Hz_+S)%Rt(^oB694GR8tZmVHAG<0@kXs+Wv?M-n_~*$<~~> z$V?wW#(K$VjgELM|K{z zKOc>WH2f(X9pR$Nd5wsR2CyRgvz|{-CcGJ$?yPRCNgPUu*zBCfuwSN$)L<1i7OlluJUeJhDaMwStQ1>g?Wk3IL^Tuy%yA zc-wrIy}H0miC5?N)gW9Si3pb-LO4fdWQ42JCnR@zyxG zE)#BIo)I?}{)VZw6yhi3&N#L?P=hah!?d}UH^aXjI)y1?yvZzTot)t^{szetrjqbn zgB$~i{>wI-rR3SoSA(DIj`F`NYVI@DTLZ`5_@iAv8iSjKX8QOJnN)K* zIXTb6Jl#RQS6z5jRaK9O%3$*N^Ca*ye5g{d));b{?}QlctmpHg2CVB=Z+vIa#{(4r z*u}WBhA6?S^aVu`l8!?cFBBx21x$8sC{VTKsgVMd4dZqZGB5J4EtjFP{NA1n1W# zyq(s5%}q&+s^WW?Owr5&dxHD&<>xl!+-El$M64>}kyHBJO-C(45pKDm`GsOvOV^MKa*{4fyrv$7C~&RiwkhO`>+$eAlM5 zNmK--xs3>k;dgnJssP**I|ruZIW4iA|GxpiHX>L8UOm9;oL?{=e|3^0W!^4R96Qnc*^ zu3ZkHBC{P?h7RfDAi+P5VC)zTB%-Tn~{jP?M0=f z;j4Q-eTcme6PQGTed=v^4}Npp-qM!8fZs(iWFM!}QWMqv?sF{b$C$HTZJ<~ICy<8L z9uR^QW>(y8ObqeVlV>0u6TbbSf8Mr+ztxIlTn%qVuhfrfg((I}%_t@_^{h7vK8V>- z=W)5Ybvacs4Q?s4(_fFAnFQ`xwj5cuG=yrNU0V&fNj@Fo>PwMUTyMPbqPPi?aYFu4 zB2>EdV$ph_1b%x>91iIH%tyUiF0*1-4`SHwgP7v!6q~n0j0JfdLN^E&m63i8)q>cA zwOv653ZPU;5Nx{$c;7JB*};Fs!Sb`Z5&S4k>)(hHM<7!#I2FNK+k~TwFugeCV6#0$ zk6&CC-Fl}=zI-ya1+m3o@Axy+uUchg!Byf^tD|FY9i$43Givlfy*w{&5w+!!+3wjL ztlM=QvEi`7X7(SRC@iGGBR{Si$FP2Pet$3EL({DJu4sqGkGJKTZ`3F;KyG*WvwSXlgytIaS)@Xp zCu>Ii5m#BmH19AVgT%xTe7ewmH+#i+ev#ra-CS+%ZD${Qcz{`frfLfaqgt`jqFy1IU`EFyz2EEmp38}shOf2P(g#<|6qnU z&GM`bFcog=TcJ7PtgZwf9BWP-S+g6mFUAb3dCG%3cGtg~#tz$yJ<3!LS@p-R1NQ`s zelXWgjjO3XJi?lE$X5zzYd!N(HE^SF^6XF< za__g_o+(G+t+x4r1hNc!w-YocL-QTnT>I!ey8=~dkn3hd4sA6l6L?3s!!S2hWB_dH zc%*5{ZC%`oG_}7AX8MUaQw~21%B+b3h`+}^LuO(!N4R%Iji#m9e)s zIXif&Fhe-(Ni{h_aBc=H7d_7;%Q_Q(&^3|$829^$h3CiI%uY80J=7nY%dp+xk60m= z;+~=tT*P62zzA6&W-)iI0-405ms!9D#HJ(RhqgajVkv7-Q^vDwHTTUiLy*UGI>>{= z4__L{&IThEkT_O?|HlG^%El{TY9)e|yT%=ho((Oa2k6~e_gZwyeqrLeSh+LV0+qj= zm=rmWy6zGORnykUcLLJrcYJSJNqUDXCL$Ly+n7RpkwE) zKJX2z|6^BRQ^&CN+ngSL3LZ}do@|qydOFpTB7-uw4RQU>MewZ{()m17t!_xY=C3rU z$vu_RaIW6X4zyzr=X7S3^cV&8g=D+X}Gl0o*O zx!O$@5#wuXqTRT3J{YdkD|eupDw*kdnR3Jh_~2AWd(3es?4DWu>B|7WpkgYu4m_ix zIOw(AlcF|LVrHl9eu)QqE)>a2chy%lN}sG0X@~U=Pr-d}9Gcy-VDlxU=r*q&Qim;X zgj`=8{F)fkylV06a0w%1t9;OrUvm5d|1K7Ok>)!fY7A)MyHa1gGL*MoEpYX6{&q(SM8W@wJ#I8b+E%4J*SY%tzu@2wgt%fds`un0AGGGUDR1XoJh>W z&fN#ay*6JLscTan6k}7y8p9B;^1z2c!8nVq$iYPs1!1o?~#9#cHeChmhs%z28 z&8T_czpZXX_rv(Af$v%l?|6uH@LRy@)E&xt&hrUwvQoN#N+40^=PHf|T_up-oZSv1 zhC9#wG|SSVDCuv@y?Ci3IwO9XQJl(|1ywko@1UKDypXlT`LPZy1*fcH&Kw94 zW?SNrK1v|Up3jy`{53Nq{k=dICriL>Q4)L%nc`txVJk(+uTVAoIw!J>oUN7BebMuy zS3g~|V;vu}zyFX?AxUZ^-zdP;nQFCKBdAX${ZP?V1MR#+NZIN^G$Rd4^EmJCr1%=S zY;%i}C@s#dkgZ89^=fP{F)=Jcs|`nTQ+D~-R7$P|{Y(?)jI4ZLy@6*s|6x@=1=(+u zms@5?3ss(PV-IAA)p1DZD<9Rk4r}@%(2W{<{D;P6PW4T8EBmG3c=C3@8(`CAf*I_1 z9;;t!8_mFmd}^2xo=|T<=ReI$v=dFVhw>bcE?R*4EA{=qAT&$Yy=uH#Q;k2!j`wNP z^_%m)q$NwAuULg2*ECI2J2D?)X7`{fRUqK5F&=pGl zJ1qgIn{~hqszcP_pKlDHt*rn=>~7xi?CSk9hzmiJFX%9685kJCVmM|V-7ha~cX};X zz+WO1qmgL5cN6o1$-+@uyb6KrewATc_777{PcJY09H-Ro_BBJPLWG){l4 zaDL;5xhu1MlW-KiUO!ufnxa^zrhbCpRB|j%q1tCF8xD*#yz!)ZQ&b3x)em z(4rYXi(>4I`AU9zr*B36>zvind%d+A1kwYEpDDftLd!B#QRZyGC;-Lf7Pj%X9swv0 zt2hd;K2&P1KmW9`aWER2r$SoBhCkGU8r~`%^sb2CL#uUq*N}2|kbZ}L4awjvU3Qqi zUhUba+e(M&c2>u_N6Ue3h8)x_@OtZF5qz4*&Gy(d{!Kt=X7W?qV7nf)z&P{KS8A3Y zMNg|T%dV?v2zylyvzVev-&42C=SN2^;OUh3b;jT)cM2Y)eEo_;6u97Ee4c6X$v3Yv zH@KY~m1#!YARDqhXK8u05_g#5fz3k(!fYRK0X3*9_HNo=Z2*`bVpg=#lLF(ANLA|@kc7L zgEua|N+>YVa3qSFrs)EF;0`ArrD?hbcOrddy#fm|-^e$tRL>sYy0tB27!+85|G*yd zb=#e7UxeB#u)69U+)UH=xZxOQG7x404&;x-@N8={`M$k@CjgffRW$j$)@PTO!>Byl z5tRWCj295Q4iMoBi`?I$Hc>i5y!W+K?L4P4R2oc%C3~H@Rno47Q34L6VI@8|I>C0{n2(oV>=V_E3GEWByP@Z% zw%D|`r%+3*Z+T?QZTq;gaxFUSGCF_3WVeKyFsV6%Jy>Q+QyMjh4qHxBX%L^eGFS-P z-m12Y)X+N8B>E6sN%9-EnV3cMYr&jRl7vKmsT-W@B>84R2YJ6!SdIT!P3EuOWuR`7 zj@7&OKv>klJEOs7ho2L}@gB%j6R~b376S;5_e&xb9cM$*DL45iN@!b}3@}3=SH34oyc!NNp8PzBu*0dY9+d7T2 z1>61=uh{PICwZ&G)i>uUA-n7TNySZ{7dk(ie{iQ+oRYc)=})pqrT_d09#`ojD+A}l z`W`S&Lpw#Dz*@Z5fL+MVjF!LOABI-1<+EANoO6>;;Oe&pS#&anTejKlN3h|>%Hl*R zBJXJl%3M{Ig?~sGq{D$ThdH^;LeW|743k23V!Z%GFi}eqK8G91_jP!2j{Y4F8S6W| z5WD>wm(0Bx--k_>%|rc;Bz{yai9;Guz{R&Fr(mEoSmEge2;FZ#(rG|iF&U94USKw8 z$1crwK^mRlDF@&M1HtwzwExa&aurZR(=>4hsHmv&KA;rc=pNae_q3jOYF8(2*JJr( zjcoP4|D3S6N-UF7w!k=W_M_p9l*?8ffZK=~Vv7P;T& z8^)p0^~XUDpdXtAz)C>5!Sy?_97hUZOq|&A! zgr2s>^}Zo;<5ZHQn{$2$#XzD>jW$?M;`~sB!g#p}WEM!X#6jGMadFG4&$Y!uSJ2%cA-GI1Y>sATRxZ#4h-0P2j^Te?(F$4@`C4;7a(P@wlZ(O@o8r7Z z7GaX*z~Zbr4}k<6C_G=`&BTc_%+jB7aq?^4olv?ES^p$pH=d;YD0EKl40OKjDaRF_ zM~Z;&)_vZTf}iJqO=UeQIp)C)rT@9X^}G=cdfsA{KFF)#Hv1IF;RRVu)IL==wcaEq zOfqRwo|!lr7qvI~bTd=^ z6hAK%OKfEyd6u=3klcN&X3sYImpUgMS=K+HLIHmT`zO&=38Ml*2KVW}+Bas5nQF=*lFZ1@`$xOk6Dgksw4nzpEP$^DpjwX152rO`H?tFL;Yv)_{xyQBla$1s zs4oHzFHat4c1ESSB(yjqHA!s`bme!#=y!qd67sfPGs17X;0Y_Fn4s*qk@pb}ZeC7a z_CpMa9mw={O)ZzYyC2QcpZmuL=@9e6 z6XLN}9AMMJHISb9bH1FT!!V6A9pDzKuANudNhrW3Z=Ycwxu2$GKd7eUzQ3}9GL)nQ zFp2p$@BxTO7v+Jr^L|Wmi}XA3ge_@C8pGho_j4neeTbyW$F-P9v?;Bggv^RJj}nsm zbKVj%-&wx*d0>MoAc*?`N_6d5?30@A{MUNk>i(UaUecMf^xwNiA8dQat~$c06ke@V zKk@>a{p}Q1-(Tno{opGZM-uwx5Y_qxHj^Y~O-Wj~=HG_%R~K4nvjt4Pg(fKgbdJYR zqP>e*!)pK15!p=ltXx}<_!DQt671xS2PQ9)!GAdeY417EK-o90FFVnOZl!7AtvjTW zslT2qmv;+Ca}~R4GTs1g-R`ebFACPk$1MYIi2wAOCJEgrL+q%!Nr!Y}oMyngb)y!ZP*!8%1E8=k-4ewL`MlDvGmQ$kl4o2l zIy_4<{i50U^DAPu#UEM}XyxKmdPl||UdPlp1LN_p)h(bePeg+1G+(jhel*!v^mJ=*N^bhd;3P4%A0!6TwoY*g6J^T z+P^eRFPFMi82RM=v?wvmERb4L-h=7>rBky?H`H~S51uUGnIhmWYlp2hg%wJ@zKzCl z3#J3Sk(D`(CD$-Y{GQas9r{Md?`FN-RjE}o{M7v<V7cyf4UJV-8icMo3jtmI%%<`QM6Gab3}d4?5k10&lX2 zc=q$46Q5^*2l;^MplM_K>PL=GoR{`TS|oXYN?Ykblu3SAnVO{YBj}}q?Nn%P$Rhcs zRSP9hn6;r>#6PC?T~(`~0d?vVR>)Ds*eF(If!fJZAqs_u5Njg&F1D#ls&o&QkhQV9 zp0>kHC_O}7zTRj~w8`5M#}7bI4a&^>+^Fs1beFy@%Lgdfyk>9{d4$-di?knNsoBr=M&7d~ zl`eP~4P(vQnx@l+g7@Pta|^a?Kyy@v`LDb;dgPpaNT_VVoGksrt__CFIs7Y{Q0iQuKul_Na>#7foLO zco1fCOg3GB%J@PV+Eo?xHzH!*Hz;beUi+22cvh}DO>Ow}{1KViLlSOipw8%w=&$oe z5B5-3)1$1s({FmJG}Y}xlD@QGis`p?yU(NrON>9?QCA)IRh}Pe90wyX`tn;n*4;$} z1Kk_x^rJ`ig`$yOJGIl48^<1U%v}MdlHg0XyVj0hkN2JBvH3+L?H}XV0lMQxzowQJ zjxnwv;N6T!oc|Mb=#~>+(49#*N!aqTCe4E)6{a_jq34$Sq{=#YkulQwYr^*6Q1-o| zvfA|gJn-`_*Z;tHf}s0;UhXd{%(*%Z-)JH$lEC*_g$mGpgAb}c`m7l05O=8r_Izk7 za<2zf-KP(;izhd9VIiA9wzA$d$`voJ>qt3nW!cD0I@ij|V%h4d!|vh23j55iou-xZ zghCbXX)V87K&liKL#2ye@fb&z0i-OpT}eE#5SbT{mwbg@rA!@<+eq)RtzR|+TQ#~H z*LFPsVXD;kGk1la;7uJvto9c_uSkr0xyME;^KE^Ak3wH@yl#LfK%!`+TGg@YD-zz9{YKwPD!m_ua7ZzvZi9=GugxHD#kk)O(OuRV3 z)p$@@hCkaZ;N$_wUr10S&;N!Sb)LXEEN^|6W3eg&02GS3XI;2?qo^6#TMxrhp3R*J z2R8Owk2^8axr=cvX+2$rGZ~xO?AaKb(BEHmJ|}M<#t2GsN4y<>)+>v6?doN21C~yN zZEQ$)({z4(iC<6FBscOVEKXlF56MwZhvsy*K+{h6Uv5kmZv4XGI3t@+ppdb;m;B)d zgvBOXFH{G2d?|}>wlAu_XX!_UZ<0mCB1AhS`nX^?@WZ-cbNa_5JnS~BuJAnHuH%A2 zkt%WXnsMzUY|;ag;h#Fl2+~N#ns$uB@3>*WGcDQ-Q0>7S|kUi%_A3Uh{N zeAV+W0FED~r3*W5CGLEH=7Cf^(}BIqTQ3owss5EW$flB|UYEZx=)CiaqE@4F1O7Nh^xoGa-z`Rm;+OQH|8)>PgYv>hgQ-`Kv%Vas19O91KWvv0}zv?3Q ztd-sKfI`Lt4YM65Vk*F&)(uB6Rq{3-b?{mr-JU|q_OtgaPrDt6fAtEUpBFe4d#vdn z*V=H?az!v(J_DFP1^qcLyF7>=*NV}OabsqzystI#Oq*e4(_7l1P*JpL4EUZrb8cV% ziu+?ME+fSicCKp{{6kurn>lDJ`(;t1VA3<{kCJh;*Fe0u#Aj@ix(29pbpIx8vu|oR zg4hhs&@0Na?=C-;!G=j?Xol76z^h`1OcQRX^UP3mHT~Ah)TYSIH6oJpl;~$ zr9jhS;0c0-L{Ys?lU_b}S&8ePVeN(l^CANeMFvj;JvC9LRD7Ahk?3ThHr>`B3}3CK z{x9uK`?TMDk10S=YJKP1Kjy*c(TafkN|g%-xLh92Rihj*6K(a7C;8I`Od8fiAY;; z1OYns`5cMZ%NSG3fFH))IVDGa`=tle`qZt^3Vh@yeldDD)h+&p>Si@Gnikw}g>Q1M zTp*#caEpJv?0L7eZ1Lb|_vo?M(^aufvDi(3jf`@fXv2`4opN*0R_X*fL|ldQ+2!uS zB)TYWzh=JGJp;S698{%TS#o8rVXrr(uVSpNd>CpYt+4@LQWcxJa2>})PCEjGT8)&v z6V=s(P1{=)A#Fn0d+CuodL3*(79vKOHncwepqrN?-8FEG5>bbTtnWnpGVh`SMWiR3 zg%n8N-&l z{G0xEs`HU6N#-BR+MEbfaWfZUIPlN74mF7_-$8(`h`amjijDgnXI3C+RavwOBWYoo z@0*sLh7Wo&$AwLtAz9z1(!%pxv0U9rk?yA79NpkKr9Aah{Z3WCQHkU5mR8(AkeaQD z`8aPn#uvKj@LRNxP0X8s1VKDtLm z4;Ue$$F|j4ZTCVU3@|fFPd0|lZKu3!*ZVz2t_eJh&6$I>2t6bQNTMA7B0R>PTJ1{R zaJWi@$+QlXuB~$R1_6ozW8kJKp8P-)Os@^w*B5Cf<*+2f zVfc?siwH>5cWv#Cp;`e?OS#NnspiI07&Fvc3kyR+Cv5Fp6-}$V9(65|73RO+ZZcPc z+58xPZu8ME$9|K@t7mS6U`H=Rw2s2OjSJ_oXM*HgFfxnrpMtLGMLHo!L2sf!@EY47 z5zx~KMuKSv3biuEjTPYOdRm`d+$;o~KFbhT^c;Z8T@cj2|5FX2a_8Qx~+ALF9aCsvCwqRph!Z z1n+|V?E};a%~UJP>(m2{C_9~YThoL3`7K3Pbj%H<&96}d^=>t^RfV`L<^Fo-`}GPe zfs@;QCdT=B7Wl=QoZ>y`K zLsZAvKHOr-?P}i;0d{NW=!!h}XV>h+R&r`=jAB zLfxOFa!RYB^d?_+?&Kg3y#eftRbGM+GlkyNl_0LbUvnQ6@%YnbR%zr3o=v*hXkI*- z#cna#&8jcIn0t0DJ;a@6GP7Y7rSa9cu^l>Sm+$xps8+37%QA=4hr|#TA~M5E76X- z-Pvep(tXw-O-}8R#N`P*Hx1ML$X0*6OLEYcLLffD z%IRS+CT-Ao1P+m}OMPUD!U2IbJ!n0h7lh_mLap{4_yOHNqz`DIUtwcLKmKAIle_$- znDT3G)P=Gms95{c#_Kd<*4tyKxcAfFP6baZPxc!TB}N{t-F^sq!>WxRaY&YW>*PH_ z!qLodV|ThGZbGJw%%VQTU6<<^LZqYEU*09|M%}$e;%n4YRo??GWZ5Ry@Z1n~>5r_w zW+!7yM|pF{J(xZ}1Z97F`bMg}69o^6CY0S+Gq%Jifq_V>N#b8^gZhVk6SwP%dN01F zns=Ri3QiiX0p6g$UAD)HALd_<1@Ir`^}p2?&wx05p8UDr-v$>wbeUdd7T3lDLcgD?Yx>4?hMNpB|W*ZEIFKkSYbBUXC8pROmH;qXF&J5z0S}LdhXp= zJuj7!crGqkS3jo9iLR&zM#U*@JQ^Xn>iVp!w@3xJu0kVG)qXCT8V@P3`QSRqa!2}i zN2K|BX|=*5`My^y1TlbYI)+Jj#cP!zIe(&Ttv~h87%~|fq$J&bF2=7tKUMG`u|Be2|*+R zV+@F^rNNu5_vf?deEFu1@<_o#e!QWf&$pd_v0%L< zM~AJWHRE`kahh=k)eJkQFHp&2M>twv{r^}1?2XK#1v3A848}CkfdAGB;97Ok^=UAr z@BfW`d_oNl2u45fSBwJh{(-TJUTXUBu79~1Nl(9~BC}y}l7A(@5o6D~X%>t zG(Vz5g^IRI>0L>iRHu#Q6?27%3yadD{66D>Z`n)^7Bi>4hO)}9U|QF0pIhT6&{NEeZsQO}=yaz4fgA|lKP`W*y3gqpgC1KP+lvqn?@~F7INSvmSL@@}vJDm<>b*xo=RV~%-%oV!^!yE^MV^}sAYS2K9+*k$O z&s=9(Xhnrn%7@gP>-)VP6iTSL2^dyp(fS9~jrFoo- z+w73Sba;%Fz4j~V^|yPmNH+G^8l-uPXmXIPeUJDB1P%-6Th)q7BKH&`t`z3Xb9ESH zdv%q3DbNqz7NAzw+`HoH7k;k||np>|)4Bbu1&BA=mf!@jL3|!r%zGd4=if_95 z&?ApGT9_^*9F9aK?!qXoG2U&#j>s+p?F)KJkOHVpH=7!>EF$bt{ApqOG3_8N5-9K1 zgIv^)jR6!PY3G+9osbr8$QJnv%JW<*HTO^Aw1tuObDD+6GJIJ)2&B$=|sYGDq@lYlMWE2^@PrqTuKB;&xXG+ZBfacGA$r=lkHlJkC)VI9fgm&!aYN-3 zySrZNd}#d?betW1nRAJGedN{vhMeQq%LdojF?E$z-}%B`)gJ8;&Q z&CFzOvtWF&^vC?hxH5Ru$zxuA*+I4MI<@;+Q(Bm8vr@8r7Myfr)?{s!Ygc~OX?sh( zKPxXbd2vu*Kxpe8cgY=Wiwf z8D=_B{wi1n!gdaX*kznTi2te-&$pAI>!ZfpN2Xlny8jr0*BOG z&qGV@lPLW4bOc%Db4_S%!7~d^7P+nkEL9~s%bKEr8-Hn`+~=m>R6T+m(FG*_TmMR) zQ~t{Y!lBkwUnekjwbEfe79?|DV**;HRnCxh*J!j!L#+VLTn~ZR(ukWh5pA{Wzb#*W zp)qQeg^s!aM;8_Q9 zBS4Sd6P1wDq~R+_6vi9Bz9gHD+pSXD7ty^j-xbjsua%)=muqj6&)1QeaN5Qr%b^MMl&5o0=J--N7-@!murzN?KW$_2cWIvyL3{yB9UEfjY5QZxDepylaV@au7YLT#42Zv5CJF~#?-s$>ukimSHAt9rZ%Igxz(g&d z(kjQjx`(^U!eVZ7p{m|>;&54yvLbobc$~))y6u;w3Y504gv<-VgnSKJezz8QUi)i{ zw5=Hg-B|>4IuY#KtNgXM>5$i@`MB`)HZKGJ1gQkN1E76s7S{^6etI6xNCDS(ot?U$sXIuKSowyj4Il1Dgh}P2KFe&>*>*XyH1LrK=V~6= zQ_YrgENIr#&W3RpzN0YC+sXl%Pd)XwuWT2(qli~-g^0t@v0YVEkGP+5GHd*A@nP7a z_wdo=rMp`l<+nb3Bc*0h2F0KtL432`cj8^M4#nmZwglEb3@p4F!P-9q*>-h|SMxLe zdZ5e%9QR=Et@{}JjMoD~)65#D+`4L_qljB>7;FfkUMKc62i~q#Y zUyrXt?w6~PePkW5OxTC(S7J5;Om9JH*9p>my!75~V0N1fBq;p6LqR2Nr}K>x{VI}h zeS^?kr-SRe&jzM7*eqPZbsiVrk-c7W$4&)2aP4ZUNdqlbc%`jorrug-8s|?fHL2Q?Ug^Q~dxF6?`Axe( zZ9r9t^#-Wv*ewIObg!*Z7WZTs=o?Q{*VLQv#R^uI2-E6VF9FhoH2hzq{k6@?eQBeC z&$!l}0l8~p9*(RH*io#~d4w-rwgJKNu%{Y_ax<6B6pKQ(i+1k*k*Sw2KYJaBL&|v6 z)X!+*a#AaaI9UKpQ&PMMdF4>;k%J>)=WP1||8_^YEf9k2Qc%EfaXot5CgYt`=V7-Q zAHWo`Nww%&VCk(uei2Uw&jcdXNR`fuC@#=VO1i3%&i#Cd55nD zns7Zf^Wu#+-oVKxpMqO&y#-snvkg}qH39oASP%SZ7{#NyG4j1Bz@!W?=zz6XTg_pY zn}+)|(z?B_8Motu?S*RBPn$waB|)_=GE*EvwtIhM+mFV;V<%g19S79{r=@kBgzLt4`fIPfhEq;C1q&7|z}7pq<42#H zfc@?nL~zd_N*|tp{12ue*dPb=E3>nR8F-pAt7Em*9uQ}XV$}3IeEWqR6>Iv<&q^Yo z<`5qYBG)|+X#WHT9{ZB?xhB793D?^EI|S*B`ZWwnRz_3Jp_-~8@72|pF^D-pQ?N3+ zCIgk({?7^)?X#pq?J|Sti1r&~^6f_UrXXnwz`5VGD2hXQ_+6LJegI~I4H2;J@QOvXbseKsezve?cKOXuJQ5$V|1$EM) z#;+eVKJ}7aT~t)xlXUAGn4`TzdB!W6+|jlH*zJvYppK4$k^Nkdw##H9pN>PXdbk+m zv97Qd6Iyz)^VI#Z$IK67dIo4&emio@?*fM3KoAJcO+mwUy+)?-@07Zgn5K&&X~qZ= zN7D&T8|ngKmDJDe)3F5bG;^Smwv|ikjzhgP-n^Xf*vMKng5@L2sp0d$>Rppa=Ct7F zfIxtDX9ifBmjTh_abJHLKxT0sSkGX)JBQL<-6$Q@hhUd31T)03!}>f`0ozuS)%D8Y zdM@rdyMQTUpt)WxeXeuZbkCD;V#(@iLc#0#K`}+Fif7xt$tEobvfOYHE zVdct|5O6N;@9ysQ9^2f6>pDEA^~kab*Y)Vt_&fzzpK!t#ap#@C!nQlM@j1CLoI@M+B*k(%{&y_^zDqE!GEA*@%6ykCxFs0g3@}`o=mPWgYkAPrQ9U6ej86u zPRw9=H`>Oi-oAcqG=z^Kc&p9n8uz_tQ={f(&@yUMX!Waux6V~$M_noM>&znP%KTv=!+d}*oM;kRA4l0-GQK2+@$@zTa;g3+hh?fe2Fp( z|9X<Q~NU<)|E z?Y7%+_uY46`t<1-85zL~FT8+{eB>iI;)o;A)n&&JX~K0Cb9*dqX~K2mdR_QfpL*(P zxbemtBv@ZMzX$u@KZM}w0R($@VC2eaC~e(}%u1ofb->!|TU{|#Q{AIsIB9_29fKXhf@0ySpC-%fNYzDXu@a($`n1EK{W*_E#ePg!eh*q! z{uUTnj-a?snT}^gv~mCZsp>6JQ}C!UL{!zF2HzCde~kvnYMbrUzb=rLR5uTJsaqN} zpKAIHlxb`upt#{>)L@Kwohvmjr{cxlV{eP}*ACW~kQIP^-&$lI9YE%lVPpho3!iQM zDZR4`fjI7KZa1(&8-n&M+GgeOzqg8L;rrt&UrPhmBbYo!n(K@2Xu)QCekqma`tr*! z$G5)qE!=zWy_hp+j_iR49(X{4_Ja>Th~0MEE$Iox&wlnZ{Qd8L$NA@2r(zytB| zkAEDW``qV{%b5+}CR`_W>G(*{gzLtP!{Wt@amE>6!7qMs4Yu2<9hZE)7yCakg5cY0 z5bWB9{FT#Cd}k*zD+&li;0Z}A46x<-qO)`*LYUdMc zHeMV?u4f+5KsBtoP;L8GD^OFg zW}AbDaLs*}nQ1m@mATfN5JLPGnplUhs`|$=z1C-Ct83~%1*gh)TC_oF>v_~~2Xb|t zOb|5L80M2rB9zC^S#BolvOMTwYmiMoqSvX;_G_OuDoh*rlrV^;`oh*^hZD{Me*@gA zUFtrnivcb*UIfWeDEB|zeq&|ADg)ceYlBH!UJ&wO=4j;3xYFXb1WZe))b!@#e8hMk z*`uOLC|ADS-e@n==<(6yBM=Ald{)Wr0v2>f<|&@VpoISX8Wc)H*m~0L*lqfMV50>U_% zqob&X4~)e+k^1>aQML=R^~}E(n(#4QOL!I<=CjW}+tM(<``zzGM@I+lyYIfT6X(SjU&N1p{9_1^7C_E@ zuJ63_PF#20bu#ZQw%8)frwP|7p2hKyqzTvc9|iFc&YyoeuDa?_~1GI2rk+n5OkDB zwrfXV@>j9!&qvDuUka2JN(ymb!gGwKnxI+&Xy`Mo&#>0ON(Q15#4XcrrDdkyjdq)9 ziy07`;9=^X@ZM0eML`*>02Kp(`(G+X#;Ua#+0JEakO&9T`I?DyW_FV)kyQYx=*%G ztQPn47cgny`MpW7J zdBQ|#^)2=^#KC3Q4E;x9yX!dap0XRN1@}EvvRi5lr@k(1M8B8Y;HXvkEFWv^YLUN{ zM-84oUe`EE6)#Hhn=t#Hkd@KIgP}kML(4wgkIZB1koo%{u&jX08zXXLuNPX~Bag%x z7hQx+X3R){>mf`^&|KFNu0>wrD6ZB0d0cu&D>mEnltj(7I6n9I)A`tR&DA=GKH_Odt{dy7^_aqM4EuofW9%G z7P<0zhxpL#x^HXv;#iVd^84K7OYdyKKM3&UPbx#zJjhm>yew-RtC%Wvhh z*nVLxNkbkj(=Ef;M;Oh6U6!AFd^>(ojXA&9XQv>9mr^N@)%jIu%XZ*h)92xxQ}@9} z$Ya{7`+>EO0_$ExFtQxTv;w(~m={G2gxUJOg2q?wWhdh}@5{7xPk!L)GbZIAu|6fL zT)pjOV_C2Ms8_zcugYy~)S~=)f_)vKo4Ux_gA%#}5k@sO}T}J zd7pjuv8p40`)gnO8m_8DUSwA0^%+J4y)IaDvu%BFGwmpbbmfQe5Uk}YSO%(nGOOH}jymdiwbVYJYjHoR zD`h>4$h1sEcGDZM@S%fH41|tao?tCa;lqgEN#@_7CYWiWdC;=ZG+e>31h~-rTWg_3 z8V1w~^2of|Xq3%$W33F5izrkjJ(YcfqdH=V7b%DcEG-8D!V|8Cdf;g2C6+nb|Gf#xFbU>NK;7 z^;Y>QpcC>1zRWu+c2ZPWr~17HYm;+Yu&qsLqsxWYH8R%DxTJfiM^_)ZdtAXcTL!ZoE7- z$>KEBz=iDs2ZUBX~-J=Pc2VWSC~WB2I? zV7uGz@ zZLe-etpID(m2@%)>#XZpucacc-aY_tWMBE9ubzFt^R8DrLouliV_L7g!)2icrvD|N zWm*>3-m(M_J-a{7NDgcI0Yvje{|U*jyvu+ zTzl=cc<7;ru;Y$9T4{gvt6$->pZzROKmBx^amE>mRTa_3zwwQ4$iQYZXU@b9JM18R zu{YanGbL+jQ-BgG761Ss07*naRB`#nE+XtoZFCWnTBg0XjK>OA1%Sz1QxSESOdChnSo?u((RU~{IA3M$o{hfi*YSA z0ViqQ2?A|XY7YC{TwB$NK-)$R`yTn5b)L5krlvff&QQ!R2LBeQ5_WNoxWO8dWeob1 z*H5Ma>+;%Widb$YF7*#RC2!yc%>3sms+v_vkj{jYi#hdTu&+FjMKDtlIkH$QmW~R74R2s%WehsE}OvkR%_QUpl z+he=J3iR|p4y<|`xQeH#0P|>^v;j^MwpJ%eA0dOBIRa9=B6Pq0vR?s*G@bCp6 zdHL44qoU^DQh!!Y@b$IGZGSz=uScFSqa#j7u|72_TWZklMR0WUV>HjP*o&N!#kDsr z!9#!BA7`XEitF~X*VP@a+ggFXZu54K0nOGH@SW@1F?**|@ue>uRkqKB*|rEcCZd81 z^KJeixIXpNQ>A&h??b>WEL_DgTu(p!G~RgQ4TyWinb+@s|NA4s%;Y<&3D={W%Z<9b z3D>pnX%U3r*kg}Jp)i8;FPwzakL*RT*Ft1o$)k8w4~Bm{T|6PcdTBRp0GKq`@`X>P z;7oWAq1pLOK5*<58P`PHr*$Uq6@JD-z;q#;%)w; zV30$z?KiE`sBvK68*T&yvVF?;+=cNd3=_oACV={GL$JAKI!?K@?Z-ufcwD zDDt`Op%khfG)j?GQ7l?9}JhlNHBtdd_N|%c4PZVyJM$`J7L$BR!m<1Jh0+^VC4e{3IjmvBozS78`GZ8 z_}ag3-m*DHCQ~`kh|c6OX}7n|>|)$<(df;W5JH^_j|P&`bhvLh^YlsG0Q^BEJMJ?)Jd7Xx=tp?!si&m>_Oxl!aLX;XNOSXh?zsnt z9(pK*qE1{7r$!U5>ohBBoNW`XYtx|wns?lB2R`}9Ph#!bwK(Tn6LIEgeZV10fZq+F zxL+qmuA7O{#4IvvOUkTJQWCA2463=Wvyl%Y0nZ{(&Ez->n0X#j){XjKhrTN^E%)=* ziw|9+_mv|vx|^^n586P`dFB_RWzIu*`N=O~c-@OA5=2weNs}FFs~H&kpgQ!MHtFcN zC;`>tBLbOOU><6kRriMh%4Bk-?X{2GVn=LAkk{bM?p0l(;9DEOYt1nSVs4Vnu7~F1 z9Bv8jIm{ZdpyJ&Pmtv7+R=u7?9pf>R#vrWm35aODcyBcFEo7${L)-n?})6GB| zA(K57ZJblJa5o6JF@~N~%q*SSZ`#ID&wjpLc;>Q!-+0))pIYl*H!2rT_`_7~T2x&g zN%CMht+#tGAH}#nh-#;e)U8?&Hv)80x-L~OG*k!kuMO<3HrcLo6v(L#d=%8v3>1R` z`V0N&%5`C@zB$;gZw~fq@4>8*#nN0H%YTPp=nWt@0myahO;figV#%wrflnH^NN$zS z%E~I#;M5U;o|PZ|HpXrCK9ZjCkBnu5>+OG#b%)ltE>52qc+_tgR+p+kFKHUe{GBnV z<$Q@-hAVzvlNzFqDOG5!Kl+c+_8ZSvmQag)h30x{7T4am1P}dvzf_v*+s+xNJ6yl; zdVp*0E}*?l&k6z8!$rKYtQ&`adOkk;>GE(bOum2k!yn41-s0#j{`u)oe=5zqFTVI< z9C_rCu>&f!)ZhR9_wj=t{J=6TfBp5>@!ju!7vdakk>;R-4nkI_)|;B^(*d;r0gtr+^%Y?QWXMP^x1`|CLx zYPt4Dp;i-;^_%rhaF5jDT4*0sGr|g&=P+HknuZ+{LOQ)XxW!TA{p)DjY3-MF${@%u zLd!dD$E*Lk68$UxV2-(B%6OxR*6^!?k8yKqqj9$3Rho#0{?rbb^CPu12)kzD(!4u_ zU1L^F8gtPc0oUTY$X))ef!YFf(q4zUEYi9wICIM-9WQCPRZuW<1eoeZ8}ijKQhSZ2 zTGi1thP7dxgbV^{egqYVV56nx5(3{OuuaIRo-SP5(}bfKjUUN#{5RTJH)ZgA%A0^k z4Ru{jck+`Tm5QiueD|gmMdRz8T%)up%7HP@BU$c?t8Kd0MrHTteJ=F++Gx)TS5waK z;3LEY>5OTIDUV+>U`{opbkvtwWMmM=fkHo8vn|-XXB%ugaYyXjJ`vktSe})Q<@X~H zuq`$fg*H1Q)FSEnD(%?THC^I_cnh_~JJFr`(>sm8E1WWMq*T}5_h&wq0PdR)bZxX6 z)P$~#Y(+E#zDZzlD_5s^pZL60G2iT0waj3&(5=M}Q<+M}g3Q7RuEjam8<#)ldO@Ax zT1it%45y|Dc3st9z~#4fVT;{Q#fit4Hw(Y$qKo87K*I0(gCG2$HBjIB*0*rsg%?UN zo;!DL>>!H!#c^H2=i2><0B5`Ix~mLoHgDcMY_rWaY8aZD>na|KF}S4(*Q4un0_%VL z;~zNs=%eu0zdnvn9MOeKuA7NTUtNjpcUJ?Q84UeqLloz>BeR@=br`XWfY#?*&0t$Y zbEvJBL}c!%R8w8i@m$=pGYwF4Q*^butGecwAh*R8Sh(UTEPLY`xw`SdWFb(JxwiIE z4uhCk;B3HJ!gdI`22716*?_9K#>}p*Bf99QEy~k5&zj7^!|39o9t7g_uWBzp8ccPA z$y;;@H?a=2>!ES3y>X!KH!y7=-G*t3)@^IHReemEQNX48y3Sg5JzeDRgD;gub(a6? zIpBh}3*!7<_iY{r*M8B5W0d`zM|Gr?NI7xPoo+2@1YDcZPFJV$txqplMzz!7!*4k& zL~BK&v~L?mrS|8|b22@vax;0w!MQh2OEVtbPEptuU|n%Na>!zO=L~ExVRLNXwE^DK z(T9np0SVbyayx?Ir9kUsAlIcUn!Yd7jodg)mG~%)^F9dcpQ4@wUI$HSUw{>ER-A_w|YjJ$mM?UfqeEG{?#z`lgg!Xpf7NkBx z$tHZUMa1v!Ze!p6+H0?2KB8MhiSKrI@04!d-7)KrT3Hyi7^QXmfuT{jcO zk9Q-pN}v`~(aI;x{mx`Ct?ktgxDrs!d%p}+v-RF*{#_2LMSZL#EmlkI1TWJvv^P>X znW0O~^$O%R{sxv8I`HcA-$1sdQwKBST4oW%Olew`Nw@Z)W`5A2pET1{%X6${WO3tz z&C`YE;tX(YEj5*;%)Ti-hhFlHRsqb6X*P#ss=Lt&yXN5Ly9%DB+N!#c{^n-m=5Le6 zHWw!VHb}uinroM%d8rv^YolE>G5K>noI#eb{t* zg=*VIBT&Z-BEWEI1o_ekCbsrrM&~SS-n|*-cFw@|ZSC?HFD&^LN~`{iOiK^YIx)s% zJZa{=jehq|xUqP0QuKLQ5N8`kp%6cY?HCIHFSmHq8NB&+T}{lJk7ToO0oOO3ySA=o;l8HGXyN@u z{P^}RY?%VCMIOQ&Tv)A&v#xu4dzHKr1oHT-BaS!%mtA(5yf!p6gsZN)N(Mmt#3w!> zkLeO0ab(v87hHg=uf7^{=FG9G_2!#z%5?wrU;kzKbT{F;!ihLm$(wLpUC;AKfB*TP zAIGh?F2MHN=5YP5XJgx?C1gLc1ewWHa0gLC&R>skP{_vkJ`l7q-j`7qXW?}z7~{tU7$6WNhj6d247QWk+_ zGTUZaZ1>nL1JxA8o0&yh@Xa*IEXWsWqNO&MrFXT92>a8QGbK0UURLgo z-BM9AGL&Df_WOakk~&7U-S!B(+cPS?+K?;-MGTjQrOEi@_NmyYYh&!uvoYS+ITg8) zH-Lo;5G?x*5R`y65!6yd85i#bDtpMa4#KSQ+&x7opvanvq z{_{Ri>DG)<)rvt~B%emjWj1$eVm{3q61&LNKx6Fd_*%bSJo#0u?GAw4lq{~hc`+VL z3D-BCyGBOxZsdo~x&HC(6H>#qIOF=T!w!?$<^TTg|CZGiXIB61Z-0Y`zchRHYp*Cw$NJVa^hW~C8?(7x{=eO z`m&mEU47q)JHPnF6L9(EKf=uEz=C^bW4A5ZkbCz+WS$*C;pkqBT%x1=6;t?EOM=o1 z3iG`-@7rW;by=tu6?OxeF<1!8Q4YBDD0^K7-Ez!>PxW{DmEO}q0oe)LVQ_=5;mOB7 zfNV>za~`z{K&D`sw8J{cSVn`Y1;;{D?f6DZ?KL;Qw(lpOZWX*tMFQsm%*eOdHYq1q z^g}vnsY&x}wAxByvb5iphT1+hjP^*3Pqw*V{AGNjO+5(Ix!HHTCfeWw*OtqvA&1NX zaxX-?aBjxhiqNJ(al{+~o3Isn_0OvF~?#iux#SDtZdw^jp$ZKIWSkhMK#sDkD?>WRyqBr zKaFqHqfe50endSAK>?+pgx;1O^tDaIJ9{?6`zLLM8N&8((E?!Mtq6t|0qrw@Y=?gO z(#@mfvGb&;L{5#Qtz*5aYD^7o8t*Xf8-uY1Z<^j#_cvf}xP8&ceyAsS`}$LsSBE~W zWEC!UZ; zaS4m4t+v_f>PP6@bI-w9XPpb6fV=LRf&Jg# zgWQJ}BKOPnDDB*ip*uGKI?Eir zstda#YW5vDBRhQ9JtpF@?}!qR?Lle#Tk+^a?*eiip=Ox0&16>1kJqArVkW4W@n`1O zB1dRhfy*>ZYrkbHA~*rCWqQudzS-Xl?rkkHKi12brn_lE*wz|q)m2>EP1<7Dgqt=D zj5e7c!$tX+f4TUt=8+em>BugMF7EhzyWXzx0BxiNv)Mqe0ULV^Xo~9`fap8rW&a+& zROBD!VVO24OpfsqhW}+1O|JskML(*&Nw2(mNH~?OUrF^-eM%!`V=2wrxbob*O+M-l zU;ns1(ouT_URngUkm;yc%f9VDQfyA=s=9$Ol4= zstO@64!`TN-7~E{zSU_>z$<}jxrSR%?Ez}fkzDG&7@(Hzj4TK0f`ot3AH&G*_Bj6Z z@LZIFVHt5-DE3{b4t1oMu`{!|Pqn_! zfU>PQHX3UJVo{n6!!ivEoTj=y>H}?bgeEu|!KyJMS8rg-L-nj^qk&P^oZCt(&o|f8 zl9_@V=rzMgbu<{GfQ3W0IaY<?k(3R`NwD!rEH+c@;KXDsi-Sfc9SD>`wL1bEcm0z~hO}xdSwA@rJHHB12yKI9oybd<@xKFBSldE%#*1?rcI3Ce&))dxtjFy>xy|7c( zN>Zt|{06kd@saekm~Wv_jogg~exI>Ah-$Unyi`5}?%q+gtPbL5jeerSQw909kJ<7e zAR>60@*eN*)babTFrvD zR6hSsKt3)Zd>jCHqx)qn;G30MbFFuy+EdBvtV*~Z3$t(q*WK89_tWsjgrm5|YVB;o z^;q?Mh2=KkI$ehmSc|i)KmYm96kjmM}#I*BV!%sb-2BO+EGs>4WF0fZ73V`z&p79M@80 zw)-DEz32ukm1kYID4%DpRb~*)kF!$I!$n#$@zy5Q5`yWP4q_(rAd_o?XBD7K2tDTnR(3#?L zlnq$hXIa}D2}bniAnf7?FV_WRuE|!LJHEYi7xK-9fc+eDaHc+sOUr-fxybUF8%6oO zefwF6PwST|>Yz7Bw=mT)ReAZz-{R;!>3YWPeG}c+)=IcrFTDAYJi;ICI{0R$nf3lz zR`wpfuqxOl_>Q*QJn-sotccWo5uJ>g<-e&Oa1=VtIp&Crxw>o(Hp0z6A`hUK)YD|2t zC0yUujcs?Ij}ub*T-RXKE6Sn?*A;cw*d=blb^5-4>7|!&%rVE{_rL!=K6cmyeE-rZ znBA8{cHSanA0CoWoxgB80ui640FGM!i8ETtJ>ny-mLZ_ptcA;ARu3%dHOPXTK58DBE z^_#7MCb%cFWAnSPX1CL-Bfo6zuMOh_^xRb2Xuv~ly3R-R8P(l@BIU1o)YYo1t6H;f znRpX^s5-~rYx{NkHPyy6n@@!hd;_x?K;v%1v#O&zjiTV}Psi&X=5Ga9D=P_l;65!t z`;DTh&wZu(jG|4Sq+eqinKGHTs%w>hTg7f!8VFB2T0C7QHo~yKE!Mr(j42Pv_LJqd z&4qdPbc6-+Z84R;6bR@Juxm1uly7!^aHIuR-A!G&Xq`6iIZoX z!fH~dC4%@kZP!?D6tH<6cCicONqt|7-y69ZVJ{w|+x$vudp)6By?)K7*5l^F^_k~m zlZ|G@wpau-`^A{Sbpco1*3*RRr1{wVJ-G*(aGl&oB83PvAj0j7bLsZls~uNeISudF zt`o(>7op|G0hD%V$I$JwfxeuGZx-)gO=jRBMC#M=gETjR~sGqFD6qpi|Wd1`+6AX=tzG|}bmv-649<+-?{ zH12WwIp1&P(ns548y2TUH+OyTOW$Qh?wI4d(ycsoPL<-gn|O|@3^d#xPXg>DNRJ!A zG$We^$jdn!nEOp1l+$kewrk?@4^TpXVLi5-FdIj2us`12w>jDtEkN+`R@YfzIKc?==#RQ+uxNvzts-45ineV!@QkFop+iH8U@~NIkkq>GOwg@X=YAv zEso;)=e{^21zcYv;9Be@Ht-`3a#-76z|{+yaNWRe|MxAb3D?PED@?-AJo8MPciwr} zVv81B^YiJL`<`y(&s>hy^Hu_F84UelW0bbm0nB`X%gUL7r`1+h3)R+fTTxB3H#nJB zYh5PbncIz_IlQNTh0kI823YrwAKnaR2WhTJR`6~ATD4)KPjL9%jdMXeAtc|EE}it?;exey+^1;Ku(Vw=K=)E?QMVRF2`&T+FKY4pS2 zGf`WN^iUlS;_j0qO9@I?TUdu_?S1&%Mh9a5DLbHZ={+*SI0pU&v~<;DDva+u%TCnF z=V?P5>xC}0f{&X|qX5*`;IM4c05rI78nr3%?*iY^SFwLCR|wbJ?>HAfKd#c z_?a*Z->qpDK5o{ew`xV2aGgAI;*j?fPdpJ5CICOXYC1lCcprvt>__{TmLapGh~XP% zp*U}XaGq5G$|T9@m52Uj|Arfx)-|49tx;TyZJUXkRn66OM-)*UtVwIG-&tNwv-_Us zZDCy%37{tPEEhrCd7}h*1bhAocm8=lJ&?6knIPSyFC>g`mvpnw*|H ze()KmB33LPS&QlIeK>sf-uRE{@501&&!OeDUm&~UPY8k{kP*Qf#Y-b@o{esd>pA-x zlD7+P4JovWLVUxQ!n&l2lB&ODtm+dAPP*#u_v%}ed}pKPj|=$qer-sRtqyC0(_b=L zcuLLn*ur%IKNDu*O}I{eCYmYA_dpY_%lD5k13&!mqYwmnTz=V9eBp$N82sA^+W&J2 zvd;}8f5v3wPn`_3W{f$wqAE=|cBJs|y(H;Ktw5pXm^N(VqJZ=36oFjJg|SfWgLJ=2 z&~yX=ijyuHJdL$6(v57h!2K=A0wYV2+2s!0|LPC0tp8~#98%P66UAF;v6Y#4JW00R zJ^%n907*naR8;d|XxyLL_+g7Z4|6|he!0e3X}$@@ji#GN8Fzz{8PJdVOe@$G9cX;B z)lk{K)FH@gD5WE*)D$9-+(0Kmwfh@CeU~)Z>a{8I(9mp|CmSDdK3&zEw4tA-fqlZS z(5$%w%fZ`+6Xu%gYn1`7ugNh+n_X58C|_psyCAJ36HOQGi{#SYDk)-lO^;ssb|edN zo}RU`PqQVW7FFAgkZT7yT>I*t)*M_t-F(LC#aLe|R}Sw}drQd{cEvMC+i~J)UX@>m z07V=)bypm=!QR-Sr3Dif--VWiHvz-TR^r?SWL|l-K=jkiRRwvXd> z`s$i$?CR9%yQT*QtAHO;g#EpjfBEY7N}n=laF>;f!yT_qi5uebsp@8y?V% zG}k}Btq0pT;kr(f>ur>66RzV2TSNvw{O}|3^2`6iDW^=tMHfxR$a*0AsikPSWdOwk zCt&1?nFyw2f%RIVx<3RdQ%W18wzrr*B6W*p+Ft770= z3Ugj?C(x!hp4f<3i_BJM;%`A7kH7SN7M{?<7wFsC+bBtD52QjlEe=`85U|;%J zE^hv9Ovw3})&_zNP#ZsRqX8!Ex$uk>j*I-q=8e1621@R#B}8U^>H zI+g#u9DMs`60f4Ei(LkXWHS<~_h{9i>-1#OldkfoCy?W=DZ}(Ke<}^3i{Dj#!sbS$ zURNAKe_;^Yb#H_tHrxk$P23tiD<4GH!W)79zauCWAYxmnT?V1mZt$nWl)~Hta@1$ureyvbXNh_SD&{M zz1`(Ijn-WE?HG4GX$YEdozz3k-z(~YCS3cw>(y6Zm1kMsd+)FD(T{fH$3L2iDbrh# zKWhcr&RvOMS`I_EZ-~-6+mTrlIA-9?L|SVL!{B1!cNP>(zV}#QGS{S>c zsLfOY)iI##*HS0IGk>$h0=N=35fqW>-4#nVJr2Km@F%?yvtl0Ma1^FqgEnd7tc zaa)#eHrGlk053|YcCRyyv=!}Jn4sI|Rdd)?KGp=$Dji8GZj^5VXVFSG4>I?*w8;@I zu`wH00oH7UF?kwsUcz+<>Ll{3em2l-P(b`b?V%wH(}}4Z%JnWplZda!P^RO0HNpUD zy{(gz`RaK=FKB}uwxr+}RejQ-DpTtFJevTjK$b?=neH(Xr@Gl_(JNX;%OrN|%quxo z(ykd{RdFA@C&5D8?{RH1Gf|bP#>|%ZAL3mw6E`^|gW%&V2YwgA%v-ZRR({{n8h2`j3 zbPKX89s=^K5fq1kpaf)FYc;9sn@{Xxku)dkTdk^cAMYUU)~{Z0mZtL>38aqrWD8K? ziz-d6D^JtNjfMt-cPw-hT;IAF55ADBxt_D*T>Rv}li|AZjxT=)!Syc|G&R???%TIz zeoeTJ4tsxpKfe0a|BK5nzYKf5s}n!JdMdWwwiAQbtwratOM!tBhHu;eg+scLSzA(m z*0dfwfy=@TQYkm8be0*ozAnZ8xPWCGs+IhyKMZyW(3vJX;upbnS5JSti{E z6kY#pRSz|fq9|jVt?oKK06xULU6o=vvq!f2|r+AU#Qrukw!QI^*g1dXLlkcB7 z%y7$1!j^YG&sxRXxqQt}IPqj%QQvKk%8d$l&mvB;K__N&Yb)xZ3|BA|oov{BpjU`^ z%XO71_o7w{i6b{Xy}$fGgPr>%lgsl2`{9G z;>4Pk8p@EI@CU_pSmenybYT~lUjx_AQ;nz4{C_!$v?lyl%ArOQsWbH6`K9`)vY6*8tQmQtBB;hzuh3zFDnuE7Tp(eNr|j<5H_ zKaYN8zOSg~Y9oZ+y&_C*8~TkUBVmwOOQVFi5UQcs0xQSe;J7}YxusV7Av4ZO-bcVY zW%i+OZR`XKP&?N=$RaZZWe^|*y1!%ci+YnoWRhXilCfO`E#zx}6RkzgmAojSffL%7 z+?A?y8qF=vnNXV zYOH%*@PiaP_?DRC_@*ZRepAFi7iINLGmQP-CBNt3@Yyp78Gx~J>mx9mkul(`qckr{ zd6w51)e=v=yTEpSXY&c`f}?{MyFc^Mlpi%X-<=d7-=4}q`$xuwYs75lQ>l9baI}cV zMDn6KT|eKV*)d0{xsb?VM-l8v`Gy0WoY;4!@92HqQ++F1pEFaHUSo}(kgmU8qCa2` zd)vld*j@Zpj#__Ni}BEZ-cI&2A<%q^g(kZCiHx%W<*Ot1P$T>@;lXge2J_F)bjtC% zimQ;_8_nNWS7=+Z;MMTvc=a&I7)^U|nc{gbT?QO_kzw`^jmf6zzsCb;csdyjEw)LW zU61lGX-qm8i_f%_{d8bRB!2pdZVzyXr8qz2eKLr0%n}0760l4k{sjH7ty|^&-k&#r zb-wP)u03rasyVE@FcE7Thz}mIOkLmbGM>+d{LP+_tog}O6aT~|sM?b-)`i-L2b}** zO;VnZK7Xqx+be93nX*T&tz`dSK}*Y8v2CZBa$zvUcFVmTsaxqw_iOq2;EnvnSN27^ z?wD^JQb$GHWo))C7NirCb$mGeo^u!2PTV>K)QS=nT;2OC)|4fGs8e`mRHJ#h-xt!2 z^7nX2ZP+o(Td+&ikeTot=vJ(-?Q=0f%;+2N5Iw1Eolhg~kuY zE~l0+YLAddci}y=&wV1*n|GR`Vo;FAS>5!O?Xj4-m}raw2x$18UB};SJrJweY;GU3 zBxKRcQ5jNZKbZ;SW3y-D#<~rMc&tc_ntUc^-ZxFWvOH_|cpnq3nVh4zig}?K)4ta; zx-$$6Ou^Y*gjvSKSSCRGo{W9I#zK}bHOcEo&RpRO+1(+qQsYpx-1ml@mk5{&UfTAN zTi_?QP<$Gl_tTt-{T&Ves_AGxur^gP9#TVYu9QS3^RZVGW$}v~>>}`3Xe5kh5w6PJ zqQ|we_2DeV5U*-HwexX13Rh31kAsV|uwWXB{`uHzj0Nd5+SwC6p+8rNk)&>E*LrZDro~Nv-$~ z(-536wxRPG>rzygaYs$D`il{sxkj^P-iQ7D9W-_g|FoSB6d_rk`(B=PnWAml1-#qz z+`GN}5l%)j3q}CPOm2S8BTvtP^(2IoPA{Q>CF(Wg@KMDtx0377TY? z%UD$TzpE~k8>ch-7eW6xYW^{a@9QcqYz1wh`0KJa+*C+>=a?--BlIj>f63pwVwv72 z#b{d=-^#Hz%6MSUfW=lh*1>jlS}mVynM??Jx68uUr{eG^TX@>9D$}^NjA{7vOV}nH z#^Na_fZ)@~RQ&Mvx>{pDEcZj#M6*aE;0C4Un9FE>_P_TvLD=Q9XuP12iN(}r%{y{? zmHM{3^6lnQbJtI<&{jLX5)PZK2|J_aP3AK+>xz@5#@|lNAt$4V zfQLkTR>Sf2rf?PwTGx!BD4xZ4Z)?1&1W5UlcO<1n5Ae7E+U?!q&VFLGgBnuFJ;aIZ zKz2g(N|ya#-{8Z?NvWX-us3KW=)cP4o995T|Ln73PG}O{rBgMyZFfbMhEfZSq&N@9?PmdCNo+u4 zQ%#>X)~@9rvl(Kgl?QF`;o*Mz+PNNLvBm6ct0;DoeK9L^7PI;BZ@0AixDeJ;yzeBf zVLP~jXhNBqtF}!ex~Y}33E2I9WT8j0e9EmC!_I==6lI=e-K!7h(+ca&b0PXVITg@g za!2BzFoRtTyxCcx{;F`zO_$nG1!3H)Kv1ARQ`dy+g1gW>^MgQc$905mIjKgnaz41Y zPFL!o?a>U|yNY?dG4HnRUrqJ^s>fnIR)x7iHOE~#17S#fa(kYtT#|P89gWCkweOrN zfNV0dT{$(x@cyh8-NFre%TkNBN!c$r_G^4F zwpG>B0!1w6#F#CHX|2XwoR<2tg6^#f%UN^mcQIW2XoLgeN;d%_5}T%b<5z>Gt+3d! zZ!*vXZi7NF+t*4mrhg4xTNk=fww54nw4CT8{=ITZML5TNRlXX#u|mZLyCBsdZRd@K zAZsEs*#w(3k1%mIp`fQ9VVB>rk05GMj!onBf(p(eC||Rg@g=yDhKUed3Hdt>=L1H# zy=>WSOG&<`yCh_LzL!7ma0WpZAD^t$uTWUksWcdp^ZDsvto2ZakHr#z`rk>3HQkAS zJEo{_1Ox1~|I)Or2~jW%&C7Mkj~K!+ZSFg;oG_5^ueheC)Ml#TYoG1ZXnTS~s^RH^${#j|Hd86cNPWwDR@-r#FGu%q`JdqyyV4PW7)eJ(stHYba zE60RYx4vD0?)gMvwVsO#ZT15b9$F7PV{C1qG4uYg$zOtu?zovRbw&})*5l0(20hcA z;rN&L-G~53H2bqz|a%!(QIcnFl5F)wp(zq`NKjL8+Zj#bjfn@>9OZ3yCmmtw0t_M z0)E;+(h6(oHgv(@rG|k23w~O&T)zA9!OKw2hXra#HM~1u=uYa!%-o+5zhz^ntW;5? z6-pH@-2?*3FaQ-7y7d%2jSBhdDc9+5$323wM&t#vUxAwTGuwya?%FwIX(EZdypk5V ztm-KvE%75s%G@&++(wxG3!M?t(i>a_bR0P~57my#YS~{uVoPti%n@29VSqyq^y^Dj zcd6L?e+@b_S;Sb?wfik8JS#YG49J{CmHcXwbazl}c-7}w3NghfAuS=8DvzC}cUH6a z)kl}FGF!%)9q3Fi$49lX%_O&FKIEePYVd59@U;@-_;k*IzVEMy>Bz_NRQsoC`is2v z4w1t#J0`LcS(@v;+5Y%V9%2%YrdmNeSe^g{CKnwW1saBLg4?RJD%7F{x8(Ibo_#J~ zyowCV5|;RVmEIEfu8URwaJxsc0o$qR3Z2rO&BOI1E=1J&ur6U|Q7Oc;i^k z&>03-kA1OCEua>D}}3+D8HlLR<)t5+BrO5AtjxV#LKiR&TtYE4LQ9g3N3 zuv(-|=GQJvr?Ms3*|yjQy3)!CH0^WS2Tt(|^U#?~Fb9UyhyX+JSW}?zm!7zQR9N12 zY!4Dz>M-SS_{(!wrf_e#)V~Ge-5oWQ{p;0zKzX~K4C}0~e5;gMs+Ho}mf4=-+b+?(k)2C`Qn z`mxy-VWgua_6@KGNV64_ice;!_2(bijdPS;bA;D!a{<^J`78L#pQdf;##6@zy_T&6 zrdJ$v*b^Ak?T-Lbw{FK+zHDBYjk3yT3(De4j{;G@)Cd(VJ~1YgdbOkkuweJguegoS zPKC3qvyi0ZF1S>J>-&`_+^_}@j`6T7|0-6*EeA1a$$5TNw{Wm*Z1$VIRrhjx`X^Wk zN$11+!^;{SSQgyWzx&NjCg%@d_<{{8=*n;HEi1>C?`9WrVtmbK8@vCV1^iv5tL%l^ z%>DLfimaY-Y)7=icRMynr~zE^3lu>V1}#lY@ku?K)~6_MA8Mvi-#eCa#i{GG57`m~ zKMGif5rtaM3vxYabKsk2TC4l6IknwXW&P@3Ia^05nI?9)#5BC*wb44&MjBF>*n%LU zC+T>gjo;DXR+al2YAzZw=jgyLZmvYT^YJduyBasQ&Q;mn1q-b_&o-0*NRpD@q2CxN zO@J7h`QgWe#Im!3Jn8G2S<#~84h3!%O|nU(-};7$pWYNqGzkKOlFL}t90tvGjGi;qG`88bq@=86-O9tIxH(QeSkfap0Z*D{eyWbw?j4d{hCM zigkn?`C-ts;NYelCsVT*@%T%R;oNsG?9ei!s#V9jCJhS+YhxS9=3B!%7Yc1$I?^FU zx~R_D2U!W)B#0*$yA-5WcCwy-kl@^R%cxq9j@_tEZo@!S{QT!dk zbVC#ny~6TX-!|Q=k)OTGco`;^iHwGKQ4rvNA|Y})cl6E+} zs4|f)Et%L`);r*=9YdkH(zV)s|6%qc@EA1byy4;DJ)l+1TBuzrr&_r!V8mZi5KHtH zdw(n~7>ea(piAkj)~m!GwOxe(&zY* z?awb20oO}7ht}C4dH3**`5_6-pg_y#57t4BJN0aG4E2r>J=b4^g`A(8(Bg~4@X6V% zT5PFSrNoBie$!#Jj;vZt4CAl4i@7eDYI@7shMY?(;d zm`2+7w6gO#iBMrfpULwE-z;jr5@St~c6{>|gd=TYZAX=w)rnPZOSPP2Ntj4N(r790 z&=vc`|Ep-_d#s7eU*O4hLjK@ikd1~vkE`p}406VO+n@V??~&+TcFe1=60dTifGp!} zo_#-_nDnTOVxCe{gsrtU{Yj}t(-=F}W3T@k*#I~F1dIXuL^-#EcdR5KuY=0HH zC$HT(u|$Jpq|puax-goQx+WCIUC#*3;Ht9UZi_+hZ_l;R-~7Tt#Q!X|HG`Di;DQ9D zAG$;My3ot5ABiE9Az*@V42=cK!8z#ZWw=%k$p<_@GhtlN{4q3)EYb5~mSG!ORmI-W z*hrJ1k*<8D)9EM5x9+0mbNY*_cPx$D@xP{UD4AUxOgof@V?2_`ba-(wIIH|6y7Og^ z7 zwKyHM`LEm-X+$z^?Beb;*gA|sGqGk)#e9HL)ETl;axr(7TAlLkSkI z-d~z#;k#K*S_FOx-0edk4q5G^YdVc>+#}ahkEy<9HVTf&0jya0~4DSUV@9Wj2J9s z3mIj<+TW)}TkR;<<$*CrL*a}&A5FCQG?V_Eq!!$bKz4GX#p=Km_-|sE$0L%M8vR^l z3B1X!74V{vX{~QND+bk#BR*__Y8PTcuR4eTfBy<_OJ_ia9gf569yEST7{!Ww@}HRu z8fqumxXF6>4*Jize6>93NBEx_5-JXvQx9Nk*pQ*}8|n8i{2?oGcX`Rl z{$KS9TF)aUC+}O(v&Yzaw>B7~_f=MoZM%Tl_`0Qt^l5K&YK&l&pq6J8Hei75bZDV` zigAW*V>i_I?CJw8bKOIuTyI{j-9U@?GL7;Ys3Lj`3gH=i;ZW{-I#BEe3*jJ&1W!D) zMUJs}{`n_{_+&q+a-cIhq=~5=My)7b8JrSwf-!5AKu29EC~}#mH0fJ$b{Cl!A?$F1 zXfE1<+xHZC4Eqc78i&nI0A2K=Lm3!GW#I zejeexjP-!13Z?#o=WB^%h$xy?-b@iJAjm2qOv6N7Gd%W;05uM;lIW|>OY100|KhgB z;PrQ0#&Hq3Dn%ayK9Li9g{7w8KB=3C~ z>ZS7{pLebRw;FJg`XW9V{358B=1pz5Tk`ljDze%}ASe5ikR2{vw*C@f{0`Ik>h)$Z zhvBQUe(-{x&QO4vH6p;B7y1%&x@J0>{1b}H_-h9K@^%$lSd=CPXZ#;d=LJe+>XRn3 zP1HUuOfiTw&-NvBKA4Dxv4cW*vOKm?pEg|=^}|r{=)W^=Ko4Sjjw&KUEsx$a1+p_H z0E>LYKb<=i7jb*&g1+BTQ+AcZAV!lAm zbu1>$R7Uovg#1Z#{aZ*2*M+%mPZR@uU_NlG*$wq2PH~|<1~prxiA@S&E89Q9 zzU($v8#_JQKvRz~Z;D3aTZ@l|GM|F*az=PsUZr+#%U4oa%UzEBhz9oDF-G^sI;7Tj zaV$}KoNHx`_H-Ra)pZ|ItdkYfjh0-svp5S6!wQqJRRvGQ#`&2i@J1xx2C{C^f;khe94Hu4!fm#NA=0NPYExD8l7FnB(( zmb>~D|J(|x(mibyhJ2v?WWB=MCU*2Pv@h}mDQ9Vx@gATIyu}_@RaN8;Zd6AbXSp+p zD~GFuo4!T5&g-16;MYV;T&b$(GUBdZp+v5)GzEVAti50Qa0g-@Wa~vVGDXeZWL-GT z*XUl$&0hN6(U$x|N1Lcx=5x&ESl0VpMbeuuDxz|IslggoOvn?Sd}bB-_8s2i$zK)! zZFw0pM;|mN)da(wR=-dq%wMEK!OT?t(Xu`Ejrd!ozpN?NHSr?HjQKAWs&Y&W=IoTC zyQr$GKb10MM~qdggxi5B4@$Sq8$TxiJ`dj3)56lQ<95x3=&k2Yq%ro;;GmgPrvKX$ zwyrg78_kdgdvVAWb)4BY6=W*R0diC<52FM@8Lx!_EI&2#% zpUbanUMH15Sk8)wru>KLQj8K5`TnL`Lr?;U%ub+%=aLt#m&MgpvIXJNnA_)7#HwMT zuYYc!8PbrKA8Kmhq=q0NKj94WA#+9EPN);jtH{6W2Og8Dt9!4wh@7@AWzP ztG4t}%&NBwxr(-k^p=zQ7czc6c|&T|wJF`ziGt8CvasYnFz*AsuRf11sCrxku9;ZS zpVUCvfCD0|1i1dB?GmCP$}i;jWta%?C8;#|foIzgjiXrIv{{tW9gpg%;H~i{9Ih~J z&~It?L1wZsCL7j`!jf-raqXo?ukRS&t**MiA!zAlz)wOzV^X1 zqOct3T;_q8qJRGP3F#NEo`WZ7=eTf=5gpI=>lQ-_)Vbz5PUgW>N6Sd7O9gy8~gz z%DIe%;+LDWN$`JlRUTm?&ezq=H_e_azvnX|Sq|!#(&DV1Sijp(C;YH$66kNk%6_<+ znVGU0k*}|3aEp1+6WH5-zD21h!mXAQGjKk#dp;-a5Ovgqd&i%#c(`kGh5jKy?%hqz z20ObEHbQivPNCl$_-5dU6|15EX3joHH z(L>HnpiDT+FmgMO;b;>V#S%lb(%Kk!@eK8BY-veu#O3;(x${fahxgOD)z7AgE}c`9 zTN%VunzM_J0T$Y_kUr_3u9f8Csb4a>%It`|JTut`$V*JkXHk(-*-IE3_NZpq| za(qeSEG_?aT8<2!vSDoJ!)7PGs%g{>T@yv$sAzP|ukj@N@(`NFGF(={RZTu`h#NOJ z0Ij4mE1mktXP~osDKK?`>Zw$Xxq}uXl6JJ&2;Ms>OLo`Ca zarh7S0W~I@s#N{=$Cf;HqCdXWvpltBf^}1m(7WDF&AlAA+>7(rGGJSrEQCEtbgKX% zGfHQ~J`U(63yBD&X<$>DI1>I`?pNLw6cc|#A} zO12&@o!prz+nfz@!Oxq8aly~p>7GyE+v_0=`!y`by}+MU=kruFtp@sR_9A-4nN@d` z|2-LVV~m{1P`%j}ant_ocDUUdX2~#Hj-S{^I zlymmgg90udQc<%_f8M`B8^^M2S5PEI#h6rqoufiBjMkQSJM`kF2>_ww(J6pJH1$$F z7Y)@<6-WToCA{@_m*y~i3J^681ACxn*GzZbd_dXEMeS1`65)|P3EfX(1@~`2 z$7Szf<9x&5?k{$~W!EJ})1=NhzFGKp@*#J+t0gwtAun)o=}M!R(=U@&>_OCj(D&ii zd^=odKeuT4MqT_h_W=d|@X~_~bDq3WKl_;0|M+{(=fw~03J4B-o+z9<`w8f5djUc( z zFzL8tNdxI``#61jz(jGyjU>K;v|mlkVV2L|nG)>PZ|UA`#6pWi+)XN*st4oi$-m10 zxBW`)tS5K+ShT{5AflEb&amqnA}Tv+`w5uUKCW{K^rnKA$Di*l<9Q|=<5bziz4uhs zYws0YpNn1&ldWZRRhY2`ueisM>yjiuL!v^xid2uWH`jqq4V&A1GBdlf50N`?HqZM2=kQ z_zDSZ@BV1VbGwM%(!38zdZ2~;M~`&wY{Fdsg*|1H(;2X8cieR@;rtr1FSwYmtvFXH zk--`R!i{4a>+yAHpH&i;9lsvu-~0o;tXFM+{_hAZUw<(PmEvmFG=Tm{cGW=<)`ZX& zdNuzrhu;Lwk5%P;6r(8;l2w}B62mDBhsV9*j|OI$>96lSRhnB8vVMvniw;(qU}8y+LfFQn8-pg#lP zRIHxf-@ld}t)numc#Gow7CYK1WKyBoM~M;C2dm~(O_!o8cCq{HNs%YMy$C8=y*8>D zMq@f4R<#>7<L-xd%UkFqDP1CKslOOr0M)nwvIklN{K4tVmKmKkm zvWf1*z|Kz|Po(%MZ?M=WzR+U5Y=(&JjhD#lxwZTXMph^=A9ZuO%8mzy?CSS?Vci|D z?CCS<|5pB|4KEihv)_6e^^c0sP_REv)8<@^sJkG+An%sfoG-It8RAP(;Qx#btM;9~ zQXyhDW8AnK_H9?vDBqPKZO~N1e{m&KBVL@+wFgh=zj%Qs1X?X;&rKKmkNZab((>i5 zRCx=kO8m}@_I~d03OT9X>4L{fBz?Q-6ebw-Z6vCMTk+DHdJE~dcv`kfY_uK(|I#C^ zN#+^gSzy<;=8Q=Vd=5(1DOxA(B6;)x&i@oMjhUNqZIG04k5-(qk%3VNjx?`~fj`!+ zbp2Ds{@e1w9f!EMkPN={9c9z+OqZ2PH#Awn8l?yAAF3as3mKlHD=lG|C0Q1eF^CJb zsXHTEUJ-T*l$-``^TOaoHn`&t6b|%Judm?4dV#hAAVLYr!DXU}e&36Qev>i()d+sF zlG&H0gBic$%yMwBQxRP-5Y4R2DGtKq?fO>vjfv*HxHZugWn)@`=0vW}^c2 zp1<`?-L=pUSURMTvBNR6R{=YT;5p&i)J^V9Uu|dw+^S>uHDJu_f#=4{N~7qQxfQ1;kw&@8XY^`{FWmJJNJ`7#B%=a+ijS3YLQ)jeiQ=W zKuC4z{C&Hn2j*PggWpS!VZ;!TJmCU(n-C*;%@;Vph$aAAUs>n|Bf{x72?(~KnCu_; zO}&cTr;Zt0qv&9hGv8Ht%4Y2x3=d-d*q$a}%YIp$5L^)j_n|HmdF3-(Qz&<|GB5n9 zcD*f`b3D&+8`{tH+kU6;z4llj5SLNu%$g#>lFqchy4n(l_Y6%GqD!~HNFPWAm|bM3 z1-RMZ>*@Cr44&nF_dAskNnE{Cv{EA_cJF4g%+LRU;{LUnRXr?o*Y4S)5o98LkEhiU zJCDcvgV`9Q-qTh}w)1D)tv7l3j|uTB?BM62cMzR2?Bk#VWJ4MCx(Z#q)(c>Gsz;c&`=-t4Tr$UD5fpZX&IGnGnub2se73FWx<=DqnDHFHhQNxHPJBQzVg52l6K0C?3sc>>H z#V|&m>vgkT|rvgV{^7(0$*eputpN`NCvK#TPqJ+eBw zPbI-x`-I$G8shw1*xE|PVR)#&Bq$n!R~ z;xBP8mZRk)EncWO|xx&u*l1WJC8w&uk?>D#w>3q6>f=s)=%Eh~8PLWgtXd`N&1%IOO>mmhFYlqz4T zS45d%I35-p-iY{&&x%MRr8EOcrwsmFj@?+-EC$+l6KMHR)|($d5naNINqQb6?$JRf z`%0c$L2P->U#^Ef&CI9!YgQYub=Nu|6B#vRP3pU^BmQg_gKlMx&`F4i^bO%bC!zph z;8@?h(b`_d2m#^Qe}iZm2oS|<0J$ujoc&tt`LrH%kmbGm&=89fM9+E*T}VyoFRP0; zDwSByF~2BIcvAL5XK1EkXvoLRbELo7}g=3X?6TL#vGw&t1$q$u$|*gt9FMd zRR554@Sb#~oj8pL>e7($K2g9ZSwzCyzpjG<>f09LZSrH}^J-a|SW6sLLm8lk9j70e z0v3P4v#)dLCB6cg$O?lWLEC{}su$!APYuF>&w#Kfs#kI(W>fsUydBai@j6lAOw6+3 zkxJMGJGHEA@uoKQQAxz606j<9039ax1=F>A)Fz1=7>lxaKI(M&sFi@jYd^1D=FKOa-xo^(R#0pqVG+ch~2_F8a|48 zd20HTbQDBA4qhMUl?#dv{F*&aWq$B9U`y<(n&bOltz6zy3;B^<9sDf8@2p}Vo9fph zv+Bi8b?}}ayPTsN-TR2(HDAx^U{(MuPf+F%)5K?6HK28!dE#}sC33$VC?DD^E(E%~ zdePeoUGmAn$?}GzpqglnE~!v_-U&IWY-%A9uKNdGtXxL9?e)Eh`N73e---PChKG_SQ z!ktZU@2`hnAHjpwT|G}n(3}s;^YnUrfEmHd?LE!?ruCfDI?puI1fSu5Ty@gN+%QTj z@ybg(qOTLb?{r`sw(7>e^hB~&t#2>C#pouRzmeigg<0n!{a|J)(erclXrqoC0>0q1*Q!(4C=SM79 z-0~X+iyhTAk=B66M5$|HUt0p7A9RZYt-LAqN)hkJfMnE)Y*B=L1M4+U!sv(5UZao^ zpivY)9~ua5&L`wYz;p-$c~?1Ze0PI}`5Ol9;i1$uBtRnN=6>to86$LVCc_9&*|XXIFbD9{Tp_8#8!~pzOnQW^2+i%{Pn{03IKDeM?nBU6 zQ&TXjIGXFeaO--k2uLu|+Zn0&ao`v2!z`jfm%|taW~|c)UQ!PA*fsZ)T4X9`IzZV^ zJ5XH>w_jtrEb}1bwAnw5CYUUc(7iIcdDW{&88$b-8)UAbBM^hg+wUDmV|xf#~{l4dY9XLY6rJu`a4(`^Xasvp{xR87T92D#u%%t zX48kQa=)nF{mF4ZScN@-9H#Q_nihrtX?5;lPPa^*h_O`{i*1C*PF=nv7X8yqBDZ0J z9PDtsf`}+bwE-`u0-OE{R^y+(&uWQ71tJIv34(6kzh`TW<||bdnxdaPmi)k#Qxm-@VY<&roXb|5JuHP>z{H{@T@<@*wa7m ztr&a~oA*ha+rKF|fOd9bQRmEclP5KD zx22!g6*s;Q>*nWm8x59tm|~AcN1tDz%h!x{3BS!!0CWnRk1G)MT>c*#6A4}Dst>Pl z6+q7jt)@%2GV^!`I%4GD{jPZS*eI zHyL+rGIZWFMIP3VMvCSc7^FY79345?*7^&xa_5;6Vr4&W7OplK-%KdLf^q*n{_XNr z8HeHBgdN+tK5GqhrlWO-;Vyby5$PeGj^)C0AB>Xk2#TV7C-q{1w}^^da2lUbceZYH zx~m%YiaJ2Mz2ctVO|OJuLykp4Iqp!sK#5~XC%4gi&L|W7l5OkHa;eB%FL%_Ef+ya@ zT&!`Eh#Y8t0F|;)6FFZg)ybV4v}_XC1J)NbeYgiiT!$KjslHe3@!42vxs>u;|EXba zl#h*Ux?|wCG!%8-LRQUnG%Aj){+xkp%)UuTyfn@QeU*?U{n6K3$5-l;w30PE89#UK zEjV~Gnunz}mnO^5#7)iS{}~Diy;M^prFv1BeCA9TPYy^Bx-e%u7ESRL%L6d{BGOz| zwKK0EnRaTf`Jo2H8)q5Kh3r3-c|^w}iQkst-I{N`T=C@!9&CQ3cxbBe(MbmVZcuNQ zoS_*3RjaXp1bW7NWc%bOI@Tq@tKVhm)70hdnX!y)ONoTtmAi*;QoxE(mEP9EAm?2O z6+9WGbg4a?)gC2AT~sv2^>09(Sa*k&71uWjn^m|?tC)seJUo@&p)lc}E_ZsWZ`esp zeB%s6jwi~R;I}>Gy*fY>5~4M2x;HQ%+#)!uqFo%K_W(`2F$PCOKuc={gi%tS zh7BNwC+O@U#VA>fW@wqe;|c@ddpCbAa%V1flSa+W@XsO0g^tKbTf1FYsE-$KD;8!E z`r6MX_OgYwGsZocXbPd)*0{WblG0F+$sGb*u!!2;pcutosBRBsEAp+eshv%0r!Bq< zh(hUpJ$%ul?C(Xi@z5dr7%N|F43Hs%AO;v{NiC8=SIZ|{qz*Bnq$cIWsx6bk_z0>O1bd?0MV z7FVhR6c_Ko#NaFGrC}>>oiA<(61=wR2c38~ZJ!fe^zPnAT)$b?;kUAH3;h5g&FAT? zb1&~su`V>QoRzkQ9~R zqn#Hc3}PIuJCTzYU(~hLuat=SR6i_E{q1${m=F1&@l4&*MazR+-1#x5jqea95UAg5 z990xzUOgKj5f|MBk~4mm1%9|1cOK9{BQk!xNKlWvbjD~X(x&4oJPm)rdHT)CbheYTbejqLRr~* zY^IbeA|x-)=5}=ZY#@5fzh|pcO;6a>%4V|ZQLNm$J4AKJVwrILUXnrYgJX;A`=z=6 z3V>KlX@@SF2V3cE|9Wqt_@^yL@lGhp?@(qF(x3~4{+%BmWc5;ouQgR?d`uCmq7~mA(S0BPAGM)F`1r|?K;YNCeO$5qOqnROsuaQ)cbT| z_}5mFLR)hx61 z)?5sp>GUJv7B03#&ldHzh2d#c8pU#vK9gK@#sU2xG_ej=J2}MBDQfj#=OAo!R$ZmxL z^F>zCt(_!Q*M3B;76k>g0Fo~7WN=Lj6`Jq+;9FnYeQKy+elXfvQMNo*^J%i!QZLH> z!_u@_QS~R2**U|06?To@FCAaUGe`M$HW9$OFX_Pj!kJ+K4hvXSxFjL`dd@C|ZT1f^ zuLhq2h%Rh-4N$tCeM_%PhiO?mu0_ehxG40#Q|k9xlKGfw`8n6qR-c z2d#wu)9%KWzP0`=%s^($%nlftNxdMtGrH4`qpvP)FECbQ*?r=ZpOn65#)*f>&eBjoVZ_{En$0SN7g1YG# zQfX}?Tpv@XTUJp(gyvP=eCQ7P&@<+E7UxF?8v=moI`pj@c$d-1fW5|;ZTU3oQCZxk zg$5$5dXb^@BwwgDjK1*m=G$<6@v!l24qf@<*6?b?-J)a&d%H08kU^oEu^jk)y}O`l z*2KIVQSR>uTKfZhiX*=Rl9w&517@V`&5U_Ds>tm6taR&x`e&IFEW^&iL@}*t{v2KO zP2wRlw{g}Qy-9Dn1yngb*Lg8VjV0PeXVRwm5lw~E7LKg-9cCZ!wEcGq?#LBd54G+Q z_4OkkAf$W^H2+1&+4f_A6M>eynM^uTVTzSjSCFE0D%6HZwK>E|_HjW&k5)xfuS&Cg z95bF`fq87+uaGiB)7WSQ6A`^A8Zy~cd0`@J+nWsFHUMbM>o$sJB)A&y?H#&-KZmZJ zR`RYcgsAH-GtiH;vgCrQ#En8Be_8f?@c$NOv})Wuw5=Pr#IlPO*bR!{{)=3xa=i{s z%VLS~^E={uJ4WSp*j>}w3b?|%O5X_M za$NWAf^_Ej-^_{wKQzQHwv$;cc2B07sd3K7^0%m|51g3QCw;Fj6wh!pH8VH5kycJg z&3KRFi$9{)vcphLQ;%f#ER>?C^+%zw9ozVygj^2bevq5kf~WA1VI5Q};EQ zLc_%$wqIINw&~Y)H+?5)eYUt~Ig3=pI}zY;S~glf*mhn>9etWr?JyF`gKfX7%ny=B zlnt_UeOrk|sXFgi(6al>PBR^3a5(;Cj-`Eb@HrbOKz72dr8P!kTPemUna97LM%q^y z_;T8ioK2`*^7VA(-%*6?5YR1diaR4qIl{%dX}gP^?yV{DAum12z$GR#OtIAuO{>Z< zWV6Z}eQp%!9MWjW}_IwMqMP1gvHZ^cVsfcauObR8jnBTZNA zb=2{hI^qDxT&Akg&eC=2R5ChE2#0R0&%zB1v~(dg`x?~*ZLagf^SBVC<$HZ@U-hNZ z%0|_ks?ngcG`r1XnI$Ije--=K2(>&tyN5DFSa83M>v)Q7EFEVToczYePFUz@AcHZB zN7A7I-(b}h?3NT!bukyir50t>i5t`2ogUKY3&k%Snmm}#$2vxlN89M}ib*~;5>@+H z5IbTkYMRsSoH3#%DaXYFI{GiBKu$8nX@Q?>$E;W45^dq7Si2TuXMA}6xPF;WT7#yM zhv+Ldy~$uE^kJdOFwBQ);uQ zGhcHhsN`4tpU)G6u-2trND`n;=MT4Airc}m^sQl}YI~(6w`I;r;S0JQmMb_~y|xkd zh=*0j27qn@H$n_S@FwyysDQZ81D=TJoOyCM@8TwdNmE*8jK_WmkZ1ew5oh0(b$+x0sy&&(`_i) zD&^$C!NEpJN;$7F^x{)%lxy160yIJ|q zUYJJBqE{Yf3Pgka4#pubXQ}koX0mp1z4^0&AoPzFbQvrE_+TpX8Ekinb!SlJEM*`E~!!BTU5m$W^VklIQRcwgz|BqVra&IKvm$28M_e|5%U`uz?M!9OX-JUBswmo}!npCndzZb87QVTJU)&bqb$h)Z?>_HcIVv~&NuruCD~^6f zd<$&r;QF_}{Vk3-;z+Dr`vPvbZZ^(1Va|XIKP$UbRb)vLj+R_wYU-RZ%yQQsjW{=25P!GWfYoYa&9y;@H z&am4N=k~5`7aoYsfD=diB+ySFovD2>;B3b{DPyiWWVUM(?R>7{Ys=!Z!qaTjOye1o zv}e=yNrnIm6;c<90R6$Pu8s?53jc94UVMc3z0Q9#u@tW&>z=SnDV3$#DGUI(|@)r-oe zydwBnrCP~ChrLRV0c(DP(&`6L+PVq_VaXQfvSs}oA(J{S z(_ivhgtp-n^DPCnyaFC0&QIOWt>Sg0xSR9Nl5JrYSK6S`>to8@1%nt+b{R5qBx!+Z z))-FUmJ1X!C{oHaXRdX$@EqX!f~z8Qw*Xv=GuQXthTPz~S;uqh85g7Ax}Mf*VcKmO zTyNgI8E2n;4!-xj+i=1O6L90#XQ90kp}((&+VpmGp1Bgmn>L_w%tVwvI|pbl00SzJ z83AhvKiv(g+|@K9!?$hz;XGOgkgD4PDsYP;}I{j9pH%g_&G?(!ClpR^b& zclj(nwfrGGw{U#{pnzQBBvaDL2>SHx|Wp~l)rC#u5TIPPO0*+B1kae8X zCSDkQbL^HjY^(}vAq~+Cy|ZK3vPf3xfGTf>RU8QU?c<6}J{~P}uxTvluwyk{k9HMF zHXef6;_$~QCsDrVRacYfCzo5_lF}&sbR{mkc5b=x^uCnKSF8G!aXz#BG6*EbM}#}_ z?fi06vNrMojQ$-_03;6Vcs38|5G1pY)$B-WO*?w+D&f-5d09Dj7V$n%ZQ=Km-hMPQ zLzQRczf4bcHI{PKdIDUNtdhT3=Q-AN$69Xt$VwgFZ`7ZPUKLerDwQNhizm*&A=BpJ zP2B|?8Z86X{{fYi_h4Yt-+8t_fI|%Vpef!wr(UxJ7E(v}ri?)KhbHqsV*bop<8NC!fUYU;lcHA3t8+ zD8+5lrBX=-tfs4#N5OTjrfq$qZ5dpD_q*T0si&TX1q&nGam#$X_BCVBv$}%Xb{#0* zvKgJ{u0XVZ4V-|OL~Y9LSbijE*0Y?Q zy>;HpbXxP!`Fv3As0=|+O)4J29s8F9AotvL=ocxG3KsjIJIVE1Sfdq)iw8jBkjJV! zR#|h7m^0hEY?fLH?HyB4-0>s$W_3H<@a)epr)!eAl1o``IiPdzu@-M!(CgkYt@K$} zeKVHtz!_-Sy)*`xMVq=%2J7N|$W&14`kV!*EpVrPCpU51essoL(Xy>cV3k>=jr!_a z%W2FokZn4P+SCW$+@?bt26|J6A5Wm+ujhrcoI7REkD!e&CK%%?Jx`)}PS73fn$KYd z^;{f0#mU&Yku0&3pkx}v%usfQSQpA%ebQLhV=I$JswFV1g2X_$N8)8$Ez6E#>N_qC z)42{^|6_BwVS%c zX*4~isM~YbR$38F&LFACj%R=eVOm3FCT*S;;Y9hL;1UZJaqZynI+SB}*0$j<0BPo4V(E#etdkTno4G_kXE~u`RG% zi-2aozO9PaFL^J{Iq#IrN(%$udFP!cuR}iYzysxG-tD*Fj)@Z|;)`GWVrG5;#>H(^ z*IjoVcHMPXbar;iTdKrI+(sq9_QHh=;T6|H87~is)5{Pn7e%{U}uL5gQtlgn1f^AhRngU zRf{a37SF_PKmRyjo2?8k=ysJX<`5`fNFZ)hLzgR8wCi-0UQC~N67HRS9zOo~tr*wV zX>UY`=16;=r&&KO$2u8Jg2Ypxpec)d~sDP z3kl*Xmv3{k4!{8l8Gn-y}Yhp4Ypyq|lE= zAA(1%8bze72+3rg6cwl;*kkwX@KrMHAR1!u?%{bDM(I z#VcF7x0}flsIvoZZ2Q<%h;L)5r&ME_Y5s-+TfrRPeJ){%j;gznjPjcW-}El9l}4`b zdOXJccdXfz`0=}i^W7^zcC~`}V<+HM6K3F$i4*Y7?taX!tpZ-UAAQf?jY{u}3S_r+ zr*CMC9Ov%X)R@LLr!olu2}xr&whsQfB*aDs^ur1 zcmf9;aDcof`S|0HPi-7=mGkA7Uye0v)?oJR*%%lYkeh(w-}LFzCFs8R;)`+c!3X1@ zgAP*icobYWeYg(^!EF&-_w@AOLm&E(9K8R0csG7<%Ul%85&E~*P@C6@_AjnQ#|K|P zZO2Xwe0u?E^V<<^C171(_f`wkq7?}7mjalPPQ^jDT=(tSU8xmNkTN<~EB+ED4Oy$n z8cwuyj|%r?`Zyrkvj~!iQ;u}%mk*RfR%c3Q%1Fq|0d>q$EvxPdS^A~zm$A3pt<*xzI+tJzH{)B0c*m`sT8O)-y8??wiET??pxLoc^MREAxSEw8DkYZ} zHvqTPVy&rN4#A@hvaY<(Y$NzM17K_EZvEq0IIhuZ9KEBz^puqj`}D-8;1{ zP}XZP1K(D1xz_9uD06uY^c!<0Y1?A^% zNB{c20BzlfIwr)f^0H-yJJku`IkHY!lN9$RNfsP$w%kak=l8R#Aq+1sPT4II-!zMT z@0wv{r(WPK!F3yMy>n$9;JOoIT41>rXRZafK6J@>nU?Ei%a%!3ZgEr5M?d;ebai!^ zA#&JZhhhEt^?2x^hf)XWFMjb0+~fjLuV9Rw{G6oRr0n7u7CdXpW(2>4#%`M#qod`mTV z|8-rqeGr^wrA~ACc4!IfD2o4W%g z*P;0A-|oPyjtQuc%W(`;6JRDlC9Kv;C5?k>Qrq}xMXhogFsf8Ar6BR>)ZDsEYARW` ztvbk0I2y3)@#Ct}ybSS12TYS?Th-cvY0Eo5ldQ%OSBI_o>H}$!Qk`RWfo1FrINJcC z1>T1Nw8db{cGYitj)TR^37uuTY#xNYN-)bxVU!Wvayns8z=FAl6r z@@FJ&w7LPZ;aOiVvw=o18YcB~RzqdIXFLV#pC`YYhDX+p*I1-==bdx-LIcsT8#v_? zGu5>v$5{`ZleUsswq7FW^=F9fO%(*ren=A16Ox`Z<17FVwIk!v0l~zlmBe-i+nR^V z=4ZVXSMhY}VWn0>U$uhHLIKk|#$t!=i8ylVM7(Qq8#;QQ23GtRwyyjcYPAZYj;TN- z?Cp8RL%i4RMRX)V<2}{{sZs9)OHFS;UBF7;L{U)}&#`jZgI4h*$5@LBZ#nQz0^JRO z>vO-@s}y zt6!DidWRi$NG$sP`|pSF!aeJ(vz#;nn1AY1pTdbJo{0VS+s}D73a;xC6Rk_Ut%2*8 zUw#>f9P)ZR{`jN#!1+^f)zvf6E24u}B4Bbm+W-9}w14g;R1X`Efy?ItB5HWAF#nMY zZ=`{?k_3(`IIWcgx(QI2^Vck38MjuGj+At^+UP+Ri1`+3qe8It+I7^nuG)@^cEEbA zXt}xRcg!Nq&eM_GHsz;LsaT4u$f~;Pc}Rh_e8$Ijh$dH66zvF=ftN9ByLaL*+kF(5 zK6NiPmV4126}|J;0vqb6;O1;JwY3Gp608PXw8?^PL8CpttX%cg8+!$o?MG$7Rv&IH zR&7F-ao4JC&tR)GE)D+7s)Dv`rDU2RCtcGmh_uh+r$N;_Y6Ddc)!A6K%{g|z&s=(8 zwNg-{jR334x|CEJJ93gV5$}0!JvOfHJ7+3#x^QMHx4HRgo@~$Lsd+^ugd=QX0a>JS zD5&*=cCXX4jG@_US!%FzgFI)^vhQvGI+8Gxz2;*!i# zkz0PcZLK5?yR}j-_it!3fMR+miNz!^Yag4>JrC~Fqu(;I4 z@9)Rt$&;Nl!jiq?jyvLKUYM*4+85aa*5d579}zqku+}c( z5+UgG*3?HPN*A+MJ8s|1J(mM%FIZWUMcQ}WPP1I+0o2^u?9#IE$5c(t>=ZB^&!e7@ z`bv=69njWcApX8q=|gw-B1AiW44>WDiMw9>6Q;FyOV@G<7WLU$#KO3HrwBtrI1wytdCm!bgu`#)q4VtLteCWW4~|PoIDBjVYu}&@1Xwa`W>VZ*jYM zGK5P(fONCUt-rDB2hIsClhN$?%Hi!058P-=uCtyo-ty&-Z<}!`%cV6hKn3;kByZwy z@{{^AnsaI_)Hb3&F zIrtuoG;CJWa^P)O)MinypH54Gw{8rpRn*UaVh*~BO9nJMAQ!kkOM+_^*lV~x6fOMz zTLl1BD;QEnA9>J?$y%>`wR`JcR&Bd|DOu*JP;?iniy^GLs z>1q^jT!+f(Q&75Ow%qlNN?K~v;udQexJ)4!^$}p3EYb#a+x+}KWR;Ju;$mQ1&QF#3N0F4r!{eu))3ba-|km z^+PHXdzOhE{IuyRSPTCN3X7U!ZLc;EpnUcA_80&%_8nP;8}5%5e{ zq4R!(75nV7&z9Ei6HYiGm~9kX=WWdvr`uM*wQ!#}`skw}_&x5O<8j;V+o5+=1+{X7 z+O&2Q@7#>e6PKYjwTRL;=Am}rctjgC{HR81!4_|%Ot?k`4!l*vz)th*8{3W+BCOs!I{|I&tswX)6p>Xc?~^x)Cyz37jD%F%6uyR zQm)}M=e!+{&-oDkWBH?4zV&5v720+CDb*?js@-$LHh7tA2L_z2`*z&n(CItp>^4kb zHQNR@xR@y;=8?byu#tt@o=z0J$aa#z+p2zH>$Fw@Sz5yjvsl|!cWJu4L9~)o8%OO8 zbYxx-&C?|#xWQPO!(g_4w3r2ohXd$_W=s}egI!YU29JX+Fp!@gQAr~|cwUo1P(!o_ z3&?{&ybhq|l%FSG$af_@UmgG+Y6dPr{64inhVv8W!+>6|0DE{x?F&&(@tuQhO2^Yk zsn6(fS|kmr+-j|cLIer4C%1Rtgc;NE{<+gJrMwcQr*1^ws{cY1wX1X4Z0CNc=WH{k z;7A7GKKM>rrJB(Wd1-L)UH|Hmx0LL3BOZ9y39d!7@H4+WZpbay#f}KwliG|PE-cqu zHkR;<>w0m>F7L*gEB}*5XTcUF-a9L7oSo%@tTafVX2$Rol(y(sReD1%7cAl+I!Y z!8C8OgrU!AizL#O0f(;`=LqFI~e$IupG+cJDP2_wU1|WzcuuCY8$G zXHB*ra?zH3D!?yy^Jmez>AiLF<`!#Ju5xGhUA`5MT$Ln{?LYI!m8vDVX~$_Op8QW< zAf2Q#@Bn?GP8=ElJs8lOWaS>L(wi%Pa}B|*T`(Fb-Hg9FG|+~CZGg8tR`~kMY9b&H zv`KD$8U^C9GP6KWU_*PQO{n+0wKOA_w`I01?2r3nloFpydf77-OIV~<>MF|49 zi+^vMJ`Eq7zW{r5^`rdk&FFphW}v(kQRg&W$q=vc&d()J8kmF4$TE__w;dO%P3sUf z&1f2j1_#|O=cNS=A&b=I%0IQ5juxKZE&P+Q%*TKb!@!veeZ*C;TCS;uYK)nowT>ya*GUhcIl;;;{ES`f9^4M+;PXr zyREOj`f7A{iz@)*pHXm~yE$8%a9aS^YuB#DqD9-IQr?VDe{u#s_`zxDd9keSs-9Rx zap?whymtkvuNi~NmGe;BsSDUtRlr)BTJ<$sKCq_ep}=KAIyiyM$n~3C$+h(GBaAy| zfzw>TtqPUL{o4n=7E)V~E#(-ufO}SI@m`gsK1qPurD(^eY|4aCM{>_06g@QqO#47O zNzE&j*W*>YeiBRD{~1?2^*<;U+EkQWbLKkvJav+l+COKlqGqd=fk3coQy2UaJ~Aga|^2&y9-BnQR39!P98 z^^!RXS(XkT3*eKj8H6m{^(d%mX%oG98xYy`@RUiOt_;jfSbu^%V6;K1^=HeOBk{xn z$+-rjIvaU97yxXgZDMWmgXuVle0lxdom>;qD=aIIFG14N=KCKORy@e^!)`Z`p5S0m~a0gD=o zFh0^jEgvX8uT7PEIpsm}O4WMcZN?A>pM$8^V6qOI#k&TyO)lb=JD9giQ^Iq*Q9#&*!fAk- zrxa^~-LFWpT8FHqYOp5(bfPO0>FdI+Y80V7@G`cWb0q#g>tFF7&o9H%Th>U|aH^RB zx-qa#R$6A6=4Yv;CE89zvVNkWNjCIyn@1<`S3D;Yq?6tyfArTI#>Qr9nVvy{VD zxrVFW&E9;dx5oLvTD?>oOFvw$;d(zUk;!`7B#H0*bi%+icm9Sp148Z8;Bv2g_DshSFHesC7A~1-^#VY(w^hA302fbvKrLxA?LEoeo4cB;G2#YSQza&xnP!2}!m4K229#{jO9s+L5lYd! z8wJo=Ks9Wo&L=yQ6u7K1v#5uyN`YKM;2KW7ngar5RbyD*C+&?S!?EVnERQulH*jSw zmA2PY54{k7B){`@Oh6{*vDSNHAs5ee1Uw@J)~!QYpXRrI54Yu;)~o`nzaO>Tt|0o} z>{1ESJ38=zMLXj3dGj%S<8M)V@~fzBd_)0kb60lrH_1ZdW?QjDR^^~EtT!-|{LWJJU19<3`Uc7b5Iho*EMD%{kTizmpwYb4( z+&Btm2)yx)Z^TP4y@ZD!e%OHSO`A61vBw^hV0+A%F)C|`n9fKB*W&7}{r1}*fBDOw@ZNJLbt8p0|Uxxy!jnq&a#szHhQxq6ayE{9CVYm+KN$>2)wr;a4js?zq@5C-nt~)axL2Ulv7T@pa1-4+pXvg0k-T{@(Rn#gGBC!bd1MOdZ8O5t!LiL@KQNC(EqAe1! zAd;q6?FLT4%1GOy=khnVQ0s+_T)iDjwia2Q8@K|{dKq=Vm+Ex_n(Di?Ru2|bOG=&v zfyxrxD9dwI-5jProELh=Ez|^XO|y8)j;vlFj+JTFkVRYPNs1C~+bCVNQe{Udm)2w2 z)Pqr8a0x!Vd_DfOVI{^DI}AwmqkdZ#Zp8=%8WW(Jx=TbE7uIJ9u(cJN_#&$_0c}KuLCiF`Cz`S>4~TOMwdyNt6R}d2J&Oq$qY-;=m~ACNIwxDE z=}j6q^wf;RGHji)^y;88m2+j$TVkgD40m4sY>@20{)9kG`P8bkR5`0PBA1k`+SgmR zB)}M!C2{J+k9fnso5u4P<`i7NqB@$}k+1%0awqpty&Q-RSjJZmTwP6N# ziIY85P_Pv&+!vM&w--aH6#($dOCCQq@e}clw@1xfH0;;tNP^%z{M1ZBN8CA!)Y;w|(2ym&2Ba1i7O{;p-2fV}0 zhb+HNaQ&J+_QSDXnT|2zi%lN6>Exn9gsqzg@cUaf zTexzIU}PeSc&Svv9e3Pe^7r=k%A>8pj4I~ zZ#UHl7I^bz(RWDH)MI)bHDq{6O#{-3VtPLLK2tB&R1(vuKP18m940jdlblyRN&6ItjRe6TOb}r7Ql5IV5IOC=VSOgYS@5x4Jb}7V(DGa z<9~AnG}{lye`Pv4hvS}W*6iZUwYcXxFSr)=V-a*r0Am51pM3I3Y}v9!x`dy0+G)WK zec^={FnjiF8354_SoW)5{R+SS^{=JXdi(9SPaF`V;ClGyN<$@%RB$aWXcvJ3UVq3~ z{OVT=(eu1=+7$z`&;t}d^CH@AT93-9(@_4>d=yraJ9q?nhqYMX=)AN>k2atgS*(3v z%@!4(xdSpzO%(;|<8s@zTe>tt_2bWI=CBncSia4Z*zP8u-v(}ZZVhZJ zrnRFPFnr0)+7d8nLoG%P9S{^5bnU9ahp}6R50+KRc+2szC8W0BQj*I^tqKFxD$v)9 zsJ$I0Y_|}nFWeEkR$su>)jvXU?JrU8TZ_uTCN)k99hq}=qyWb(Mn@u_BZ;Sx0=%vE zk=3Ia@9PBD!g77|S7xDWn8CHMT#GZ;f4pTA{(144IQzUXKz5`=03iQxK=fBd67vrsHn@X&qRW7h>mlzWAnH-NS_wEb=?I*xf3wRs&Ve{~^h zuN{ZNnzB;iRVeIOWbkBQt$nsAM0LvfYEiuJ2Ckl|j>}`M4gqg&&29u#^JSicWtS(d z4kQ3-QUbU#AnV4|1Cz!xSjO|j)h)?m29Q=tWE@C3^lJjjRYT;2U3P~-B6Gi)=m}{TMpdTv1M^M z%Z+YRa0D4(Ky2tUeD3Quk0{omqvQ+wOnO&^kt?Uqkd`b8#7j84k0wZT)E2Iz);Qrs|wKDM21%# zA=q`h&(R|(0Nl=FcOBs^W=jaxCgvTTI@Y*gGX3F?l=`Bghk>^%K$3wsmria~2zU#i zU8&Vj>n{P75)PU@7pKnO2?upoF?anhFyW=U(ZBg=lm<4SR_#Yr=wgA;>YLo#iUr(m z52-dw^D3&Z1sYEsTHE}&)HwD0Ia>|9xwSiwT$D9?1%vDSJ=eUHqu{!EZ8@ZrMk2Tt z(ZNNO@b|rU3a+_o7J6Q&pdgT0R6t>C4aE(`Q4v|QL>od!rPmsEE8LeA*3%`VpVNhUSe@ka zE-`;H9?B{*{k?u0;-PMEZ3IALM@zE+mM@=N>6WXST4u!4$~%o?L&G+DdLLP^<;u9Y z^i=Od7PZ}pAy;Mao}!dj0_ z?BsgT-9mh|N*aV5e5Xw&!vjyQbUbnMjo zN6cA!CrTUsg8rTtP$_Lf)HVi?S5Y=P;lpevfymI>k$)yNH)R^wZUqoeDsy;wNiHon z2p&W?g*8`V#tzwE3>1F#5V`H;+SS>4yh^r5nM-sWYRa7R|8;Q&5WxK zkvx;uJ$4=z?DiF${!A}^yM86cwiTT#wN#%GU>3kzx1D${H)<4Urik5s#BcRZeXNyQ zZ?q8LrUnw59bSZLYk9VtGj?VZoj6prTD|T#qmO%_T2#R)lf!8LyH!jnk4!<0D}SiP z*#W=O?9M@__8#FPN|Sa{9DUv&B&NuCUcT@K6-G&mHB5qL zLX-`d%FuBW6`bbk#xYA@uGOU3JW!z-T3xPU12keFDgk$S1KeqwBp?=@;6usuIoy$^-OZ&i5R;N$LN^)I}=}vEiLtEDJ5Z+ zI6t*~)xs!iJh*lDTOu$Bcyq|QvJw(RuNgB&4sc-ZZw4iEY*&hOl|FpNTdXI-Wn4sU z?Z8R%7vY%M+hK8S85XVo84Bxuhn~$(qujR!D0Cuf>tX{b*NksC5p5~hmCxn8wDK62R=STJvP zVvPj2e#cklw8Sl31T_20EgNyfD7YTfh#SoeV5ER+(HY|Et=)Iu9Zx;=6uy4-EWG<& zQ_#Dqsz9>{?9o$2``OD;_)QP0@0*Fr74s22)o-lU4Fl_HL22#cuR)g@oRJ>F{#wwL z0+g8*TdC{nztFjA5u}VS{0e;9XX0agQ|eFe*QqM&4RxXP%iU5K7~9y)1GN)pvw>*c0E z#U?`uvJiKZz!_p*`JBEQ0p2I1i8#-~h_W7VZB;@4sxTnkzTW_E398HvMn%30GC zt%25RwW=1Fz2eAzLp(>mbPN)|4wT|R9iyX#22?4NIk=^M_rzmB5=yM*X-K13UNhOAu1um*DLNzL+#*Fa8t+oRNL>pv1!^)vdvza z9mlkB>ARbU>!ezb-qFBPC3AKNbXP?i4h+aDym9ti96e_N4({5D-8SEgj`a^>>$-BDjovo&Y*#X6Y$lv~Zr8w~11fo?CGo>bI7WFrJ z#vwVSRTf#b#_}cHDj^@ok082|vW{rH-t=d-tX(=P>_IfI>Jny`<#K~Oi zlij3(+V%IpgoU%-j`cG?gmeDB0xSBqptH~>lZ&gi2vkegZ_$^`Qf)2TszPMJCP1y) zmqi4Z{Z2~{fph9JUT-z-sJ>QpQsCFIq?wK-<&y`_(-gEBjY@Was0!~#14HYu7EH^s z>A<&)MZh>9(5$lypAeOl=&|ydHJk7IyLzbw$gaZRIH78VMm2-8s8i4aW975-f?kiD zSEVJfkKGuchr|bfy1a_@%o~|< zTC+JpbTsI5#x+|btju?Tgi3D#om&@fDfc-`;9JjMlUlN>Wvebr9c5y3&Y32vovfU5 z*Dn*)#MIlbkMhuR+$x* zr{l~~a6R}T^p8woq=4(^o_h|59C8R&tXP3Ne>4wo+P51J8@3eztbwQ;q4TJxfyet$ zy>K?FpV$s~wqM?PEiKlx4PFfZYq4z0$l)5m$Y|pFx9ohKU#@F5QZ(uObU!jJdtnD} zyC~99Ojc?iP}6lH?YR#mk!Q^ar0x=~+fS?5c&dB!lAo6hP6ab-d` zu>^cVnX#hQsuo5K@RTcB=7}5EGN5ihqg?^r2S!2D^)!kpl~F^r(u3FUeH)H?D#C;7 zUqrDW?nTrVXUUXmA93!QcvMzw7i^PSCi&3sx5}Ct2O4rRi@D;E#+bI6 z@&?sz>2~8l*Ig=@*7Z6IOcO|TKr!`;*6WQ*&U8$r^9e{zK$k#(1>vOXx(h1RjDS56 zb=7+sgc7vtev?3-J~CRaR)rbL7=@Al91EJc$0nbg$}Y2f-3s-Itpfk1XExj9 zC2;JnDXJ{9BKR8xo=8zr-L4~Uf4Sp8iC3cU-n8M@gSHs#mO`jjic_agcuW*Wwy`xq z3TW%~!z!%D1ru_K)^U>HZ0)R6fKmzL$9Ch`?H1uJQ@ZiG=t<1p@*rw!AHt@!e?Xu$dU$YqDU=^^%{nR$#~gX}#`Q zU`-ZZ^&%9wjN6~-y_3!;5OGVju{<-241sE+AZh3*0V2_2(u0;zQW$J0)&NY)xm|AU z(reBeYN;jD=!aH;b|Y;owZkqihCTz!J`i`T>I5{IIOM8;qkuV%!Ugp7K8rWJ`t$hD zzSrSP%a>zoRoru~Hcfm`Ev(sO$mQp&oqMY_n3if3^*_5eTlKpdH@12TxVwPb_s(PI zrzKqryyabox-1J_)r^g#1zzh$3@C=cv|}XUnx{US&8^(B2el$yF#Py9z%HIVubPld z%{090XY#jtDC%a^N5|Uiqg~pI(Ji1iDq;(xp{>(-8$8qoaV1D8xLgU6!_JJofQ0nx z8nQ++)wg#abK!w`F z;Wb6eQtj-1%vh22N>-mqMu)1;rh+D}=p+pV1@fIysyBgY7I{p1Oq)&EP-S9X8u4cG zzU}}3AOJ~3K~x6uHyLEj&5;T{X9MkMK{&m1`K9%XTeF=F88)xYTH>s0cEj26J>bR2 z^tOGSz9&~MEqblI)~lCkb4HMcqp_&lEp98}NKQLK+8N814_zTnkMV2-6bXDS?;Y#6 zKMuuJUIPPY>+HheGw0$h(VRBs;fG(dATyv@b6ZV>ZBkcp zJ+gEi-m&=9QE=Vt2L4B**Gh0rLCk*rt6$-mV~@kjYuDh<4{eW~=X3yN1+L|J>-IKu zyy0)avH?^-J{Q%0n~mss0#bU-Fu>Xa%*Gv@z%+pXvSRCK(pphg5u~kEO#wX%tod$! z62PW3=5GS17Ufj6>$fe1EYo`7r+sIo=_t?`Q>tuk;+>zLCY6EzRrT^+YUx?n#hX-6 zuG1Kr9?+qA&$CfqBw$lQyIk(Ul<~V^&d%51pB`S0mA#wM(N;jk zLaNE?9kMCHNK#{iWfEtJg`mmGUpSh zr3h^6Hi#)ChNLQ&^h^26cLnF|;V6w(i8WoM>H6hyaF-*TLp&c;BX9)f4H8DrL5Vk*qL9cxssXCY_Ce$o(FN-f=~fmDOIwW42I zVwyH%eH*I_+uWpn5K4=PGG1)MYbH;{o2SmiQ4@Qxf7_G5+W$k(%6rhi`6)#06A(4w zT=upAz>@%G(nepF3?A(JRsvqmdx(!AZ<89(HMtEp-?ak&n+sg;i?>{}s72tqACE14 z8ApyoJinyK@>trows)3vm`0sC<4B< z+APv+X%(QF7F+wCtjP3^fHcw7iji|Csk^Lm;H@}y)g`4IsfUhtvbIw5O@5V^lmb%9 zhzI?gbR>rJNb#XN!3|2XHce>(7FqcDYp!l7YqwH*42~nTrCqEJmdM;39Bkp4`9mDg zDxX7eWYVuMK~h@{Z#&u2{MBZ#e28Uyj0tF#$8x<7{^={*qjQ3|YHs*G%5vS0CnUHY zwOkKh%fCWPY8AL9tM$^QOL69z=c28!1rI&2BX*oo1WE-d^P>uYvF+$MgA{$u!Tsbwj4}+#c1^?Z#;~%eh|RT@^sPj>l{s1j^mm zsBsI0&F`v5mRVab|5=3ofi>7|?ul44^?bbZ(WkJnR6;RQcU~({tv(i1(?$yCFHYCu zIs(?-TPdM zMkXp7!o`I3*`P{k7M%bSwyi^(1_@l}(0K<7++!stl6Om%npG^;4qRx3JfxBUxGpQURuOmfBEHGRxlD(>uGf}KOMw|= zJ-i9*)z=ZntWY_cby}jS0$irkGn>ev+X(_=#F15gU(jy>va2=B>h8wglc(XZ$?bUO zxOJFSeHwW2SJ=4nZd3*~pwKx3XzSE<9zMa9WI;9S=b(gFvd){)49>$Ny)6kONQa-&IuEzl}(Etu)+>%$R8 z9D!f{@|XD1=V#&U6DFZpiBPLV(lTA>Y(wGu8&SM)Icht1q4JB}5v{8@U|Ire@i76* z1`n*0qJh&Q$6mvi zD)D0qAiciLayPfeU}4Jd*^RMyU`YOt9nRKtMgGUHN<8{ z9+g(!@*dF9wEfx8v!)fsfp<%cwMg6X!3M@QL;g~kQgQSE zd?;&P(3~aqn?)z7oLtI>pEcPV6vt99}nR9FCt>#zA9W zmgllJFaII>H#~|$=TsDm6ZI_)JXEJGKlhkxLPF(TAy@bo-VYtGNRm8nNX`$sox-IK zCoiG0V$Y;oI95IAT8H_U%F-#Tn~C|juL3eJ=bKlzVgZ| z@u3fW47=@C#ZPWsgay-zsPspODiI>#-87*c9s528tQ~;B-S;FyJ%aHLI7HUVpTKy%ysSN zAlr2Tj{|B7b7lcLmB|5b3@kI9Fa)Hng+*~mJ;8xCf9{k?KQcfeUvzzoPH2bTv}JCv zNh2(#-8U@hQx%mu`D&PnK*r%zppy6=Gze{OgQQYx8n1N%=gcZLKrgW_IY4b9KRH1- z4S7oL$Mg&F=0B6bDdv724k~B(%?0x93ZvE@Tiaytt)yC`;G5QS3#dJzV3rb9h7Y{u z?*N}_jdW@8KzMeWK6!+h{9>6B=dvqR6p95b?CQcUxsY#&M|iYm2pr z65id0wwueS08UBmBg*iPPL|odB%)8EX;XN~}`>S8xgZoHN!IMAM?- z1MJ`xTg);|(6J&Fh`6;{vSRjSRZug7PZ+M_X~bh;&{vDD{mX$XS*b~{P*o1Oc)M0e z0i1(wLvOFSMvFkTY9|*~x`5j+g#l+By_)(cZnae)pT7^KktrOIYtLKLV{V})ih`CZ z!R1l?;#YTRYq)+cH=o#8F;;QOhw2pv@H#b!`T4tV6M$t9B-a7DodKRAw?ez)^$7Yz zC8LRenffO;Urj7KcbUVLFabnn6+fhkdkRm3F1G>DoY)pQfo~|kQgE%uP#*9b>42!<8kKHc&zk>(d7rvrI~c-)% z0u}t`iyB1%xA0oyd#&t<^ggJj3FFeT?%(`9DG>6R7r%)BHGx_JmhOZk5UfV1Q846U zZ3UGr(}HE5Ub?1vK$w?90GY!$4vr;n`d(5V+{~Rf8k8$7(YV%g@VRwhHTK)#Lflt) z2hM%;Sqw-`hei691a%#ZslX3X=AECW#tojMjst30g6Gm4vOK$Y7i&wj2UhZzFwZ zS|Cid+3g~RS+|ZB{(q|u$_1`p_my4I(Sm?xeHvUJJqoUebI83i%W4I<{?niSgp*G` z1&=@eC~m)b9*%nRc$BuNt>J<&&yH_L+tPJt`|xtqw(mmq-rW(c7p}g_`Ygc-nQ2Aj zZ~mLU%N5kMSjz~~dS#<4x5zpiyqB6q1rJ%PWge*<*u}LL5zw|^Te8h8)%H$nTMb(9 z6>wM2eQUA;$?C(c)Fy9=m6}GcqU~9b1K^kdc?j^T{MPy%0@DO+-B}Z9=YeouRS&XS zD=n5QDqJZN%}!TqN!RaMMegDsvCq%3+y6d+=SpSQ_1w`$JW%bu<9>QR5Dx7+yMQ_l zuw_m3rj7#179d-l)Vh1yO#{^idWe~(RPW=@*;5DPTRafXLxh_Fr0W62^`zx>GYwHE zmTM;Pj;{tefN!1rzA{&wj9TSrMoVFc8nl@}mshu$bOW>+0nwbjdh^$91#gt+hAh*K zfNzy2byQ{W;sS7&97_5=*ga3i8Kai#`X|k34%-5)0N4Neum6gxuf7_mylWyp z_wiYn*4>8k08kK?=yC*1?m)->j{?j3QN4D1;0=?3zG@s;O9V>bnh+;#g{z3;)>0h? z*1n}$w2Tk5ePAu~=({qFf+5da$6dhf1zq}RIDu^Lb*!!41fDr?R=}L8lb)42*SRn1@jVT|RC;wV7S8t8b)4vLD z-u;WXanoM-#4{^U7E!~QmD&aTo|RhaDGat64a=$kN#K=(<>WLjs3vgiQYYJba_}-= z^Gml(yFlM>uOv;# zJg4oHvFlmklj>v2%ZeYMRxPQkyyOiOO_(vRj3;QHF#hdrQ~ ziWc67XO_N*WA{916kO+7TSwC*x4>|N>wE6G2dAHL4pyyPhX4NY0{qj#DMcXGQ%n~;sMR7 z8fe<(O9U)4z*sLf+_hWX6sC8vQ$V#J{hL6kvNqd3j9Z_T#W!Z@j#;v;<=9eF`C>uL zn01Mwm|Ix!51aXjH0TquQJwVZfDj&km(i*WXIERw`-ZkbC08E?s;s*d&sR^zDaQN z_O0BSimG8i52_1DC(v-pNJ&G(r5=lQOi`#?mkT14K`jZHSgmdz2gS}mR_4scPaNul zZ>Pkv2if6`0LoBp1`Eaq!$+fe4Ip*fFcE+^QjWJFon;+XA}l{Y94x1aKP$3bi?+MI z(l0kn&`ZE;yWl9y>1OU8EwiN+YBh+M&4*4Mk4tx%jeWcOP+9Q=W8ZXKETNjW{=#adY<%R)t zZXIp#pn0gUlE02Lq}1eYhizol$_a}7+B9UTt*1#c_!@LKG<%Q@7C@6=^V+Dcc5VdV z2FlG{ruGtZL1;?PF#d9tVb&K~fzz$ix!vI%x{7up*Ey{39K<{8yT1{Tw?2W5jYJS% ztD#(}V9A8B_~4GS@XncC=vezpZ20?EQQq=56pG`3NWkzx&zO2W;EUqaziD}k9EsQ&WRz$R_A zmMBiFK*HTyuL|O?0MqnI0M-Ps&3R^RwGO#|3sOF?_Rm)PZsD|?xGvz#MVu}6aW`>e zWVh$3eM_|mm~D_SRdEH}{ixo;N=-0MTXtjCZ8s`6HKPTwaaV8d9_}viik3Y8tO;50 z>sqA4%dZVu7P4CVv{b$0*NauE{g^j-e@vYF@7U{sM^P&l88=C;-x@?Si*j0Eviufm zcS)D9omD;^WGAGx`kynkWl0Gj+qZI4#ymhdM3)zwhlUyzj>elMmRz6MI`y>}{-`s5 zuzn$q2SGPS1EeMyDav97WEgBU>(8G9#ODHBc}h+xtKp&1OfWuJAU>Gq)!2_jh0%*#t&0BmU5)j6qr;?a1?1%R&IsJ8TiV>O{3Vr?%Elrf{T9q-wG z7S7vYCZ=rp6MCNf63Xj-4-^EzHojP8oXSFOTy6St93wYd3T#Y?TI}oHSc14!w`W*t@-q~p7@@+MpBn!0ysy>+3)?ya$ z%+44$IGH<>vaHg{)@YxOwc^KlJy9x=#l{avu=Tuz08 z*tpRjx#;?lzZrm~MLF*Bodu}l*5*v>bU^#@L9eq5?YWHGI>iCF^Ul@ZV!|;CXe&Li z9uOTf?W79i!Gh*QC8}X0A;v5S-GnpkxXCl*5wE=Sz}Rn~R$)S9eLn zD>uZQ*s~Ywa{oXH#RxcQ!3=zK*Lhf2S&7n9UqWfk{{S^NplE!0xt%`}0B#bv9m%{6 z_p;H5wYy$$z0V%|V6SVJv6de5tYzM72;&ad5)7Hb7>@JMbaxVWVaOy9}YSFf5pF<0_dZyghlkrE~y6pxjQ#AU^8?pDiv+zX6NjTy6 zPXO&j1^RTsv|mkg*#*_^IcMKWP1a{>0W}I;kgoE$k|J)k*1P)wYjfyotR!GtU~cQY z#4L+)7EsQWKe?kAEBV3pV8C-s0jdLA1l!FQ^bOLhXT3j^yy*jyg zY7$ooWn}`jq()7o*FcXAW|ArK>U?t7X*lyWQWlSk(#(Ks9{A1z^l4US)9`iB^sU*+ zV$GJEyoSe5s|)&lCE;CI!&_!e#>Zc^2(Rwggu;q%p|a{ns1B?{4Q&!^LtG@B@fkVR z+c=|1z_NAVySWzTtiDMWPjlr9m=b)^0v)LNQsA<@uHI>2 zc(6d3`Xv20U4tMx2c8)$a2{;_WTk?=$x#n8DF!96|3Nb60K-m8!~oS0wNtZ!vlSmP zhI0c~KWBi)yu;IwY9a{FU5^GqF|U5Evg#-&R}^l}Ks~h85~0OHau3NmIpQ@fEzwMF z3ANd6nNCW{;kMEzRJnY;CtBj~)^Y_HC}Z)o2{>=3`8a%f7sjsp1v*yVgz~1xQLUCy zt@a}lU^@rUjt^_Maa#v!0q;gE%tIkD1s?)jPjJp$e=aqknXp{%dF^Y^-jaZ3 z{aCeh8BW~uc$|LT8AH(|gQgkPkx`8V%J z0P`Dfyb*isu?ObQpD%$xp-_;2=~Jy%(b3U?Ns}g_SS;e^n{UR12@|kn$r71PfNY*# zK1#Pu1BKqEXw0&$D&{;tB z-aUZ|a|ah-nt(N(y%rTpvRDUzbqGL*fVGJHO$&&$N}Hf%7AV_*W<0o=wb(jWaxt(S z3RI>*w0maSIaAGCztuwKf?C{zfEe)i_ zci*B-uHf`efL>}BvQIk;mjlXm2}~FAfx1ee28FM`CRvk1G&r3^B_tq$vw*gtOOqfb zI2r)aIaUHkQOc2?*lGrFcKRW$>^k^Lll=`Vg-t3y@4D1*x_W`JS5Pj1)ChBV_!

5Mty+p`-TfH<>zCmG03ZNK zL_t&-*oaD{50QWf@{D$KJ|orYod$FpUJC}%WWx=-MK@2JT)=nlT7?H!9fFH4%L}eM zGiu2-Tt2{)o~MzkAu1GPwD3`IJ&3{8tgKtMY{8em{AK*`hd;#8M<0!ycitH{-E(;H z;RVyszp|>%SPOS>v5HLZMDbr92Y$B&waXTu_V#Iz7?%Q=RkS;i3Qetoni&(Z=L%j2 zu;$lnQP464xCxLda7{~z_-4;m>jg!#L<_fZ_a;^iE!6|DJFHD0GP30Ap3<)0qzaIg zT9sq1+M+yK{8Rul4ORnyT9t3lRvR_LoYS^ITY*^dpLNx?AeYWe`)=mCjv4^Rt=5_X zI~N{Kql6;|;Bl3R-V2mU-?>%3fJ&_or|$h<*yn*|`0Lg_6!mVoY$XkfWl8covs^Rq ztrQB^N-ckBhE&_D-_$-tNda|}A~&FR^V^x51dLU=;q%m4U^)rV^HQ_)QM0V&(p&#O zd*1;rNl~@^_RI~Nmt8inunS1e>;fMWL=YsY? zELuwADS%fWgQ?0;NqV_LSXm%U0s+7|2w3H{me)@B^v-U{(@tsr1A$d4L(Ks2vfx`S zY0Ohl-^=#12w*Qzwur?!#F8A#BDbG%&k1ec2jul$uV;l@&MiZ0Bk51P;|(cyCO*Q0aZZ5Zf!6$7;{G-~~bDjh&XUYJ9(kotf(L$JJ8ekgx` zD*yS{qFyuV{9I{ZtcjhTlnkOzKA2XICQ1uy0zjBr$$!c z%PzZ2fM^1+yY9McT=@eZ_y86!UX1ImyAErwy>>29O7^wsrke_@HGyfOO#qqxBVbL| zadNFb^UO1G>ZzxK!1zZ$`ceG*-~Yy>Ns}-*NbWXuQJx+G)=xe46b?T4U|ey<6`Ac1 zHMqX=$}4fg2`6C3?MC3|-(M4JPwPP6n{=-=Tdmtsxp^@vpMOd4S^v|P;sl8-*Aj_V zC7|Z}ssey@41hf@-?aF%#agt-Wh}RE391=fvd!9zt>zP66Nrny(?GQYtO*Fq(K0h> zYYVmus^iZ_Hg0zNma)qG*on#FHry+^5^mrcOq<|cQsr1@+f7|hEZII=+RO}qVS!XYl9qd>ttBA0=z&@{W=%f^3r8G{5B}{Dw2$a8K(K<$#tB2k zvL@S+)TXtW4>N3#&04jrCyynxh1#s+(;rG%r#*T|7Ff;$+J=v!cg+X|(M7D#Mal}M z_)vod>T(*Wn++#O&ckB~VF&ghcVl_07bq;4p;EmKLFMoi1oC`xPorzhV{6!p$fgxQ zdfroH!HZZSo(QQ|=~Esz4D0R;qyll}ZSLwete46e=1Z zo)TQAvyjnV5RfY{@e+Io^i?fQRx3&9l_TM1K)6%4knDW`Ja7IK1;%pej-T8yOY|qF zM{apS9qK!C&C*wY`o|){S00mC`9CKwgMwe^T1=??}gT@0)^iy zz&qqnq71m+_`BP!5OCeMtOsvg`=6EIy1-m)dC_0}>Q^}Q&_e}?J?*s9Vqi@TJ@d>n z;f$7_Czg^TJtF-&j_m^IJDGodAFaf6Nx#pT{L`*ihhWnl) zk315yXV1otJMNg<@1X?OKl#Z|#G%1XJC4FHu3Qr{CbXe%X+vCj6b(keD($HJZ5b*j z{Rdc5L*oxy0OLEP)jGb@+W4D#quj!+>$U=cwFKS<{EmUO$_O6ES4*I+9IFIWjgyvH zG1RteID_B#cq9c>v!yu(mJB2vK*^S13H=o?wywo;t+;$|HDAA_cU`{o+P0M2Zs5EL zn`LY_bMsoSSSyGv(mdHrfUdW3)9NjkV23w z?IU=t?Pwf!@1qzwvQuo<(r(SYlb@{57RWO!(4?gZhH@H9+SLzD+O|$+YN1IbF-^~O!84a*?aSoZrNOew zDwFn`o~~&cYwlVpwN#^+7tn;FoFVgo4C}{Rxl{oW+LO@fly44}p`8hujW#{=HAu`U z^u1|o(s;?~m&F>FHQzm#(KO(gJO33SAK(j>k5xD1opak%4dwCb>tmoy#Li!Uev$HS zStA{Z%FkkgS$ROrmfpk}ZoKT<{F*d{zGBM40JCy`(nf}4Ipv3Dmb2ul+htm`Iri5Z z=;|8~1GmexNjP-vHSq2+Jy^HOTvf5K_;a97e>$7rWuD8KPmv4{ual@Z2yl+`A<`THx z{16;_;>v_(g$KUb3SC`Y_|A8}BP`PwUU(snJ@#0Oo}mKQFTC&q_StuTJpR}txaga!qPYv&m+2dAsQcF z9XOs2A;=|MWeI11ZKmL^lZ8-bAdLTuugj8f*qf+Kxr38T%=l{hTvIMud?L(uQcE{* zdDRx<9|@q8!8naxKs%z%;GYwpCj2=_DqTygPt8 z<~0dixxB;_#*S%aDNm2P)>y2D%IQ*8$c~@?BRvol55G6ZrR5}@;mR_7b=Fh9L>WC z6Dqj+);YNE^__9n+272`7QPKOxO@k6tUz#m)aD1_m=ix%xUa)e;ccBQe8GYR0=(XF z#~rxnqKk0A0S8zzrE9VXT;F!vZTQol{uE?Emg~KAE9bv|_OqYifd?M2;-<;cO;&4b ze^&MW@P|L(hd=zG$Ry6m&GH6&sK7N_t#^L!X#DCYYhqGI75!b1vDSnf$F`&LP&XSTFyOnL4-M~p!!UJ6aXdkfF zcV6oaLjz&k{YuAGON%dWKpcB4`eNK!ZC<4nTaP`-y5!!W=84$2{2-gRAPuNZfUK?1 zOpiA}eFYeorx-0=*9F7wm0=bTPFxqJd6#oj#)zAHa@zG>61Tc#<#)+#K!fpGV-VY} zaV(x|9E_vxeH7zHll5BH;*)=-qBDla+JlkQOl?y}e75+;0M%@9)+fknb92fF%ajYq zjThDh>awgUKhR3K1G*H@DVsGK59v!9|EdjhC}M7XOG{{5%%8DV@jjIRb;jM; z?%ZR`o%Ow0-m@0QAlU@nEV8)2Hkejhs0P^VAr&u^THaQSx6?n%)jXwr`L%AJw<7UP zOwSyA=_hDgyY)eb4x^HKQ+KV7-rfO>9odP!R-cMJR-cINI$y?SeRrY0_&zLN@G$zj zUP070O1O+`n|j(RsI>xXFIB}?1jzMqYVxt7c=B1hS-xpNJU48D=U`!Qy)`!Y?t9R- z0- z=o_o!)Xzz)b(O4$WR<3Cw$>Pl%Be3P`o%opkSS<H_RDXn)TDHakD)AN16wu8jJ8<66{VFx z1O-DN=HWxUSsMK{H%eC#bE5c?}e)3#bPrI1|Wf zGiM>r!W@3Sick;T1$bnOlz*$2b>Hft;5TC|G6z=jlHgD;GR_3GdH1%O+Mdx$E`5h` z3e8l$U9VqP7*#j#cN41b!a(C8m-kTCv zez7Qwa2+m_oJaP6$Z`r^^TrYhzeV&l8d%yph-x*$c2g$c1Jl>Qj-wZ0`{+S*EWR5{ z7e0)x#g72h5va6{4FK8sYfR#BJip42mq@dCJHs<Q%$Z)qBi3-txee;CjesmZt$q)J5647cE+ZZ++`q32;qS2wal| z`S-v7J@(#v??P-+c5tFg8Ncbet*nQY^>2Us+j!)WM?l%R=^C%lhru<0c*<7Z>_Z0& zS6y|LxYzpK|1%1I`1QLmu2w;R4_U2c60>Mj8=~j>5S{cqqUU?ixOP)u!_h!518erT zwy)f(Gq6@JPiFEm*A?6ktf_{Ir*;yVv8%V6w9EwErgu8MzdA{ovSK@TQj1F|=sU{% zPX8KKTzO%ItS8H{CET>+8m`{X?`*}DTa*T-G2PfDTq@`cIJA3K5L3cBl1|% zminZwqc_QcFXK2i>flIXG>608x`GduCJjek+Ie|u8P200eI*PoU z14vScKTlE0^fI%LxH44OHAipn}?YB8H}f3oHb7s`79+~0MMs_<#=rD4CH zW<&?SA8G8n09=rFWEq!nmjzysRPGEfpiL|#HYYaFHK3(g&+wLx`7##Hnr1KuZ9WnURK$+sY9gDdt=K^oe6Ci(10_s>g zq;JG+n(G7UAyTZhMgvO*YN*xf*l3k8*m1R~*kjci-aq0QOzgf7U32fo(s}oYmMWdA z%8>t1w+8~QAZsmGJ2D1I9<(Em%fy6IZvar-g@id z?6c1n?&xi8ZNbe^GBvWWQ)0HMQ>O;kODi~k{(S7T)6RJM=_hf)SEk|g)2E{EdCCwj z-N7l5Su||~qVrxx^u0O2`zN6BrFDRjZ2;xBAWJpiR4XW&L*A z^kKiy&q*3v4*`bk|%Bm|uuE z^PC|CPg(s^>2g_MIOZb@v^s*%aOrP)QT}ftAjF?Fk$jyo-=Fl(CgM)HXv&c5IcL6r zCO}u?n^`~cLfH)Ff#;Cv=$1*)%mREFFIyUKX|I#}va0$_Ca&hKuVn1B$*+Y~#b8OHtUa z*=C}=gf-nbUA2I+3((DX#{u*1R?hsU(Gwi1*Gh;<9omXvQ!?rrtf7nIvd50X)~l|9 z-KLDhe&b%i^udSG|Hfai=#4v3ALv4rKz4P6I{3|dxtd=XW3MuvGJN1~=n&1fQj9`b z3v;nnlBH>^#*B>OF{441cAE(86Dzp>ra8Flg`IK6+26!kGt!eh3vhk;&S+Z!_gs@( z_@Zl{SqZM2oeX8`liM@h-AqZl$in==4}Q=h)!*MQGI>)*@uF_w0|Nv2?svZnvP9o| z@4cDUWVVQrb(^mIqL}M#x81f-x9-0CZk%z(8CZ4IRYg)Y^C~bRM17e&c{0vD_uR~^ z=Tw&N=ca4J=o+%Ew;GAR{B|9T?vF6g8=*q0XDve1*@kHTAfl6>L-emMG%no$*l{Az zONiM7){J1A2i9!imhnHFFI)p_j;&^3O-r&HTWz|5Yb&#MgO=BLNiZrmGYzUW@YeT1 zOByx+W*g?8+SjYFmwDy7GmT6!mwmM#$Qi*|HyJ zXu#`gvwWh>ikX$_)zW#yY)u8y>8K;-E>v%^%B72nA${nb)|-$`Zay3vH!%m*sS^(u^DzKZ2{m-`B|x_|IJG*TbS)_5uW+a0&FsC4}AR_7hv_(v%&R@ z%ifpo7T)6ViYgWKFYCeLYoA^Tu3IeIU~-hu>{3EAiiHk+=FOXj0}nh9gM)(tn2#PkI=3phpp$zyWf7A7wt@Yp=b8<(k?x z9|Fw8!|uE9F2HxzL)p!@-+o6t^URa@_E)Civ!9uYz844O)myaCkkxu>C!+7qLG+cE z(b#G%aQ=G0BE~0%R#4_;sz)a#Q6j=scrL zcX0P_b1UaQnCZ(`R!KO^Q+hoKn6)@8+?n6v6{!Lb9V zH0ai~g=oW(HZ$=?rg@dZj2C7T!{Bxq%=&F`8DpwkxzXh8c$h*0Pxx3!_B~=%+zr-sx1~ zcW}=*2KsEqmSAw8 z(EwSqM^r1=VEh=&oG=FaOzOo4$G?iG=igZN@@-f$_ikb2sCG_46tOoaYajV<`B0Yd z0$RaZE1+(1&f`!r#}Ooy8&aeC2Y@>s8bp7s0g-c=U!MjrdQ=5}eqb&J#_oo5&i@vs zuaOO|r(d=!+Qw04_+fk$xPJ56r*Q0+2ds>_9!Al}O;JqrC6`=+^UptDxKoqW*nH;B zor|N7J{r$H`z(I*o8MsO%$dP#(!JJnb=PjY?Iy1A%6pbBT`FR_Uw!pekQI8Zwbsh3 zV*So;;dDqaWy+L7bLVpuZxc55eE8!iiowYfKG$eT9~hWnBDT5%}1SpVltjtWN5rVj65}5H1&R zdNki=Ih~2#boJ))rq$jDxXtf)eh4~NJi6YQ`P|gzPrHnpTeV!P?f%L(c%#;IT|G(A zZ`9DyHUhiOI0^r6!8SPaAJ1aim`>ES={(-rtc>A~Zj=tP^&8;>+03i!_3BR!mKJNB z1~wgwyUVlT0`Ggtb9FT(=eTZ$79K{+P&0N-)xP`(N*k!iGZ4?9Bn4lQTQmn1xQMk*fDPJOA_ z3Gcv013fi)*fnF+2&^}D6n33l!NHRkV|w*JsJ;FN%zx!p4D`N%YUgA`ZDW9jG(*_K zVCxQfuhvlh?z(l0{;nWvcNVx###{p+>lVJo z<-4J}0^Gv;m-T|c^+&hdeh+~d92AgfR znE>IdufBRvwr_IDCJQvhXdiOOA-Lg&8*;mM-+lMtQ=j@22=Eh7E}E3ARoTLqFJF## zzk548`Q+oc;Jj%#?bNC0d$~rD)*?f=uv$;)M0CS-nLaN703ZNKL_t&nM5jLwOdo;9 zw>JdV9Stm3Z=$eVOY5}+L)u~;gJkC(YujS2&N~x8S~^hs;;Yp%o$dy1U>uH}Hj{hB z;M~ZPO`ug2G}3g& z4A*5}`}SfJrp@Nl(Gra52WsY)b=_5bb7{05G`AXOC1?clkN~R%Iv)ZW?X5`@H_t!KGQQ?BfMlY0 z2v22~RZCVm^3CO0Ey|(%7A%(r&gBlz;cc=H^#6VJItJ?vOz3FC^wA?RYhou3U#%BA zjb8w~`5+d)a2>iA{R5Tu@rKKIQU)ozwHshmV3M`2s5CBUSMKyf{MNOZM#%@feczED zKWRb*SKays?tgt3oOSjEnfF{%%=PL5T#v}<1Sc#&oYV$3W9v)1UanCq(9M`j?-(?z&3=adHzUQ10GE-PhMAGHuf} zU*zh2%{ABLvQJ6VzVVH3VAQBl!b(1U`t;m7W`S0KYdRF5w&_4%!}UAx*k3n9v=pch zsO;bbt_e_)o9$O#LiC#jz^B(l z3wmrISLdLnOLtZlaJEK^G9m*w-xn>xDA$!%VYy86IcW^~#8q7y0LpR_P}UU40G!+AD-;w7W6Mdnew9fZj))7l->ZUcj82$0=g zjWE8W4Qq|=#KEh#;ppju7&-Vfy8m+>7QcQQ8udX`J0}5^c4f^DkWnIkUZ~@A80}_C zB`wKe;abhKnO4{0r4eD$gerb^>l{1~1g^KjYM1X30Iplhc~pr6xL$hg6ZqIl%XNx= z!gtBGR`wP(ibcNcvdi$<&wf?_V#*Fq4_T1OrMt7U6IWk-HD=715!a*ZyC@F3x3?FR zaomkz?(Xi!#TQ>Jl7}69@WJ9Lue^s6pZ(}ZKN4}#H{X1-)m~m*`n?t4nq;x%%$a!d ziN|o>SyS=F&rd`Dt2L3tEUHz6)fyAp5&dxqqSKz2p!Cv>fGx%WOX~_?=fm?G=W&kc_Vb;}ZunE>p%d(e_k@zhgJo{t4*T00=9IH> z?0pOHpXI$6<7D7S+kxs^vBk22g{_@@A-7%9T>shG1>cq5L)v zsBOf{^yuF~Qh*|0RJDrn9qoAEly;o7P6Zo`UX1!{zr+0hT!n$2*HG!4gs4JS*yc(i zb0yM4E&mEyZd$drWzcb5&11!J7}_Sw_2davVYzuD8O}%lANAuI0M5%oDio zTh@bRE5WrbSc>^2Ycc`XZMNB_wNg)^Mv2SF?VG?gB_Sg>@SptTCm1tk48HlzZ(@^8 zHnD0x`Q(%M{O3Q94}IuE;vVSs_IB%cvRwb*2S30mr<@}0(I#4X4*~euvuEQy?|F}~ zbQg`AZWdgVC6Mm&rarxE%?>>N*A39w7opa#tk&voYm8_^^qp4`{df*=_%t+5SzCf? z%AeLCU@fh9@s(QzfVBYI0!-V$T7uFfu-2AvGm)7BsYcQ=P8w!ft7BlTtjz?fC7_gm zm@TQMTek$Sa+&3FrmMJX#n!)>)@5lauTysLctg}6n5dgP*j8#Epw{5m+)l`4oBLy1 zkJ(Btmub6>83%19Ba@8kzH1rS^O|GUwL3V=Dmnj6mvIU9eR194Tya z2}c&WdP;GPwspYSqxR(To3|RfvpP_{YH_>8xO|J3E~uU6D)g=BZZ1zP7|@{rA-RCYRCT52BpjRGgqKz@q?(et%9g+l-l=$McyHy7kPZYcG z!V58J(j<{gY`7k}I*aahCQCF~t;tfo#u{q~H|@k7f|TK~t4mn5U0}`pE?Ke!k3ar6 zHr#MSaXnVvLx&2KC48NA))7}_xozgvZx&n={jIjz3XeYWPkiN!)o|u%tD*mOvRYSU ztaXhpziUJENVl|FztoGy#Tx^=P68GavQ`%Bdis@H?%ma9;xZdp%fw|GJoBB_I&m3W ztED@)wpdd??D%QZ^6VreQy@Cd&aFO6Y-YH8d)&YCKs7DEM3Abopn@`|Kr8!kdiJ11Obtf?vzkzL24tUVQh4Filhn*7%511Y;;OU z_vmgW-5~JW=XcKcU;f%TJm-1d?|WbO-VjG)AJZw~r&rS?xFLt{L~7~6v6O0u1v?hb zK5WO^kXHfl{An?ZNgrRBi`Yr<3wpjdW2@8Z<=BZ28yjaJ(c>n^V{tl?ZNK#J z;VSv7y}Wl8G=L1al(%Ore1rf3$S;PHg0@ig;%&y9&nKaVSjFepWz!Qscojgr2&!84 zw6;VKkJ#F0gm`u5+{pqV0+YX7!y-Sy-o57*nRG9k6)*w!Z@;txesOq$YQ=6zQ_Xdf zIr$l~+_THC+0_eK?k5@Ct!Mp1W##DC^PvrzdL&@@&IT)CuRHnWAJ2^;4cHIcK;TV3 zN$g>3h5mfi3qDX#G<;VyuzXLhBA`cpS&= z&QBwlai~5EyIH%UJhXWhkSJ0GZX}_qoU<|uYpjJ%W*7rSp(Y&*fY880f4&;ra0tfF zvlqYQH0fQwX-XPpW?-@Xl>on#Z5^i@Vwj1@GJtff?^MbMtZL{<{rO`JqQ<0v7?JlQ zZXS8rOro`QXwL*!eWwRygZB+xCz;#6SXMMw`cW~jxSBn?@T>tQ(god4X0H#LJ=8?K z;6U*+b}Y=#%g<|Q6>J17q_QG9dgj0C&?ti*aetGcrU9s42~sDidn38ng=DH8=|bN z1(%IYD)TKWG|V#@%)r2(JpvOhA8W*yjhmFzO5G=LfnlnQe_%QK98!~|e)~?OMFq;q z3eASgY&Q~nm*7yx{x9Gqn{TDG_Ab$kSA)|G;tJ^xS@pD&xsFbE8J&q_c#eiI=Y>dF zfL;*D`-!Q;ONg9zsQ_l3nv}+KfrZ^-56elybc-{>!qp&VrtTG5p1$kL5_hr$X2yo- zThf!Up|xB-Ek5P;@^ZAnoDJ)XsBszo;qmLv%5B_j^Nh{XJvDWBXzg-xq{ga5go(O4j zrk4vyB%F1+B_QT&z*fs@etJKcr3eR0=SGoG%=>|qJ0SoeKhU+%&En8tFzRbcfOAAc zgsx(37K-V2U;V$Q@vs2k7;C-vi3K^+zX>&d!lSM7`eg>rY=1$O*gu1wki^0_mIJlu zg<`MV_I9)ITP8F-nTiI&KULLj!BYM2FJ@fOHH1XL!=q>wF!IQMM+(b3fmu#=+}<^= zAa&y?@Tyq>%gE^6ha7t6`#!k`oo6;>l0QlK??G(tp5K`T8bb}pzuTwCi<;mBO=2n8 z%Hlh=KVdL4WKNaF+670|biH-}Hs()4(QZ0T)pn`_7V_NL-y^Pa{bMN^Cdj@sIe-JH zXpS?3SJHB%1V+?WtMwb&KErea7b5{A!?QtAkvF24^%#dIUA$g=c+-k$ zZ`R9w1jKk3nqt!zW6FAK@>=NB23zl24--fx@_$`xcjj3aJMI;riAqt3h44Lcj`2sq zkuHyw(VQq?{Ko7`Mib(G2{*m`8UFA5C;i>Vp4e5-*Q?gxX%+qaUqB2K3T>i2Tr7w2 zx0N>3Ao8!)+)Ur=d^IrbEs<6e0<*6x=<#@a$}vaE?Ybo^aPti0yuk%wXXDF%Ge6>NNNZy)qrS4Gcd5s&hXU)TxV-2EHq z{Z8|)$uTF(zPu8Bul3Wk>(O(}&8nJTe1iUJwKT=$cO=aCP3#j#h3ZA?4j=3;=OGG& z!yLfNpP%t(ij;CvQRs)LlM}JXNdTnGS+-1&QL+Fv(ML@JkMxBpgsiZXkYESWB8z>Ss{#k?S-6juuAqEYJxPCAd>k0*)T1!I#|@k}Mv zp@xJ;yNyBRTbaz8G=XTWH{?g?bI;k&+!mzw28cQ0hQK4gl^FE)Z>9J}VxsffjE(s! zoPpI9pYvRW0AZ|LSA^$}vR10+SK1Id!iqPeOhq3%tO!2d*Gf?Hry(ymh$~Lin7&SemLUExW=BG-y5IIU7 z;`}>$OY+Z6hql+{FZ`3Cj@x?WB+n=-hXm$WBCPDX0OL(O7gZ5kzWFn{U;FGg4EmmT zTrgL(VZugTVtoUh7lc&=^&=|D`wfxUcb_~h2@v`z;8k8jegkqRk@nifI7OuETu^byB8 zHD+mREGIN6OI}C@DCv}T9P6_tq<2QmUWs9404cQn9Q(Y*6MO$6P>H%mvm|NrYw}xB zo7pBy(&+PQ6WWb zuxD>uO}P6_z(5sTWh3Y}k!i(jR?vfw%f%@grzL2*|C*)B9H93SUVyXYPDEvLGo;1k zoJkG(mt5(O+s7Q#@@_u)vgM?gQG6%E&AEr#VAIpi8j~xeX7%p^eGO^kGib-g#=;7*OdZ9Q2744=d|4ca2CzT^!aO!xL?k=ei83p zN~qOB{4W1mEm;IhE@Q-CImi;&VX52Jg9nPDI5r!c@lhqi4qN?J9xh~|J_HLAp&>3Y z3nUwd?Jatk;40y7Jgm9T0$=spsAWxg!gAz(tv2JB4Y#aY%X{rpAPL?+w_b=)~EsxWN4SthSf{KP4 zNwF&*sNijlf-kEp)H$H|xk3IuK~INciVNtCsyn3mRac2Mc=buq9gzF8BR1)L`t2V( zJ8B@|p{TpVX0p4Z_V$hp=Ev(kg`b1}p1BPPG@zp*$7o=nfTMD|#_ZoZZN%s6nf3<} zq=}cwi3oj6KUUl2JcuYpd`X_Vox_@U#(si@DhO$0`#Fq6^d0pq`t`+enDt*aB!=+f zIk1VRp`f(hPBFvvpB3;FzDMVu$6--qO(Eo~z#Vmq0X$*I1#M%fYN&3+URach^clq{ zb0Lh;H1$s!5azc(7Uf9X13o^1A88G-k;XPiWDe}XX0S%nj$q!98xE^j-PuX}n-UOVC;{3t&0Zr3T63+vsSD%jee_H*5&NS5cur$sQ zCL_HWI)>Lc-zk|guyZ;wWGlqdMMPsMGvDW`sSQvh+HVOjczDyCiCOs%oWs>u6oY@M z;wcEdpgKQ|ESrB1tXYe7i+Dd{q>4O+zp>Ai8d zL7y_^ey^_I>6BjNnlgWrjr#sXfcrMED032L`Qw$5O9I)yFRr?Hz=Sr($In`Jc(@gJ zm40-bjyDR=MDDJK_$ChY&^6wC5cKZ%8UsX@s_Wl$Wgs=$vTS~%SRfN_)bF5Sy~|*O zHNDv=M(^73Z!+3#ud}4!p<{Py8jmQ8;QoC7ElQ3M!ByBH zDoetRqa;~D`f98*N)}`f=ff*2 z_BtJSZGE8MtFrfz@1zxD_ye(xKfJ6I1L52ZEfoxdv;{_+{MIPtYmOFr3Y~pT*fM;y zRl~#kheCxSMU(}4xPr4wr|239?oXfNo6$1v+Bz-e?eP34NGOs>->95_ z1|>f$TzF&BF-#KdQ&oxjAz1&SazC3P?AHb0D0Lod_(08cnCJ8M=g_ZyiTYmmf!d92 z#{BVsBW-C(Co=!FBeyZ5udi@aU6Nbc=kU>sTEqVO`?3;-zUuDo=@^XZI?=bS)X|7!j2np~SIYA+=qqJ8yVzlYem}3bdy!a2-)^41 z;+`P#MUf00(09Ln4i@*%{3>qo+hsP#QeuAl0W0pN-Xdp*gqYMbZ=6n^3XX}1{QK>b z#Nhh#kL}aeit=9c&NAB**j8-?pZ!@eEBu~5sTdXCApX9ALVs5}&@o3R7xX63%sP4^ zki6YCg6r|JzP+atpPBe{NcLh%SD~K&JHDt%dCL|QU~#(HPe@qz45&*qh56*~GI~C+ z3Y}MrHg{3H-OLU|ACqH7(c8jL>apC@cC=E28TuT$haF>z0|KJCeP#)Q=NaolHAP=scc*f zIz0XAaa>5dkF*GHA>LdcpRLcrmhF ztI+PQspqUxeThe4Ym5ks+&Z#z5;8b{I$qE-BuhfV`~{~qr>6t@f%}$`AhPAR4%M&y z@~IcJvtIQw(Dvo|L`UeJ**JUMJ4R(InkT+8uGBP6ZjgdMvS;@MU^zWgCW-IGAr%QG zV+N{6<|GT6&%-RmOi7N?aMTa(rBrwtFtMFvW82zri%59zb48O0%7?JNo2W*s9~zzl zzj&l0>#08oAlsD`YoA1S0~1;{<@I{02NBN)3>+kq$I4Wos5It3aA3Cg`d8Mkmu8Q* z2A>^;nX!hcdjGXQ-nFyp7|p+3O_vv8=Vg1N(cdJ7*4RE@6nKL^IN0<8V!ng(0pfiY zx;CN~*XR=yy1SUEX{E8YRyTEPudc&O!(dV|h>`NulZyX*aL1N@4#PG_`m8ovwlb-< zx4`^Q^hsBrbQOi_K7~kNM`;G(d0R*v=aYwc})M zt=O;%CDSirA`5!v-EmV4T<0oQ9hF5Bp)UTA3`}Xn>FdF2EPo2~nyoqX5!nwB?iT5^ zZWgB5xJ$l@G*Gu+{Mg;`EI3=<;H zEuLe$ChMnqJ7 z{u7!@{;m_$K?3{WWltIzPuFP(gXHVm0g@%-SK6e!gx>CNiB{*u?M;W`*<3$d`yGic9u}u-)e;E6d zJYf!OB*(CrqQ*^|li4R25T2Mty`K*vgJC6RyCS>`HZ*kV>AG)mV_PjV*dl^?J7zC8 zG0w|VkRMurj~#tM}9-3Szm6Jg8K8NkhjS6*nk=OuNSY~1YE{R zqLy12WlSn_+r8SRluB@(!8y&BQKpw(L>7J3OCJp!Y|^;95{76-R&VdGyXI)khw1kk zYhV4G`=dst#D0aI9=ushOszZ8s9=7bpK`*YODBsM`fu=~SxbJ*Wa7&o16HR7HL$e|=xM2LYY7L!7V=O`>-X4} zwH9~oe;JqnH5=-y9)D2q&5u0tK2NGd72p`1Oxj@6Z1x-N>QN}%xB^xHhoO3^r(KYa zMkDSaHXspftEB?GX+Ap}Q(Xo4R#SO793j;haFOKg^$`PZpGmW|Nn!a6XI39HDYLvI z$!Bk8o?aDM`WBn8N@M5vM)|LZE_ZsWdfo0)U*h4mD^3ltS_n9xyHG70Jq70{R^PG9kbRojpJG#J zbPSw#&CIpTFJX?TJ3vB2eiu@#6?FRij|G53kK7#^_b;3UEHt}$JbRWCZ<3~sCp*C0 zFUK6_Ib`w&eN_duXskP54R#lsd5c=ZkM{remvcUFc)x#z6(ti8YuTCz$dFN6_r#Lm z#)^+SP!eT$kll2peDb6AnwO|$qrBWaXiEC?HyK0x?Q?C?TuIMt0ZjaIF>;~4=_=3B zBLUz3=ewqtRK6+gvA*T_Ivz>xjH8L4xse!OBA3+|MnarHUTK1>O=lBfk)qo$_wjt0 z-Js7*Ms^X`Y&Afyi`>&0+T-FS($4S9k9Gx9THHU)tKQ*JG3|geMPLwpNW>x}KO9UZf7~>T#Sys$Zm5K6<>2 z2?jOs1mwkucA?i&kLv+5eV(8M#XLMc2Wp>o5wu0|+}{X$yxtTCl1=7s0T$LYWA?6A zZBm`QKx$$Mi7gu&R^U2+s-E?4g$A$Sq%uxrV1?W|;UQftYG<*^HcBPpjWL`&*r7OU zfN<{F~1b+aAg|DONt=yTj&SBjuZ}c^L28Jb3_Xv)n$~ z_H;sYcBC)3n;}2wbuKRBin|`j2)H^2{X4o}N}Uu5{{AVQS@QnNqS&5djDh7|nxgol^2wMqL61SSMXxsvG)XSb=U52UMi*iu4%B$>7HX z{j*id%&dNGgktU}GF`3BzNU&7zx^|W_p0C)-3LJafPUgOmW~4JKS39J2o1A?9&T6@ zz31Qd*AxCSLkGUa(apW(7Pi>|=sE-rl(-S%rl9QOswA28&eu~k$Vh_*J3iJXYo+2S zc8DYl{@1RN;k7(dwS;_rJs5||YifB>xyDr#K`n&>H65i zs8}+zFSooqDQ8qTN+HGcAK+Dv#?PO(On|A$I#<;-0<2?Mri;x>qDe!)4 z3>5fWqn?_<5SIJwNzN$(2E4_5(pDL#f3lMY9+;kt*RFB9OXj2-J<9SzSG_l>6>uTG z`K&_8|M}&(kv9sq3%nCZ6DjfW8}ALXe3*@xBn9FKzZu7 zW(OXv$gh{N_v~Pv0Pxnua8kBYnF*|d`0XyEpbitlXrc0T`EoYT4NT1h39KKOtBrAb z5!WuVU3zEI5@D=X)>-KKh(K_fE$sh;7GjJal!_gzc#)L4>s8;uD66lGEd@ZE(q(eq zoUff8=+$WCz8-EpDo}mWwr2z_#veGm+Z)vUI?YiOEtRaCVoB@98(e2!$~$w`Ei>Z- zSzB-tB?6}~N!G2xZnd3q#^qiG+}b-T4|#~~x8HJV&cBx1h8pXNq2F9oooKEP_xC9Z39Pcb(uiRSM`MaFR$)qSPcUCDpf#~)^}trr%SGSVsM>hE z{_e6xbZmk?z-xoCgPkAiC_A>79gutC+m7?c3a*nryCh{0cBl3BS{CYL*OjchRRZ~7T zcYJv#GX$JSv zX~AiO@5EdXFchz#eKC@6D{z>lxJ0PZ(eDb=^L=S3f!iJJ`ft!-WN}=8Gg1cI8(ykq zSh*oBaH!4ko{Z9^v#ca zc7reLUBs!v^cz_YMw*ybt{U#wqI-V(5zwm%Q7FEyXrsQDhkDu^V!oL-%@$J!o4D}{ zJq?ByajtDFg{1|?=hD$RkMalhjzV3r28}#y%}npj+RY?7Ax5eJjc7v7O7hxUs(PoS zt6@UQ_jlXPwN|L>*Q1QK)1#Qn^zP5&d956nQt7G`jjNL#%j<`BzFEV;XZ?OLesmlZ zVm}}XGfkolhO-8J@~t76`pgMeqp49|TD!ev=mh`Ry#WvG5d+$KL$wcwpiSYIz+RD3 zL`N+mZ5;(@WLOLWV|)YZ92HhjFu7^0Hu>(Y6~#VZ54X{Ixn7p0n#S8g6lW$KMJcu- zB(@DhFRL{C*IxY&SlE-AyqoDh@&0;?KZvU_cZGuwZz+z1R%RCL%qM=mH>|TG|6{N;56FA>QZR2t_Vjzg zOaGZcjbtyCa%tz`#8tnQJ0{tH{XIj!3ruPMyIwjGZ3U&axy?=u$eNXAgSLSw~7hxz=6+cK2Ba)I>v3l!UP89?HPM{tP99iZ)EP>9v z@2Qw)4XeNX+s`nv6&2}!a}L+XI+hF;C7h)%V(>StSS&!*lkCEk=R8~EO*(N&EoPjo zUnGcW-Wy$N$<9-o9RA=~-MXxkYN&(t_4g_Pe7)c(!GNWB5LmMz79c(6zP0`Na$)+_ zj}Ajc*TY0djrw9*Z@|I0`_NG_+&3@eL4~;uG3N+88JoY}s#P0P`8piSuJG^qQ8&k% z=3C(MQ4pZayt)^9I5VR$Y=En?=HOkA&YdpVDBTZ0WUDL(1ZQN;!* z`0N|fcq-7_>A!#mHFyEm*7hgVqn|kQ+PDU16NeXjHGE4dte+)qFMHb?iE8(uTg9B| zSA1@j{)*>gOU3&WA2}>0WJO$Ab}st88Iz)&zWns`lWLz$^xv)VXn#Uvj|1((Q;R?w~PXS_mU`>9u4w54S=PXhmo&$k{0R8A8@PSEvl z3PC~b$AF-fyJcF|kz{L(%@7dH1iHiPCDv7t>o`o@B7x8@@9*lSjzSJh9&tQf!E!s} zy85dRP5tG$Z1GI_?W2buf28*RUG>BgnxvMdGE_s=xh&BHXub#bLLKdO5Jzs?bk3iP zMLS$GHr0))EWKPXXZL=oVF`hIpa$UgZyc=1X}tioTgZRQ2n(U(Y2@dbp7|=PQWHh! zG)C6-c#a+*CIAT`sTd|PJ0!L_6`DD9gzzB%4dAcHE#M#mueI#5igylo^L_9Li{?=* zpIm{a1D5YY*0iM2=(2lR93?f+Gs9RijRjIboHPOFvP7_i$vxdT4Jc}!9cZV`pbd)a zG%{7HrjiE>^5H9d(vMEC82MPXBw4Lu{z?rhi%#oDXO~Ar7-tW=3b35+!&J;DTjrZG zxwsZ;$~v`6Vi4@x!oz}KTK(vxJk&n@b}pVRc0C>-2~?Wl)rh8b6OOAo*leLn9;i*vPUZcGT+D`_l;%5C8i5<*Lu)<`dfrZ#?v(X-*rR z{?2s(Re>Zq))|2lPM24(N1Si+#SoN zV^aVTzhDnc?7UWgx0jtg0v* z*t<~myN+=7Gkkp3zKd}dagS-^*_%h$k>Yh}`QKB0z- zvE2ab(sMTv4%uqGS_afAZmY09$SS;D)+R>zF(*SSqJ4Tz4xl%RzbaNJ2q?fE7*8|riH}nvI#g#A4`SoS zyuVVU?QL4s%|>%079USckeDYMc!7Vz_oYHmXiQG?~3*d>%{Z62&bcr(x1hlpBYr;$X3cwGfCaNt~V zJYmuM@$vIm!RnqbZEB%55(`#7ci%eZfElF?{`wHa%{C?kp=e(U-|n2sKWExofSb^I zG)|8xkSzt=AMk2+c`;{%q-UFPEH=G-HJvkqRSada1K3)QG{olrJ%K<5UoXHHT!_4q zRMQ#;hZb{_bJykPb+RaLAvKjJo379o?SKZZq%x1eLX(JcH{gJ6zxu{>uH)e62r212lz6sUFU-|;CIMa3Bz*fj`v?Eq`;RRHo>6~Qu#xzIN@bt8gv}|L$)D{L#cQA3~#crxhP&458iTfV%YsGS$ISjqM zb*ozL_z}|d=cZ=v*Z8dGK2D3%2Qg3PyH}D;%pF}bhaD5RWYLFuQU=LhHe&9VFnzxA zGF`X@JwJYhTn+ky*chSO{&LWRuEDg%itv>vtZeqbHZp?jdo)VL8v8r@X2^E^#m~~b zeun_GA3#K`h6Du`kuC)*>qDA0(7F@}I>}UaoqpKPLDaC$F4;%&=oL_|63;G~R^B53Z$+ZSOi;OU=9jqbAp|*?P$U6Wb zX6FHxs7hxNG_j2fApwbmS&~GFh*Mt~^}QduZsK@8!;8rPfFAgjo2bE!`0$1XC@RZ` z?DZW8mFc_FJM{S;IdY)Q?XfRxXIv$;USinJI6P=#2WDw(&lT?Z4j-iMXAtgBlcJPJ z2l4?J{(XD%`a~WQ+n)|IUES26@Oq(}ub|ZCs>900uLLDJ;q2Ih)%PWgmhJCV*JmFY zJ6a9{>xizLIlmkID`BS$C2TT%ZqVo_#ka5*JU`9!_e$#dCU^hNV(VYrMJ8P75d`n; zuOu3+$A2u6P8uKVT79U?Rw$7NPo39s>D7^nPXbK^QH-Ayy}4!=6nj=qBLI9XrmkIn zOoC8Cu$%YI2=3O;R*h*``mWac#W3d8iu(~j*KQHwSE{s3zg2%l~_q;1@BeS=CZQw9oXPzQ!&~0SXwcau; zOC+W2G7}q%xzZ}h9%CuY<9sG$&r-7b=9kN?wL>^|L0c@>xaF?j#%Su*{?WJ=-$rJl z4msaOakR=G0Mxiwu63*4NOuKhL}Fg!Ohi@>-1x!vl%#eGW?7MkV(RF}go5x|+|{Uk zF7#hhkF9L<#!;@$Ukzo;F(-0r#Rmy02z@pf5K~#vu{lPwH40WP9-R9U#SZH7yv zIH4gJKK+psE0an4_Uu2eT|=YD>*JQRbHL;M)kZKjSudlT>F>OtWx90rL!8^a`SN!! z`7OPiU8raHw=oRbqI#Khb=s{s_W8Yt)XLFnM~DL+5(}a#SdP{^>$nxPz+r8t*_+TbKx zmQnc$-05eWd@1h{7AW>u-U;8inHIrdt3Z*QqN&%!!G~Eu)o@Bb z(IXhk!xnw0__&#MgWJrQsGOmd2oR%hkMVyh@pWchoH~AGZGR$a*kuDon?JqDiaByQbg1 z`O+XEd$hY?{lcE7*0|P&3Rz+ILhHMhHJd6fVJ;weRB-*evNDn8E`y_<>;!IV$?nz2#DPG{?E9Aky>rL=RXDzE(Gidl{BalrOOKo-oGJgDnCCBnSV zp78nbIbgXlKh-ks*m3}eIxRfOtow+1IQtoLGe29ghM-PA=msvkTN^Y-qA_Kv)l0`K zrB;`kfv12S>T4m)ny;biS(^x+Eqg$}NWxcT;-r*HvPsp7XnrSWR?<5#NhQz0%zNM1 zCwqRC%q+IXMXi#sw|!iRTZ&l+rhHOsyotT4SrFPmcBF6E%z`V8lb$`SXi69v{RMR@7=m&ILo94#g!- zYJQ%H;z-+$*K`1)pVfG4)vn{k+2$<1^>&9E+*hkJN_36FP{V&->xga2tDeG)1kaav zFgG`xBMDfW#Y6s*gQ?3znKugyAI1 z*oth7NV5mgn=-+0%43lbcwH(tH+Qoyw;1GeKzwrJtXV_gxaiNI_e5X z)z7{RQv$KUgjvIJ-SLl?j|JuP{#c{w-(}G?$}7ab*jGO4w|x=A>Niu4RPQ018D}Ww z%f`z}^!Slpu%Oz{9MGH-L?{bC#2=r#V9IdsbN%r8Ycwm@!^r`V3o>iU?ExF~90{1+ zqj3_U6asdZmm&o9Tb`PaoXHYQ8MCE9(nf*dltvaXqnc@X(!$H{qE}xszu0VE(iAT^ z$j|IUB3`dpFI-&6dFZ@ec=z5Jh6E0|B~r=;dJs*VglzMyLfH|l7_+r;xPU>Etcw8E z&tb+knp6jXuP(!1^=s~ECh#e{BL|8IR(>uh6I3oXe*Y9-rKl2g`@6&M%a?-i+^Y9_6;yq|$91UBwJJ+P zg_-}x!tB_{$N7ER0sag~DYZ$X=@kQRyV*AMTJjLE=qAw45f71X(u!TL zk-M84745r`D)Xdiko}L|J8axpd+Qh5lh9VfQ4sH-+L|B~PT5dEyhc7|s(hZt8GJ|c z^JE+@;JuGm)UNP#=+`G0q!fX!DB>2srvX&eg(6U(wjzURI$iWvD5PXa6Me>69%{!; zP1sejCVa|Xm7>O+lI*^T1T|%&YTq49@V3Q};R=r>3w~qKv5OvXd4Qc7&A8-(nItddo) zKn@?QX|}^@Od{WX$Rq~0ypsd`8UOH+o&6h8S>$JVT_3y83-;jf&~H2^#+43<()H`| zUHCaM>Iu+bqdD_8!Jg0-MGupkoe_KX*xVXEp%LZzS52EK`I%xnZ}(`{#F7eN_&!eK z=6N9@cyDSLK3f5(QL#teFOEvqa_CLyM2_ibTCdg6RTfvQdqxXU(@&K@2{Zh?;_S=5 z@=t{8haKjw`hFR<`RREg&@pSZzRz0eJYGZPCeu(xG>tmy>=*Lt`(7(&n$%sD#7uz} zy}{oHuOetoU)9v=tP2g4sk|RS_o4uw{g-Pz8{h0Zj!@x@uvMFJEDn)>$6!gLN1eB5#Ak(Q18sV(M3^(m1KIhzQughcdph z87yI1Y-B-<_g_hk99>L%^04xP&u;05YrnMnb!8JkoS)xZVF?bC$p`j z`_m29 ztFX;D@P+IXwHS5lpLky#_o*!8m@vs*i#=-<(OwDIIu(8GnP+?Da$v%;$IJM)b0kr; z^9v_)q)bqw(o6j0avGeetWzWX&6>mI7tlTFs*#1tiKlL~$rh`?*1zf^LBSc90KyDi z;qfl%t>{-qIp6kri)5d*B=2fYeo|Bjsr)G&(P+QzN?>&=tAxD`u2lx#*om=OlC>&! zB=)S7$fjUMZ&TS3<~+wcHo44Ush}0l9{5v>CS-!kioL@d^wR3iw!L4CDqoXeE_0pR zx&HxYsLQb}l+vxt#b+9nu3nSeR&`$E?)q%e3GUH9- z4G?6F2frc#H&Ws!{cGx}<>FOXWGcqxe|@I^A-x!X_a+N1TQ88m(YprPHYBG$5bNA_*>L32=yQ&?!JW9x?iU2}*K z2DE>8mmF%vCXrUhhYB}m_(t(+hHus}goB}g9qG=Uk^^YU(gpn;IBW`BfGjc45j~}A zZUKSAHu{DeL0ArPpZ|J;O-zmMWeA7pygBL(%|Zq54g^Bnjmw0XpHw+ctjI~o`U2iz zFCg$<-XJ~B7F;C0r4RpmV833b)V`Db9}7UkxhnQ(N@5^0A11m3%Vu?%vZvXvF^7f! z0Hj2uG4glk_5y2XM=?QXM zADRfj1_eenTnb_tGZ{Zh4vgRKCuM%xgE#btd-}U>i26IL$W>jN4*5Lb8@8=7DIHkq zfVl&05%zneX&e?8dW6G@OI`i0GS1_Dkuuvbi+hK`SKGHt8G@jCugIZdjoQ`NBbw$)S0UKy~&(QeZ$rU zp+-X6MrNuu#+@GN{d$j=ON*DJz4ECGn_>x=Wi4&77%;MHhf>k{qincmO`YQfRKd;Y z_%CvDKC(HJMARX5QGk>d>`vi%b0c_8_8QdgwQ>d=OkRg&5=94`1F#CFcef4~K5ywg zc?dQ9MgMe3aWw-k$qkyPit+KK-o81bA2KlQq;Xuz?=)a?`q{p7`Qm9+IHGSW z@(GXagp)Sd3Fxx1WpJ?Z2VE6#J%Gu|<$j~R9TM0u=QGU^EwA6WDFJ`@_B z50J>`kxj?H4<0j98+tTsP9_!raQHpStQrFdIcnAN*HYl~EL*A0fP~ks!f2tDy z%*dVF*l3vzlewV{O-eeS3o!Tn*#|DVUZ~98n&gcc_HJ86!}YHKlSDVWu1eXrv<#p) z#TAl;yy{>42z{X{jzM^xaVd_i%aDjs_MTtbP^?KOekL6V&oSdytY!IRFg$h;=`yNk z8fG4!hCG>kNrTmi)_OyAp99J^p{e!||XCV$;fo%_Jffn52{2)GYd#zj!C;vawnI>W$#Nafg6gi=^948fOP-*UwW7s7(QI6&S6CwnK zYd^j8I;(Ym?aS>2Lw?mo&_$GUdgblFSIi%R0;Ae0Xtlv+xH|bl21ML7D!Nw;tN`zD zvqeE>vUUW1oAV{Ep<8dAo}g9ZVf(JQ((h+(8l2=*ZcCo`W+!{~F4OL*6 z)hJOdAtSNQ^xUTGv!CQDTA3{&W3CAi22?Bs1tiMYZ;|4UF^CUJMnlQ*QI}y3=SY0# zNzv@zm@{On`Ro-|A-Q}j#le!@l9?sHx5M^WSir{aZWmjE<_(0as9MpT)6`b;0<0~L zJt&~yZQb;<0q*c4sx0HN=NdP>6V(~AxJK&(8u9K|OWH)1rp@-ja+Ri4r_601{oXhI zOFr<@!PpU`eDdwzLJFRRGVd3cW(R0Qi|?%agy^R;=v_C|K) z0Xy;K@!uCI|;}_fZ z%+4gx9E|{EQQUt|&1@h*OP}UlN-$ByQTt=yvw(9K?~@2l=N%75i$WvIaYMZna~KaY z<3$D#Z4Q$kxbeTqjczk@O6a`A+b2o;Gt@R}T!4m2K{wgX_+mUrfhv8KYJYQ+PhJ+> z+#br-nCQRt(>WsEm7)dAAq3E6|23-KCn6ezJfMJ)d;I@h6|2;II6X*ubuxj-ZAa&l+{~ziVXb^mSY*I>eL5&!Eih)tDc|or0O!#X&+Ff; z(jv-ImJ}(!(xpss6};v>HS?MsbNFiFnAl15MI#4Vuc1Zv zYiiEgq=S_v1PAamt!a1+ga2DGK<7VI-Pj&UD~DHa|DBEYq3!(${-B$|F1FR#-yG`; z*=g~gR1taOY6NPSAiSC9;Ew4^)~0ozsd{7FR=GKbi^iq>5r?#Hb$Q1vEWSjjy}5=t z%oOrn189w#U|DGis>Lhc+~?g$>M!9AfydTXyfa73+30tIhpP}toBbaN^0fH!OQX_* z21nPoDMZw^Lr??ry`xD5c-mieEKl&#mh7><$~pbHn;)OHr)AybzzqhRP;co#=n&8~ zynwTYz7s3!wpoZqY2i2Yte0z~6?YQijEXvIGBN!M^TKiwj}UB>7880U5o=SoB&ZERke7_@^v?`>y_bMfj0y3cI1vU$ z2TK^JC@Z8IweuW{-2&{|x&aC~u>;4d9?^BWDuF-GV*rM zV@p*EP-HJVeEK)~E6}|2sOo%+*)j*^;}Vw==t?UKicGL>bS$6XsP@+rh& zQW9+1(?j^%YC;g~Lenwre6!u)Ahm1^P4Th>v6PtZ{u{Q2uO(u5~I5X0hJV_86n*{x>H5KpTOvr?igcq zNOx^C1Ejkfp4;a*{;ziI&EDMiuIn4;`8nbLARiPswM(b#pMFQbut>Gsb$FkZG)xPn z_Acy-??0hX#yj8`H5Zq{a_W>Dv3A;aPZhCc8)_*^rPv_v<6 zDm0-LFM=kLIS~GDWaoaV4Cg%hDE!!+brCZYitEyBtyUI%wIDe71Qo1iU&T%~Q^{oJ zb06NK6ByPad?1&Lj8#alW{A_)A^phtu!K|2wyv*VzQh6yTYW1K>-7J^kEZQwhW-rZ z{_DSUNE+C(=@#0Rk$VYh-h@2$|CX@w5;p*$KN4KW@GaBd zA6zQvjYAKPpUeDGruB&5m7JA!ccbBx=>Bs77LTkA=-wxT#Y8(8vK-AftRLpW;ml(A z2eecBJ)H(>>QGe|1Y3>)eTfD~!LX3|XZlvuI$SG9Fl}=Pa(~4z2Gnc$qxwgrWhKzW zxTL}HKc}9BLqzbV9#!(1)D3)SmRa&1%7VUaH41+{n&A2io!0I@o@Y>d;Bq#MJ)yjG zfR(|-JS2mM)axrw9^eo?L$5De-#8!ZW>5TM^}^w@)&vB_@_ZO zG?eLIZ-mgQTUii|OftBYP89v1KdbJ?*(o*EasP%etxII>ec}@ta$O7K%KiW~e(Wze zaZNehisW0BCn=tj;q5RrZq)QQj-laGT>!DS}L-HqnEL_;#Ka$1fm-%4| zN=wdHu)~z0EW}KRITR)aeU|b-OfuL?ch~Ipse&|XY*X>|3%F!a9Fd0VZ^Gc64^%G< zX&K!lshXFPn>+Rq`}IfVaQylJU|4pz%KY%8@t~#gD_qrg)5s2M0%aW7j4=ZcqhOUL z6@Dpk7{NP$6AAO5^1kIPDtREijxzBmceL!E7= zc3Bs0JK0tBIz~vbsiJYL07)S?c&w8WF6 z-Tlodsg0)Rc(pA4CS#q~cg8#X(r=x3Q0z}SrrtQGN9l&I)OVX?Nf3p{mwh+QdU(yJ z1|nPfxPKzC!V+XG_PC!6FE* z#hOJff5|P|*b7a>Z^-*@;nm4n)k*V3F$%G;m&=ErtZrj~zaD!^QYE``^HqjCdh zT6srX8AC&r!lgd;jm{S-&UCP4&p=vJV*_zt3#5L_I2bf~PB_%-x^U$I)S=S1JOMXz zOW!ZI&QQkE7huCCFJ8-$jOb1>aT0t+XBo$<1l;P^&NqAT)w(&yP9QNdW+sU-J(A1TiT3GQ7av8v^}tY==uH6K~LQVTI7YzEJ~+Gui=G2NP>HDZaJyn- zOaI)Uay}vlKlMArLb6;c9cqVYQ=-kuR5-3RaL{>m;H(k(*^^UlulZGnS3lt_m;KE` zN+rfkZ0oHi@|Wb8z54!?fomUMhvkb({pR}#>%3I8PWTkI-;THLLH=dDmpx|M{L%SB z7WPE0FwgpsaZc5#+UAxI6ZV~wdd0=d;vecRv!tdH&j-%9o%DhNTj_s+{8$=V++MJA zY_gXRGdzTh49?;z4&Hm+UzP_w`Xu*5{hr@*-_X$SsH>wnRmKe|_sZrc+wu$`r!>Os z*J%jf7!WDJc^%dW2#d#-q=QPzujy2!Z3GRS`{~;>vflC{SENbHcV5l~8?0wtM;E9Y zI|(!dND-fP`FGfY_`*u;>hXXXdMe#~lcUlrL16GguX_T~!*L$^Yr#^vE?z`utwf>f zxO_fk2z*b-=4*DTMARp%sa^F5+~!_)A2h zDGf%wo0Mr?5I=2cok%^de4CF88vW;>jvmj1gGz6yUya-}*&` zrT$HvBYPnb*82M-u9W06pBLH(&Nyy~NTnd*fwk?Qg$emGWOoJQ7F{EqW0iCG)qj+l zzve6B3~s9UI|&HCu?uH1!ujhV_!fcH@4W6*4bo2TyIcSDVUS6qd{Rh6_iM1MTm zA`}@N_U3@Ct;iEHBUFIg2ocwr+cVW|$Y`^6{SnQnI9C4+Q_oTE`>sMd?nuHX%YObH zwh2c&;=Sra_6qn05_5IfUdTqo&kD9&d9NGv>101N=At6pyXKzsWTO>-A)Q%Psf;Ph z;@Jb15Pu)(TBSpX6mhZ70rY||;CEz2 z|BX}IkG62GVmrx>d>ZmE#4jUo`Ss?$A8on#4b@>6Nb&7mw4-$q{67wn#!!?&mert) z^}@1C;hh`Hp!6wKrO6Jjx^Wg(vJ0B;%-9vPU~@4AU`chSWc><-CbthvV@1>0Vactr zt6G)Th?g;Klx#H#U<%`N4V0o7Ez%a+VJ5~iOp_^ssh~+L!!isT7MvQ3^bzTkWLroA z<69tBRGIq$xiC6)Tw+iM@pK!?;RIE9V|b=nAcws)nFONvp52(}0~d!fv6o=BZbI(i zRAR(ak(1jR$+eQ!ZE6J_*(>bmiiPPbw?|!gAjwRoCs9^1 zRz#Eyf^m7R+>7Am%n!f#-lE< zT-o#{cGUW-3j5-Tgg!)<@wliDoB!qDPSb&Y7ek$;0iBOBN7}K@vqo}_`pqX#T=PMg z%T*MACo(x&TihFtx9-;aGs|Mj+Z?YBekr&UDbu{Q_{4zl|3Wv}t+YAg9v!7Fd3;W9 z*4&3_*+NBfcs}*Kf9x-}vLeKMO`#Xm&qaT7?)pSC-;o)18pO4#`zLL`!I>dbzz^eg zso2cq#KNx9aIS>Maj|SP>FAlC$SQ7<^o5EkqUHSD`*3o{_(%PQ4=BlPTP@q-61|cf zF=qnry70GNES}2pWobVP*zw!XbwYHX15HXvCGciMmDI;b-+Q^7AvKghT7^U;&gcIa zAN#Ej_dolu1Gz`rfE-9J!{ejf8_yQ8M*;qSt1I6bFbJ&Y9ti1|=AF^EH^8Xrow$R} z4^{@1Ciy%#$IQ~i#sEHak!7Qw>gud8ur8_hHs zCW})xSc^5`COgO5o!WmP_3<@a33l~?8!NN@E(=%9c}3({Q%&+|I|ufsZI}a&nAnR( zR36Po*t(YAv}HEW+g&IM%V4@Nb`!+;`YKG4Bz+5Mt!FuCq^Fk4{hikvR%L$bsK|zYEq-g2eq#UJ2 z$?PTz_w<3d>rv~Wx_-V>reEn$#k0O~yW`)r70DjdYtdM*9hGu+x!w;&v)i3<&Z#zX z;lCOaJE)u8C>@Y$#%U8T>D+!m*Yw-=Lgk9=+e;ioMCbiTWV|{hSTDykJ&v4K5 zI`^S}X|0#SYTK}W@JUtRi|N}PB0hAQrcy_?HRSH_6a~1Tu+8{c_e-f*OL znkuG~#X*lw7P?C+aBI{S+_J%4f`<(^CdQa3>5u6yH?RC_4MdbewKxB9st$qbr{m#n z>ERpN(hH9v6bfoS9T&|WbM-%)(&+^1rzKX>>w4`FpCy}(gLdK(Y5WZ)al(M(J3{q9 z7_mOR1IB{inKmiCBxsbs0o%4f3cpOJ8EYXmCSr!Q4C_pk_|4bkjWn2u=3f1PSdDs( zL46n)$E78d-ZbvM%p~<01GwQzjO)Y?Mz$8O{k9}X=SX-du53TAu58L4Y$-DsfHL{) zxx<3q2r^>H^7xziclHBBXP(62AgCs^E$8bw$$mQYDc(`vu>K022FSU>-f zopJVe_Ia|6yRb|10w->r={HPl^gOj^1h!*wyIF-tM`3%Z@K#q(g)d|*&nTL#CUw0= zmAIL@%|m&{b(b2MDX8H?^k)}xCcwK@BUZoay_-;JIB@h%a{8TU%LnPnjL`#TRM+2C zWVx>McNHB4>6q%!)LXu@q=`Ij*{;wT>8X4raOJWZ`yeiw7rj^fiemt?Dw{9WAvRt5 zvvB~SAge)ovcH+3T}4X_?RINvnpkbbv-qh4EbtCoS)10KRxoTLD)Ih5$Ll)Wi~;yr z$%8|Bu*dh`i45b>EjENh;HKuUZ>T&?yciu7tgtOTkfu|gu$MVFVk6XI@u%JA1D9h4 z)PfWq2nV?E70$!SB~$J%l-ERG&9UU-VU zH77Upopr4o4{IMy3V!@Gc<_y^SMK7A`z1+N43f+B&e7v-i6pmc+fl@|i7A4mQlUf; zZwi2#xS{#Tz9?7~_I(*@@5eE>(l)Z4@VG0cWDCZw0S;zTdn?GdOz_h=Zrj2iL9U}$gKMuT1-?9@dptY$9`Dn^`rP(9o~J{BAD3v4S$B6!&U+hV%--vl|6E#|6J&Y&%ni| z9=6F#yYWlcP4&-_+=j5Fl(EDGRW5B*Y>%Kse|SnJAgrZqQ%1h!z7bSMnt$K+-N%yT zNy@h>(3;2H@X;xDh)4Q!2|I)02B|=9+SO+gzML!aYL6Yg5BVz^F%O1zf|s%NO$P*_ zA^VC>VgGS2VMj9hJ>%rJ(K~ph^PzsE{vy7|5sMRvU} zMOjHI$J@w=ocQUr{97tHnfWGG`DD#1y`b z6)`!$wp~=WD9J{YJR)vBOQi_9=_TKK5x%K2^HQ|^%$4b^@>O|)K)vyl=f{*|;^Uc( zh8cPj8S_ugLhtJHyRzo@5w&j!=z1`#+{9Wh9ITc4sRd7>%Fif?s&`jY z1GJqmVFtSo8%`eObhov%=efM`-uVM|uWU6La(iD~fn#+!c@X^x{&7(i==TivnRs-? z$-Et}V@M5z9P|YY8yvvmb529SU(#kjay>Qfe)22XF=zLGT7a3egAgAo%|u`lK?L=2BhB$o>hMuOFp z8L^`Eto5PJ3!1qlX+HW{zAG};OBZa`&Awus)23L1GY+zND6c>WysZ(>J<7Lis{te) zM285m!yE*{OYn8=DgmivV~ua&(TDZ-OAW-L`jvg8Y3l@gLHnKvd6@4n_Ns;pZM-{F$h@ zlfxdiu8~9f6b%J39{W!Xb(Ha&H;BRN$&hz@wghd9&VSxr&J;Sed*}=W)17Sdcm=IL z9k%fG-;}5v(*F3kt7>TsG&U2GuEeVI)*=F1F!dGqJx`+oL`MRUE0I1V2Dx~oay z?sA)Y{cP0F-(UX%#Wiq=}TY+hLLMTr5`5yv93;L~& z&8a|Fa0d8uaHef7LxCDi;;h+O+JN1;)8ioOtv3R%j^lKXzA^Zw>QJkrjI_ zs&0MuZECy*Ffu|iA4Tn%F5PK-kZyaVaLx8Q`vNl7^1g*P;|0WeUw66^7KFf%;i}EC z|D@nie%XY296cF3VI(n$xOjy&+!cOeeAi?8(?1d)Bfa|8%k$LHWiTZsOE%pyf& ziTz0gvn(!ky$)g%JCWenPBukmtkqEGX7aXC8JU{HTqqO^J7p*ZTMoz2>G~+t?#AH? zFk9dPj%@nDba7fdk|!7gAh;pVv|fq=?ZKqy;vJ9S*-o>`Ho3Uz_%v|6_h1h8x`HbP zzRtt&NT%0D)O{gO2b;d|xyLw!XVA}Z|^6Wf4hG$5;pzSc4=^tgYyNg2Cm<@<>~oFe(Uq&qD=e_~6;e5IMk~eF~@OCX=NSKhVz*t+Db~ z=ZU=1TJ%N<}CV<~{`D$(F zA`5g!iEp&A%=>>5#UzAa9u%=IQ}%I)Xr2G%I+oz>o{iJDt{?pUNKTC4j!VZoSM{Y@ z<;2~|$GSy)AHB&9rI$M>i~etagVgolt%i!}pBjE$rP+Wy-Q=%hfh(|sHqy~8Gp_mbU)Qcc&C@Rh33~&X z{`?vCVLP4&t&DYB0gS4mEF>s?Re1oo4?m>AMAew~o?X1Jzjqlw9n<+1hn;ekU~+es zL|<<=+v(he>)YN$2PYm6;REl>7 zeM-kRFJYyEaxCJ2yKa>7dpe1EIy8n%G^22k?Cc^2DO1U|!#&SbHmZ&u#{CU5b}Zjp z{+zMh)tl%WTb@9T7eHx>sg5cI2Zj`Tvo>pGi|o>M ze~gmPT=$mlI9dpYe8jXA0_cXhYYCc9b|fojD?d4JhE=rpd6EQ)8|z}MM#8^ZeX|%5 zQ{ny`$+gkK>kOjZ$stgWzV@rhwh#R4C@I?D^$9@qlFCE?i<99}O-vA#w&(7t@DZ zFY;rs(i_|6p0HD{G4xPkZ9(7=nDoh}W?FI_?)7QMT{Z{ToNO<6tFr2FpP4%F@|k`#g7S4o4kDr5onpv}?4sN#7P@n{tg|ZYn&)>RK2}*CQ5U z2~ntY1Ylt=!fNu8O!P3TFn3aLb%SbLx@hDXdlWNATsiDuVdkK5k-Qqvh#&aL)QGm( zgzFH}x|rie#fT#TZn;s0tc~AXOM0*zaIu681GE}CRlQuBHFcht)*a`es9(3Ljo1By zx#D4nWqqzdC_|l5CS%!5NTETRH_b(`U@MMuC+v=KbAM|cuN$^9MpO*-6IYRnZI*1~ zs6RwZo33nEZiS3=45Nl3kov^6D8{pIgO1iTZ94VFgki^%Cq4sx+U@Am|01mu?_Zvm zQu^{xTXOvl#j5HG2=;te-a>|(KwSJvNxi-z#@fkG<&Mo4jE(tzduo5s!KCvKlEZ2` zeM%wQpvAXCB}<}etD3&_s;A#rLtlla`L@@H9QORQ(axDxR%LAB*;;H6Kl9+&g`w(i zvieGE!~zdvZM^U5`>+?DJA2ELzbYJBc(s2M51Ta{`u3RZ+e>fFAE4tkT9n|9A2vnk zJmLDnZX1L06Pl+Qku+gD(v*gojHZZtbo?Dg#96a}*GQ=-&*{YkItU_-Exrr%Hs${; zso(8tJr=#KE>8=j7k2Ev)KG6eyNwOJ#rE;>F#+PoK6253r;WXq0hQH|VBCo-9?5)! zr`oEP`Afx^-)yR(+d!N~=V-QE^V&#?AaMjK15N2exea+cHSH})OzJrHK(t(aKEX2N zC@^T>Bd8ny#1x&OCbt)Tb$Ac6lR>?ah>G4Q=>r)`TMccLv6%o>PA(*=P4C{=4R?fd z@{!*OFbK8#PrAl^0BxbiBk+Ai#iT4GqiRkF;a4mXmRq+>HtE`OXizFSaJ^zkij_nZS<52{3l&zD66ou*fE{uQeAy`Aej^$AE}O- zXPSn3Ks8lb=>6;*gz@vqHVu`Y&T2h{2D5mHNk7GqbhxnOj%fj-giC;$SKk1h}pPfU(EMfV(}6O z(T4uB95k*Q;+>B`lR$Hr%I92sp|^%%^d*ERk=vI|na(tZ_R-LmXk0vM;Jtcp)OQlxHM8@q1oex7--D6L>Q;FJv=i?;Awi?)Ede zqCyE8>IfV_a@~x}ZRl0B>9I;=vG||?! z!7{Nh&99lwA@knXO9$$Xk}DF=r=^64PeL4M-Gr4(e2eHLN1Dwo>T{I3%A!h;&uaiRTU6LgtPi$58>OA=@{W%luJf9u=#a3WT7){2XC{; z64dw-J@#Uz6$P-zj1VujVT$j|t(4*^)6~mw@@5zDUGwTzUnaJYglXY^(|R-TGH^}q z<;sF7MZL!CT#2(m_w^n{i;lVSF5-4PHOC^MZsr3w^|&>!i#_3^S*O1Td4B6i*?tDS zM6yKQW{rHwmYd46Yet_KA8oU>*u9%9MpA1!p$JZtWNbJH6^9DD2n=@K6MouVC@HE^ zCSM;;-hA&U;`|A2=m~+epKeVo2R_^|&qGjP9*0>0FJMS%3dE}fANU{m9!5L)Vb9LZ z#X-~|coFMMKnLaAhKb(>5FZE`9BTgyn)&CQKkQ__r-+d_em@QTMlQxpRnJqZvB6CL zb3II?7dR=v;)xN5b_HsAL;68<7tjpox$)e2%mI?Qr#til))ZN|cfaFQL;l4B03>C= z;RcLI$pPbiWqq+d5KNXMF)1i}`;9f@jeFEtm=v91V8vT!$;^FN_fDt}J?SPriYV0c zhM`tU6x))iN@8%q{Rtv0>fyhsl>Hjyu%1=Wka{V?SE)o0Us$e^=FkC0NDd7hYdyM! zdC1d-!ib)AUzpdV!mBmnN)RCqrJ*Bwjb&3fv1!9$HXhQbvWY^lmehS0MP@pxZoYM9 zr4+4&$t@=pTAmT{-_MW?mmqoQn;uRxr3|>9{LS!^!80(?D}NJa#7JN4(<_xP_s-;2;=fjYQ==GuajakP zrO|0RQrpnHg-{D~C?soj=oSA;=O)k~KKe}_Wy~( zg~9p(@Ttg=!26S`3CD`xH|S7ulbRu+P(h?FcEDMQG2xqT@`i|)lK^S7`4E8mv$1Pj zd2giS$4VR%*jKjWtvEW~g(43VjeH32FMFhkN<Ul*;YzQ}23a51Kd-;Qdml6lE5D-^uB4Nkkz{0MMzt?Qsi6^(xv;of|?XyLLpA2`- zG!lA6l`9#)OP#2?W!DbV)!}ArWF6^}eRd`^l7V?a#cquhW8I8iv|NK9PbZIl&O+ml zeW{w#T?Mi%HlKK1v@4nJbelQ5qS?#C$x+sb#mii5ltlmN#~)U|C~F@8%3dds^dVk< z&~g)&-~q@>A{RX7NVSc;*ETnbio^cd$tzWJ#m`WH#E3-o)1vP_Lb1N~AG@Ptmhl?U z2#@8ES_kj%?hgK1wK%daS~8DQ!D*}bCr%WuJv5ssi~@-7OU@e#!jRf`%)p%J5PBj4 zSCG;NZ_FuN+YS^&*BC}D?7U}NDyFbLkmEA2iN?y%I;?g)I*`yMo}SA2u1SxjgnK}O zJig(K4*8-Q_3`zlwpF1^%(JT}O@!S?xhAP-Y9L%3CrzoaE?X35s(gvAkouq=oy<9N zT}^>!D{ReC(kRs-$CD2KnL2_W>TccB!L?W0ACZXAm4Rn!<9XCX|EKhOb?gEj)gGX5 zfi>;8!iwf_$P71gbZB#P^6Wf(yZKy$CvG(8(66I>5pmL6{>z8(H%IX1A;z1uh~^AT z6=*86pd+t_qc>3*>s>3iAL*YU-*CBsC3HCHS~KQqxsb)dKKp2~R>0#;L?S6_T-(uE z`#BXT;W)0afE_JPjUgFl^*K;vO~u-cPEYeVKHM>v+@+7amQ9`o={Z;vPc+YFVOCnW zoV%Qk|H=>_E9JRitN-|0;t^N>&UEKd#Xi@)l;BbJABW#O^Xx z@>J5t9nr_ZOB-?sI0QJije%_Q==qAK+W688J8lzZLPB^g1ysLrMS0KWRgDtX=V zMvC(AMo*>&d_j|5sS(*ZW6QQk)(VUhB$F)4sqdz=anBB3i(zTr#get&izX={KoYp> z(c9>;=s1TMuMw3SlwL^zz{vsrsbeCpmKcsk{M29rymu4e_9{OtGl+t|v@d9XdU)7? z18%(_TUOrJK}$xml>a&f)JL*@3J)>K6ich0?LKUmmL}|(uff2B z`8wXdA)H+9U7;_>V8)RIZQ3r29C^d=(vBCMq>^>lyQ>mr9DB^pyk zmPDsh-dVh2i4DM!J($cPK7PgdM!No!L*4$PtLBL>KCyXIMi`X>U>ymJ;t1yh?2oqA z`uFT6a3T{y)`r~*jlF>_&g|G!2PJukB3v9unV6$b=C+{ZAYPn}ihEO}Va``4fC);( zbONbiW2cbDIg>8)qexKEQY{-P6)W^Eo$1UV_~GcsAghS6>L{)WuXDPE4B#?(=!jr& zd^0SO+vxVmeOLV|dkG++E17;!ghNQk@&kd`W^9hqO00il-b3KF!5jIus)Q|35xqAi zjWTp2l>l5O&hsuk77pzmt5-H8x^+P5+9A4;hQ0aXeo|AdoxP;=#WuvBqI~S5q(%SZ zBjflnkGJG7xTR%O2X5NSusO`Z&07J4lhr-zo&##V?{u{O#w5o2JtFIDU!>OF(Ehr$? zW|kr%1Ml-YpVd}5?`aa7Oqx)>pE&vEd`4DQPYK_Q=GxMf}l{cLeIp{y1(8rkNsf_%_2H1 zmQj&Mp7i@Rz)g{U(reQScmrQuWt-)KoJFhmZ2u{6x}bCHSF zcC}EfNYIy_r=%6_v7cyU(J_s3anv^V2XHg4#vJV`FImetOuzBEX&*4*@OrHJt-MHa4Tk*Mwq%gYSAJQ9A*GX2p(MwxN-O-q+iGz zH1kV|%jWAh^mnd#CC;j_ujA3EsJs9kR}qD0Jp@Z}EGqrgFTa|p*UULKs??H>*u1ni zV>n6^&QOvDj48O&JIu8)v2^?jY4CvKKGv?}oqwF`e>ti&WRj<&g?9CoO~8c4n%Y^i zwMJ35K%BL%J!{n{D7e*^%JP7Z%+gU9uR&bqG!(6Cbout{;FZ;3^3k0^QHzOPD0J*N7=ko%aAsq9gM$5c>@x~#&5`6vW79Fd~DO8t?ib=T? zyM|W)BP~8RmBZow@e>~vVMtBPF$Gf<=aao3*k^4qd6msaH5hf*Wy7MC2OsS^#N32~ zir`br(R7f_-WAdQ`=e6dPZXSnWVd|s3D0X7pof<*k$T6SanZF8zr*IQGm=^h@pDhL zO#PR~Cb9P9FftlFSgn~x0gVYnthSb{N7zrV0!Efbu9n^^#d$aL()7>wB|@j)9SK|- zY}cO`*g&ztXW=+oEn5v5V45H^zOd`l{ZW@KA+KjuHhQUhtHl^idZLx&#X$#28#&H| zs=LdN58b!LvRgju8r!!sV5dYYhwKQeig{(XpY<~A2Zc)SI}eR8HYltjc8R&0)azqk z-sTtxHn`?OXv_Zi4QciJ^xBNc##j|oR#U3?#4y=C4z>DoG;E9GQ(Ih7H*4EB^-RR9 zvicvrrW>)jzwdZ?jcVoMTnEsTMTJ%e%@;IlxdXRA9ZU`+c*6+-@-yXoPG(rsoI^0S z9N-H=armISCqMQ8Q8Z4|HpeNYv;T05^DY^1q7=R5pru9KdE1#*u_UeC6cYAc{eZdR9s~dxc34gp{&fp&pJ@Fy>KwaB^-3VmhUEl9xIg|5V%m9Ls8CqYmogIO7I-S4Y+|V- zKGceX7S(a4^ENyyBJ4=g2^2NCXny*5NGBpW^6fNSR)ZNGso%FXX=!}B4zqW2V1rt} zR;r)x&=Qv|ADzhU`=w;Nt^8vK5AZEJ5C0u$dr4l3kth+ozkI)-I65V6k{lBv7lULn zT@yMt_~1)1K$IS@qiK)Z-b@7f^-Raw{Bf*=+WyybSRGvE;?@&AQ_@1v$x==};OOz9 zwl;?1DTM-%Rl?Genaew|}c^8C@|YJw@-G64939;cH&_ zjyd>TYrLFM7wU&4ku?|pV@TFX>(D`Y-QWDIZd;&^qze2Q?{Z2=ZeQyKVDmz!6OD;B zzv^Y({{B95c1fl7`Gp_BfMEL>6!v7`%-n1BkKDg8-CBb$lJg1Vj>-AZhq*n-vTEcf zHmn*cbZ-Qt?zU(lE?ff%51=&FLZQ0uFnoh|TsC$|=@5>a40|E98uEeUI!(FK3 z4#5t<(8pI!7ZZHLs#ksyzUpBez6RY6LJ&7(*(sCGI(idFq@6yROtg=LkLW(7`QaG4 zKm632G|_vHCRA|20t7-n@|*dnq8^R33Q;9;&o^upWfuv7VVGm?;ADXxwIztd36Uf{ zB+zR?Fk^UH*_4Qt^B-re5Ru58mbrK0%+Dv9w983I$I%(&NS6RWL-j7n*;P0arr1@%V_5xgRoI_ooY` z{f8ps8~kQRww`IkBrUqfbP&9WVH0Op!Onu^;`)eLwejoN<92pe;Km7wuFLKHbXN>KPu(SD>cCvD1ex z#iw!U#^@D)_Yq%@S(Ulp-LN#bQHUvBe77fbbNmcf2*Q+Kr2^6u$Nxk6O%; zdC}NX>6c`BuhZ27lM~aGKi?Ew>kMBSu4GygXX%^0sFf-fQ3` z5^soKRU+`Sq4@qZ;6jqTy~}E!_$DydbW~FGe_8-sZQWv~bq^0Y)GtA6>8;mKoOj%l zPMY&f?u8ZF+m;EMAg=fu;$^&9$ze9)LCMvsaFK=f1(OB#5!E@9q5T=0`jv+it<F88TKp_pXsPTH9r`9FZkMF zI&UX8ivO3bk|LL}?5U1HilZ?%X1TtV89g1s{HUIjp9Q?9OkJkurDcGp@2km*Hf*Hw zX)WEg*b(S zx#zU!k<0-&=hs_mCX4gQqhq{5ArBrxSx7y6>$3J+OhH}SS8d$nrR{~ENRv>}?SmAR zTZm8Ec9MMc9#)X(obVDi5*8rKB&fJQ!bqZmJ*~Uj- z?;iu$1=$~oVDdo~A=@;LF6)hB>>AGgmre^R^JI_m8v{2$Q{FmG#fdDAADvzh+=df5v>atf2sRUo)8`jte7S z?SUN*JuPA;O)D4iWNy@h5Ka$F84d1A*31HA$m@ImQ4I!sNLt#B^qL?ArWD=hcfUd0 zUsAH#Dtzwx_1*3l09qNanj zNC<&?kC|e-?DEGEjTdd%h!;v_C)$-uIojYRJz%;UHNR}T^~BV#G2zSEg+l3@Zq5Oe zopx&HzYz8x;VtAHXAi0pU;YVQ&m-p0KhJ~=n*f;J8ogFxJN&J1#;y*8hF@VT%%9$1UiE(3er7N>H`LGQNW0XwFx+` zUJSuo&OmLngqKVi72T&k7`tYWyOJ5$N0K>|UG*QfV zXrq$Ol~Vl-Z9!7w*Fqm0|12#usi?8=YTq{E@1U)Hnwd6@b+!5l6Usa~|73!FH0e88 zIa)VCX;w=el&!t!Ipkbw5Tj*O?fdfa&f8pnq&4o$JJT2Gc&q&j;=%?*bPkv6d<4T_ zeo6lgB9nDb5K56DaSPAeK`8Oz@AY>D`~Iulob=Gy_Sc+68AEx#38x7Lb~eE}8$%IH zP$NvB*^m=iNeMn&X_Vw?lZeQiq84LShAGbbgT(lGeEXKx_@4ryn;`=@j>{XIGi9!z~<(NmZQ**y_+1i&%#g z7>IZ5*kSTYh0O$i3X3@XHZpSm7zv?y71VFQzOw!^$QP32AE1ZT-)X~oS(4|P2(C`U z6CR>x{7&@EGU9(fcU)gqbLf4abU$iQX>ns5;#F);(SOfUj#=&|T_VQyI0)z_CX6j`y_5VP1B z>#sY_hx3AXl5!}gyU+{A2QI9f(#>Sr zn#pgmnR7f z3v?9jS0{i^$UwImaIN|u=vjw(;F#d-0;552z3Uuv)3zP30i*QPe>uOCDSfx4_ClAT zp)7Y!yyJ>m$ME^E6Em;{TiFKPg`zz70GdH1Qr~W^-xY!{PrSrHw$y^pQqF_1-YS6) z6RzbQ3X(=vQiYSG5mkP)@evF2@a#h{l( zoi@=*t$UK7f12K~qyO$T>VCa&xxdRG?=`Vd;}5q(-Uv$%!h+VZ*Qv`|@OLL?y573T zVJ$1DEz>WA-${!tQ!%83SCWTl@rb+HVM45r=C6ePhK}%^4|lVn8wpQPN=XjT2_$Ks zAu?S{Bos|}h1;&x|2+6xL;KWZJq*lP*c$Ig%jNerZ{tje-I2aoWTf@}xgc~7Lr;f; z8Y;VtWua4#vn=SRAc7*_LNwcLd|u$|o_3*pN!)aYggd0?ZTCgorI8I_n|WDKFHTDWD{ zR#a1qVk`G{Owmhx1K#9$8;uBmQxLA$NydL=vLm*$1AkV%|Gai`^@Y%NJ>IoeN%nZx z&jfOERMr*MG%vOF3vc66$XBP!&UV5`UX!OTZcT28uFmzXx-69YugQX@x_WPbX1kXc zS{!9Lp>$;{7uh~XZcJuSD~ZL5zmMn+vgFQiegzy<$vfAjdOYRK<#KASvj^783c|<0 z8^iR}XEU3#kgh>*HF?XlGlEcf2NN6bYlzig5@sZmN0NvlFa`>ovm5JnoAgo>)=wXk z^h37=i?)vnG9Hvk9sQx|(lYbGIRvs{X;dZ8KGy@T_%2b`+pHhJD*wOAFJ=_NccGs~ zj>M`sDw_B;*OOM{v!Ig25K2wsVDBCBa5y;~IdL~k&i}2N$M7sJ z(!MDF;p0yA50YW1Wy8m)XUQfAf>JFsUzpp^w}X#Ab9f02OqTVJYjA;@*>#hXBcAI6 z$cvj2La#HoVUi>Bydi^XevUeKg8~qSK@sKY+7hF(vU?UA?MO1qtJJH)rK#Z{w6T8= zH_;Dw*UG;OebhYHrYU5zsT1|Jm6mbNi?|X`e=qcE;f$^=>lqJ?68$YSC=6>Mf7|4P zH{|+WO85u7uC{IGWTPVynnIumY9`#h0UDXBJ0F_)Qn=}?W0j{`+sa&)ajhGa$mPO1 z%vX#<0B%Ll*h)Ken=P4k{_Ybmp>NeDHEXr<^OA%*f1b9e3nolSFuzIHkSeY<9flE8z^-}7aK zR7kB%FU}HD4mRa%Bp+A;G-O>rIp(r&vGC5cucH8G9veeQ62hS|82S zCxy@KVuTsK`M)#>F;@eI`;yxX$%y^+n0Ku10XoR9(TC0zp`}Y^QIQYlqy86s^Qiuj zhU=}&KXgtw$7q36_wJ%H;9glD@g6Yn?6mQ}RN=LVPv@%zkFHQ1G1Csh%B}>|a*)R* zkVx|CLb1eS4Pi*Sd!kAWaXv3{8Mp4=Ivw}TMO+y*1)hpPTrr=72&5_`unpLLqqfAH z@eND0`je{b6t}7h?Qbs+;E1ll+UCq}II7m{96R#jUusjG9r2&Zqdy-4BXs=Z1moJx z+BeZ0N~t);Q43szpoVw|`iS^1D5|#b)_i!H|;ORf2(%{-kYC2Y4-u10Ltr95C z{?uffDv?m{OS=03Fe)^;ov?34h>}dl(}({jj)G4$qzlWf=^|pQPe6yNnI>{~mw89< zrmyfjZT8j0H-SL7*I`HCtAgD^i?j>#lJUU0AV8Jr$n6+X@;QC1?LlMQoFQsmaJ=Q+ z^rbg*b0=IigCvyUjdB@Q0g-@_zmez@2}#xSq}Ft*LnFpFf|Ksp?8#cb`%1R)7JNB| zHd>bT%eRdioGb;C3mv$WZB8tctkd@DKgHD-xH-&SzZ8Co3xA1TkJ|}I;Ix(Z6!@y?0V0N9OQ22ydtr1iKXLXb*H8oiU_JaX1BTzv1GeG{Fam6S<$@JbFr=np!>I1y`<;ZoFcs$;3Ud{ss1Q`zeB*Qp--==`fUQ$|?zN>*pTXOR|P>i)@o zjYe~R#AG+BN)o~mNI0Z>--9sZluFy34{Opjq4{`f`&;^%C}f{YZ!I}_xN%)$?)v^! zy@I8=eyl;mPh*$F{(%w_Kg3&}J@|~7Oe_9F?XE6#Yr0@HCjiOTkp9I$L@_G~fngF4 z9r07dC@QGf%y`|C^H%K>uW|I&G5I%cTXiZ;wW+A$6m3=qjn9m6AD8{gB=wIs*_Ri> zN6jQ2kqk5828P7^>`}A_-ubfo97%6K7ad-9aXlf>nufA*h^ga?h?oZ!rYm7@-kxct zv^l5Fv(Ka0y5G3$y6>0*b*&c0%dd<|+ta+(Q`ll?7}%=mj^>8)61{*5g_dL9Z{3*3 zQ8BO;>wvDlci7o=-Zo-%56PwFD$Qr_{}8`OW4Y;~cm3r|IEcWT=?z=ES?PU2xkf#L z{Tq?V=gw-zSU^#XB-){tT1R+&kY)h zZxmJIiLo>9EJQq$X|eTCxdUrAXn{4H#@JIP%Shhz&#E~Z^U0rwpewK}FeRvh^9^eP zYCE3GP#OJ+P-=f9uWj~!vdNZ6yz-?1)F%>eENDC&<|qhCJ=IvCfOCuaaHC5-4*KWc z=y-Pe^h}q%W!Hwgd%J^w*=v|+&_L~*L%=VGg9bN%Hbl*yc8pTP#pMwTg`|YPAtJ>&z|_&u0%S|=!0V- z8H1j->hztp?RSC>{2c96+nzE-`YwpP7<7={$pHLfRnjEx)F4U%ewDC&Cbw&u!Khbp z*C*=iL)M#-ZX-3j!o<>?%I&UBP7jo82RB{X<(OZ5&cBPi5MgYOH?~KPv7g&s^b73o5*d%n6OY}_aL-am-BUXmfhlbE0rHR3VuP~pd992+z93;N&Hw^9~<(!+Pj&i)tiK1nl~^>oYK4#dih=gvmt ze40tY$93**_E~g@kSc9Q(3qvhdJ8{@*BU=Teq;2CpOp~3jDWu^qp-xK z!5($;wdk9bZHw{-bb{>N-%cT%LF1(um(k*KOs91--OVC^Y;sNV7oxD?_gEMXLQz*rIdm=^TT;rMoWLFt#`MZu1i_eIz7R=Sv}^DEv7du;mf>ukm! z>&k|*8@c8gA@$du7X{VE_S-*aXlhRD97x#96u9S?^Qf}<;>W!ma@XhdekW69vev=o zyBQ2?m1rjMcMJVponLbRAqIBFqlV#SpH0r5vV4xXlBi=WZQbLTd04iUR@`EK@2g$+ z(CPyt;2)Vzwab{v%L^@>c;muG?EfvMCu47>N+Q*n?e9u}ZFJmr`nQ8GVH7)l`L_0? zaWsb9wq7G&&Vnmyj)sOuL*;x3sHP3K()s3}+X;*}J7XqKyx{_c{mo&piwn3Bl$T`5 zfe%=4*I~i&yU!HR`iI!j(76ncKl7ij&VJ~ZQbkNN+h8~YbKV@M{#H+B{wh5TDR$7n zlI4H1yIxZ5&qWWLv&QIQC`{Ei|Jv102wNnWzWrCDK1E_A0xGDQ#W=H25VCHuB^rHK zP%exfu^kPFf>iSGdOW^W!}eH0m(F~LC7~OAGppLgt++0d5;)7^uHr+6)ui;qJm2Yn zuovv!>Cws9Ohd3Li$z% z`3e|ZU$s-_vdC}wP7f-9#+PF_;Z7HAW^|BN?yrl7`_#GTx@}?Q0BZ#jket02bl_y5 zs!uhO1wxnHQ7z;@%^`_`x?NO-s%ByB@X4l>0u*bfbmsJCBAq|FJnjLqOxRJLhy&GZZBQ z4|%12;%39lr?nY0%y(I2uD1llhXc%o!R&@a4YBh10^QjJi_{dbec?xz7au?^-|ByY ze)*&{0GoZwtj;vrkXKoj(+noElx*c%IXY^Nh{h5S&0R{cu2DAI%{QCDx}~(rXH%jJ z8ZXlmT4(==5j38~iQj%iNe=$~#{EICwb7j|=gsuv*vCHYvUpN*Qt_Ib59T38ea`m( z%%*q;OlSsjRt#vVZ_P_#iAg#507upkFizos^|K_6c!c4Apz=iKFF{vwl>m}8`ol&^ z+8%Brk{NZv1}5qqPyYdsI)l(_cddNB8JroRu5pS~$XTK!ItGRN(ec+G>hKEm5(3$C zuZ?eAR}8!t%pi*_06$Z&FM9+e)Vfxsfbbzj&lpquW1QsfEWtwynw!E*%0zbf_}gX` z?!y$c@?fPdZ1tdAHK6*UOH7KEc+%qq@i|ap#08mtD-;ZkU2G*xrE6mIr0e36qX2UV zWM>u;{PoSD$Nq5)w7&Pja>rcAKo~X#pXwNGrGUc4>V;WgBf4k;x}6U4RYoAt12gR< zU}@r*g4&H%W?*OS&q|4kTK7uxWBJSPFZ?ZobgRm{pZ52-(INMkF-Eo&1o}5Rbz`X( z@+-I>N5W=lt+XU9)R2I|y_GGk)oRI8yq@!?Dd(%fx+XwQ>m84>wDW%kK7Q({uor#? zmkxNaDq8{TpxtcZ)d@Fb1Uvxn1m8#};+O@)o43Oqqt-DuWz$LdpW9!q*?LR*C&{o{ zMo&Vf#?ygRrOTYx4%IbUUYB8VVoQo%7PwJHH#X9`Ag_vq7t^kA)H(C~#9IS0H{WsE z+7n&2%7C1c6)1rbQDZLFk+J%HB2g|=vTJX@p)v!#K05d*TaT^!? z@8^^vtS_~?HXHUxJ8RCH!LaJ~9_0F?*U*k%_v4m$i#%J}N&fYlc5PG-M~Z>L>M?0u zPzbkego256$J3D7Hn%=bB|?l!$|8yV(VtPF))s*J!I;G-Um(pX%k@t#ZKhLOq3-d? z02n@kLR02C`f#r{vR)i(*{ASU_DLwIc0~`7^z<~#t9P~Ay&J})i2D4C-FE=3!T+AF#|tb z)VEVH%~JpCWMmnnp!NF|6e$A_%PQJD6@r4Q#jw^3I=ZVT=nLigCD+5mm? zTF(;5sb|%5sMAXNLqAEOA6bx`4?- zTg{q+P%?vK&T%f-D}{hS(6ZF`rF))z|Ig1F@Ly&;EAeBVP`>24q=TpftI7PL z5JDP6p~Jjq?L6@T+)5@U)`*`QE4Qx{Vc#B z;9!G6xoP|F!d_#EHxtbR#Q*wZD8P8^u{i;)w^$|$3TZ>?$t>N>)&g9M+rJNEDG@c~ zN%(^9FZx;WFi zH=~GGj6C<_<)+ax){SJjjs7PMl-|?Mv0@|M3ixL+&%csO=bP6arSq8<4swT-mIn~k zEm_2WNI}Qtq{7SLO+;t~{ndYE#n@Uj5ST$FomVbU0Ly)R8!bL^h(F$)1{+=XyuG_c znLLX6{$*GRM1v-WB59W)PGH6J2ae;>V-8{EY?oNXL3B{`j2p zy(RzMCHOCf)kTR5QXtg2soOxmczm6sy+GRP-^DOGP98bfVTskkwn~>45Qxn~MDCNs%GMt_-k?{Sk_~iqHe`f z$qd&MU%&uP0k;o1K)1cP;X7T@i|ADc4K^8c-O$I3s(m}h$8=gpZ+M{O8C>>Kj$6M9 z1FdnhEOw3mTz>pI(_s|wzz1rad?tK@2h7KnUrlacJC7X&nF^BtXhc5Lj zjDJ(0(YwL6ZgupNF6sPX?;r^0g}OY0;NoD@O)ItSQnwvuRP)V7XA0^)wIq6ByWEUI zBf3u5J#x=75OQ8;G$<1LfYm9{Mly(SVRFxHN1wyDl*4_Mkk!N^grC{iTO?Op3}!qU zC9CyJo+LG9pyt61X>a)o*Y$msY@vhmnO*xHq#?wI_K~MEclkPztSbXDt*^yOk4_yUp$G<9e>XK!h3Mq3VB6e;b)YHr>*SLGKO zi`Bbpo`cP_)g$|M;)TN|$dA1-_F*s_t)$4Z?4#WUJWp1J_;-iZgIr;oLm2|fP*k2w zNQ^7N;SN*WjQZbw{W-OkJsIe27?VGHnjyD=$^6Vw>Ftt6FbsTyC*p^IK9&?C?yPKn%uQ7VCx$+OtHrTVyitibp ze$6@XUN7Y<_12w$;Xu@o!zxxaA4+h9BsqL9KfUyAh~|=;VZDDQ<{<5&NB}{Z{p_$T zB6;w8`H@P)Uf1Wmq6%F2j2fjXK@nm_;?#ClReXi@j&q&TsoSc=3U5B_wkP>xKZQ3TrC6f+?{rxvo;=`&MawLEK9 zPyrs*ofe84S#~tr`Ss|RPo|^f2;qMo3NZl^OM9_6O<|)sxPvRsEYF+Gu7=J(z0Jny zW%PKSmok6xUGjP(3G*>NsQ$POva$_tK6qMh`Xhy2rlp{OML7!GM6q0~nu%xV&}ez# zSC|UnJkO8jdP?Jr4kKm;qV)?AOa1d=G#&ze`yzPoG7HPcfsZ&mz~l9h;mgBX_;j9f zbF)E*3$ee#IohRhb`H)gP>Uut~CtGbO0ccebZ%i)SsVpo+A; z7v;h;uQM-y34T@;Git#{GQLv#YS6I!*ax08xdRyk|B01JU!KSo#Q)p)7epI716VI6XsR58tTe~W;s>6A5u(kaeR z#CGES6Ep+PBF?p|rU@~WPFFLFyM|dOeM}Oiy2n>gDtIkCwcz zr}P-aF^Z)8sqEfw{4lLO8db|7iGOiRymJt3y>`>`=CINDxM-z&>U<{5-h-RWIy?wL z5%a$4;z_`jEG>_;K?f#I0kiO5r_Em$y<1JOt-sz&3*{hs`qnR~CiDfnt_$KNiO?oY zoR&}2rZ@T-e1ztz5+^uI%O~0R_!|$IylD-gf0Im1!tHU9y z2R88?m7@#T{w=2}v{L>UL%aEbmcBh1`Jt1IHcPl!BL*Dh0=PT{HPZu@pr$a0scJjN zU|l4Z1F(XyV!CyvE1wfK=(UD?F>o@;jU@U#@~#j_v_V&ubsIzuV6%NMe)%?q6Y%$p_~guQKbj@ z+gw!nHoC=qOSR3BCJpx1x?)*Zym$7$I)(MD5-XgOurWd)0O$cbs%r?`)77bmr9v-z zu=Wb&#Hq4vY}@;eWqi*bGOXX58MGsb13p}4kvF+l9$haEiX7hiz#z&r=e?w~oW`}+ zidicjRUX*a^+^*Bp|I$?HPx}a9@%~G%38Fl>9GU2rn9DQ%k*P2<1$v2hIS=eU&>e? z&qS+Xn91fZ_Po?GE@%^-!t>}j>qRR-;h~l5d)f`i%%sk9^j>F(o7sYNE%b|43&M7{ zFpZiTo#K(Y?pKd;nefCH^iMFNsQa%GdmK>by5iK!c+`RYqyt^0wtjbkE^c%C?n6u{ z!HvhF+$77{s$y)=ShK-zcki|6mr;m$+wxADwj*4Mdxo$L0^8b8j?&7?(d5rq5Juj+ zh2L72a)$~r!%;8x`6*K~#$=!X>{PdYu_D4M5zq8$4a$!w4uV?|>yZjDITI-m~^?bgGf6HiuZs-Thx%oMpa1F{VozG71{l7?Jg0Y$i;b(bY zvZQW}NA5&71T#WyXZ$Aa7DtzKj>+_#3&22CR<*~|;c^Xbif*%U#R(kGGtrN_KYmEx z-n0zT;3ZtjjR|7oVNpzJ-ypa#TE2qww1lp$g3{{Dha0`XIQjd^T5l(;)=Xw(`EDa!a21zUir3{BY|c$dd;YQwdnNodxN`qYJ_U+)wt7uHF}asQ(+c{p>h#lBgkv zu*Ia=;_vQ2uqwWbGaiL=kTm^Xe=Q{ydnVY>6-ZL3kcur6s(Pi9X^xXCK$ca z#b61Fr+trwH1@H7b%pMwkZ{0i6NT^Y7hOgPwM9R;KNh#(p<^iGj!&-EM)=GYe+Ti@ zCxL2fc2*~x0V4_)?U8)bO~eg^GXzNQFVJo`5C%&pLf8R#*Agd{*aRg@7+(+Muf`iup&gdyN3n_Z%#Xuvc{l zmKsrmCC1YB{1y;d{y%C3hp2PY9hiz#dAN)@D{8}z*iCr*Iu836XtCQJZ(5W%RT4pf@$pJ=(A6OZ^jg!U7`#r9ribOG!`;>)a;x%kt zrEckHv5n8DB2@Da<`z-)nftxX#6_{%xb*AaoV;TP*lWpxLPm-H~iZIpXNBKj|%aI?oB` zZ}^Y*w50u>e*6ImZttOUXapk`xZ62B{pOA-R89INI;S`Sknabl%>lWS7O;eiao7tI^CI2x+k5iZDqu&f_x zl_;&w{wX?0wLwy0`dY@Q_M`{S_;Wjz2*-MafmFN7BdhYStNKO8T@3(r^FK8^_Q@yH zR-f$#P!V=;L$~-)GkX>|=RYssBLy5G@HDgDA-M|p+-J38v_EFOtHtn(8G43EV)i{KVS!sGw>K{Wtx z;u{eMHUgNb1sJC?_;HJs)fyh*uSh2G@xGnL<|PI-G3gi$Yr-XU$5yI}k5L7*Wd3D{ zTw0K#(a$o>79~1~>XZzonrfxs`YE>&6i1;?W{`=({U>khqJ!#H``FQ)G*Y%zm?1pk z4-o!BY%6W7m3+17J%qZ#^%U_5I^6xAe?!q@)`BSehc7~NS`ajM`4wH$5LeF@r7{k< zcU!B62av;G1l&1M0QO6ZbFiMZ8CRk?&)On4HK>TbK|yP$5g~hY5~tHkD$K|u2f#T) zFyp$E>WVwVIpaGr?~dP_XPNFJjL$7QYnkT65t!a|*+g5h>nk7wSaE`ZI)_cIuwoD; zYa~5(jd6tfJ(tFr4(s|=`;zb@xgZ#wk@yR16|BrU2rq2vdgW^@=wK3!*BsOuVPQBt zbC>qAns%4MJj?&FDs-$Z^UOJY+SS7&CCz-Z=#FTMO1u~Fg;f~*GKXX}ZYjQ-PY>TO zQS9++Qs#-Z zT5+tkdzObPFAH=b>$6v~Qf=2so_uy>6;0k8o0ePxWZdil~?SLrn!HxOxg-f^q|v)y)Pjw>lD^!riL2N>(?hM-Em!{pm+_S)Lc* zX0D1h8*sQ>_MGj-2&{O);4{n|wKwe!2v(1S9K7sit1&^AaLTbLmzk3&0CtfGLB?I| ztSqpE&cO|Wa2TiF&iQlKzxpqD?@q)j_>(~QY`}tsy#nrAk<&5TwC>%r#}f_RRI^)v zME_Q}c)LLQE6tYQ(3U8nQN!C&ZPeyfCursMK=sd#_k-zVwZI!rYop`txLu%yoas>K ziMPvM6{^@D?>N}$_N#JNC-zJ*Td}5TO`Tx-Yc{TBB5@0T*#7DH#xYP1Q*GA%!>?!( z@yl)~W$P8iU{gtV^9uQTt3j!rcL$5Yda@>GMmZV2zRpA&`>Ph3%{qx!N~nd@U;Sy= zs)L)!Z(H4(p7%Eb=<;Fh^B9~)0S9ub`Db_p3gQ%&XMoiv(xS&}_E|gqs~m{9%l+(o zVzgoGeE&WO1*vS+?GVU;#a*v<9$j3xqiuD6GaRw#{)OD0DU9y(k>;VWUzGTrEow2# zs#P&F=vB?kkmS-w=PyTsq6O&l2wR|gkbqw=xQwnWMJHpax!*k2beL-)t2Y!JZtKQK z(`|yc)~LA3PLL5urLMteY5yk8sV6dj2Ys&#hfgFXln;mf(zVScu4gE@r`~6t`N#ZS z5ChoK01Y5PRnzQAyHhMSaJx8R%LQb=mi}F|Ci0o1CG&7h?)wMSn9(f|AxF zBDd(xU6ClBG8mN_$jg%U{%+#vbPz+Hte0;t^;}c~%B~oFMogFA`ZA~N_f(iE1>PpJ z!$8K|!p)~?uZ(aO7*@foHH(4LliVl7E`s_>JkDsPCea!dtU^I+cm6(k9*xvZV3cJ{g$tN zy3`0}D9Pb$Si(6l_aH=*Z8QK$R551+!l=6lh$2!O?_x7=Xt^}N6D&BS`1!sny~&o? zETVFimnCBGwwPg$$+k||WsJAZYVwP%$sakc4I-=E6_SNyg$P?oKER}+vLJ--$+Y+& z)O%?j)i5fGuYc^Yg45SVFn2wtrh-BO!FOcZdmjEMmaxEYx+ZBU+2@6`gJ8OCtrUSK z>vS`X6b`MRKiM1G)%v>GxWDYb-JVuF=c070NK-#4nV3jbN}Npn^BBzBj_Pc2X=*mx ze}mU8$5BBnv?Na8;Q7pSYHXcjRLg8WQY2|iksCuntwSVoMvS*QrsNAT=64qh9^J}c zyZQ8Ov~Q!bal{#h?M6&K>oo9mwqWS`_+9B@hPO$ce=rCO$s35=fzv#->}j2D(MkZ9 zmwdQ#Fktc-`YDfg@ymbjai(2=IpP*OIQK1uZ@uYg7HptezB!$)ntK|}3#!K&%D6rb zf;`vuEJUIaHtbw~dj{)`E

U?{YfjY0*%FL5{37>h^qc_^3pH`m9-+SJg&nCy#ng zqm>6V)G!VMu0XiWQBROhn01cE=!w-So?iM_p@q&JBDeyT2fi>GCI0CWavBF=%tALl znfPNybvbCz{H?pnO)Q6oWDWwFTfgr61swBWH!Ad+J@>F2y%1PFccI>16M$vQ=xW1H zNxqPoNs`LwuuP;ir@DxnXi)3qLoxDT)jC1rK=(7on~sdefl*OMgnbnlH7zn3UBQRF zjWgraNNuIHEfilg0JX1gW+3%>CDEbQ6ggHdf^`tg^3ncFm1QUK=>*V2QPiEx7} z7w61ZsNYmNaj&yP=9)Jw{vjRmyw(wjCc`=?#=xUZ9=LBIoFzOkYNR*Z%NlH3fl5UIM>_X7Y?9{_A} zZW>hd$3RL<6{7IJ=y%lg(_Ao_R>kUlLVO5VZ z+NelkbGC^)Bhju=Gav4aJ^usqt*^7l>}odE+IBnM4jh~0c_6nlkrD^RFEOImOQig; zv)x-XoS?KUc*-#MgJ4-z6MJe7Z5%POCKAzq+<==&o@Al1n7Dx& zgKN^-1H@7>iN4Q5$&9U5>|qBj=>7)D+TK3_+;`;=%wbwJH$^vK`LL}&IujK~4r&TprEyJ|IA(Y$;O06bd>z?PFiJBw+?fad;~LdM~cd(o56 zJlt0zGj8ntxZ||}C)q!?4k=zLps*j{~Aq3$%Q=U28AMCJu@-n zey>Pl1D4lRAZ}_l?drgU9`BWRWsybaCL~oPBc30UQk)8HqsMyJTWf^B^ z57nyLn@u64e{)%~px`TI>&H%u{IBdcHM*riC1f=@r|c+h?Nnu}-hyd}^j=aUw^<7T z39v1+?c80KVkc!+%t#Q@Sys_r<}5KoQ%1sNiLJDU^f(8doq@io{GcI_@p5)nJX0N0 zo?L~+=2~?cu5>+$|Ot7_u z?!N28>8e(IPgN;?{zG3`L(v6lAPz^jGUEN%91%wahB8;<&&cHHG}jgX+x`EEA83x@ z%+Tk$+3i*^`apeg?bGRj{#^A#QEH-)CD@W7I>kBZ1|mTEt_T3@`X#bBhu0mQdNSHs z2KgVYLIgfMZA^7B<*imkU4o*;CydY%G~ZY%xbiEo1Wr=*=Jz}4-^IiBFhQe|IV?b@ zmXrlYr!Zq#BWDkJgbpZ1F)doeal>v*pmNX|mqMF3*p@f|9NbEFcpY0XR%+q)DjqU0)4#u%R#zuGfMKn0Z0jK%J>;)7cYX zf}To&qG0u1lj>4{gZ3N|7uK`0vo99DDLT4A|1CNBpB20aE82Tl!KQBj&&xuQ*HR&m znG*oO3{IbQI=W%yPOLYkaBmeJas)SbaVe1FIZZGR*#3q`3NgH3mZotKljH{6?&j@n_62+2)Tw zeHe1X^dkvYSnW2${6W*kXLfx$2@c(*P>T`ZC;J^&?lP|LNHfr`Dk(1mk}6>fFz(fm z>MVkpbFM6PgK~P}iHoRvUZQL{e~#JmtHU-RVJj-|x!xPg&U%G#Cfe9&QmzSI%3txQ zY$NFG9_3o5i(b%QZrdOsN$U>s{X0a?8>*tDiQBDAUUC>){!==;xmt<8%=kk+FOTdU z5QiZltlvA(6E)e!dqfMaUKFpbNm73=`I?_hZ3$&BvzYWR1K!3}KCy?cP53Am=Pxd^ zFaDqh>TGh;SFrLgrFlQ%nDW|S%sOm0feq|rVpCIX{yz&KSDmu2rq{0MmFQ-Z%cxFk zY%Ykj{5I*5Oj1Ep(EeovhwjR$3Kf$mGZ~QhN9D_P3 zRu;UAF5~;m(@9=AwsoE{s;{Y#T@N2fZ=og4H)#P;M+l>@hH^b6!jsS6H%_e z;x%~FB*h}MBg`=tY)mC1SW)978=`zLliNZJWqd(_Q{IA|>Z9N3es95EDZ0ZMb~ zpL5jgl^fdDOIL(*%Q9crx9fF}y2*p`iv&-%H`knj0S}m}g+OkBTAtVcdJZ<*?aFmO z)1){uH>td64E~k%AEe_H<0MU%JbE71bkNNb$~bOA_=z5!=x3;0Zz3vkxOyJ~$z^J4YT|8RLSLeT zn{JZA`Oz1Ot!tldq2ejCsfiGD9dd(OO=f_gx}On*``#iN;kQYhJBd83-pT`S(V;R( zjC;1r2t7&lj_?{28S(&~^OAbQ*RJGS{5WHFYegr&#Zfp=WBaJ!j9txIzf@a)I@1pb zEb;px{?QLekCWjlvMF2UDbPTT_3AaR{jAQB64-zN;PoA8xp5x(P>wCNOE@_B7R;i0 z5n>PqvYGZExRR_YoaW_Ni3}X^dM!s+9#$;wNN?ch)UIJ?H*C0m&+y#kdcy6Qx1>ct zZv&M?wo%pIQ|z^qX-Qm8lQ+B!a_1%YA z$d|fSlA-s}?;0d&yu(S9X-TMFr$Ae~V0v7VP@|yvo9H8J^wB8h^fJ8ia6WLH*FYGT zufS#6ZS7(y6<3JzU=axGK-d5yJzQ!v`Q%Yt0la%E`rJyqk&@Jg$(fz<^Rh>IRQT~yX{VWIu*1xp#+ zH%zuL!k0VR3v^`Jp?73nQYd|XJ}_uu*B9zpkvh0+K60jutH@2 zbj6lX*G{{Zpxk#I;6MWM$-!?m*+G15HP>9*4XjA}Yxr-m9Qqy1_5$vB?nS(M%fU_P z^Te1+tuc?(*fR+$OQ3;8TNefWbI|HQNxsB^VSl)@Bg1E@KCaw9{kj2vADd1os?F1i z*!?>pDY4F{uxjrPaf%pr8xzOw2IVJ~odSiOI)($-`z3Z|)=%3uFJ4ua@0gW+-lP^RMa0_rb#Q_sGK*R*hi{(Gc)}LaGgx z1$s2v2Ye$D@@iO1wc^LB;m`NXo(lA`<=sbIwOxeWkt%H zNzTygOWwRc{mnbmE^UFBZGQ>dz@s*EskgAchjF*O!{1jD?)FgP&hs6f|LUD?SA!JW zA4bRCVAbHZGrG1)Y|Bv3VJu1^4Sq;M@G77SDbTDyl!TU5xuo*K1i5DLjZ}0K9s&F^ zh?}^9iG8sP-KSo5f#D1Ajha9-yF_;ALh53kj>rs<`&V~ZkxrTq^Key+J^kP|0~Ixa zb=U4nIy47ya8xk8e||iU1I7A?^?AuaHDQF$csXh~WZpenS64q-XNzY42foyk87>aQ zAj}ZoEHzDf(fx;2dU6c^O@jp2%Pkrl`R0wh;bv3FQAweu{pX~t>!YL#)$5W9Us0v> z%jkh-vxU*rm5hJY(#`I%P5fI*rT$;DD_S|yFG3)iP*~kBILtZAtCkFa=tt=XNkHDz(zXVhK15bb;$-rg&*)U1{I=X(pS9(+^7qMB8>h z-5@H-n~8we`;R{H8@G%TWuKIdX)Cw0NU;!q?L*~ksFBW-$Yw*aBgkR$=LpdAIasBK zmXlAOV*R3tW{kBaDtV;_!Gch2D4(Roupac=VEs)_LB#2~A^VNc zic9Pf2m{#_HKgZc1Fn3dZ_#))zSQAHY3joXcC(r|{;`3YU9$UyypXg1!|Q+e2Qpb67E4@b%!Ts%XrWl@|= zq?@oOxf-yWS@S;EQu|v-t1?Wd^&dL6u4Z3 z1~}vevi|^^3Cz@M9;kY0nYM5jDVE2v7Sl?-v~o$$nm}IGK?94h-siBtrML^@mh{4F!^z&3$a|Xg7tFy=#FIkXaB1O4@ z&U5H)8F%`c7nkT`gFnj0+K9DoFY3@43{QDuq^dV%{9t%L)Al0MU_d(CgCT97xP!m5 z{dyerQ|TYyGJ7lLA9}@GR!0fHvyYB2_sxzugu$2=xSh7dUH;Re8?K%Nn-Tc!^X8t{ zR}*)ZYezL0TWEk$tInq!uaG~fX%ZqQFTP%Hm`>rzyXWNBiqg<|9^h|G_%+O0RS+e3 z8wUB2Zg~5(U^EPceVw#Q%<#tUut9Z1JC9)5%Bm%{xUaMKrYdYHZQK(C3hn=RDy7or zefzW*a?v)ow#ArSyi@oo`1xY5;E}>~u0%5iECj7e zxklx-3xX+mE+bv0bfx(^_>dc1ai&(m0-K#rfEAXaUaW?ge;;c+n2y|^P5+g;Y)eaP zIr}i+L#UcT_(uBO1kOhpO^t*X>_#tFikRObFkV&v)%ZX+viS0e1B06m%LPbLAt)p zPZ*O>NV}v6v??uFL@5uB_kvhf;FL%s-z}4={3sern|&!o%zcbC{m5PYRQNPK>_K@j z$ts8+h{p?ba4-M7mk1Lw$M*2(z86ys{G%Qp2&~u3`;7PQt)~FfP`Aw<`6A^4utKMV zPW)0(Uu{zIlXuqW9VO>MVr0orKz__rmsivHTWPPS{esVK{z=MfhFql5w?#@O2!);w zR6Doqje{S@-LhR*Dq)Y7VUBH}gwxAch6WxkD<_I>pQeO-5ouH01p^8Vtf{DP4nF9p zWVt{P>P^*!gisfE+f*PVSG&tLou=zNtVTV2>4~EmH1_4f@BEPH8u+JV=*f$C5-xlI zB^Ze6wRel?Fc3Y>Xbd`C{o)!R@Gyd%{x#5QR+#o*On!p!pn-nToFg7|%ajrC3!c8g zOTPDtJE^9>M$`LV0n5i@L0>Bvt2gLhif;%Gck0IYKFgUFD!vnwm=~Nbpl$V%xbhG` z$`m&_^_i+&*Ce>egP?~sBEp*U6!xQa1EO;YUNe4_zZiRA2=pjQA3A?8R57$3<~}UW zY!pRhmh8_?MLS(gqJB`zw&-flA$~JTB=R`_S;;-Yib$#Stz1#Em#}~|taA?G0N>4G zUsBwt2zniFnpiu6wefxIt;Y4!n!X>p5l1Zxm6$8FX|$$s@J(Lhwly)7attSYt0{-K z1!t8S3}5=_ow~qYD7kTReCW*4aZ9**)0hj=;Tt?RxLhQVa@2?ONq&!ASnF(z??%6& zK}-Kf(^Zcs$JR1~DUQvs2duBD_|V(D%vDQQ@`J0zDb$)&rym+sVezVCJY z{)L%2Gjl%YdG4Fw6tkyK7I_3#0F}nr^QyRSnycxBqBb5-fgh+{4tD=J%-K6X5=5`Q ztK8aD0H0utvW}%BA@Rlht?=jjTX+&gLZVNct>I=vo_U`MUS#anv?0FvvufgSlw_m7 zOBAY0Q~&j{`Rt_MkZl0-JSB+_L=h_BV9E52;J2Al|M86 z(T&QlUYg&ck$=#COI*JhYh60#DjhAlB3ca}2!OzUU_+jC%(P(&KVSc{oHhF#?=>0V ze1fF^UO?u6Ey^I`h$yP&=Zru6&IqySNN+o;c>DJEN90m%1=Jto6Y$N0kGhImzwik6OPZzsak?ZO*g`1j*Vv+pvM`6 zbsA*=LZ_&+Ql_DM+#x7fPrw0_bk^$dol?xfJLJ)n50w9Q{fGb2pKNIy-c(h5KM$g6FYDI`nQDLLV*O_;bXxbq6J6EtqZ{cLmZ=zJv_7@zfY2Ik4Aq3m5M8}~B z0bDzJmc0g_aeC(Z>UrF|24vn^Z*Y=Ag4$8bY>QBv45qJ@M(?J4lTJY%Ciq@D6i&w= zS%*06yOrxr$SPxDbKxnko~Ze1ZOUIZIvcN~ zx^?kQ%mbN3I3B*03yrR>yXqIY?1=IZcApFH`Hoa)EzEURc50%z54jm(dUxXX!N=4a z55e43A=XDKpmrgqv{!?fh+dA9Ov;U;V?I0J0++4Mus4S8iV<*|XQ8xEalQ381Sf6w9#wrTE%o)(d;vqsN-{*}}P)h%b#Rx?T*t0%a@#C)_l z$1Xgx#g+T=cJ{R>)sj{tEslKE?n}`qEC|xQYpZpGs&?}(c8Ai{&L=kUNioTAR0>`bHBtt!B zgu{PD)w$veAerDdC+bB=yR^?oA81MysuMJiBy=2`8~!5xkdC+Eak$uDM}}g0fJ=*1 z!eS-DNM~`Ubgl51RFWLzrsn7GHsL5bWHxr)cea^2M`G91_w4BYdJcN~MBqE?j{t=% z%`mCq%oTMf#{g2(zTBPWKcg@^0+bY$Mtk0B@|B>dmx@8@=X9{mPAFgp@|Rm@pLZKU zO)<`#zEEJTYljN|gE-*3+;kpkeipqA=ZU%A@<9KW@J_p0mF+u!dH3 za{ulA%r=5CeN}*Z$mgx%<_vB0Z0d1N*U%M{S$cXoQDY^>Mg(4*32guF$OxzZy|b#$ zZP%RhA)Z+HW86*Dr$n6A)<<*5f|<|y0x2>Ss;ZsuGqb{=aL9EZH!*G++cs#CG3k=r zr{5-xN+^+Pa;sQKt!JSuo=?v#j^@StasFHW+)eC8+8lq3^@DG$5z<%A4hyh()!qW! z@xd`lxrK+b-hMWjM5j~F;HTNRVtQ|ycI7`8W}7{%xqtK!(f1|{a_++2*KuRUM{OO! zwUl0!L`+q&BKg3M@}O2Zm^y|EMRGs|gf(ZGu}flYUH?U%uTh)s%wfIoER@8KVna`S z4XT@y%G><&0A{8O3sf852^duXXbBSLDVotQm1NLp7(uYeh;khY4`kU~_y-Ev{0ZD!)JNbzK~p>4jE=Xcif zO()0K=(-!nU#>bI@>5H;y+A`)b05$u473z3m|w-yObw>HV3nyeRUc<-!tB$qA)V(M z`+b;`j_9waG|!W3){G0$kauPyoE*YXx1 zEh0ECP4A5FDLy{j<)^FNa;_E9hUenZl+oj$q|w($qy2pr^f#<5v)^NQk!=|T$X!VH zj1*UT1)V2F=cjR4{glgR1I(bO@IuTpRkGKWQzF&ciQCNn+GsfOEc2g!aTCm*v#ncq zauOV?%RZ=RZsJ+HDA&{ED}>k)X9r(gd;OS6jkbJhhX|3p9^o1%#BC<@>Mc*`-HB~IMpZK^6K^R(~iQeVnH2rwubDht(j%5Lb76!zr0AaG|v zivlA&DIX0rC1`}MSX-2TCAe(oiQ?B3pbtybl|NjfwK^XZX>v@|W>v31ACX%hmn+T+ z&>;F(nP6w!Q{yB=mhIZS(=pdJ&!p6Uv!XN}ER=1bNiha`&;U;Efp?*7-qS zYb@7wwgnyqxoPQR(N1l7Z@c-uHY+hqx|)3|(|UocT(3suCk?)H$&M}(kIPn}*Z94= z8HzQ|qqUS1K|g&2Uk2J4-ucB#va=N)tXY}^^Z40`)w<&d6=nJC=)*l}Rgep>pRGgEE{A+F6@O>^O zJNGU(@>qF2xRiHvT#|jsiBDJyijf*PGv?pOyn?MdZ1$ZEB_MKyAk~PeO$O>Erxo8* z`;Bto8$NMxn2sBYu%&;&;8i)n3L*f^57C>ifN4>w!y0cl7rt-bEionu;*GUH;M=yC z775(y!e1jBNuO(x~1B58r*K8?i1%PR3mQph#E>|4w}QHcR$}2ci$Nx_4&f z8)lVcd^L-Dsx#gky}my`GL(ZWnJeC98Q4&sZ@lrnPQ zGV@_$6>9gCEdG&4I@bxd?#VntT0Rh^`g5;sQKO1b>2kP`^3P+tdH856?i&H8I=SJA zff$HY16qu==sFUSU;vYLT|nQIa4dc z`Z(8sCyaDrE??*a)yS4!Q!DU7ydP32-3KOFPkWPse0zgj24>QZ?+e+H)Qd?}U@r3Y{?;c)_c}Ih%UOu`j9bg&*R4WA%^T(H4PD4Pt^%9ocAGQ?B*F~c(wClQ#fEGzE8y{; z+TTA!D=r~zY7xEOQH!Y`?2Od2hXxDU#~u1UPl(X_qNLCGp}_Qd6c zJoio0uVI97(ytv}Ct$Mm)bv{XPS(AT)=m_ZD*CMnzvb>s1obrW>Ncvw`>n9Uc9E1e zbV97{a!83t%VK!q9UARj9Mw?E(Ag$C6f`ZC?imLHGuz4UY*^@nTXeLhyxiyBTkWs-~O#GIgSg-ewD{5-$pP{l}3O3=Q# ztHnvX$JNRHDQ3V*?*IMXrCRBw2V)d*3h8j1SzJ<+NJCLYlD&ru$H=?9QwuH3Qyw2U zru&j}e&gHUpyc(8y_J=2L-FUvZ{8BM^!qwBWM9_YM4y~PLv|MXITD3ph?zAz%XMnk zPg+hxY#SCr{Lgz{h~oue;0JP#3iOaeIJ0Eq=>fQlw?roua&vt>@dMDnUZ;5Lbud{_ zeLbt!0|@ryefQ>oDgY8-G~>?Rp*+=Zupw`KJZa%@IaE&(aQJSsA^=iO7oot2qL#}I zp2~xLc4X1HaOeyu9;Bd&r(ItbecK0zI^@;SK_|-SB{6anq>V+dxk^$M* zU&?9+dyq?deA<~06na#*AN&|(FkZOfk){;7RFB?Lsb#!{HfY)SzDLej0kMp!2x5Go zH_FeSH6kT9p;ch~w0Ip-f~RJ1r)uNuL{776ED76zlH6UI=yQ07mAqIe7)6_CX!tt* zMfQqZZYeFGi65R>GNHP9S^lvT5Vr0C`H3z1DJiGmD?gOD<2tx5tP|N+57(H)2!ZC z|GlD)INCQzGHulr{rEqh0)9hGHK2(Ou57}%S#dLrBiBuFTQDO<>EmB@r;7yWcn!Zk z$R~CFSD!dOJ{||EQGg!dV>sLEAr;gYcU$197GkBU7Wz3FHv_L5H>+$>+hS(5{=@QgZ3|6FXB!rzDO`@ zGTd5IGM{*}!ZhT0;q1TCTKwg!M^^q6@KC*NS`sMH8V_^L<~!~!yj}d_HTBWvD<$@n zO7)1A3>ELGe301xvH)9ebq$nbrya~fh4@(|{SBN?Nne7@_$Ta9e75E;{v<(rOLltfGc&!@j~|)hk;eTQCtRUq^9`DNIQg61l_%x+wjn(gkXIJ3RYLSIO2LXjxZbX1+C3VvfbZ9>>F9#5x1; z8xPGq-OJQ6^dSaB9;co3X*MVTBp-7y;nV}Lv9*4(%7VL)&*T!X6WKat_hyvd8ZzqcJP0C1i0w>}LmeQ61=CELai znpZH~jfZ5d3}i}WyUrZl>gaOgkB{QN>jmZgI9J}&C1z1T<-ES*)fU{F+AW$fVm0k_j5#$D45HGppx71XyuzgcS)Y$$F|GZ%&wsk~v%Rzr9DmR8*gB|z%>g+@g zJzCEmUm(YYh3fj!PJ2Qn82LGs!8vXwmSDmPP4y)FqewVt)bWp*9F6+kvUO%P{~%OW zr@&Mpt)x8Aj(}uN7A{}&T?y(Y^&oXY^3g%C{U zC_k^6!I|Q$fCA!eMm`zsMO=KXM8Ya!C+)N5#F`VT)FdE(t2`Ba7*{~)0ADY zqC~A(gz>ZwK1}IR+pFnR+3$hq2&`#d*)ZPm3CoG$e8Nl6PaFiu-pV|UUrne{VSH3o(o>f_-K=Q?6pr{s6htIW$RpD!GUCjS zwS)LiUY;Fy87o8*P1Q_g5{eeX)xD|FAoFZKow|ZKSCu?74E|FAH!I`Xq#H^~vyCdo z;?c8qi3hR}6|)iYq#WC^jmjLhGP0)`2mizI#r=7Ly@?i88}74>37)~D$s za`e3kQggo3F*McTnB49xunCo$y-uuRdjlblUtKI3St^R;`=!ines4qC7R|W*3FiCQ zq-UJ=JEkY{QaQBY#u9$5SG0mP1GC)l295V)F5PlQq*#|=Gr>uEzJ71Ag9R7)yysd8 z^~(RR=JDOC&(H6!hnDHy7*b37w2pZOm}$F!9uIlbEjjBP(3oP$4)*N+fh{Kn8+-VV zaN6s=NNSS}>5 zacEpIFyXvyc6vqljwOKC1-T(=SC%b0~~)J!P|cBPaLUzeQIF)k-oIdHB2e+i|l_JN$VP^wG~K zsv*5KEXno;nWgu|V@V)+{iN5mM22uQ!o6@+t|*g>5$86Qz)Csv*`qZ)ekBm4!JQs6 z=sZ-3toBQIb11?da2dyi8G}C7R^RJb6V)TJk29Q`-`93;DdCl= zPkZ`?+TL%D^0Fj2t_-o+igmUVc)*o9G^&@G`=)i4ZC|W87fdTRmErTbV)49Zm0ic# zIF1`GESQwVW%AW*U#(81zE$58>jQ2>0&!x+N)ik7F>(EP&pz0;kF)XYD=ZVqKEqQ@ z1XOguuX39J|EBXG7@6+Gn*O`TT_D@xb+SEv|K9CEQC9bVQsdhdH(C(TZ~arsV#usj z`5xi}v?{wLUx=bD*?0JO7slxcDn}+AG&$|XiLP9@^x*S%Vl$*8{nwIr5cYdGC^A0Z z?Df|KJFCs@gfl(G3dVGgRRK30GOf!|?L+3w)d-;}kHqAN7k9G!@@vfG>$rP-Lv zM<#(#1;KCRZXG23HrQH_%xILinBX6()+-7A`~silwX3jwzsB}DNNhgl9&l=-3=i7> zWNtjv95qfgiL*v0eJr*juhA2rwgny#W3!}KdAy`6bmVJ0RZjKlNWAHWS>71;Px-bY ze4|E<1%mSTp*0q6vWQRCgBmg#i((oW^SLbD0~GRMyoGOLUX4j&z01}L)I%NrQxR0G zE;K)XbpCLA!kvGhq)Sbx1WQ`Cl&TF{yp$w@mpuD4U^3Gd*=~~j?XIY1Poy0v}}Q(19qp#;=8k|B5jKzIIC=U>1bi-K8wcoo4dfPL#=@o_oPb5F7G%4KWnC!Bix#-zuD^E*d57fWolGSDsI56JxY9 zV>n0d%HDxC%g}=k`xgN!ui_TcG;(C<+ZprigtKWb+3|<4$sQuv^*+|9RTTdjyRYpG z_k$mtR-gtH@&|aeLGZdSQ&Mem5bDU0h(uWScRupka#_=g#g)qy`CqGv5^nW4Fw938 zO1$8_Ars@FNV_|TF>we1N^y$0W!5-?n_WltClgDOW6@0LRP`Z)O55O8k!Bk=X>vdz z4VZ+%?aT|*O`*w#YkL1m_yxHQ6MHjbesckhqXO5SevHVXl*x|NL-nCVG&sIh^1(yU z$VD5EL_hqnREw^Z6|iqQK5tf3k3eI3obfD4OqzTj6VkxuO$Ml}bHEpSRmEpH0C|8w z{0Sm~%ZEX<1fZiO7igTvKW&Gx)B*KMgrTxJ%NI5aP%NR;)9UI^-0Yrl%JPs$I0;_J=sV zDPSuTj0QfzQ4+7k+OV;&qd-sB%RT4_;1zle40xWRRC;v$Ini6m6)0K8-@efr%_@wA zGcMz}*&?qxJMZi%PjzU(Yw?yuQfdU&pgYtOyqMOU7e7BKh@E`>tB-Qv-_8oNb|5Y4 z>K}#>uNIXT#II`w+ehC!N-zj7Iu!31jhQ%1O-?6cbrp5yvYGzW4H_s>m}fVLn78oM zA%SL*w{PC0^owq{{`C~{P>n#nhLGzNaDCNB(Oyss{;PQ+P>N``&H3o zNWSX3K{D@I;lZQpjtA;+8amBc?6}K=c|yjn)4|4v(Ue`tGPHb|P5;f8BpIz@&`4LdK`SMQD2*QnKF5-!s7Xa4;4`apr>&`XX z?t|ZQOO%WQ@PFpC-Fj4vh<&6D$XbK&**HI-k->Jc_K&iWM>xK_yVa*kxVXLO98%VN z)%fiRKSx~(N2ZK7c;da$$V%y;&TK$Iie9YX6IZgsjWDLZhj_zZ>e51mfS}ddH3HI&Aj7P8^>0wTDI+x(CqA@@g|!4 z-uBvDpJSU1XF2DdP)hSw2(Tm{MDD--1BM&j6Ed{;r>&O+0buIP^K@%xTp8vIV3&kt zct50-9?|Pm3DDrI1%R7m3`pbu2vr#F6GYps_0xENGJ!Nikk0fxM}5xz|ccZ+ZYotu7Wb{&}<0DBlRkz&$!Z<1=xmC zcXWk*%43)bKDZfiCUpu!dd)4&E=8wI7pSEUc8x|^riX478ag?`jT9|(o@5+oU%X44 z`p`y|9ogB4ww>$EiIbWm6dB)Fyj~bPwthj4KW&V(=Ofjwj44fBIPzx1aAmWj72_sh zR&YlD1vGLS!mj?3l&($5aD#2cejFEj+QOj$2oxw=EIF4Lo8< zA{ZAnVHTPBPT#^3%r<`qt-<%C+m$Zf7AA$(+I0DlT{&a3_#&8!Z@dY<#l?`7d~PZs z7IT06*TuF(5P)l*j%sUbQZXXE{*a)D^!*m(Wp~b%=@bR=VO4m(2!V8};KS=J@cS)7 z1A4}J9|7Sh17XiZGm9bF4&?@ge)oC#0k!M=TQRkyO#meG?w(bz0gndotgnN>f~X=; zTwvk;`xf05q;ZS=f<3=z7Fcx^if92}`-o8@U*QVYFo#s+Qq*}QNmzyVlA z9NuHtNY9Ui2wqX&h~}t>;&sI?2ThgA^#EbmE{@Vl=>$5c0dLEK^-O!+ZUmraqhMEDG2VDcjhxUQA^1vO3!ZaDp7sAe@-=)izE1)D?yMxH$JU= z&Ucs2i>RfZ@uZ#m^9rEp!r=*Yhelix&Z?wa zoc}=INwkk7lZ*Lg%7LX$M^0p26Dv}JQQq^J=i^Q3$+`)WVyTv%r&R#(Xa#$>8_!FN zdnA=0IFvIU=5JXMWmpS72r*oDO2jDF)r8&en#Am%kmu3sZxt*-uZs8FlF}Z#0vode zGa6~INQdvx>*}LwZ|r^`+?3mU-)5)6QRChyHeq`vv08V!pd@-IH+$bZI-<=1^Q-|s z_uV>gAHY5e8F(9tM3Z{GC;pGTVg5U=1vxe#iz#?b3in)C#N=#;;5eBou5hAgP704 zgzj{1)TdEcL2}Day01b(ytQ~!&tuD_QIp|FCRg^z6IALmqEo795IbY@Zxq{6Yw}6v z?c&f`1|5n#GNuXHZ3+ridS@bhX50DoN}9YkCb;i< zk&dbU*gksYo$S;ML8#i4Q+E5{`K&hW>eJ>2RGR61kMDh*eDAbB$1gPwii%mas~n67 zh5O&ax~Z>7lF|RQMYP)n$v4vABSvU3_Vj14;aZwG^|VW~_VBMsUCAzb>~IrNx@%*> z%BVhGOAtQ(c78w#dh1SIPx=qpUllRvK7pI*aZqQSg!J}LES25TiOKwb9zyIqkn`Ba zHhC!idC>^P1TVV(4t)K-YM;~_+fl71x7LWbR8;;$GIy+=(;85Rm+uIun0po;7Ome)EV4o|Y*+=s%y}uUiRay3jYec_euw#bHS?l9f9M;AW7Te#{7N?~y3R+?F#9g~p zmUVK`+@Gg&g)jWDa>=iTG`|b_lZ9GRLpk|l3H}u(L0ShUjF0S57KU|4a-c<99p_`+ zE*ZX(W^wGk`DFi;q&P`S6dvL_)~#j{!uF>+(mFr;NS(quQ}6rBvg1;GcGL z?wLH9%uzCS^>uYzYAGA18B{_ffgqV|UNf!-Zw6Cq0^n zmbmo`D{0O8lp6spreK-x4)-PMRMW>x20>3z{h*0u(>D!+xo*n$I{^sMI+o`hw8!*U zP|6s>9myA{0t|y8v*bRS;(7DXO1G9WI7czq|r{Y!F^J z7mrRF0-IusX)4V$stjIw=0(V%%I;Y+UC)*+a@@VvXa`2#kiO|^g%44-4*pQYJr}LF z49&PZ&}qLuCTe$CcqJAz;sZaM?XVB1m<^91F_4E(8>JJHvrPU3k7!r>dMc0L0TSgUJRO+qZ;^nB=;ziH~2Sz>nD=l5%Be#&dQIa9MUxzoAdhyfs>K$HwI2-<=W>-?RRl_K1@2~ zP)8)$L?9Xmn{8@9L=hdH3pdJ`vqn7%@6MK~G+J4@>Pp6%{CQ?*9y>;&G>1f(rPR)p z1ctz!W4+jp=VG{_IpX_pnm3aPuSqHl82w3ox<@%-wn1mYSh{<4;zrXhGl|Zw!+8eyi=G;v1 zNKR@{slZQodxy{whEl}@vI2McmXTuni|v;ddQ)q?OA2Uqp1q&yt;1(?7Dwc$Lq1Iz z9LCva^EHQ0c_y<~Z=p=#P{~NBQG{s*Wh}&yb6?x7Y^MKtpuTM-tLPI8;QWHLrisYE z&tY3LoWK`fb42ql4=OMR8vf9gGPv~g3&ytMr*`jT1+xNt*G%6BtGlPmu|Y9QXW|&A{su-Wx+rk~JGng)>iZ|@fX4ZQ3|N5XMM%G^ zZQJ$i&j?RYj~L&raf;9*X?5SWA~wj)O}%8MdFWRE63Kj8F&$IT2?Jpi!yCb3CpZNS zgdMhz1Zcp#cI<(nqltzFv zYV$9f-i*AHsW?4W^c**>zz%!#&#ALDsH5~G^r1WD+P=A1a4l?4Y0$6V$%|9eO!YzV zfAHqNwavBLK#T^F?`6?YjvuuV*`bmZV_4thtPY3_neF%G!CqEUFLzfpA2NM6{_^rm zN)kIybFRfDARfdZqE~>tqDD3TuNu!`K1}vX9#`j;a-J^Gp;n?OyOg4;lu^jUdL{!Q zG{J=A=}i$Wy5*c1z=T7)m@%Ogi1YbOJz=r6cjz9)?$D^M_wwFTLGt9F)^nLY*f3G^{Xt@IL9_<5yQ?I~>!6 zH$oNH3k(8FZx$@br3pwK#%Vvu1EVMA7G@5&s^4cv6+RnPPR#=opjfA-qdt8!JQ9^J zix_1V3zM@Y4q2thYq(3EllG!>6$UJuI$a-u*4i>90%S^foaIK|q| zXJVSTH9W&sF=i~+tFVb#z^%hv28?brLKp00sgaY`Vmj5jPb8NE5;m82LM^IX6QK?^ z)a&F@VD8}?%L=SJWU6d-X9%$7Yu^7xZBjshGy~hyO_v;LQC4@hUns3;uOlY2p-8^3 zGSv;MljBy8c1BJ9wPb9rGPG;YN0miPYXlA)UKhr^rn3} zeAbm)>br>dke?6*I8ihPXi{^y>9Y}3vJ_RZ4YyXEd+%T*^;KH;VEoPYH-q(x5p}+# z6T2Qsv6S9rKJY`Gs*&g79nZMDorjM8ydBSCaMewG`i#KG9^<5!m59O5?&iVzy=G!>JNrdbWBre^ z<6%#T>sv?c^$vLRMm9c14?Dju>gc@{f9vfh;-L*P?}O5BxR46z)PuVCr%EXwPL<8= zn)l6g=mGh#53yg{IDhYRDGdsD`& z87Fx8F+I5)`&y1=j(r71&&QZXL7aW{KlSZ0!MM0R+(p)oqphB#=K8L0zd!jn3vShcnBT z|H}d(O-*Kk2|)@t0)^Biy;Hx!Hu1_6*Ug6=6@#i((1^Y27_-%qCZlJ+caHhRV{#If zM}E({8>wbUnUM)m@e$_=uCgrN^(yW$dCRJXDS*yX4JUzIh|| zG05(BN{_sn?F1Xn zjNP*|=vMhy#8T5!UaYb@f|^WKPnRf*MzMo)bu>I|@I(2T5DQLD5UroE#H!s!B2Gec z%b)qKjfdX|qaij!=RgE-1d!T!y_;rV$Zuh>sgb zUI)Wq&#R=P2E|*Z2$4S)IK9)hBGpRrpWyDM4h#6{SthJ4ahKfX_Z`I`&li-x-sM0g zs|jX8=(3!P`I>#p;)9SZIe)51Xv*-a2|?q@i%aTIDs~9Wf^Lk`qXTRW*zWl^=gX$w z9An|Wr7jQ%l&_S}rt81Zr=6Uc_!&iVQwGia#-^GS`>>f|v z<@o0NY&2yxg-w4|>!;vgGsQQ2&^?>|Ok9s)pqBw=OrFd<3euw*J7U$AGOU?qZ#he% zy0DX9yC+3kEv^_=iHV@n_$k>mlhr zOpIzUeRAu^A*+FirMvF`g>>eKM;z9Z}B+)JB5ELtiVxsPvZ5OP~480hYtcQ3-)+qbaA_ zgY|diGoG&@1l#X3P=<7?xzINOxv0xJk4_2WYk3LVh#P%kJ`0>cJj@Tc^$)o!ieoK` zNJ}9TGYed{{=S0$koHWzoaLV^bERL9qRP^Qvdr463D!4!hjV>sutX3Ki7Y|&P#*Ox z3UF44{TYB8(J{i-<@3VT;wKFaQwhl#)xNwcNJ&UxvY*n5k^+n8B?|p9?o*gg16K9W zB1`)x`Z5ulu4B41DGw$g41tH6H<(pZb~{pcE6U3;dX;;e!X<6C!z5QNF;f7hMq z)4|kj_S2Cl66+DwgetbDCR^xRTm%297xTCT0xS=ahqa?ZxNOb)?_fam%ozAgYS5gg za$9sSSY#=pK#zg>Ltpt-nAj83`DPmJ4Quu&a=f4J&bPnr0^nKen+E$ z+by8aW$0}2w_0>Cx{sI>ok6w5_hOKTp=7-hD-LcFo+xzjturd^N?v|@-(6mpf3sik z$jePwX1LV1*7iX$64ae6KYEdm7K*IZZJ%xiD@R4^t8pOCi8(-= zkNW)8*Qs)SA2(BS#|&y^GfrMBH<&Z5i*LQ7icR8n)%itIZ=KyMG9bct0@d%I1%F+` z=KT7{M5oXFPwrez-UO7}jT*0^my;%+>*s78*KjwRD~f}Rx?b*lRgWH|k{eCRUtO#w zx!AYu?`tqphnH1c3~8MZsyt6x+ap(fG+&9BHz_ToOtGDf#W{mTA%|Ubm zCe_?OOsB5@JM+%^d&S`X_kJ%&wdB|1De* z+B4fu00zh+P55VXT8|52+qOi{9TVTO?;q|uw6heu++&@cF`Hag4?j1&Ow<0i8?+@7 zZnxfDq1WkFy#@_%ez~uJ?DWItXYNI&4Z+xQg^0F2Ci1{trnQw6R<=-6!J=say{3Ux z-K$v>bbZuDdp5dI^C$izq0#Ckq}FXQ?9my)h(s%AnK|=DtP~}bNx91CljX|$rA#8j zmv++`29|}X18eao4}sl=;nqru`!wz4lmsBZHz3%;SAm0m>gx48oGS!#KdaI09h!vx zzimbF#~P)@zEY0J(Gl!ICkaMXw#}U%1hX&Xg0Zn9-@jl;cMP%myv+&i2FsMj?R#y3-2nP6+OjMx_+zQU)S$+ z>NSA`=hG)CV$x58Fyg39CWD{#LO}&kylW_;5xdk(YY!iUCzGx-^^_;@8#ZrNy0nqj)eq7fAEgE$;{bX9i| zeb0s)@8(qawbJ7Oj&==IwtW_!S7*6DhyiH@X?xKHHdC-ILb4@&sMIL+rK#B*Ie^8b z6qA~iHK_Mlpqam4 z)4IN}r(*lCLMK{KU`j3WeFR^V%7~h5j!tpY3`K2rbvd#p$4Oeu$@KrsqgewG41C6PpSbY1n=X{;!yBhfTa~7Y zz}dLc>Nj2VAs0TMYJ`Zl5|jRVymK2*WAV?dbUdmQ`NNNG`s4JhnNdUk z9pYC`pvMll)D?p>sDMGY^6@6%zUo`!nblqv!SOLzPouf#5BAx{zrSw{8zE{3mQ4oD zWFcZgL`rMCi;jwsG6k;$(XXu8UYq+!fsT~jw{5IHkg#(87tu)}DTNJ8GQ&98Ob7eslXmlE@C2H)NA`mkK%EO| z5Q3>V7p+kF!O>wk^|AC_lc+<2%Fix>&eOzhlZ7t7Vl$xr*Ut+gi{SZ5Dp<69r?lDk zB>rJsachY$5-BaV+%5z9Dz2yWYn1-cMJgBJvJv;{^3WD{snu2+l;b}=@)Rp{Z@3ep zSH1)e2M5kJiT$XoEyezk&l}AkkW_Hqel^Esy26!T3_B&Pl)14D6hGmkIBBoM;a^!m zw#}0tm!w^Ps?_x_k|pOuKZnkJ9(}4?9azXmP7bzP4wCBAm|Adk$#+x})j!m*B*rsw z=lFE7Hov|nv|N;!<(?;9XSI54i%4!tU}jWX`Kw4mYN|=FyI+UH+bZ*GBZ4)8YkSl# z5%K-w8~Kijr5}yKF?_NY-h~=*AUDMqvKtR{b)ZH9S!UVh$AL^R(2?!cuIzoS#5%9T zZinqQSY+JfI-yFPp92xaACfuwy4=l7y-%WK3_Wq$^>b>pA=0iDols4H5Q>7R!lm^) zdIjg6>RwvbQaaSk8IURku8g{ddT^5UQxvR z2{*5a26~(61Zup8wheKdMA)wl|0*r)UMMmcQe$}NIL_s0njB)-c@E#pqjE)Yk~%&6 z4pmJq>7viCScolbQg)UjuOEQ+GVQ+_T%e~dr<8wjkM{1XLnj{Nf`u}Fnkp?2Q;`S& z8WvOAY3f+bweo#L+=>6vNZj>hLZoh4FfZt6@XJgXcbNv5m->g9|5jc`7>bf{iWtBh zJ3RBXCYNKpQ~iuvJ`_-|J}N5wt&DANgW$W<`D_lK>7XJ~8%p$+7Q#wGNcJy1{>L>l zXza{#lv8#8laKgGA)k`w7rv#tJ$+&Uo1OrUdLJ|@ZZmT4I|p=(7fDD<#HR7swo3Y@ zI#%0JehHS9HtDizQl%A*B{-!MitQwWvKJ1vjT9yCoqlJMETry02D4{t`aWq)_!MY9 z4Ag@3`^(Fh3pd`I1jy4SCKd8{d^w9|=8kFj`pd#ep4J_qAp=|ej^gb+O&bwT!iI=C zZSu9DPrpgT0QI|+^qq22NWlJ{A6b19+JujDxxQA{;)3%o$c*IrI}Mlz^#4hn>&6-R zKbp=uD602u<8+sFgMgsG(%m7U2uRnG(o1(rgS3crgETA+OP7RnFCEe#-Tj{LZ|41< z8D^fd=Q(#=*XKe6zrQXjcoi$eacweeqD-G|(E3Ku>6Le;Jo*44uOdrp2-{>wqF#BT zL0OnqYH)efU!;oCo=8y`B79qME$EFw#w#R)Cew=_^SzbGIpRN>-VR8}z6U^`_bZhn zrBi5K-?tKG4-!o+D^a;br5(dXP?MjSSV!O4>oi~$t575PUg3oIsv07JKyR$OG5)3< zSP{(mhQA{=D*!Ss&Fc3C|XjS$qeU?u`>C)(C~|Aq)~*q>$5>vVpAyeX(L z#5E>ec$Pb47(XX&FC9;LC~}-qKDmAY?*x6 zO+Hb92tT{G{q=1QA?$Gfv-soi1U?8(LsC+UV98`AgltQ>ks*IYs$i&pld2y>dgA^te2UYX-KI^2Jy$N*^|uJ{zDxKT@k@Qc>zlWTl3qZ2?FIVUF% zx2;QBB>p$Nb*{W+Rwun@0a_ZbY^ug_G!RO(%@b)WoMlvhN|tD^H@0 z^dM=)S{SN*Fj7Te#ZR^RQU+;MtdENtl`;@lOpa9#l=|m#RF&*Toc_i$d%8FoSXb#6 z?Xf=<{(a{m10CD!Ul=#a%7boA`9-Xgrk~t@b+nN_NR;VfFM#RWN(4Asp1qT;&N)o{ zLvc1b+z&)MzsKk!b_`w2ppE()tXJxM#ZMH-M4ukZA*2EMU7Vdxss)rGf`QT6!Y}!C9T>2UXo_s4*K-oCmMoN^uUr1%_xbvdN>~fFkn;Pyx7GVUVk~Cn zLVoUB>26v{e4WhPdZ|m`bo<&M{FcIfT9Z4r6GahgMs2d~Lmw#mMQFHzArDy!wnY|h z?d{fqtT%*DWt5j7x4D8pcAP2HMk06mO!}gZ$EfDsc8|-Dat5`4 zPfv$>;?A`XlSVDzsALcl>9&Ph%McT+{M2W6M!MkA#*^?pBU`tJTm=R709Yhx@4)M4eiR-z-L4t#h3UU{N zCVSGt(qSeVU4^?JrV*@WvJ5i6&;-K%)+(Rmb-w1hc+l*^3kJMUJ3xEMpQ+#Uj_kak z-umt`pJTV1MEA4(XXTR(--=!WQ0)}x&lU%2*#|7tS_{v!T&B@7i0i}7-J$p-TA6^7 zV5cOW(`MX|O9NkP(dJPfCGRBiE^=;k;Etlu^{7}RpYFqN-KVi^R=c%TGL9v4+*J3w zkGD(6S=Bp2$R-a2DTl2Xx;L+@j=J}>&V4oB`&*fZVKntw`s<8Ii>ND?Lfi8es&AqxBQJy6c2BFMlpd^0JTAGufn*!);eyehf9#Pnr>_E8VYAtA4l z#kaF8xuUX=A#XF3{6DurvswSOeho-nl%O6H^Q35d)W@&jW{^g4Hv0To=UTyVc7<8P z5OaUZJeF^j-^4r0up)ld;*YRwp-MYSe>4J*P6J$qw0+c!g$6z(^oy;w!#jm!FZL*zuA8C2JN2+@eIY#66|;n=3YV0|T!~a>bMgakTi{hzkuYm^WG=$Pw=^ z&LZ-Siz}Z~eeOlm_Kf~$wogcdKE9A;gSJw#HBHM0W%ogCyIEGZ#0Q!@k;tVcoIa6% z7KoPl?Wyfk$6TP;F1*L@r1}1cZV40A=^50Qb*u_*MdSV?%#J)5*POWF8smCs(WE-2 z>rzT1ocWwC8nGOuCUW8Fn3{~@d{LE>xYh;HxR!^iPId2@@5I@UT}!{NIwil~%eUYT z{6gr=TL>zHdZ&Cr&^_V(NIR|))u@UEr=vUDUDSi_j)qQq7*shE>l8)QJM$92vfW?1 z(REN=+S8$m(~y7s^sjD*YcwPtbG_(z{&EmByZ8@n?(ypmGp%k5H)pz48x`!5b%L&Iv7Z&K!AiFKAn}?Dx9cod=xy<>jySK7@q2bq>Jk;@sCR;h_NHe1);s=$~QQlGr>codE(HjUE>bECkaI&f`- zZ#0v=oqC%ucWm^TCg-V;*;}vm%X`VIg)oTvK1{~`v(YXI9OQ6ydCaZ)IT|u%!ma7_ zV1uyFYFXqaw=X>Ia``ngqP2M!IjnR+Sbh8@4)+TQ1NdwbeBGw9MzjwTu8 z^b{7pEixT42cyVNeW0h7Je1kH-#Gs5GI|4^R$MU~=f}0Rj3VUF%WYV6XJ?7SW_q~gVs>uLb|NN{ilB@@wEgDZ(`Dxz6mIhamO4&yPZW2T>$@9 z{%*Udltmgfy~;w1UKE+y=gazC1p`IzwTOCuXl-hqm>KE$_m?t>_n<>)51MSohK?vs z#O}-IFo>fOBBT7oG+KU@NTY~CbKJlj8+0{xO@{)PJOYmjc73g{bcHp$bn#K5yo{2- zVa_DG%Q_pp&{QEEwZ|+s%RTOb!wG6r6~$Z%?z$=$?EQ6y3mX#?(<(n3E~p6OJ06E3 zQa}wB2c*JK_%Bzs*Bc$Qt_7C z3a!`ApG|Pn-+dy=EHVM1vQNKmVqe2%eajMV3*t(DYhX`Bbcz+-NM1S>?EKIF5;tty z#rNvNFE{eSl^Yuk=URk%l5CnSzVY2~Jw^*7z3j12S2ADg+Ml`^zBSo7?wTe8&QHK( zG`xpK$GzL|#=YlsLr8lja(e-7n17F~!KP5Y)V(rDi*!m^D%;k4r1*|lE#HWCOQVe& zE|xc1NGX?G)rs;hA406v*)~+OH*%hGXOYG$OP!I98l&CZ>}m5 z zUhKX&SCjfe3xbnNU$p~G9d$OQ?J(jWzV+nFaSShvxkoI-X3`G^o-C^7g#w7pZ`7M` z)9a2Z<05Qy%H1-lec(!1tNG%5)vDZ7$3(kq#B5*&o=3I?SGHctv{K-E=G1~2rT<{prLH2J9|Z&A}pch1&!+h=L! zlG2kGuIo!E$t4@suSSDT!@q!S`HIVlVSoV;}Ez6Nr%JOeLe=o8*}`4itbC8my=C}vEa zf^eluSqSsELHuFv-H7b!!aznQv+kO^D?uF?$t&OkerC<4$$YsO0>}LPnXp_Cy^h@cc$4gc;7f+#8uB>V-Uj zobth8-Q4ugYh~S{F#hz#^wKc>RV(F_$)IGIA9{f_W;(G_gY7nRvs|{ny~MyG@wZQF z(e`1s!!^1!9BT=TnKWgQ$zswjX3=h1J~syeX+}z1fe@Kq36G-^r@}RWz0Y5 zAg_6D2-TDnAa$;~lE?To5o`b^Q`yfDel(SW6q^A4 zp1eQ{tPqCzRGf+PGu@$^Meo`34qL1pvzecgOTjUiQda5^M$9A*oCa+&M`X=n^n?45 zeJNv1X>RUns_f~ExctreRPlSP-J=h2flV*^VN{NKDn^4zR}o{v z@JvDhDPfjAfm-FtAThG>(y()Yr6^Noa) zCzqQ@c7S9PH|!izI?!WcuPp++5TH(UkfZUhi|p^g6&5goP1V2dpS#bS;Y{8i-SA)RZsHwiv8a`Cgc#0$WS73iXWAZA#yu3o^MI#ZiZGJJza_c2Oncn)A%{A_?65u{qzw zqaY8U{$8sH1~Az_(y@*EedFHJ*a8?9O{31A9w9KN;T2!g&N^iV8Z3O?d zcu3w}L3=lvrc-)1Ro!KBBnsV@5PY%uSoY{*dxfHot_u0EM<`F#YxGSE3n!J8QTUq$ z^e9W`?5$>OVnbPx2<)Ho_Byo8z2)}#Peg>b)|PwN;a50tzws*#ovzZ@K+7v0nHwWv z0%&}OJ2yS}#)e861n*w8woQ|l0urChJNaBMc9J2qZ80b!ywnYHH};zr^Tzffts+j9 zq$Y;_ycKC-KR@x~lr%${>?(_#*v$eXOu&mFqZcIfB`wiJr48cq_n!5Z-pwHcFkd3W z(1$$i3HhRg^I!KKhld>72f`M}`+i*uuuSKfpp2s0Uqd!ENjgu2-=YJb?(;crC$*6` zLfz53Nv4x~qdDEBm7;f!74OZBkOt~wOLZ&0gbLxl9h+Ly8THi&^4(frz`oq7rmw2f zC-2Ylu|{SKy^wy}otvS*!9Sxs`BXA^{^>MJp>D^pm{2kKkj3==u2|OKVR3F%9t8KC z1?nFRH1Ru#koyg17oq}f%6;VEMZfxH=Aqc^A*UlAd>C(qEf7NKR`E_qJKCW3Rep1y zh)|UXf}IDLOmbRZv{%HgM&MtSfNr^PHCB@yrD9AkRXo91cbe*(Wz@`o1V`AU}kWfUK4VH8 zWP{%_X(WLIBBZ5LU!pf%VT)9H7-dhtV%Gd@*aM6nG*+UOre7AaGT&{5r@|vN>@+q| z`h7M{nxCe;=W|xyN1CH-`$l#2i~78!erae!+xi>i;TgnJFnBnmCTIBIdsT@x%A=@6 zZQk7*wL9l9T}#d?i}!=;HPjZJt(A&POiAYFQy2Y2wba2s^NQ9C^n->wg^3$)+fa*g znovkVjqeHKAp+=5M*Qr^0XTz<%mQ&~sI7ZLx&{ zN6zVJGi|<}#MQY0#zXO0?wABHT3$5P-vF$W_fAk~nDVuLVBJ4LTIxO$?73zA(T&Kz zP6W7OfB)G!RPJaS#jPR%)hFrqvG@Zlg0%cvv>j@+KT2QmrYZ6kF%Gxn${f(XSbaQz zm^nCAS0oh#rgccghD)J0a>>6W*xrxA-$Y_!O}u?BPal28%HKV)Eil^z zQ!*(Y7(W|jekqeHJ}S~oyAs)c^;Xc^d2m)oQ_ac;lRehCtO~i={ng+u!j=Jui@)bH(soH^M8DlxuRINmnGSArlOIRIvo%z=2i;2ncp6UN-Agkjv;8B}rwmd@ z-~=buZ2yw3#wH)W$PQn%;5MC_w>Kr|!vXQfn+U%QeQ1dF2E&k`J1SYSt!a(?e9^9+ z!ck2TfTgQwwwS}4qZSy9vsqxZuhG89n*GJ}F7_CSqg81bfF3)^u1w4Z^;<5?x!cxT zvw7E`Vg~q*^3ZE2e9UdsgL-Fo^HJBG#*Lu!Cgk;}lVzZgd~-*!p~-D_;YAFYiAy`5 z)Yl(kGe^AEi&M8tZ^EP)5YGsjOxZ{{9O9|kMEWX67AN%vX8*ELz21!l_E}Khll)G5 z6~P%d0JYo;VrL~T!=IqHSsKl#}>pZr%x74zaRaDctjzZ%dHjqu9 z4~e10su@`JM-aWFAYW+KdV2I1zGNn1GA(@v04^A9y8e>4-GT_G@P%w%v+PPB42-m) zBvaqhSUW&MJ}L;VKybI$zk%EyicUWj1Zt$p&#NHLQS(qZ5$$~mn0~Db^8-e2s&O`s z{Bj-}63}c{kgUM4Ubq9^KM|>6D_aAkpO|SjFVdJ!&UDzD;U-pmoYzSD2G-c~jVK>B zH?wA9@A#P6PdA=^Q$I(JP_AE81p94yZpss^)5j)e@D0gHg}9f+qTqE;z(S z(bmgHue1+7Y3uSowe6MK4HwtwH+^Sjri9g5;{)A*y%j9H1h2m`j20=I5GcXve7WXI zy?Ic9UEf=9nZ2iA6%yL^Ss-TiHy#%m)e?*yffOO?e1;pluyO`PA>`Om{yjumQ7n&{ zG$*&%^lJQDyH+U+!;|#x`kpvL>S^k|>M_J(k)KZcc>CwPPO%7e={lji|vQ}YZ~JSkE?PJ zDv6DD=oWn8Z69{O&da3 zT_I!GQi^IIGPw@E<6Abfb`$y}L>ZiLZCaKoA2ysjMJ4EJE_Y;kl>rdrQ2E9z9 zHoiszP`M{H znw5$n&Uohps%&_2p8o6SjpXu_cTVmIYfShb9F-2;C-qN~JSn^R1YFyS2g{an)kQ#| zAdaY?tQ{5l2qxwisE(X}EmX657^F_!Ri1_y6{1S&epTf6lW}fq<~3UoxMQ#VwjaOx zi+l`?+@`z%<9qG62wB{?QzjqIj9YHX=L0Q#G~OzD`qEM^`bN6$uR@@U!{GRf$3ZjD zcVko#maafP@TQ_#_t0e2ZZzt!!3mknw>+#|Xf;nB34lFQ$M!A2d!|6_t4J~y(M8p^ z5#z;iYl1W#EJCExhX&dujldQ!sWMkotrl-@QfeQq)8X?$vJS>J5uK;SH1eN?w50ll zi93lKLyDr{X?Hp(@s3AkIq7clu3X@=kY=)n^ z9&hbv*I{r6lRddJ*nZAqc=*1(S@=>T#zZM$eQ97_hXc_c1C#`LS;bRMqFVom2J=wR|)vU9QiqzN?&|RD530pRf z=%&p2>lVZ-l8mi7bA7sn;Y85AP}Dc@Hycz@O?+ydC@YCzAdN3yLY^;oJCI`ameHK* zcpXjUWA&NXS_I3`O_J-BGl|c!{e1_;A1izxO+%WN`Y+i1>^~mK-h<$RJ-?K5Tx!7q zD(gO>DF;GU>SoE1(8DT0q;%oK$^>BVY1=FhTg6ZRwoO?O23X}7oG4aYL0JKytPo|; z9C1B2jbZiV_yNV7v~KN$@O14gMRz)KHRW=QWu-ne?XY=Ef;QLKgdbmlB&Fe1)VY22 zPIz!y7*c-P)gd8@@?ZvaNo4k4deE2%jc34Te!(W^#OIY9Nl%leZHiC0V^=OIDrqwx zBvpMJpNjBNgND^KjTNk}G|MMCn{mkeEx5W|NrapaWOO}OEcf<}P$`))FPT4Nd})Qc z=oO=O7d5@zVt~7 zDsh?^2Bkg}ofjtGbjoWM{};ffR++$n74S0(^go`r#M$JZ5bGfd*Q=y>4z%$m^-`&3 z_FSH57&TN<n)$8(viKGt9R78B9qcj+KWyY!`NW9k)+x- z&Ug)WmCV)e^a>OIm3!0}9X^!t8kBiE$t5N&wy=oe9sETE-Z2&R&0&<5Cud)E7 zo+m;mh2rLyHE&{*-{ufWCkxUt<>0PS;$L+SoiZ+46QYsFArr6t4!qm#%f9MWpV5hs zS7Z<$ITT$;my@zVkpq@z5J3u`yG9;P@a2wAxH)IA%d(rY3hiW-ew5Ck2OiCv?V^E^ z(x_ubxjEii<;32rA17K~DQsE^D87?@-R=vu7ES=Htv47I``cx2IBtmRxHwrj z9t~?8PgE)V;iMBEP>eJGhfS>>=4h3Ad44kO3PgNO@8IAN9xJej;p5}8o}fVc`h^BC z8dhH~LJ|uAca<@os`wSL7(jHa1~3*~fXtH$;Bt&n-@-eeQU8;8e##Vjb$@k;4oIF( zua_Kq0mJBe>X*16P}4F`BWiZ~0|GUWGI+bU{*-5f(*V9Ov9vDjud6&W24sL%hE}K$ zitu5r8nO(!O1T>y-ofO``3i+sID&qvUHW%MBlNYX!m&zT7-cl3^S})`bd-TuzU+0z zl{vez^y=3enpOk*m5W9wB2O%HpR_9zwN;tyzk)V>mc3&{T~})&aOaZA?IG^)#=&6< z0k(%{lS0FMQT;0athc5jV|mMz)C^M7oYba)T6>Lzd>Z6KbH3UERu^QYQBJ0`c5wPZ zCeA;^-2Qyz^eK1hG2H;I_Yv+G`XQsaIgIlT0HaghVSE|puLc_=$V4O7`8Kv=@| zSo8N30$hR{zH1M(eEj^~|5+x40Bp#5w(oHe=hw4nm2Gh#2GZ&L4@)m#t-!3TtV9{Y z0tF*1d|B!wosocmC zPnR0xfSR)z-596se25Kjg|c)3{{tK8(wQvmaCjpmL&!fb{1C=Y5)D~&h3q^OMCbBB5RbOHqtJh-3^nxID|$odO>tEjeDG?kD?)_F5kx-!p6|EZJ^bbyGxe z?$=;PVcO*9adCu7R0F6IImqwz<;%kxC-q*Jtn+T(We?yiUg;b}bF^UKiJeOAO&8;T z2;=hG&GIBHKetFRL<7X!PIh^F+8u!NA+g>%j}+3v`sW5PFiTMX=L(N?^b2_mwIN8J zJcv2oI_Y@esHo|u{Cyr1lC)pBQ5En6F{^x@YwAGF%F6of6Z`Udf@+ON|Cc;0+i!dO z^jUf>Lft@AQ>679pri;zp4fzO1q&{P&|m{Vqj{Q&J8pw0tqk3q(urmF%x8O#tNyo} z)J2SjU0>K2#1JwnI2IQF;mne~e_DY^ck%VcD( z`pGkZ$IAcF zyY^`hzt#g1q@kqBe{|)Iu2#iXdtT)sPS;@%lF_h-5>C-^d=kIKq(8mpz)vSbwx-ig zEDJJ@I+?iU_k9H`t!2o5E}CG zxGVYFzSVK90}I><^O;>x81?f#up5Y!BKv+`QD*@Cy+pXJpR??TBl= zh~O|`Sb!+aS`z!;rdfAUh91xQR?m8V;lM)O38$uy#mF`{k5?U)U9NWGKg1~RU@0sK zQkZzVE(P%WR$|>3n?2_sEg|a*Z6RxG?98wI#i#o$B-Tgq+)P->ou^3HP~!sFBmZY5 z^1)6Ihc~Hi69$*+CoXddR6fWZ4g88@^4904?~Za5f-vB+rq3BbDHMqZVEkR44C}%1 zZd6o$g$%w>GMN`Eph_gA_S!n@aJf!bt-`hrf5^%4JOAJXB%S9~Rw}FY1HO3`_Q_ki zqR18}`2}eXkw->J$2(A$L_dg9+Bc9Ac;DsNDN=CuBpWuaD-QVBJ%yH@W^cB!Ew6^$bP`7~!s zQHGqmi#X0uF>N|r^L4dhBlAEPBDj=R4q7HMC@shjNhBj~%qDYvPde>;Npy_Ys^Z%m z(zATgAme69&x)7M2x?C|+;ERED&&>ctwe0wds;PG6h{T0_&VAz_vo;PKEJ?-Rqp%K zabefow47iVLC4*wV-J;M8zN`hDN+n2|HnV1H-=v{9o=R-0Q;mV@L4I1>Kk0$8*2xg z8t-mgVPApUbK|=#UeIAxC+%nE<@k1h7y2I)nwmAfHO#SLR{L~97C)gKz9;`5GB8DV z)xEk2GbZ_vv8oMeRpJz3hjjHr+?q@^FzPZFq2w1^H5=XZpAIyeVKBsF@KQLc638+H zwMG&J#zmrJ+Zi_?1DbN%>4iDWYjp$hFUq^N3O#)OSteoj#q{P5R@y9ez;AHBi!h5) z!Zq0H?i=?V;zy8GnQ8BS(R&3i;caWhpY^NWZ7A^xSvfhea-MEFrc!H!nHLSxT#r|@ zw|&jnd72#38i~mtkW)8(-?#6VWJ@y{Wwdkll~tUqqHSI+k{U^kj2Ea~w68T-7qqww zt75}}YY|8^8h;BuSqOx1sxru9D!hGK55XTi(`HmCi;Z%M?TXSiU#5!9&AMzk?ZMsv zY+~U#z+3xT(1CX1-;@&Po5>;WDIr?K@b9s}oJ9Z5G=ipx*n3)8@Ri=;($a>4yA9R zxmq{s>D1covvu%aCQ6|d(NWV3g9;0$I9KEpP?vzpZ(}BkvzK(04F1$H) zBcB4?Ud0u3C@XpLPYeXIDJ)PTujlr`Ywmq9&#U44N*UJ+uGE*E6O*YO)!s`Rjl4>K zP`ON#LX%TH_@*53KMC0z;HNvgGHLcC`EntN@|8QP2^Y$(OD=yU|6SSTbtb^kD>?-b zG^8GjHpLT_7;x9!u{Rc9qMJSyo& zz|+b+5ZPyl0<|*2bfk89tGU#VsyB z=qXb+&6EgrL2<_W`{*ko7roi=^JE*riu*G)_H2uV$j_W^3o%w1FU31cp~eB9s7925 zlN^t494d=^&=kdJril86aBIjNUTv#&@QuP3{df!5(3GMTT&fx6bRmk>j;{=pW9bY1 zW2b0xuVX+HioStT1F{`iwfl!@>)X}5ASUd6CL3RcqeP{J4EKp8sWzyaAv!{bNKaFJ z8zW~gPoQUM=mV4s+5Pp*vK9SEz=h?!%U`in34hl5hDv)HGD;^Jar5gkaX5_3r}OEW zarfgAJA7{_);Hr!>;RL9nJJxX!qy*1tN+0Wa6?58dfMl_Do8tbM$%-FN@?6@)SPCu zbksVM#)juEWDXzVM2{5%9{`LD<3nQsw3yD10Ize4&9(k$6#40s{p)!Rx2P6!WiihG)scoiOZ!@IMuHlN9lyf z@CFx;z(%wMu#kM($&c3`vSMu&Y|e+repQ~^p}aiwK{#btdVeETQ`UyHvVyHEWZp0> z$d4c1wAO;$n0-l?%KgMLF$cgrSJB6tX$}8rL_2J-NrXJVd~yH`KW^_L8^XvO=#p`> zp-Ekv*=LgG0wW>lZF46lT28T_V-wmZ#UJ~~jB)g!DIfzhD!XdLg=l}ke%gmr3&jaF z)STmogNcSRiu?Mxvy`8JLY1goM4m23*p;~gXgRh>>%+gC^3)d%lVvBwCXB9m@6vRM zFGDIVPJVl>C0^`w$A9%B^qX5o@z;M~Y>p;V{cW~_D=r(+i=L<&2iinN|YxDulEpT8iu@rq~VQTZHlTp!>LLl9`-S4J!! zNwyl7%Hm0-pg{k!F--G4(V%eU0uP^I@hzxbO7`edI(KU5X7K$Um|N;$VL$s)YO-P@e&k8f%mW`I(|x^U_PZ)K=n5nIgpV4V z96@LXJd%~3*?FC2e8G1cl&ao7z!iW=Ua;Z1H<7pXZOeJHUpR6ZNEP91za)IT$a!H} z4)>0s5heYfVeZW#i>&wmYXK?;@b`e{MR|Lm(}|@j`NS7V8b^}I>BkrZa2@UFeE)GD zQlTa?JJa#CSQXTci{F6BdCb54z#)l@l1p(8J#`FtSQYX-R|6lcLQI=UqnBX07Ce3#CZZ)3e>tE? zmV@_|tsbIM4K(_Ru&)Lcy)}q`sF&LrrN?NzDt!}W+gbDY)Bo%u`}uE~`YIj}{$yMf zNa$O#*{hPy4~4v@{mrgEMM%KLk9567W3X}R?7x11P1;lUvPU0ici!;`1n&F|}9IrJwb#LiHh@7qSx$X&ki9AB2DQV%>=9=f;k z(>~LcZs}$@{*8AgG3ow+m3bD6czQKQ2o^r#_1bRWu--RN>hiGh1I3<^R{T;jDtA>- zRKLOS*C*@xpxysriaDV*Zkn>3Ixk{bs;e%JVf*rm@K4CdYb}WJjQ*O9(W2L9rMJ;i zpq3siFH7X>-G>~#7tE-!W=T~0@AcG~vJVuihbHx>fZ%1+z$AKT{@ zV7o=$VPo9zAN7PC5cb2^uN~9(#+MeKPJ%j4;@&z{z+T_{Bom;mJl+mSGAnQvSn;e0 z#1yN)w)+wTWrMvDS1(AwS(EH;ZGTM|d zM-JF9>_fEII1pcBa(}t+G{QX)%HYKaX4GY5dO3}dWZE?uCPU+pZE||VT^X9Bqf3hQ zg*oTk=0(tcWQe}N-k`2r!#Gp%h3<}p(HU_Q840hO1ag1Ln~6+@h($&B5dhu+ z3g21tj3E|yZ#Y>uLo2zYG-WS0dpo8s5Uzf$pG+f0j(De^J)HSKAFvj&91Bsf$IN`V z$SA`lfGTu7-U)X70%eEqPmh0Fb8WwA|7@%5x#et2^K)qHEmS-7(6JH|oz~gUTw7J* zj%h(9=F_)jX2(f6t{nxY&1=J@Fxq}=FMoitxekO3Fp)a7(Ry#a5<04%R?N0WRN%Du zdL;sT-bz$8c{plfIfi?#`8Vai4K=7oDlisb>y3G+K2t_UW9tiKEp*XO5}7q%NFzISq5S(wnj0~1bVRxq6(6pV4HE+M}}QwC|oc4>rjDoi>wet&h!Ng&o38NHWNu!j0)YvzXK6ONV^-D1!G+9cd z)bS-Cdm*cRVIeJRp?#&j-S_79^n;6_=ysZw<*w*B@A&1V>EyWt*n8ciLcE+x2h2l; zO?H*npfv(+Robam-Hye7&rM~&9-m$LddRPLfrME6;a zUZ?-gnT!j!MaxhdNrjs?zvHsZrhW{_^oF1|m()k&?FF&jNRUB`mwYg5;lp z>A||w{KI5mr=XKP$KGy!{%`rtiILeABPb1SRs7ONzdj_2ecO>?D8IVf%^9ap_Mkd$ zIpnY~KL+L}RPhq`Z%Y^lT`Hp)6tdoPwF7`KQy}QTJYjcFA0!g3EK0>>eI~1ISNlmL z;`6RrsIy3p^6_6cIDghSX+hkfNJ{sWDh4zjMLyDr1_hGNo@rt+TVAKj=LBc1M1u?j zD`Tr&|00IPsG`uCN9R^x=xb|q@o-Ny?gk$#%HwGk;i!|ok%8eIAY;3DT1osC$?Gf| zKGL#i|2SK6u1#Q4?G~+VBl~rx_#bt}?x=ZVzGxN0jW8aE-IqDSOLr^|M>}h%O8K_? zfv@%zE!j3bkp75`8rR zzCl`XyRB*-r@53lXYO~8EfNpC_FpL~sqT`fYWfxwSnGN{oK{BC4p-k(if#3Xs#}Z9 zlz7fn-RHn|SxJjrMZQplb#Xkn#z-=R4Mr-?xGnD7SIu=`QyQFI=*qoL5`4%XlME3V zQ$m|7&iP6SLoWt%<8I^Hihx`%*R^q6O!!PNFnUPP3m06n zmy*I+YiMx-*aUg}|AmFqvg?3&4AU(M~_=7_s707+00>g|}YQX5nwbv?oqVymX zPHbS@{gRB3IkdZ5E<7Ug-N^9I5aLip<*bBa-u<1yVJp6V;K4e@Kild{TfD~IQq&uM z#P@nRsOy5M$teRnD75kK(f`_+(l<_RbRb%ar4Jk7SL_79#sX?)^Ezl8&*!=!Z zuKu@AqNu7PV%DmX^mouO%N8Z?G!BbFMEfIf=D8iO4(!W9mdic%!}=m&Dj#eobB9?t z@2KFG2Q=|6rJ-TN4_wtGu)FUh)u(qBFqa`P4*6#l=R8w*fwM-K;dIHc#?7b9HcbmY z+vg7rk`BfKBd);p^RJP0EYUk`_N~l#VxP8_W91d!M@HU{<qdHkfIJv|Y8WTQ7t zPQ2j6nx9B<|8eJI$olZ5xhdYi8(b(Y&bF-}Jfp)eQReu|^rE36{N{UAugayR?Zo&< z8gE*;KoCbz!@h%UKVf=n@w+ba6>;UsetY&mD8s~3vCGH;D{dMm-`i3~IvgLJcpR7R(E`5AR$JxHdUL;P6!!f{e1hGa7#b3w71SsWTBB*Ri6z z7L*?DIc~A+s;uc4x)ZW3N6@9IE?YNB(nkJzaDKOrDe7roi-FBG>d8!Ub&hB=SQ7h1 zF76_xm}QkYxQ&<2-b}4U^I{!JneeVrI6h;6i`$Mj1>=NiWp4 zr+G85sJ%pZg|5oVQEQNK!jqvrp?&9(yjOnMjtDPmC7W~&;?DSIYhpn;{#PA`E2?@u zm8F&5t0N`RnZKNWY+FWw-K-zJbX~!D0uMh@eMAoBcca)ds-;FYdgShC-F2e&01FW( zzDg8Jeur@lWN`hRHagcX`qE7N`+nJVoZm*^LjM^UZ-fJ1KQhOTJLa9StZ0BbN#}di zkWxoYdRv>fvG^8q7$vs)!Z7TxfChF993gUdGV^a|)f6>nQWSyhRQO2Tv zQ57|dm1AeN{kr-NajX)o)ZdlfAoiAG@U z2bsPTy$`to-9Ce0s@r$Q7cNqCb_k=)%Gy!P$%!dGf3Ch8ExBX+=#br&tc(8PSNoR# zL9VGWuFLo23CY0jOc02=5hfS+skk<6iGuuDeb>vcw?h^Xx_Xm?$V%)KLt0?r=IIwM zU6(UJ5pfdJ8+T6Em&EqTN!h9Z6Z(gM^(&Ci7k8QMf4z{Pz?4LxAh|7v4*HKVI9r$KUSIIo0mXS}An#hQ(;r|K_7v?|v@VAWIeEj2JCPE9*FR+dts{2I-9T$>Ov3 zd`kfB?MJR4{((0S)_j*5BD8i8f+I9qT@elVsF;GSx=FI+4v}2Z`bK24&e>Z>wi)+4 zrCt(eo+RoUV}AScGQh%kVYFGRpA?+LZzT78_KV*(;GU0}UAuXhgpKVBU4%MrOkgTR zB&!Nauec0@*lTaJ4eYm-lt}Gs^{4qqh&z?8FnK$sXyC+(8PEeDR;Ji5`3wmToh=9!$6{Af3_wzLBbB#HlgW76=T&b z2Mw{3Ig`vRW{+PtlGQ_t&%K=jiX)I48Zw#+-Gx{``RcqseXcbpqO;bQ_<}pezgx`l zjyO((m3I;|cW@*T0ae(bx&q%I#=bk&*nYqw(Q1=(9Mm_&rbE4(X!*?Nip*>2pU)Qk|A}1gLfK5)i8tBla5wS z(8~OK6J=MRA+0B3EPW7hlEWZT&s`YY_sJtyhpXthU|;+N9>xc^L+if6sx(%p}BoA z+oHJ6b9x{J7SlOG_(~!Z@~WxOw`M=63u%$Ctl<4C{77vYs**cqIi%!$UHVZAmR1v+ zenl4oP%14Eb^N~WAEL6{zd|xH!iRN}6kUltF%jD*I9s6-QzVE{U>n>EJq0=sqbibV z54&E9;;+GiMkiepB*S}kZm(2JYLA_N{C2_KU$a~jE;++9?>Hmy45GSe#%Ynjm*a~s z1ZS4?jD2Pi$eUgD7ih6bEV@pg-~D`Ye|qkIA=7@4V$-Y!9xLd%3fDcKW%>MZ+GTW( za@KHq>t&7+);b2!~ z3kmb)BC4`Mr04&Zjw^5b5YyN1f&D}uPzy!_!xUW6V_1PF+#L~qts!Tq@w_&zx={jg z>rhV!oBeI2-OsfNkwrK)<|~Y`Z+5mbu2IgKM@Xg zJQ~)lx814kNDD4f(_4`<$lBIaNUN`p`|So?bJ3j}JeyizDziUE|3}kV#zpamTbxEj z8WsV;1Qb|MT0lZ1q&s#Oq`P71PDxR^k{KXV><_nTf2aBP@Z=Rq_7<>mht4{_h_lTXD0EQxm4 zq|&X|JH@-aELgUWh2=8}Rr6OPxQ6tUyO=dhvB)|{cr-8VXdl@DdKpw`EPQ1gD>TT3`;9{@m~kXP8rc__4^HS zZ(r8imfiU^=3{5Gx^~6w2qBHUG#Y;iJ}MFHENSJGv5h>_d6)N34H}KawSZnY=u*uc z2dJ0PXH{XF5?Z>A`#Fq-``;3Nw~*d#eCRIax6bB_5_V?-vH$C86La!uy2-XM0Q=U9 zEqcmp$d7l-oO;BBzCJXuy*zJpEa#(Q{>02&fZ>;E@Ug^_;q;}VgN!~p~ zo$mD{v+p_OFsyhYt^EuJT)N4}hg)h%_lr3ij&0|^r4UJ&+3_4d8CGb{f zO-^jK+LhO{TH6@pG+wNACMw|v?#=XiVUSt)E&T8EGFZxQN~}Si2~^(t$RJ+I6V9>> z`CNx+rt{<>vbQA1K9`_UekaQJ`W;f4jx*NQ?0Q?7p%PS&3EsTI9ABM1^>`Im;KLMY zO_qR}x=!OkE?3L-#mhi_K>HKA^gteW@x!wFus|DJ+ZSDy0!HN^oq|AV&E9}{CCTz~ zELV2s3`Y4f73-J1=23b&!|k@B4^~>2FuJ6wypveabqx*R#M^=W_LIuMvex@+w(m4L zJrY;{Z4q`MCP%7Ti1D;!^8RLv`g`8L#gSsU0Yfmshd9RaO;I*{j=h6w<_bQSvT)3+7c1Zt)VT~X8PIYt? zkFKr{84=!<{gSXyqODYtE*3jJ8{NiKA*P#+`nH22`i<~i+)C->)kG`-Q1p1IOf)5}aJOuiH z?`l_f=ZDDsQ!p5;1)o%(c{p`B0uWGoq zN~f2mow{3A-6dCtoJwmBF>EQYw&l!PEpekkway_NF_-m_%7r@p;E!~Xaz1upgB}Sr}6ryjW`xPHTsqA_gvc zbSTPDjM>4VBlq%eaaXReSL;!z66<9_&)_Nld> z4<6TFpTYMAU2mWi%DQm)!2r*K#_^Y5I4%a53OVzco@xE$&JztO3UWOtlD-_-q+8xicwVW7!?zs`mPX2m?Pov%1x5K zE1vMIVFGLcrDbc*{a2{o>?LZ6%WqrDTY}8Qj$s-!@}+-x4KJwl30L^RvDEabP`RcJ zMHb6xD=*h5eD`7+x+dz1t<`pdlXyH`z~^hqLWgqrv_{;|g@Om8QTZ#?cUhhA+41MY zt-k1zH#&wNfhmRp_MD%L%7M@{9$nNmJ4H2*ZTaz4-J_}bWGJCl_^`@c*I7Q(H>Ovw z)mX=RuUL=uG3Z8RN(H5?{gvn*@#20WEGv^q>NuDnZsNL}Db#|!h@)a9v3*>mQJUvz zg{QTGXY)E&QgM8ou(}pYwPh-5sy1QublgNgZW5yPM(JQ}963Q%HYx#`5UIhTbX36H zQ8(XN&RtZZXl%VB;e8h9(U6oqm@S9NWzd5H0xevJJSavy*ufEw%-&G*P?Fd5Csftw zxrtCeT;q&wS%CE`N{cuI?LwT|I|QqBa%zZL?l^;{Z_L`eL=S8A>w!PN5D|po_AFmn zpgoG=hgJmhPuSE)TT8Lx%wc`l$9#2OmP7Y=SvrkZ$-c9chb3XjywT4FS*&NDj1-%c zlBU&kX;)zMf|<`8%WEOUj3~E-Pi-T9Z9F$5Z5=+~j*q589pBY&O^Yp3e}(rD5*WS3 zjKi(Gp6V@sbq1C(r!r*?zMd)$9wWpk6LVc8jlOO*8Ij9UfKT=JrjU=WxL+|SVpz{~ z!haB=@$5qV<{9YpRSa&#%99`!=r|#n2~@*z%0V5Zga9-^78q^D7dwu3QVw}!EM=}5TkZV$ ztx72Q_j2#N9N9)+GI7~D{RiHrqd!=3jSjpT3{y{h>BUIXZ!6V?_|Ia#Jq_AnX2zru zG9WHmXNi?pkl##C_j%-UHjr;)zvUmO{^m!6(gBe#hG(NG!g`^j_G!pQBMP9|w!u5r zazspeR<3>UQ++jns)FXQe#)i+vkDNbqqIF4SE%?r@Oeuv1Nn<_zDZi0Hgyd%iG$)} zf;Z!7qr??@mh-*hzmwO=9c*i=()0}7YAW;uBdhy|sUD%ZQjX!-Y)q~!RsE!yJf_>) z$jbGodw#dc!og~1t$EB6o~($JmeDZN{p9eBB_R^l()nMXqq*G3Xrv0|h7-L>$eiLY z+)>qL)jAP#d8&P1F06=-OJkz)HLT2@PrbUCuz*3k-2%%Vf&YrQHbxTkeq?T-ocT-l z+i~?xsX1|^YGxIwg}FBFI02$I%L6goRiJE$OtS7@X<&#)Z&Zz5Z*o)G(btxRZwV2Q z!k#fEp zG4ZC}500PM$Mg(UQbMYj4RvxD=7rb{#9eQTfEoRPdZS@{;U^E4{$JTl);Vw54+5t!Tvbap@-` zSJ3sSOLKzLLV^+r$uO2BEv{N|n;I1(3?3!OJ(9He*c!`%OOBARDH;xCOLXRa2^Jyv zTn$gsA7KM~#`KP>knd0Z`Uvlab7~eyugK|Id>j!lI?oc`tyCstpDm0K%=7ZkPuB|c zV~tg2x{k+}jn`PrLMKaMLCmOA%&?bPI3A^J(JIA4q|FY`dCf9wf-w$*tGxSDD&GAV zpI)Y?M+iE4&t|K#`{a3 zHbBo`)Foi&4AIxoNH42_W211v#nfscb>>o)Dpj8TKmXqKGsT?EJgL-pKe%NP&b1(h zaB#s6(Mmp%ift!v^*op+N{|o z&k;+K7dCD&a)x`GeFLB!yF_HLdA`dlt(>(SmyDk`lia&TWw;-_{9hE~Y~q~o@o?Q< zJmo;oPc+xW_qYoL*A;F2p`OnV_k9h_YxZ=f%QdW~EA_2x?Y@{mncrmC>hI53SFspS zQCTUfOTj-y-8@7}#pEiAMntScBO0nuxz>DkD<91I5ZjuGl{*I06Bb;*;4^)uJ9Nj{ z4G!v|%~*BlLwf!G>=i*Qo{=qZptfsUpBYj1R3o@;P~1`PaEmvV)kBQ)3vwgcB9^!o zOjJ6)rKA_`taVkJQBUK|KG>cMhdsW@1N|vbeKjuHyZRTB9;%kp`vy!Kk7hbLGXcH|kOQJr&AoO@^9A)D-m8rzg~)xe}m=QpmO z?VVwgSJ+sci?Bn1{fai5ybR7RZ?tX1nW9ZlJ?a=2u%k}K%H03=0vtQ$LNbfjBJc%2 zCaTsSuiO~>En5nB@oeoXu7sdv^HT#xgMCeO1hw0c2oFPNk3uy`RHfqR@zi9{hJXb% z^>zUHa=axzq9q+sEDH*y{}Ss5X31 z7qDM5t~xC9Y4o*LZz(;r9>?tZV4H37mg0{oZgCXo@2N&jn0o=+x1-tdXvGi8MeF9j zDz-14$#g!_`Rb=2X*~?hWVioAGufH=;?v9Pu&HhDw9Oz4&$++v1Yj-)r*CAeX`qOH z#^{ZPW9Jo6db>T+DqJ&KCmL5ed4N3W=&l)_>#F;!}S%JvEggx6mAV3 zX}+H-nprhG3oOB#Lr(~@j3o*@ZWl`a(8XG!95*T=p8YGE_VH_p*azuS*RjWqG<)(w z7Sn@O!?;kPKZ?B*UWTB5w73BmfhL^13f5?v*XItdbL=mN;Tokcl6}iLnWVMMTiRhu zUjemqy>aIc=w8mDsD7b&a=5G=Y!O+EoT4o)*RxzeYC}vqh;%q6JVXEZHi~aPWqGcum43|V`?*Z1{`=+BC=uJi zPN&;Vtzk;dM%`}HkN0bL3eI?qmz3nvvRGom71~aM=9jE*OB*)WzcGHVnhb9(5`O(V zQpj;kMMGWPi!PJsV~smkVZ&K=F}?Xh$AeS1a>j*+4!79M0nJ5yUFfO}UUhZEA149F zJ4OLV>z1ts(;nu*(GH31$muT&7kR|?E6HpqTv$q=`mIeYM*CT9+0{qk`|fvUI>t`| zEQxz1%WEPYAs)jv156j1Cyy6q(y8V|v=irB(@qw%-mW{&?6-Ewt5dxg{~{BUzlzI- zPf92vQW~O>{-g3)8A1E?wIHN->CY>u;TdR8;qS{=oGkg-p_A8c z8&?`alW&}9g4xnPM@WOLBUL@mXu^TzF7Yp+Cb_NyxVc3!+)$|0Trh=_ZGGP|N1M#- zQ$-2kzuo=L^*cO0PxE))LRaDgsgnWc=LH))!GYlr-fSGXhQB^#TuMev?rB2v2VNp6 zMhV)v;KyU4uIVWw7#Iqc{FC`M@%FY}%q~{%t}RDC7Z-iK9#NqQ-F{9Edl-L&nzQ;q z+$<;@>M&)q@(i(*6c*F^p`k8}RpmK#C^osCofj~I6-U|6cgPO8S*GRA+V>-fl@5q4 zKe*QkMt{_rtMk*;X$xxlxX#j+oI9q~@-hCZ6a`W$6_PEj@^8%5(rzFUrEf5yPFK(4 z(oS@%m6Gmxe$=Na;%iYQL>SYYq_Y}npwki>M_oy-&!IheV86_+dlH^M7Aso*oW5-z z8&{xl-PhS_0*MndeEBFGbdj0MI9xo%y&hY0PrddwQa3y!Khj&!++m&QS!=yTpo%AJ zZ|;hykda|K^gE#3bQlo#D-bRtYIPLi%4`nzBBYUv?%#TnEOlxRNvu}f#ZUJRDgW*n zcEoj^TsnOcY35<&E7T>}9e{5ybU0X(s~@T?_E<$bBdum+oedRY zODGc)!|v{)Wn^1+zyHMqr!$&5W2?s6^+@^C*8JIw(&r3~jT5b(nV%->E zrw&&pG)YHjk|kM9@R@K>Z&F%&tEzaXw8p?#5)jBKc5b+IH6uk9T(9% zf##Cuzn4dInmaKC{UHlGl@vJK5?y^U#)N1%7^bHoB0Ma552>|nKR7#|^pUg<5@Y*~|D`KZt?)N@D4c-e8CMQ~}S4 z`O$gfZQX`DD8v#p64413LGM1OI#&@x>fjg9##MC*tc2eXr~aw>$bM2Vc5!q*AER`8 zi<;?g%KPr~Cc=CiH9#0d!)soSRW)V>|NSd$9-V zDoA;x+)e`E8aleS`)|kj+VY;$8yCyoWy`d9Z@-2pyhdPd7X<8!TUO-`eWioB*|BP* zR6R9KJr%}#;;^c%CZg|UR{H3S!d|)Z4JMTF@wSUGsOIWCpEwk2J@T!HTehYRwhNjk zw?9B35d)^xv!2zU;)VTcC|`Jzx~*RBa=v@zT65X}?bCsWs7RY}&>384wa&g-EKrzt zxN9}%ulKdgt_#D#BlvE&Q1dsrg$t!yZ3&t#c^r{WSBDX%4q!Rqu_u!yZ@lrH+XUDU z5_d5WjPDXJ5_I}`Gz_5y8X5Uf+vnC;JMW)viCR~k69d9^*vkz1S~^j(Ox-wr1B_BE z(?-yruept7^J@$INuXiwG#q}tTI8wzPJ5|Y#u3eskU5?P!=ef-Zqlha%{jn|`UDG? zGMe2fOu;*<={8sfs-3^ERdW?$JyqX&m7HUd@kp{}BkyMvx(v(as)0GuU~QeoWMSy{ zMvC<}BM1i>U?Rz=UvvDPZ`AIfQn81Os}G&lF?K6 z{j72JO?1&uGz0SLqb^}g_~jU}o}S?0cqeq^X!CQbfIXgM*=SgLdI1r5jGA0p2CGOc zyF8EXH(TNLI{3M^u=fl%NkqQ`v!&~_Bu;MGRzIUr<%Rd(K0>kBY!)`3yi7}mZ+!tS zLUo9Vc5svBm6b0W3ZK%>dMfsnM8SWr0ji8$mmwE>D;Pj<6;|_sN^x%CbYtP%uYWYyYqnL2Oj`SRhahYnT)W8#_RMBvARS4WUVAI` zas)-b;Q(Zh2xpp%HZ^IL68jC8GL$N(idVpP{QiuL_xuFUYl@x>ukw~JjY>$-P_@7? z{pNG;6xHXj@PW+bxP+~Uo0`xy#oZ7ecWGO-&3kIu^! z)@^#GbJBT{2(#y=&c4HRxxhx**l7XHF~ zVeLD2cprurOXgQ&@*Ocs&b|$|R_-^HqtLG$9&dOhIUXiO9`9@UWM>x-!rGQ5Rl8g& zGTcQnbWLiB7?0Ywp$i%XJ6WfzSBHE8oy-Jw#b`VK1O+!h80Sfnc!Ya!X~4N35gu6T zs@SrxttG$1857zoDM`NAgvSbF(oCgFh~hiGeR$Sc3kd;cUTqEu?|1VZF_fn6ZXfE> zomqt!4jP{zKGoVSe6%DBBOt2pf)GrpE2;Wbo|HUap5bdj>hizsS8fmZ*%y>%IJq#1 zgcPYCT2{ZJn{VlyYGgv!7PFjBZ9jUiLm|zKKRU`wXb_Q>tb;O)O@`a^msJCRje--?(-CJ-1LK+Ye%E|_BF?MQlU048BReRo-9ZIa)9E@a6=;*H*qq(_S5c|QJT>+z zyXmVaLFD5gHoZ@f;j`CIZD}zsuGt3egpz49Re_CY%#ZGHikoqElAo$u=J|AwUWqiX_o2Q5W<7mo>A^ljg**PbEm4c!E4sCXk^!HR;n&O z(U%rSh=sDD#%RoAx@Mn}!M?-x+7TC<&#wEZ?ekJa1TB2bD_w*L4@(FmTP* zwxWg}MS zGPLucw`1w5fxwCfO{}&^?=ldum+2Ymt#-lXy4C0XR6MbdumTlL%r_d?)Mv8_Hsj+QOI$a zZQgE=`Dwk3J&E(!g7$hs4bD8~8Xe!*i=E-A<0dG(VUg4tq)k2k;2AbQoy@9h*rk8i zOzYH-cPot~;JBZO_bX+3YoM01c)F}+1v_Bpdp3|5+yS0%=m`%LAZR)S6cznh>%?Xf zZA1^24!vJv$!kC4aKk@hPvR-i)DDJRuvW3SP8&st1%`|){7HerpU>8q6F*DFdD@(w zk;;ucrpMUgKMUoT2>k4Tw;@$x^Hb;tdGwS7pf!J|@|*jC!BBrkG4DLi{8TtA-FKlk zEVW9)l;Mnn4^DnvRMB2+YMB4v`|%Dd=%$*)PYw-;ZJ>zwIj~q)dNHA zx=i1cpEZUPYS`~HutRFV;K`kniR9wy>ZwiFt%5<21!1BI$U7yo9gek4JGB$4)g_Ks z&ig>SlRD}7^AcUPXsysBHkn@FGA<`DI!RPg1tH*j_E_lfRc$&;mYZA&v)(LdpyKSqwlERSolJwT)k$#_Qj$hf0AtwvjtfO? zQ{TdhvXgi3VM85I+okP&w;dbvj7R@8R0fa~DC?AmcM`Z4uy*yf5}|K8UZdN?ri2tf zpUprq(C;mg$1vpIQYa*5Rvbxe2QEP+!|nLhpcqIbeD)QGW{+XUPlYzxG`ugCb1@&x zwVN%t5UMc>mVJEvMJK=fE{)UL@QM@c2gSTx4>w8dFE~sMd&8&#v2~B-*&XCmu`GgA zJmjR*TDXfB3f$1J(U}YG?Xir(w_ES~EwkZyjqF4xHoe9%e}sFhHUz;sp^s2&J^F1X zGf>3#-R#$R;7q(a0B4s{5myguKU3=grw+kR%vL1BkzlPx4MWy~c(wsfHuR82)jP2$ zS_bN(LgIZB|FYL{@jKil6Cl#m_ev?Hn~&pa5aNeGy9vZ62qGZD%FMIB;Q!Ryo^D?H!{fF?V=+zcC6i=}ul+27gEb zX-$scS1?$A!61oguDha;eL?U^E!>-%7&iV1wSWs_&f&Tfq9a4hNg=k=>z$bko`TT7 z{vy;ZU=? z*K|KDwp{EvU`YSr7x1@0P3CP=i)DiC&j1-LCQ(fycAKlceDcY(ALne3VJ097RfNRb zi6yspd<9*tvr!hPjb>Z^`7lGUqB|oxxQ>kKXyEM9{%M`L7aQssLXqEylIa;-hF!|A zu#EpSu0QH0>siOR;&NbNYg?+6DFn->!d!NH;L-_lAwZBM?Q9|>T^TjC?4QP;uOUj37J(K6NU zl0LW0&QgtXomAZfrm!!VgZI|NW*Ulhy25k|&*j81QISG@Q%WwgwbDDc^dac_Z?Ef| z!6>Hk^R&_p4IBN#zaUFGOCD@@eHFqgjgZuK1Q9^kE5e+f*09j=Mtpv%|ChYLS`WhB zuT`TewU*~6Q@hX<6SYh4YOGcBa_o?B4&#xzWe(>~VqJQfPKrtXXfE$YUVOL4GWW!d zuUq)_A(BJ=aDl$T9tD5CT(MN|yFiX#UKMYWdTfOo>qL^Pj2IeAaay4JBtkV3h z@;B*8GgHy*UvQE^nmlJ{WpPRk+m}b0Zo-MPznt%^j$KeK1L9%`+r^!-F=|sD&AY(K zdeFj(ofk>X{JybZ-QxOJHO?rIf~Bf}#=8*9%4Fi*X=ntp%Y zy1mwZwrJWAk0!>?dU>tU@<}J~86>v5rrJ180eHWE+%Fy6T?O{MTXQd;-rvf6KP8482tmdQx@db$tZw zj*TkrNBLMyhga&aNuv3w1}|x*zyxa58cB?${=5cn+R|I=NS3C5`%~2Hx8I?Fxksp) zudHn-T34fFISWMIFU>@-t9 zXL~35(TXsV95eo5A;$$d6#b6ihq}lC23o$dr9q&faI976Urqr@gV_yo>i+})>TIdV zNtVA;!2525Nil0a`A!{12~KT?1A^98wOEn0P!3_2oyRxH`g!fu|1ail*{A^K#JkO zTOkp-eeeBnvt$@R#M>r-F6kVj$Y}+5B$o$158-_=%!YSoD86__yHDmjdx?z~G-h-k zK>v2_*kYapFZ94o^Xn~Z%8!wcVN8;g)G*{mV}O^<5}?RXs8zw^bJZcbT^_8O$S(fd z7Q?|DO1udx1Q#?v65x1Kxdcwue)y)GZN$HE;uLu7>YScqAXKd8Kz4W~Fvm}8p_sXA zuTQjYncg&HPC8PmBNLetF!u6Gg|4xz+PHuQsd(b7s&2Da8#Cce`GYf+r)h}I{6h>4 zyI#U5r0)Bc)^D{>vf)|_{yh7iYo@k-CA&J#Q`t-oyx4DxF13Ht3I;L1u&)}Jq_Q62 zrGFA;i%#7RuWMgMleTD+x_IU+HM)CMFOYsMjym>7?Cz6&$!G)?>jU6hW3BeHZbc)X zVV=MLb}lIwp6dYXTnLMC$^qaY3NeiO7>s#;+JI zMzz=(50|ft$C50e<(tba9d(EFDS6FQg&2`9P4m1ow8m$4NH6S}FaR5eiyxNmhI-ZU zN2#2Ok_mm$y-f>FF`CkGAeGKGSn@5)N{#E%k$EcdKx3);85fDN0&^R@qa*=HGs#{4*XzPvIS%p!gQQxaF_1(U1n_F{lJy-A*SKP`45orANU1t z3P?jU^dA6#Bhwd(Q`Y{DEItcxl<|gj^{8Ywr<*?uEF;vp5?1AbSor3JnCoz1IMjHF zw5R~JP+))8mc&Luim?yT8Hd;)Bl>4I$D?A-8N=2KN$kCMmBZ9u1}Qi*ayGh3nWfZS z>hM{_OD5*8yM|DJWck~ef1|WGS0Nk7(B)tR?7U1nOr0$TpT0) z-(lGeFEtmP{cN(Q%NGqd{haN6vL(L0)hERg9y0#;3{hV2E&I(jYrT6`bbw5^OuYn* z*^~yJTIM05GacepQ@C86=5d%pXR_S>ZMf@2*ehKO=j;Lt@15;&7ws#afOhCYKZY@v z>pFKlNARsQn^MejOK@wX=Q!)5FJv&N!;Ck*?>JV4mG;`(#+!I;NqLX}UJ+|S!AxG- zVwuaNB!B0)30s~{=gw+wE+_f8NCQ69M$yiTL6QalR9t4!Ai6e^rXdR#`layrLt>cA z;D3gbL8bVU({V*EG`DtW-)FG*Jy5f^24q71c;D=W$gm>7cbN@dM&tV>jD?i`Ha+<-bU%BmMLDdKfn%J0ThM>8&VjK)=^$sgWX`byeEHt^BG*V3-~Ze%>k;R0Tmtmsmn$3%P9*Rr?- z6zJ^LUyUgO^{QSbB7$=LJUXs0?^>;sX^fkELccO=)$Z-a(`AHZ-r5Dpa91W(m`C~e zztvZYdw-a%k|A$-Jw7N4^jFKjbv=h%G_Uzr_EJBcoF({tqehDMN-#`&RAQOaQ0cQ- zcV9wycXncXn$z6(I<*wspGqH(XWUc%SNHlTuZzTw zznxoqxQ|h2e=Eo|y^TO~F$&k?Bj#YQgEbCN&#IByZ_+t!nv3W_5a(epHF9KR@<5Vb zs7>wqo@u3@8vRrImP5RkOZ0!}X_BkWe_;r65sh^+kwmI6t@o|M}IwV!%GK%LEwR)WRnV!=f_ zd60LGO=V4}ZZW143B*F^G#Dm6QluEd5em;NF6{LUj@agCHSNj%be2qZJ5JK-oqz2h zFM?}o6}FHB={9dnKk9fzWY*i3h;Q5IssM=H(UMltn+RzTT=QMQaatdr_7hqin|FrW z`43_jW7=BVj*Wu8VD4%)_Uy7Pt^tn|{fK!ZEO)`rfzgRX=;o=uR#dlDo=qTwb zRfo{X1=?3a<1H<>jTI&9$w6-6eha)DD@|qR%L(IoYc3>%?aS?8VR2j$lUTh9`HZ-` zq;7+WNhz8q4j1)Z=lQ~qYmi0##{(164)*AxqROoe>R)-nGPEj1PnKmUK1W%U&Q6o@ zihj2IyK=2-S$o)?F}&y?FG<}H#>xUSrN1nnK>e{j{m+J(pX%@!_)ziSwX8F+d%rE8 z2C}+;ms2o2^3$BdgrrS|QVAUJfehfD{b4&k{wvL~D>N=4C^I`dK!Wj`*V*I|K%)wm zV9n=RqI8?z6u0}d{r8*Refm16C65j~@AV5>kXx{9HC6Ot_5Zy9iJ{Bj#+Tt3i26o| zZK;XYx6+2hgx#HzFbo_1ltIq;^!@>vQf!wDp|j@A-i6!GB@KIXX1?X21_?s0`$95W zMs6Gv+HmvTyu23;n(RM6oPy%DP^CsnUJ9&Gow-EjSbf=_YhjM=4Ur+-?Az5}&61!&ibXg|=W>I?r!QU83(qq{jNik+8`D3^kCt0<~O_E_$3&mLRv(o-F+n zb>hHhiQ9198~XI#?vJFFV{N|@OW8W^lUT+#96X+&uZ4p|t?R!&(Y_j1I&m`t+y|!La(L>40^4pfN!|WFYFVR4Cmr<7tnV3*Rf#Z2#X=Mn9&0RqEdiYN+ zG9z7jc3Eu&|A^++*>lCsNa=FX7#n5f$XEDOzWs1&CKOI?qNfIn*Lv3(wi8MM*6?9MA-I@8JHcLw;=ABR;T(TK)Mvi2*AWn0fZn* z$%eMwj-B!hyD6vL_mHUWZ}-R418IWPz)7f~C+bxo9}i41LpZJ8a6HMvAN^lO7gCqk zSYX^=^VRUtqN32zmm2KPSQ=i7u4_bW+LbsdHVuWtX}3T$(4b9zxZiI|?F!KA))Jl0 zbP`*ag3RdZd1ZjR1pR*VC{I?@mZRM1rOYYw!*}+jqJzK>-I($&0Dx$j4J-btyKE2% z2^Pw|zFA+tcz+(Qggse^&4d4%us0HCoJ^-zeVm_lI7?S1H%hxDMw1|pSFinnp;M6L zc{u#MiMCVZfvD-YYVW=4*^$;szh+h-=D)q)%c>nJZ6EAVUgo6lvRq(S$xP|@mmc#x z-|2eUI9|Pu)0)NHz3d`qpKYb1PQ3@+-zNk;ZBUWLoOavJflZ3%UrruODwlWlG4C(; z#l0X$L{$Gi@OXL5r^v9#PrwKLsWU>CJ$f31(yR$=^i41RKA(55hHO8Tn^=-9h}9(b zq-YM}fv^93ujxm$#a}Q&hf-48s;Bm0ELO zuu-``OGo|CnQ~J*Z3o_jwIFxoRtZmLfwZjHQ2k_?n`s^Q zb<KqQD}_!c8K{;>wcQZr)l`sS@VUUnI?Nsv6Q<427p#!cq2;;{PN zR}u~6-z$UFa*&}Qgat<0kk%sZ?k#YyrppMoQcpp;*EgnG_F9A~-QkKa{ni;@Xki6` zWkLiyV8z)_eyv;TJUlZ-*O`HdDiTqxs{|9GNWbxd>lZk%H9}Kbd|k)mMfSKjVTH8q zqFDvDeb>icUOIksrhnt84o6E`4SIBD-)|g;zqg1L)|&Zmnm!Dk=|sA0UdNaxnyr8o zB9K7JK@S*uF}m6yz%_5KI11wM#00ROA5VmdZ%9SQ$-eoY414W6>W(FR^G>3%>l?fU zhO|>Lchydw1$+6!o7&bpB7hpw&ewV+pK)tO?LP#2IInH(0tl5-&Nj2>;#&m(gH^5R zbWHXVIDiG}cLrZEYzQ(rO+lKVDa?=-&yOvqxg37H828tx)?i7Nd{bT5eZ@qlO(V8v z0w8PFC&uq}nyY9GP8|#vAxb)A(Zd!>3wO)*oj2#L`{)(W2gOGBtLK#FQ$rw(?hLP+u0? zNQbp}sv=Tr3eR4yu@@lgeB&B_V#0WA`u}xu4nS{JPtU<5^Svr8wT4sqWrnB)RQpE4 z!_#cZ$SIj>UAw*1`t*Py#XLwm5B*H8VV#j4qah1@&qhX!f;7S(kGoAWD4&1t3+T$anln!NhW+dwopr63=0`gDhHv(#*z@HCSdksxpk5Mn`2S z-G*Io=k~+1R)4hk6}}Gz=YAo(x4)4B6;Y{Pe}q0!7&)qd@vJ9 zey({(I$Ihm&()Vpg9)o<;`{tf9X*Fay|xNI)XpIRZ;&P4A9+1(?L=z;SolR?Q}2$U zXzYEw>`u$1@HCP@Dj1*p^?Bp^FWE$6ZDND-n2g)N`e2dM5pm)7@o0IxiT{m0A2jo= z_4#4ryMK-Pbgt!`o-*GLyg)DRF;PaJ^62qrtuq}5x6(ZjiY87xprq5UN+LHi!{xvU z8-ng2T6W$Jgez6ZcUo<9#-?6PVb#}aH(sru*x(u!H^mrJ8iYR-zrWN(j zL0CFJtgU%ebe)$O{N30}8iw&@RYJ~nT0)nEG^H_tNG1~hgfj;{oa$W zh>i8q`PtbWN7nqR>Cha#M$%`J)?83T;ZI8Ew5-4bAkAv!B6h1(%|8pz)HA|a z#KwD~C*lH!R}5w9Ji;>kxQux{uK1P40jdEXXd-dc@)%DbM9nd7Rwi@-==5b zSh4NPm_`Wer75>5{@Cs?7ICHiAd2K12|)3;x<&rK&LL>S04gcx2+UFi4I>sAGz&(K!&!X3chN+8A4Y%<5t zLs^PGK*s2J8Z8vD{m6cTghnIupcnf(MCA52NmI)801rW!GaZv+`oMh4_J{y3+1m54 z3Hg1Db#_tq#al-poVPYA_1t)6wvXDUH~OV;(zv#@zip)q1q@BxsX7z83D7+C$#(vb z`0-p_kKfI%Lu{_!*R|X_d!BC`{D!YXL^Y)v^uP_jQua%M(JTIh@OCapeS<~q6M=a) ze?G>9E|Hw5wLNjlg@;ih$e3X?6@+9=HryK#w8rnL?hc z!U6ID4wzmi$|W~({Ub=Z6`E8-J>me*@ynX)PX;2;jU=Zm?x{yF-FW?_tt8|?yKpIN z6#ZOeA$3dm(!D#cBw`kl+FnDY*O?nbDVVus{vh2DW!JOTjTu16HIifaqPmH#Sl z13hT=-_mnz!J_q8rwuQ$|9Iy&j47jKSf>|INll7sU5VcZPd#$pHAtrx;bfJ3r8KYF z-$~ci+f(;LN1@v%6Pf~+MBdZAmIV2x6-9AdZQ`cpqu|wC)>(RN|UDIxSF=tRJt4OrzGp~rpC^~~j0ch@ndiLMNhIsJEt` z^=RBwPJ6y*!YgyXXGP;J4Y(^|wgCFLrP|1i={0M8RLo26zgqzFg7=@<2c1qvNzyI1 zQ^LBuZgSEX=zlp}>;`{JU|S(qKxbY3QziXBp0pYBXR3k-hD#u^+li4Xpdj>z-K6_< z@VJ*5>YLA}lm7hZJ)8;PdPCY?F-%nu!yd?SP}Z-z0le>x8LVAi)B4I=Q#;R?G=8B$ ze#&CSlaG$H<+KRHlmM2Wi+S?C0Ff@QDVqUxgL@geFVdOqe=E@w$Ww0sMJrHd8S4%9 z&hA3b1Dm0%O)gmj4HC1P3BE+tvgTHkh(>%Z56bs@|7>n|!!8b&n=|w-zfY|)>~5lp zBA{;}0e`ZrV+GfMzyW^)L&3Fj-;b86G)#v@t&E~WXY}jU&Lf+KAmJ)k6|Fv@Hr_xJG=Rhd(@&@k65c8np=u5QjRCmwG!6=(DId@WOs z-bibM;7s?NFYlxC*X{*P40>h28oCNcEGk0k(rthpCU#DSB~ii2-Wv3RN4j&))ht*Z zA2YqFmFXz{N15`^^wY_iyAb@qNwXE`{^9d*E|hi~j}m*WKfBnmFyrHoNXmW_-LN$h zIzIxbG+Gw_|3dD!C&N7emM;=Oee@*6W9h_Df1oFcZ-*vqt840XHT~Ykd+Y5*jho9f z{0|5)&xDt%x53{4s}BPbgbM{2ML9A+|H5C8^Fd+bF`~-M17t@QoW!V=$luWhQJ|ZH z&;towFKlPya*Qm(n$x1&gljN(# zHTao6wT|p`9!{9yCQ>thL?oAF5C&>_8C()mvjLfe8#}>=#Cqn<6J7u8bQjmX)jI{| zl>scx42Qq(%xqoe`?tlV;M;8H{T!_WQH0|mSQ^6_BF}-w331tQ=`+0}WG_`}$--*$ zv=f>#Z4XqY#=a~tu20?iUIbRQjmOOufP9qKP+aG)>0Yk{9$H}P1&tM9>x4!l+&RAZ zS_IwHj-Cmwf675VVR|ybWcd*l1<{+GlGmxPc;T7!^b3k0wKTy&zFas|q?l3>A}jh^ zsiw#gr7ukgfymqq$isxb73}b|U}n-@HR1oO zeXBI~h|s{2$fhLluP^kNuCgLI*2ww}gBkJk&rIIvndZ}RtDj6Ys?T~N0SJWWR_?t~ zJwwzs*Fk5zAQ?=NxHZhOnCOGioF#b&y1N@h7`mhzq`SL&hVGOO=@`0uC_z9$@SgvD?tPy5 z!na}1*?Yg|eb@Re_6`S>t{?6ax_KC1@$cwz><(6mJbLwHhjls}UoFXx>_l;+GT?n~2jNRKO0?(w6>AY7Q;Mm#I2IXAbSz^y8m&O09VB=(x)rKr}bNuY)L1*H$A! z#SmuKJR!I3y$B{sxgDqmt0}9&*mmrog+uo*?8fA*P&2Y`A3)*>iZDj4)RY&Ka2O2~ z6-Wr7=|03$g*qnt{Ra3uQ&+Wpe~xoqr`Xze6NCQJ$R@s@KJWN4PffHLw~*SJyD)bG zj76=vy2f9+!Ccw~NZp3lng(1{1Hr%oR|*Gpgi^{v_tdj!yq zjuC=7h;0eaA@U8YdlEEEEuwtwu^R=9i;!Y3T4p{+F-Ds#j0;5gv(kRSvm}kKd zCmy{>^Qp{S_lMkL*UiEwFc2iimF5P-c}gE^EXaT&FQ zH!biuO-Aq|r|21I01W|n*{Q%%mQ=I?v_U4u*54m69{4vL!hp^;j6~Gi1s>Yw?qa&& zI(1)SG9$ZzdQt$2YzR#ka#=AHw7O{CpA4DHdJ}0}ONZEwX(9}3qto`g#EAg=^A9V6 zn@sOKJM5+Mk<^V0I|J(N7xztnq~6CGAR-Pp{mIL0ep|vesk_X6v79E%`)x_+S2}4k z_;{O1leZ3u6{;`$rTqtkvg$B`I}w6WzR9AI;VthY;U`>~+g*-IsvaDzQ`&rT_JJXJ*)57w`xc(0bGdN*cpc{M3 zU5uFGuEMh9yBoL$-z3qPJrhwKtXLa^@P0*=tK&cAL%!^iHs1I9Xb-|nIA{&eQb}zC zbAy3{fXf@oKsf9UlPNvLK3%fCI;HWec6&vXwiMvQagfF~Gp zct9}EjSsn|fctx&Oxkf-Nf~@K>O`sD5mmY5KAj83qxX<3#tXZwTj-(w)%t^MuynlR zr*)+`HhX)il;<}cBfA+?1B#=1?Aicr6Vdx(Z1558Og4;ShgS}Rq5Y;22?}`Xq~NDf zA(bPcusYw;|05C1O57o-cIE9py*v2<$Sg9gv}0Sp5~kWxcrjq)D+wy;<*Q30W>mAz zy!$b7#$bM_3Ri=sDRdNld%R-4b#J=wQ5|BxxNOvSw$h@>za&@J)vmBhRJ6sLbgxtu zcF&{vz8KEYz7*UCD_VQ_v$S~sC$Wxcve}fr;gQ5qosO<&iM%iXz6PGvsUUo5oKZ)J za+`9ko!dA1sz-MJkF_}G>)pWNP)N}0E8?dACFb1LDkAzo0y}g+`U~ETidT)mCw;FK z9-9_nKFjl9MzTd|GPz$;wf0%2yje56y#68?Fj4?_Q~7WG`+e4!x}5=A0@-j-g|=%+ z#4JO{d#gC2_x(ld1+2SW{C{j7eqqdthu~M@7#GGq?5Vc6Jbgk2VdGhKg~&DQvQP)t z7UhuPxv1zC_OBo_X%&3KYD6UmFYW7C=IHoo7bPH^);SZpq3H;6HDo38)(F{HMjVr) zTOv{~am9xa`8z88(vfr_vz#?62tn3ph|#T4e8QXXB~&9g;^qXgH!$UY7svbks71LS zS-m*FwFM0(x_DzGItFXnXF4KjKJ&}vRbe)*KYKyx@ljic_YOOcyrxL5>^pLK0XcN0 zmLGMoyQpNqd``2}oc5571LnHfAV88 z)2WU)uu&2YtW|{UG&AYGcN5cjW6DB}=G;)o7=q3SoUo(pj@!ZZ`Q_zrZC+zC zqRc0-g6PytC&o9hLu01TW_mB7hN9QU8$<4Q*c_Eo#OFQ>&t>N&%?W;CqbfKgpI%z9 z|BObsX}ZP}s4$YHKl`}E3Fr^$WH|RFEX2o_jZ$caf_{#a8_vlX6g9LU7*hiEn&sAx z8IRlU(_7Z{vv)01@YB2@)71I(Z_x~iCJfm^TJhNJg2yxLDUwhYs`-NFV%Q)AA=96{ zF%9j?tBzwXhJrUY>eSO(Ez&ic4!>b9-Pdbf_3 zX4sPZXtpHRRtG2?S`drOX{R0r3cRDF@~ln^Q6q)}#k242AB3ox6+~021;*xouVCCC zVTeI0Vb{S3T3RFY4vG8o?}f2B{AB@Y^oksUvh+vtuYLl} zHYmtwC@2i@;vA&W92vx}uMw#Qt3W-#!ad=!3_S0@I* zJWkJn8*kZxT+J3Da%}NuusTa$AJUv2z>{(O4c4lT-WkJU-be($gcADHT?-f~e$MFB zvaTyWI!~kPoIFi`&=BkG@LWD7?R$p~2&r{vEzCL2D`&;F-1ugG3((6mV9kpQRbGT% zaww4<-BtwuZZ0>z<96oVhi&S5VXY9hP1jV^w%%F733o@Vr*>mc`r zyMQM3Q`wG)jSK#n<}!a}Er%i#{uT`uc_?a*9b!vne>`gyTiY340g7?}j8L!giEeZA zudVIYhvf?1PtZ>e#9wj$IiPV`bGpnV(_tF$qS&hX$A9-M$Kx9M`{=Lnkp*r1#i?na z3xophBJeFE?q(!Uw}qEtFv?coX!x9IC;u$!qtE27iXZ*L)VBO*`^vDXhZl^E39;3b zY;LbBiNK~X!Jgs+?s04i3^WMv9_KS(5D7+UH|AJN22ME!!;Vw*nWC^TKFUM7;BF_Q zV9z;j7G)y#VIKHN_Kg_#nL4LIMO_~v!vuW@ytP&^_wp~3_!!8Q8%q&?-LOIDo1$Yo zhwn;A(~R{dWFPwz2iK)(VG)58bl}}ER;rQRg#pTdY81@kk@Wu@&8%?Tz(g89B{90d}v5?8=2ZUn!2Cz&*Z7=oj=X;S)MWIviZs zIq-uCF6$8_5vF6{p{4J^8`+>YfPGCkB=Gvgz@`0$PDGmxs?*{1<};xs7SM8xLD|)F z3wsDDfjekwHAG&n8Q;>VTV4=JyNm^G*IJmrJBBzSFMT+2YyGvmFuG20@D^0R#kE3c zT2I%|l+fg=4oh-;igiPUHt~!F4CR%Wq)V8 zJ{&B|F))wP7w3ky&1d52m{{+Uj^U_(nWA3PAWG)ha8xOG03Ajmahu`i+%A05YVu+R z?=WZc(S*AT_){c}LKmLInCkj_`y(AyWiFwDE-xg^>B(y`;RreN*)Rm)Q1WZe(2ami zkPK`MRyQ`WbTCnOTy8Ck3%EpH6?_T%KJ!BlWMEW_4C+FKXcXr_b$z^y;D6UJt)j|i zJSsP9%pA}) z02)8vV5>(ai^q8JA&cj}s4Iv#=DX9)uq|ha;uZ09?GnbYyfz7pE^#v5_!iZG4^G=z z<~@ZE>4f1*yQYN@mA<8c7axsL-`iyc?y++&ELS?P;h9@6$F8u(pU3&5ff0sBJgN@y zKMNua*54+Ud7xM54P*^UEy8}@1`)#W%&qeSHW)4D%$l-O8Q`gyqR;T{F34XpN+kKD zl19S`?YHQCqM_dudfz|P35YSV{%X1n59w8%-yiV6qsq^q>oRN?#sqW9vw!Xu_K;5{ zw$o2sUR>W+64M*&r zCBw-CWPIo$^@2LAJLQfpn?1;7l`rx4zfpv?+)UqZ?+~*c?PYPn1XkTD{{a&aB3p{gw-?Bf+@1%oQpt!NcB0};^RcSb({ekthfg8 zxMivpVxA0$&9Ly~ap(S|HA344T)R0&G)g_C!R~@E4)z%-;+E>+iolo{8OYKP!7kJR%q)(KxyW(iGD7k<~Ty-aY!H=Z}T0Dmf{f8~ei?m1D%_)>QFxBJ!qvDl3QZ^xl&I zN&lUQmrE}?GH>lrHZ0-KsXi~(7^MIaeu5w!2g0vq;N`{GOQ}JV+8AZV*iVigY4zCP zly!y3+)>!b(F&~lz5W8>Jw}b^?gngF1^Y@wWG8&EVTAOYv*Z|UzQ@1%_oZ7bK{AF%q zg_XnMq8zDw4~F)Jlj>GYBmHzo<1ss{k0%+B1tkWsn2)R{9n@$LL`mn_E-9B}bO~0W zN7w2ve}EmBHw=q`NHF5KaXG}s75z2&SMSbtKdR3A4xeaU8I!2iTB z|C+Cb0}=UQ4n}Z(@Qr@|DSsUL z`VQ2J*^d-oLuW)F|4_FSvI}TSthHR4IHOL^EhdMQGU1gO;1{wbJ@NJs)Uddd z`9AVFu4&0<>ggCYVUn~vk!I%2#i9gW!94_r5T>!T#s8@JczKTRwAwyJQ%gj6R7MAn zuT9`vl-Yy2n^q$s?Hv^19BejXLow$d_}w#~6{=J}`g6w=1D~G27P6S5@GR4Z2?_FN z$Z%A0+JnJu5wP{VX~^(r5ew!wsHJ0Ro;1-9cYOn?D_C|ykFXwLUeXgNZrAa7HrHp? z(T^f z`sKIKL`(7lRG3cr-0Y(8-mmS~drvIe7A{*Wx(WLpsd1ui*|A-zOH|J1bH@A)lzNJ% z91kUjwdk*3ciMa;GEz4^-tGx!^F0fy!*^8i#IFW68DkH{8DLxfWxrmR!Kg<8n6+IX zcwzJo_Ty4oz&g*@Y>aQ*4L>bt-d)RXv&*eWBOBJ*@p;M`IAanVB6PQ&-%V&zOqm!5 zMP%@)f0OKN&jg{R7v!<(jp*nnR`OK`x7ZjRED5&sW^l)9Ipx_>_p-a|J_=q=-}593 zm#(K&To9$QZti$GGRWt(|CliD@BW?MZ{!f)Z!((p&Kz(e`K~w@EmU=Pyxgbd zTBX!_`ADCF3Bbs1lrjJKu_j-s9N+H3H%Hzem)q&S9K%7vu6oX*T>fi1W7ACCH^ilP zUJTqffiR{#M^l_9_iJ1NLO`7r!Ji>V!kBfQC$%Hb)xbbYXtMnxgUzU!5Vs2yVK0tV z9r`JIhN-#t%hu!qH$pq&gqM=LRzRBHfS18DV+h;mZ+DGCy?DH-2T~LgfXN@Y|50IS zSwGqw;j*?)^*(w&d_TF4&b;&0PM^?iLvF0@g!Odj38d#TuP~sbrZN_<*Bb`l55W13 zsYHdF3IjxQtsBgpAdNe1`8J2!j0hFRj8v67)QPR?(~tLtO`Jk})&A0@A+~GBKn>Lm zbk#wfre0VH{~p!>^Q_i1iszR&JV^RieGqkM?20|tU>n@ZTS;A%=JU;#`ZJ`8KL0Qr zSf0*<8jj*>JpP~D^!h8zO12!q>r4#qr z#LREcY5E+lRx6rs_|hqe{_&RHg1|w-voKaT1%o#WGZGZlhwRX#drh(BcH=k4Kdy&X zmsvV)2zE<@0-`|dJ{W~;=N2aov1&Yu1O15SW+%i{Sx$*cch&dlN)>_CC#)%D!`>pI zi!m;2q(=En=u>#IsSdRtI0~K0mYql;3|323jq5RvFXgTzUANBDwh%ikmHU$*UzpAG zV{r*pz6)XwTR+hlrP+XIq~U6wjE_q%5ZF+U;n8Ia2_X7nF&DjZO1n8Q^2ZRt;>{G^ zF9V|*D@jj%7cLf-*1au!`|^z91?es7?=3w{>QjDAx=JnR7obqT<_3iNc*AvPcJ^!n zSJ*gIxA=nm!(GdofY&P#MnT!{osueR;ogK!l64X(D}?we?O?SN_}Y5IL2Ol4i@gmV z*R67Ai-*d562U6C3*iUfnHVDeJ)jE4+JEKb3;CB7i4fF;axR-V-59_%mGNwIi4@ni!C0e8e)}p8%t*7d)S{8W)=EUv*bIG@21BQ;&vci2 zzgsLqY5R?9x@-}ENnQN!*RNx7&{LOjuaXEY$>y(|M{Z$9zA#r3;a^{?TI$joZ@V*q z**bu~{okDm+y>|00Ai8C+b_qVT%ewIT)GQ(Kd7fp&|`^LHy(y3qMm*&MMr&%$c^YX zPh@T6-HqC?wAC%tq)Mc>_3O|`#}?;!&&>6s-buC(>V6QT<-o?m{VxumYI*(Gq5?*y z>h}Wn{ItD;{$P^2t`nV*nouJ5wO{-Y^kghJtHi@0F4-^1i2aC+3{f&xrPF0X#2|uq z1P?r_GFshdAZK~a!@Tb#VmZIK#O}vg7m!)5-!L8ri{5ASu`dfKli=v|s;IndlYnPh zGK%MHQfztPy*;J0TLW42@*}UREu_-z#$qEnuj~56TeJm@|INN*%Nz2fGXmIW%%>N| z!3hWuSOu4g4rdsQax1#rtPAdPXho)4sV_z;CI#$a z8x6cm?9Z8z6{YEBv3UDL(ZB4KZ5xQ$;2Brf%4jB6{aa-^j`yKA`#Z$u5g!1a3*rlz zh+yPG?DUCy*SunC!H<|c7z2E6?L0b8`vv8WI)T~Wzt?}uH4m~{>r~&TAPacswJqkP zfbZf?O77-j8ibRKeotooocKu6Kjk6P@m|^%GPE`LELl)YcO%j38GZbGL#Am;=;6g? z?IPxC>3S@DZJ7T2v*d}n+U}<49w8V zf>jX!pl94S>7Lh=b!m)Ih?DtGyj^lX9hV#Ssh@W&W@FcZJorPhZ8G_z`^(i91x?yW zonnSj2lzF=ZHG`xqglu~b3S7GGYAPM(CMuTz{pZ0Dp7hrr~TzQI!b zj=Sy{kd2|6Co*qXi`JMVy6~q)7qdaYsIQzJvZCL>bqut5JIpBr&Dcy2=%j!)Pe!qx zC%;i-o1~8uX^5SSdwvGyd5;u5V_T?wSj76Mu}zJfqzz3duY2^PBwqpAbSi)<@--9J ztWZcVCV?Td662fqrv!)0YQD2Kn+HV7G4+r%7Q_|=;%GEc7 zY}7w7-;c_Md%|FOn)Tiq!3^+0l)B)(effmdSrrx&ir}dof$pBAOCGt8^)g(RgPuMk zhUoFHb*NB=IwO5ZsZxWtbXqVrr1MA^ZpB*23#A-xTfE&-XuX{Sd#HCghG)@cE#9~( zQj5Gw7QWUaR6QR}eXLPc4*p#54+eS)qr6{04!dM6zhREslH7b)1%V_&JhQa+1_qam zU?r)=&wX)+ULTAZ!5)l$fS~^O;{0pl`Z*#xMq2>3O;!p^*i}+u5o@vU;ss}_MP|5@ z#h)P7x;={*K<4tYs5Sp;{_^lcrBBD)@d*zRqUSB>H`RJV6evbtpxzO2VsUJLD*Sub zm+m`T-duX2oURN~CSqr zen+J~E){dr(FWV62b?N}YMH2G5J##qHNk4q&AVc3ny3=_b$PtgSt`mw_5Gy=4^mF2 zUT%8IoiGW}-|s8({?W@Ok_Pt;hHlB{yf21)$oROUR?@8le~63p?n5=Bo`581_w1F` zkILngYKb@E$K4JkR-_}q#UeOrGeYG z=0B?N*u~4S|9O9YGxP5%s9`iGY;MD7%39}C<4#@@*_-=t9DF&ep5-))ViL0!!?Y#s z4w$50Iky}>3+ZgEOqN7Q#Qp3B%6Cfc)8Y#@=q6iF>~5C}#_S8ulpivwv6&k~hL6kE zna&!qpmLk#;xAJCIvbG30J5gFOFw7Z zKUF1>^99tTJD2=8fIRMtLqCdr*B#D!*qIjh1cl@T&#@*=bn{Lxq-n~@nr%Yk3! z(V|g%$3M})OZEHLtT<3TmETmMCYg8m1gPrQ@ zS$AhqZiqN-5MI^A?0A#flFYyd)C+eNuUs$hs~f0Yhm@$$QDhZ1zJxY5WTZ0u9)PFw ze?&F6`7!Fc^MvvraAVsPz83}byo#o0rm}cfu>-0N_~~IvM|JO~Wk>^~^IJnVjcc@5 zi-Id)_?-X<5G}@ocb4YeUbK|+fbJMR{T|kAxvWMpFM94~^npmO-ktyQxc~zQDewnzZTH#GRVRJ>4IBF~+~>|KxA%K` zj&=x{6PzdRxS0cjm|f{B_Jph~Gm4=4WyLv7iZ|fxUpDv-W0oICMx;$rWwOpShq_uS znpDsyg4&ZZ9d(lztF5)ddZ;taMAhY~VvrnGGWqRF(z0#V#fvoI6U2+c!BC^{(!QSp ztWR|qVc*(#zZCK4*rrjF{3Gw=Y1Yn@WmIa3s=Y74HB7D-CW3=pVZYrm2>S~B$gxCy zI22+)i$%Nu?K9xtGxEO#nGGFIq>`$e1^zh#ge4+3nf-r}Yr$Wxuk!n|#Be8SAS1THLXq|If6u%hOrq0U$>i0>nHprN`Yc?0rDQ{NZ>y zcML9Iu1E@q^c$|N?~D0}Ek^L4Q1cBYiFqBzH`r0GSrp)?$2ZOe$crx7NTU{CjW+aa zb=X&U`H&ED8+mrW9}BzG(U*2eO?v45lsqE}CLyglkTk{0IMbF|mll^rZc~{HAIMw9 z6PXHZxa80g#!#|dx;VhBtg_)%e&UQ!R9@Rx2xDD6!n>Ikn_6|=pcDKV6|^7Z%<&&D ziJYL}U_$Djc0<@wNQL)X&#Sqz+#QbFMFaZkpE5z~wZWJ>5r0Kr6h@|~-x#<56ZV_p z>yN2DkyRFLY%tzPWQa}kyJ$rD4?7_G=P;E-*n`opq_!5r@2Zm_gWV+NKldV0Cmgou z4IH8w!YL5@?02>K_T-*xHxPKLege)A3ainoj|=_4w8|*wk~+OLa!GIP=lvjmC%U)g$Oq(3rjrTetq2 zkk;kH=pG+n2tgev{Mf1t;o*UECwni}JFwlY?J{gS&S!sDIDg=KbW-g3`2x&Va(0DYXRacOlk&z zBun{q)3pQGRHRF7ZEa206DofJ+wLIO*t;;mnF0Upom*7n>fNja<-utDVujfAMRVf_ zkQro+3KVE`1W9Zj z176BRXXt30Xe0x@2_HXXzvaFZWD2abSeZw=XwX5fe7_!Fee#byQS29PWV}OrXD4U2 zFL5Uc-EMFv__;a@ve&xKn7c{G_-AmExkm0q>sRbs{#eG-6l>9d{R3g(0owegXfqP` zO>xZ=qn{LCE#`A)1l+c%6k+&hb-S1^7I3N%;9X^-x6r`Oj@UO*SUYv6@QT!0H+ zb^tS)G}0Ajw|T!h;`Tf;|=7;BE!)%1Ol45 z|3E@!r9|w;QGg#m@kPyUP@J|5VA}gPa zZzK@xwwqz(WO33Pbeme(&|kZogHTQp__B%Ow&o?DKsJe2$(j zrZG`Rp&`l&K$RHDwj<550d?s0Q8$ogvxX*>iDzE6u$7@0m<$C9^o;-c95(VS-tw*y zoy&Zkfnx&~qL@kRu<{+jq;<~7L!Qm82HI>Vz;gN5rqibNb-X6e_e>_`NYSOBRk12Z zTIb1ut6@Tx(D*mSZt=#ySR+UPdDxrwFJJ$r5-23=nbO|;yEH-RAdu-2<8h}kZYn`# zL}jccanT_d(&B=EyyB~}G;orw-{4wLGj<)bMlPH1kf_IH5fW&4$k3rG;?NFZ-Suhl zh_zQ%`gQqMF#Kz!WKq@=)mb*Fd>v+F?im%}Z-E3zi`VV@f1jHTL{cUb@N)k^EBgLY zQ(Zzp0dkjbyjX0YUudia%G!+EOd^{)3_7&#zG%X5>N=y>*46EDf&lgj=9%9B)aJiM z{{D0i`w75qgoVr48QppgvW`H|qoJ=9Fi`zpqi_hX@W zKw3U8-GWziK_41>^eb=(hs~GDvFLb+xT!3tX!Zhj0n5=i(xPu}icJPzXA8ty%hzz- zUIh7ny$h?!$j61$->KHA913N}bVxZIn0E48uO#S;jJ37-)21d_EklL`mihQSxl_&} z)PaMdkT#sPJ{mcYcG#g) zt2>$Zbs+d~!P%Z!;$hWFao2ZALyjr_$mi~uX{P<^M0{Y45sxa_LL80`r#~a_;7p~IU|L^aglObdbCy?%|CORm# z_-`ul*WXq$4QC4eP?N7ZHE3aPum%C;eDvLnh#G9=(@1B<$L9Qc8JpS})Fn+fie8mi z+#XpJ+lldJ9jrXnDFj&)uLb*9wq|h4dI&2@9W5tH*?M}C9I*noCZ&;FC)MH^p55Zp zO&6ud-AVf4+GX6)gYnn76g8YVF^RKd7Nk#FR7b^B4IV;s#U^kEvf(!`WA3geSj~-I zj$+Krn(clpNF8N~*>Y6U4!-JVzp|b90jXRA|HJ*LDZ@#W=jrIDvY0c%vFP6#$+e+8pg5qi%=o74{zvF|igr?XF z?|0Ys2_O6Z*K6Ikk!_X-26Kz^lK1PJ_K$Lzd%#P z9+g&cbZaI4>R1^pA!Ek8$362_?e0i^o@QSVAclRdq2(n_@FLFnJaI3|mJ7=nNbO8D zK9I_jn9Dcj+5AbUXAJ)|U((hnG~ez4yAvD}aMH^eu%jEkQY12(I*$I;lV^>^}m~ccTui=l+)m z^8a9Ego<&IKb=fr6}@-D>|`&DD~}!TblAEP?#T&4bT?EL3jSnLAr#Z2hL@5vM3V_( zkPWXV@EVCZZyZ}35QX9=zmERP;?o3IKU^{wC#3#5=Msbpzfdo{&BQTX>D1cpP&2JT zk}#0-C|a607&FJHPEh_K(>7YaSH@yw!W8YLc?4gbafixGw>tF?>Gb30r3SZf-M^7R zFYXyJ5hezN(!o+qy=7U$nlSL^)CnuUw&~v*-!i3?wjHSFexom@3s3sqh)THTpqz8& zmc=ZLwkHQ~n4q6oECyrIt0cMUu;vn20>%4Cm#EJ#4;>kc4mm zmSte4Q!snDUvKvwtPuX$PWtdsdx^nb23A%=3;hq^0n`>?OIfWYwGDfBZU+ddTu#@$ zs_AAPT$u^4=M7V5+sZU|oPo;OpD0|K{hFcx{^f~6?|roLz=2^jd7_|{vL3y9Q+w95 z$ad!)@v|OPzkiOHB>Znc_FmF9i~N!u;$`Ql9+_nwk6AZ^cUVmc@; zJ-%E4czXc6*U6f4inM=Oh5%uyR;Bj5SFZ6aUz$M8|C9a3$Bph(m8VLho!MSabn?swFAY3?K@RULj+1_+XH>3|@5$kQ--fU9PR@euP3AqqyJT$g=6K^oDb;7>s+8 z;JS%nJX7`%I`t@o8C#XS=~N{aM-TUA!V#iHLBMtE{oo=oL)ihYoxTU6ITINQ{qZRM zZ$kEMk9mD=t@B(*Nfmun(Arg*72T#o7GdQ1>GKL%d^3E}%-=Vx62&-eCJBu4@@OaH z0 zg=zlXT3xW_AA_srS@DmLS6iv6uy(T%8K_v;`j)et4(u3}^M_~JT$Q?!|KkecUTeJl zn(DAHp}(ap80Naf9+m zDaKYJ*Aui_v}Qs90hVdazj%Lwo7Q;|L!-dK{#WQnyyrk6%aGtfIQrj!9W3u#i1W=p z&z*)z43bDb-wC-8F<#~j?{5=b?S&WFB^*?Js81KMA?c~@XbmP60g%Q3qU8g!074ya zrmkl#q2fEh8B_nM+v|ZV&%i!WtX&T4{j_K&fGn`Th<_>n*qmO4B_4UlalXggsVWOl zcXJ;W5B)Puyt0Y*Wt1SK2(TOwL__%2!%6nU23Hk#6lew1j6X&Yn^sw>lSiNLr+H|V zIHb#y`^bl$S;viDvd*q9bwvxj$7fL04*HQW$9QynNZ~q+d+s${XRoT`@~V0!VD&jy zY;~=*7EmdR;F5m@YC59);I1f)>nu$ZZmoA{NPfdea(z(LFG^kSD@OSVOz`hhdK<%8DB z{-Ln1f2%AlGV_o`^kB>nQu7}uyz&V&3u>#ax}9i61O29qJ7;v}YYR7OlQWQwEVi#X ztR4}AmK!>^-}CLsaVtX*SM?=OSXM+MBpax`aMktN;nSC6IlafL1@D&v6)IB`N-2F$ zKMBO!}JdYuzJ{FE&B{=3-Y zW|)?$(8y1(Q0A?rsmhjY0a7oEj=W$>eupg0f1gEA-nmG!ZU9@S1XW<7T_+-cuN%_$ zWPfCrmwKIn>1NW6cwqb$;oMG(f~_3YU6M=rqy2__pK`*~W>o7@r%?a#q!Qt{Fm+Oqk$^bJwQ3C@0N({VL)>-8k*Z;0?!E}u;|lm$hN(DGsO zy|yl*MScxDkJ~k-XcV_evoBEc^1}tG0Yy>I71<`=MYj6I6NjTlKz&X^nQPJ_829qX zJT?#r@6UVYx9M}>kfs-|u1jxCWwdx*O;Ot-s@h2Hb>v7Cm;J-WMpew>QtSAWj)(5M z?AT#PcK1Wn?myg$;OFr_MpD@g*#0>^aeDY@BZMEI7`zkrLy*IDe}BFp)4ae$%Fl4E z_ZW@7L)u658hY(-izl5qPg6?g9+#R^sfSKg2_`jvcLCI~k)v|S^x>Qjsie#X z41{c*$Gc~uamC=%{AU2er{S$G{UghU7997%v5b&Kmr+_pL4a-qGr%VE3%<&WUy2FY zK(_)Ulfx_l;PYX7G>y6#-JQ&i0S3)Dz{x7-11~_Ide4ji__V$$G5r*fDosw6wXu8=w(+Dj+q+++V;7TsTg}1rRw@P! zp$*kLU6`0TF2i-0pggCOc|`^rR2TLA;5_yo{@97uqlYB;&MOpq24{-1c+c=sdYZMhw*&RH?LcDsGgA ztf4$a1j#4;F{5v@N&-b*m&6NNnUJ@w{{`xGCqW?OcrKhvfp-DLxj#V)s``n74yuhI zKnwl#<+G=8#k)kAug-$oltnspx&Qc`gN!!pF_If+Q>`??^44hz!Z?Z_Yp&7TiT5)Q zlJC=%E9U|ie)^Givn0LeIc#!FG*J=heklLuHQLgh)`>3qE=J6H+Bhh-=oo?S6mz-N z0eQ|fmg-HRUgX?lM8|%~nSOK4Tb0~QnoV`g=VH_qJ=Mq}rST)Wl-@H1oaIs4y$8+P zi~BlGL${8BC@rPgm7@qbw=F-vr6q}Q^CBOw;BIj_a$gnOXho^v-lZzL;Md`oYMK z_lI4+Hv$v)BeYPl68k;R_?ouOZ?4Sy8iOhjJFgaJx{*oT940zEXL3T9*iUOSGi!PZ ztsCba8qYI~#a=KY0;8RAkMDSAqUsorPoEp|jbM?DP{^FUqWk5SWgUm?1u=5+6R~Ht z0x`q0HUq%*iBh(Sy1ZN?1NZWrZZ(xN5@XJh)&0hCUAMSkM_eH^IP--fXd(J9OTs{v zR=$$IO~@uW!d2#npGd|x?Rn#=0~A>JX}s?{+Sm4<9?OVS-Ao>-Lcg=7f+F{+JKvrq zgGwX|^#EFCMvA&Kz_CWp5^_Hdo-hBelSFtHZ8x36H))*7zs}3^ULw#RA&Pcq$*F<{ zWUuykwm9~xqW$G?9p*MaaZQwJSec-F5={f0EH*d{-uqNHjdzB`=R#SwoG>#<9k_y* zs&{{FeZufj@$%bx`_)#;k>-ar|4Nk#@PXnZYqiLz2azlP`ptU3;HGHs>4#b6V0{67om>hrx2!y`&DE%f80Z>EfN5F`u`v_&*oYb>}q#&qxDp_(58e z83v>uxl0L~**Z&L^7Wh@Z+1$YYaRy%_{2OHe7fDwn@SY!cPdRG5q9~)eW{l&cZv|d zqKd26ck&Pg$iLyyU8_@xaTB*`olkpAtvS`M%GErrQ3`q3!lzVm?}WII)pLr|nc^#a zegf|mX+rhMB;46$xuIH$Lkh!8jO9V>iUVrGXSBSa71oUYU0Ue2fTL@g`l0WyPfL#^ zVT$EM?{yc>WvOkiJ6IjKzv4;H z$hEYTv~7QXPCq#O2;J>csytXeAudvSJg(Xr&)u{>95=x`-t@2DiaYeCAaJrYDaPV0M?ZOmuv)jF=(a_6N7Ns__54MU7q*4S*ZTN@$pUktO;E4H4m*u3Cg;$qefW1j7M*%VmQSnGJJ=ZNOMvK!dyHFw6Ic*0Zo)TWVj z;=X7ef4*Uhgx78!ZSQG(ir<`i?#a4FRz@Pitj&Hw8%cb#WjP(R zKT*k(i9o@bae}_IJq5H&?_o3O*)s&uZ8IM$*5`pqyMf0_(urcZp7(F>I2Pq8jbZjUsDP~(3ri{@4WoI-a@PcU-BTq zU8kIH-zr)k+1~r8>scg$K2hYLbD?-Bo7zZBt0dxEYfL7H(L1EsU{N?;F>)zqERnlzeQF=~1C@ zi;BR76muDO%-?E<=Z1ID=7<2?cQ}FncKk7g9^HAXnLg?e(s*?6vCn$q$gBQPa{PWy zrAy`GusmlY{*o;wasrA7cSJw*9qMml@6={ntaV&y!x{z!Y}aq#qHbL8ILv)8f8-I(|dW8 zMNy{O3IK{n?h|UX;FN|?KqPHyhP}j#{3cH)@_|pub)K})YJ`$}uEz$MjF!l2Mi*S5 zRh{RlMz$h7kQAD0wo-nRGLOIjR*ruj8sI5(VIy#(_~iIf!`QivTY2A01s0mnw$Q+s zC1?_dlG8x9u)ckc$MSBh_i{I^Fs-C_EBzm~zA`GxuxnRJMgi#-q`O;MIvk`s6p-#l zLb`M44(S+jfT0CM8fhe?b7-W)^YEVY{rJv$f6ZdC7-sHg-}m18y7zTmO`Ro;3y}e( zbmbnjx(;-;=^)smZbub=0}8ibOviL(lHlUu-d{!9c*Y*Yj-mD6>dl5CoX0_c(|UHo z{OoMccjuEF({~O|l-nG`K(S_n$WJ?8!`@g_%OJokp&xy^xzqGQV|MT!_!i=Pj<;#m z-kaIIWh3i)Qy*LD>9TCzO9A@4Xdo0+R&5Zv;GzWeBy!2=z0fBBlW&r#x!7xC#CyMN z#xoOiT%FyK8G2uJRi4xZ|+&T&9Kud(U>h0 z)Y)Gu|Cq8yv9A>O&@Iwymay*{5rB?tqTVNlt>7(tPba_lDbaR45;(3GF{;(j` zXk$dpvi^37C&O+bH(}?y>Bwe2Muo$aVc#QJshOVYx52zIIWD{V*EjZ8ImmEh32Jnk zHQYgWqZRbjVcmszH@5)7{h24UEhrA3uM!qZGPY>pA;;~kL0E49d->2@!kc@;9NtyFfl(7-cy zJv(Tz46P}-Crwi=RoYc&w+!RX5nl38e+6pv6KZmlPKvq=vqL%22#iPQM zS_3j`HX3re_~jz{?-!e>%iKRzV_d0U%#HS)Bj5hga^m37X>L~NqSRg$H4&qBR~TenC{sS4Kkpce922sP?qW zovLd86;;~s>ZN^^|Amh95JE>o*5m`SBJBR-t!1h)cBd32=Cfh#kUDT0j+~KxV9lSL zU?0bfSeWg;sx}b;b5o5~n(1flz5Kwy{=*Ni9eFlSBpBAn82#Xtf-dJnc8)+Ko5HoR z9nDUaEX|Cj_B(3^NxD92NaJ+nv#IJn^wUwRUqo%bjOIxS_%TdTwjFnpZMgQ0+cwr= zHt)gW^=~wC1gnSWHQrHCng8+6T)&ongq*43T$_25WI5pV!F06Nn~%3Qa1byo$Ju`AMY;nguVM;*hSt#j3Wxgsz_n3& zwvN=HcAoo%_oyTNRC#LiA{r?bEN*fKvoYne{}O+=QG}Kdgsg_Dl+tLM;L>G6tBGO) z$15v))*n|PWi?~^oxrS0|lR?bJ+?h0t73O};O zEDqP9f^j&~nsWj@bd!3@BLSWA2;nrNNAF?kRhFB&(lO0?5yzZ8g7)9-d-yE-VCa1YK7u_49lj= z^1yfCtoF{n&8+0!L>020mTB1#lQY0ZspsHn(8Voc+1;y3N*BvU(hvc zI@Ef%7e2t8W(n18)-F>1$^KJ*jG9t8JeD93pJsA~`aR<&*8(D@Wt4=EyFE0^uIxb@ zrI~j2Ql+%ed?f7Ptx{!DBE6vcp&ih&Gs|HP)Z5P-D9FPmqKa2mfbS?>@eE+~Y=jYY+T z(B&93*R_g`&!MqD)XR6XVR_Q{@a#O+P;NZu`lu$(gvw3?d<%Ka8o0RNpB_TEzsdmY zA4bbx8#;KW`Ls-eA#1n=ES3a_8|@%ltclNBYfbbs44*8jw4{6X(91p47Mqkd@hv3Y zfM6!(3)nRF3WYQ6vZSy#7p)F$yYlTHUleZPsMl^d{i!XUI3@m$n-$F2SEh+&8nQpoOZl{q8{Rnh)AG1y#?X8TffA)k>+863o27bzw=gBYOlxgHZnad&t4L@Lk*sg4M$*}U! z%@sJ9{i0K0Z%^d+)7-jqOjSe$*fRjKX41jZk=&Gflj; zS|?T{lvo9C_ z#6ws(tBooq_%7LO6~5(l{@d}S??J+}_x6jXR=DV0)q6Ab=$bMjMTO9+jA^H6Y*^51 zwRYhzEUx+qy<mrnh)uJn5zVj4FTV)63_B|9O;JxX`|hOl#FyKLMw{qMR&Y#V%wYw;cdRgM&Ko=> zP2;W;P^Xh$ux0vj3*$af?ON2EZvr>p+H(Xp-T~J`ehg*av4#4s0vO|7KT(mHFp#3t z!X`S6o=HE~`sUJ0v&461JCX}W&a%@E4f}F9nmVUSV6^j^LV>j8L$)U;Ck6Ee+>qA8 zW;a$IpYuF@SdBn(QIURS_OVnB8eBHWgY#}$oxOb!LkijuX6&~^?nYfRV~gh_op4eHI_3R1arj6KaaZRy2beOF}QD{25OGk z7R$V!%1B1;jf@-7u6gyX9a-ouhGE_tA>nid<~{9K?lO&z15f;-0wDgagu8lAj*CtG14eR*n6yB?VXYD#$G~F69Ik2;3 zxJB>i_Cj!-m_1vH;zip#&zL>CZ+49ZixMJ8mOMcR=>4sJNxsFA0hfBqqt2R<-Dzf0 zW81d2fftBgp|uv9*S{?(a@#$LC~xNCt>)??)sF^Cfw6+BsMlD$zqe;jZ?nHSC^s;m zlI?IM`ifY~ya+f2g{To(MS3eUe4G2O?A#kmI{`I9mruCd1-pm|-))kGZQg!1A@f#vj+V@>U4ZOv_AJJY$_`vpf}-=4%|8_VYeA zjnY41?|t~#klTZzKo&bxk;DF_`HGSt8qzqZ1@B@vaAnVEQ~!@^{8?$hcu{s<)QoM9 zkkdbEhdggT=anJ$qBq%ZY9WTZShJIFiEk`4BF4Ez< zGuTSJLZKd6&`3G-o;*qqj}cFz#%51*(5~h!lxC=|M?%%kzF-OPfeuVyVYenUr17kqC7h+7}(G~NlOv2VXUQ-QMT#ErCW zW^T4N`Sb5*sk*Rl>U(}x7Dq=F_quX7bh(g8cC=T=5IiSn=v!cMZz{7yENCz8G*HVA zD!^#c|IGB$_Gt!Zd>QLY;0EKU-1iM&J^^|G6$}JK+({P*%e$ zGp`8JP~;>d^}Pk93nuIx*L4w{JXd~`Em~fXKG>XM*j5>;^XTn9OFt)xuh)7nNh6nN0i`YTns%2v25djWt{te1kVKzxq+e=&LLL}k+iufk&?r_^A_=XL!T~o-z;(%$*s}%Zz>FC1F_tsgh4c(Vo#qH3 zzG&JWhV=sDj1uL``8K{dT}C`6d(*?!%^wrcg~HTaF4;kaq*n!JQlJhT8_o-hC{#qu z3L-Q96V5|4`ulc)txO604Oe?j9uP8pfFv`{UsMk3QWb9mt4}S#akSBs-+(>7$U5%-BiHmsERjk#iUKVpmtLS;jZF zG60-Ax5HEBCW_TX8p;fJxMkrW7<6|?v*d21WP}U&U^G_*8brdv$XW!-o2KnoGey*^ znLk}fQksnoh$gEET|2LyeT!?sAlP`5DRk4Jc260<@-QspS1h#sesx#dk{L%{5R>Po zJ^eIRBv1cUWyx0;*0~v^wj=eh=rJT?uLJV;Esq9`%T;6r^#PnU_wQ9c-MTYsI1-!Y zig$(@2J5|q?&eu@WzYqL#^{yY9uXsb2sJdxbq}`~+6FfAww582z+8sDX0b-i+OMj@ za}qv#A}x&O1Yz6zebmX3si06k8+==GYj+g|7_os3IOz3vFt6)tZ*W0O-WGm@TdJZP zOZwJSD*NBZ9sJZEOKGMInHlNLG`+SPa{0(88xy86~-?JoJviTbaa8408~1c!;|Y;SmE>n#Jh0J6P4 zy3=5{O|qk52|-WNy-g zTX?CK_%Mm8Y&Q7Sfk|vmlU^w6bKe-pF5@_&Y8D(7kMb&hlEFd#npz2+u!*Z8mTX_cXB%N(L$3Z9 zmTC6UZ}B1<540o-&K=MB_Vd2EE0OM|#nV^x02N6>|B++@!5TK|F5Mvb6a=#DhD5Gk zKy(R+)-WN*HHXWY@`^xtx-|h#T3KX@{!N8KL%SgN$l~EPZu(O5a-1&Bp>*nVnvAP@ z-^s(Yw5Iib4VgFWiv>b4H4$Ms`_ns(hU$g6n*})c(D!?f4dPEA&C82#m_K&UsW>S|OtFXGKdN~hXi;&QeRS{OQ&db4lcybm?R9*i9Y zfF3@+tRReV3^+&oLz<;n9PQjFNz`y5k;9QA%jJx}LZycGzgefg;&&gDgZX29xy#xi zsx>#&woLfu!pq{`dON@EhLyVxI6tv>=@W&exkDUGihP}^KKgWe2)SYWRLVZ5q1h_H zsr6Dsd91f5eSF)*ES`RkLfLX?P^G64U0?svxyq9?Q~>!_#!y^zA%B~P)^SKv$-+g| z&UG)*@EC?al=^B23H~Y{>W@X1*%68nejGie@|H7=^+(;Iq)=C|z&5=Vd{;BZ(2@T+ z*hZMT3fWnXB7>Ad=||_nJ7jyr3sHKYAo;K)46$jx(rNsF#91Xw2uWAZ*zGG)pS4cB z(bK69&93%X640o>83&rM*mt=Y$R42Ggi&?6J>izk?@=$&0tvr{O%%Ow>b)4Pvsse@ zKnDs8;wo8hIL?7+dZFmP)H9@Fb<5N+gTbr|_~II4e3*`skz&FZgW~1>*Tf6=#Zpjo z+6V@{T)(h&o`DPTr|R8*g5NR$F~klQnA`5Cl&-2am(kJBDJ@!1`@HOM*@4GhbMw1| z`%QWB#kX-|oeqedE!?%{W-TCak2>#G?w_4mqI#>yp>uAcU5wgf$N=BCc+e+d) zbS&Wc1JtpYE+#o#VHFAc_zs1GOf|Uc&FlVawKr=?SN=MA7X5vxbihQYqzvIQ+o8at zgT3Nx-pYKbk%^tsh^tvnsoi*10-|weMl-N1^e)okIU*_%5eGo3F@|lwbqugK1o{>P z37y)4yW;knmp=!P4m(Ys$%gChZbnubB%%JWeqojBY=CWix38VoGf~>9ck*GujbUM$ zv{F0Q+>0a}KQ`*@OAOfq=LMTMq+Eun!4EW)H0ahlZS6xyW9VRprpR|P_2EM3GMxoe zsOu&E@ioCyO@Wx5{Z`MjY1*P0k-s@8ob1p-lRzROn!#RY>kgqN2hp{=@`zbVK_9ZU zsptF)GrqU}`FiD!3AdrC__o;^_-d35-QOU7O)k%rW%xAbJ=JV^S%3({hIsa%2L;w^ zfhZBNlY@a`O-=ks8`^~u+x_{Pazv~f9_geA1HUs3btC{8de#AoYMJxR{ z<|4^K4&xY~r4=O_VkO(@maLYo#Ri3kFYo7@N=v9S{w~^6j>2BTFI`na4ga(FG;qo< zGcuZqhI4LG(tdu1w$Q!>Ik4#3#jZ?MM@2we`Pa5`f7ZfM>cE*n{5Hd1W#d%obyb<4 z54M+;SC(dDP27K1*vhYr`oq=)QbTqIg+C8vH#~Y%CJ^ADPD*#HDeZ?A5wESyMJeY( zPU~@M&GksKU|6Qp0~Wg6UpbCCPgy^QFIRvG$=DVw$~lS1pW&5=k-lq2`DGYL-o2em zzBPGmQSvGzd4vWzQr)RpIgiGd_%rTtW2Ta-#0L*OnoVK$D)!K)FH>S+)ZP)dgtuQx z0zbl`pToj+IV9^64&(~QAHHU&o{ccGSC*lz66huulE))_u(I`Q`xcIDB(?29x+(-N z8MC?=c0P&4R)_vnZ}vWT8D~DfU(>t!b~K!uankOv)Wn`xSL`Ka7eiZjKP7@=BbLZ! z1tWh2I?phiz%n?*Ync7Vr%C$CQEYPJ_dfq8u7iuMG+6icXxjQ1qO)86_%UoYOLL2a z?%e0+%Me18Wqx%!1pQB5jrq}^CjESr&JU0(A^~CV#k=&si$Hx+Fh@P?)EoQl7to3R zbT}@Ta^6}fAngdv%S-!}N&tseSN{Oqp(0_nbA`5Z(B1jEZdN-2u~ zQPGHzPp{)?hB=eZI>=%)(;C-a7Fv@XQSr)5wb~Afuve(xs&$aggw1s4L|C)1tU5q! zDDbM1!p&vVYDjL{6JB3_zc#hH`1v^!7$}~QSu#Wft+s~n^Y#Uj;)dS66&N)(XEWf@ zQu&}NkNrj|X<6fY3>NziA?ul$ai2%HH`a?xBJ^Knj5`6Fis+^`M;;G#)aKrkhmCEx z&6L&p^Cb_J6F8L>l_=WPFE@hDZGZX9U3l%zj&tq7Z_0oxI&WE~3I?c}UZ>@R`iGf? zq8oAby}WqPF22)Tmed;`tqLvK!3%W=LgHnJp>j4NyJi+J^dTM>yLv6`c@(2vt^a9z zB*SW@Q;ef!6IXg|8SYJ+h0rg>!a zH@;l@%?^h`M@b*VNr8zshTFe;!8l?CEkz`7hp+6JO$RYtU?}3IF241=iE>ui8z{!65gUpU5&dLt9TwJH(~f!~?~6_2W@as1w- z%kCPFJJ;R!OVw*85UQ*Me5`%`X_|VemfLoho{vD#P4IOgF>Bp*7aZZS&#p0v;QG!0 z-jhfTKfUT@bsjpUZoeCPza;1{U}KAzX#Y%4HtpF?kd#ysFxATK@41-&iO{DRiJWX) zz8K_)8~fXMsv&~&#y3mEj8k`9-UEw(6E1)uY&o7={d}dv$8$xssj`fYZqCH_6m1MJ zt2zJ}n=OyG2mlg3{XxuaGtKncb%eX+pnjO(yN5E}*b~o_h)wrnR*Fp4a8FM0-2sP9NX?7!Mj)tkY)AWx&w{QW9W5{+O=0HUQ2CUmoPtoAnT zo3hZ2Ghcjno4T2eBY(C$hHre>p2INCmf>N`8&=>T7cLjuSy~-s--$Yq&o>{FNTxn5 z=99_Qa>&@RGiEN1!z69AtR6x>`>o0jpGx(Qm-ROt_$D4IPe{PKg>N%$r%2z3a|f)= z=58qFTTU5KgTc5jVbe~&DFvTOjjF@kG>C^A@77Jw?g`jTaOG;2S)KZ=wRA;y>4fP~F|VPwOunyEDoLE3|NIdt0fb$}rfZK=wG28NJ4}skryN+@F6}PaXZh zxnbw__ww*bt(-*$6$;$5N(DA4ff7Xtfwslcw^ZPP|~b^L(tQ{gV8jvgI)30Uu{-jE;fy-%C(idPycwMiBI|K7tUufpQBC+xh znVfZ(@gIKGZ~SJeTtZ$8YgI51DAH5LTGBo{IH^;!pBGh@t8fQF<1}>`;{$`KA#)EF z`?L1V3X{yXe|2(xfOBRJn->fDiNYWr2CNq_-0IvuOQphhs|zqLsRDs(*B|)vwWnXL ze%Esj4K2{Tjynn^_(Cg-8rUx1ovItArak*Sn#ee6f1lE7;Q$BKYl2|$7;QjK>_f;D z$+zQ<`8{D)8`QWClLm&ER}@1|+Fdq{P{R-dXhz_N(ucTLIhiT7sEg<3jLbN4Aoddx zs61P!@Gda1t==8H5IJrS?s_j+jf8(YBr0h{q!=*i`vi>U zd)=S@bUyC5S_in(=Q2>+rrZFmukB&{$|a^r96E(ntr{VQ1`#m!@;KZN8poo*gaprK ztqJWypM%Pnp>8sV^NjVdD03?SPQ1@Dae>OHd$x&uIy68T6fx!Njcm4^oO6%?{iy%! z`SGDO!>VBrCppbiQYc$GMfcG9j1aV}eJ+?MzY}*Ol3;kj7IStckbX7HT;{NV!LFYj zA(=mUL$&4M5z`jlVD7=1#R?LIAs8s)kH&QczM^+H)2bR#bVo93n$;N1tp*yDZe+-R zm1=u6Ees-xr)VmDd&=obs{aY;`A2+A8B&3{s(IbNgB;dX#QcK_EfZDk2!2MY_{I*=q>oT9^50ja4N;b3piESoG z*v6YHCf*gLnfoW vO8A7r{kcpXUfI+iysxA5Lm$7>yfU8xBNmWO2qFWz{X^|tC+ zEpO8#r#S{Xwaj){)xX{wbN^DUyk|$NO3(-N5WZykR*f~*Q~ffCXY>; zVyRgMhb_Gc(F?C7l4bPw@|M0cufJFk#y$9mF-VBvd#>D5WD2nAoYp>I%%xZxo>luR zK@H5P!}77lq)7#aKceSsza^pPw#afx46}5isn>Nsi-z}eedbn_Cb~0xR>JWJSiu$8)h87{%^;&&%qm_3v!Kqvz^55tx-^6V|LyhX zT7;saE*2Qq*T?n7^Zx)rTp9oTHOyF8a*k?ec*-!#=7Vl8Y!X#J#7;iblXA>Fyj`cz zNYOzcQvSt98)+Q5T%c&0dwsv2UY+`Vc`~TzR}2JzI5LwNAnz0$1Ikh%j|b|duB zo&mFw;u%!>vo^nMCo}Wy`n~w3>p@ss^U0!P7X__+TpvK&sC*61nqqHW3IhCeUp;wt zn*6(+`->zvqY4Zez4&ZCco4D9B%zf>QsLm7VoQ#Z6 z+hu$BQ=jb){Z}Or-IzDk$4UQ)%Bk$RhgF76vKGL%)OjbzbA42Br4KN_Aq{63b>##S z^j1J-)4YF4A;X;O&X`t+=jr+nrFy##7*&Gb-K7@faL(9gRC{?5%kEFu(${|vN-Xx^ zu<6W6n=eI(xthGmyARQZo>3K{oIdE)B1TbXHWi_B{XVG85Sxo!n8ud-HT#;S#x>(G z6}ch|ruw(|xJ=3J(m!XD{++yGU1wW4#OFSrE@_e>%j;YAUE8SrO}gErUpZT+SPhvJ)f85_Zs2YJ`CuWEAb9zZd zJJh}^HjCbp12;-l)mYz37(zNrH9w^t>X_ZbOxCBc{pH>9g-en)(E>qm$|wOL!Csp+ z<1bs5#?7*}W#7neF!3DzerHh|?f%_6zLx51Bydgvk{Q1r9K{MM>+d;nvLho2NvMZ6 z(W1v9Xb7w#(OAYV&f4Q#jSRY;uUR;*_pBX3Y{Lu~A|C;njaq?Ia+tq0+ zMaT4H^?N6@5m@i8`?KgM`Uk*qo5{rw@Ta2>0KkvIB*u-}-dE?SNB1}9DdyQ8(>jLE zviB2tP2+*j7{HlDqLX!RVk$?I@!QCWgpJnGd6$Dz%MBGsf`36|a_UDogq8Z$b zz3n@DJF+sWxqsdkGj?D6n*nT@%Hj7KG50kVEI=A}=JEyOL&Kz7)ZM&?%Fo1C&nN0h zH=G@Il-}GLM`&qkK9l(8E1t>s8-?8Ee&1+k2sGOc2lV50=l;Je!>&bK!LKU9;=q6uu7OH3~}tDHkr=-Sh{ zn4one(+ih4ln>WuLU>XdBaTAk_QAAjaicg9or>#Xyrk&rUoad);mRg`N9g0d7lOvI z9*4rh$jv*(A_cyCppexAkT7o<`a2h+l>>K7l0W2rA0p%bnA;~!~MXg)7@c|UHyz;U^n4SxG#=er4N0^Kj?!RAN`eY}ysMM4c_y8Qntel%qRL-7Q z(C~yBSx3T@!Oi2{@taB(LYIfJMGdFfx3sm~jUvcc7;4Q9;w)MJ2n$qsLvTOOZTE_; zqz!VEuRkZ!l5Oe?rWgnsO65t6AZlcF#QAvG3geZNtE~4CLwoyi<1=xEXWE2L&EX=S zd8$Iz8=sKgVVpBgN0RR!`Dd%MB5!X$msKp_7N}zNY^NVvdo1LxrV^6OH#!%e(zF^86rqcS-SjV&1)(;#ci~0;+0?R-fj<(Jc%laQ8BpQw+~C z+rxPBQW097W5)<*2;Vp_kPZh>6rSj(_BsrcGzj2a5&%Qfxe<^<6q#wv^Dw>$O#(m@6_w3SuD_qe1U9ZI#lA4jI5zlrZUfw;V=mJ^&@bAzGvD__W6KK*kuiwa zo(+5MO`@^uH+Ih&I93mQt(Up8=O~My@Z>911hK9BX}@hMZF~dkie*+2ps(|o6e(Tl zcqO&}AufHD_S$P%WBdLH@pJ4_woCR3(1fTT)>FSIm4uode;vLv`ZJz5vuXd}wSw_y z|EiO?$lqrK)3EAV=;4UayIkVNxOTnwE3X^Zzh8|r%+)4c;xrE)${8(7s+PZ>4Gj;| z_Vm+5s$~zLn0T#)qE3B$DR~nEu@}iRbdXlQY%d$+k7ROW7!yXY73YG#xw~cpj1`(C zEiElCz@(kv_Y643x&z2oYx8FDT7UYhtpP7QmRx>fDq`!+4IFK}BS11l`y!fSwVXqx zXBqBlxm-e@M@0n!AqNHg?-vwgKvW6hqTgRTvKd6TDJOi~e%`%>MA0T-se8afx4c#_nZ>}-(Z<#`B~Vlg zuS|Q)0Go5Kq7teOU1L@&t!RDM*)dJ+jfV725(ftr^?$wK;pV?M_P;wUy*K5C0?}V> zmht8Cp#1RxcxpGVj3$z7zr3`3zXx=n*nm=sQ}&oxPNEnnfc2l?*d-5&S`YskfSfQc#DS+IckwkwEa_b;t4Qq{`V^U=ched z$?^-pp%E)grQ|IqTBe(+-+CmY=}r*k$HQfqAUPdv zvXhnyA-ZCzaLf3g&ESc8@7rvEIBRe?re%fV0T(lTd13OW0PST1kP<=KFh2kAGmgS} z{!_U3erO$%Hq@|u-Kj>eL2hQISebas_zwp+rmn1PXw-#$2(einu%seDC5|n0y&9|) z!KD}^3B|nzWMa4hzF%@mN;&j?i}S16>FN~q{MW}D#y?*W?A5j2aLTSm6JZd^u}fHl zFHpCtYH1bs$Nc!! zeAbgPp%uvrBnwkiq<(VU?NEuEO?*JM%gB$IM5^>dp7`#sg5Vt@?;~$O*Wv^)(kz2@ z0Ilvu0Lm*#0L&Ddqenvxd{5n7+wml_Mj|If@bXi`s6a0eHqhBB9lR0P?fs9pEGjq@O7*(5aSa76!ade&1#>}B`36;PXL+tdLWT@ zqRHOC4KWM0PXHueOepLCTgB=b{BO{I5654x0X?^JftMT3uE8ggGBhrG#c35QfLLoZ zXFq^Zm%p;ha%e4I$Unf2ya+_6jCg7R?LPvG%YnN}kFzo1n&SYl-E`~CUvxg++7hDY za&Nigb7nn>p2w`_&7t{`|V$25sG=`aD}cVl(%N&-;be(+V~%rI>%*Q@ZOR`Ja<#EL zPaPoema&O3I0O)r?_;fMb3$d$yproG3rJW-Y@nF+$ zv`Vy%IP3JIp3}=NG>dyH=Z9nLwT1@E&+wXGaqN2NMgt=sG=0(yLoWkBRcU+3Qv(?l z!qoxzU_OCQPnp%7i-+#3uK-{~z2tYbyuUr9u-xYP)4DV#3<>3V*=XUE2hkd&L%a~ zg#{1++5l9BP?;xInPpRT+UbM=#WrrYT~+ru?#U;8kugc2#&XNv4#iiW z22p>q25@~9iHE=GnsGh{h0z@9bU|r`OYuN}7*b2phyhUMiQgl@a_(zEMsqf7Zg<+c zdbhJIYB~0L33zDxB9e!g!4kEiZ-2hs$^O>KYf&A$=+Fi>($B!Z8B&v{2(5&+D&aaP z9)Un`kDpA{uloyj0lK>yq#2+`^T^@ESQ=g@&#Nu`YIV1ryNqe|B56=M*Coc*y*I=0 z(jMqlFICCWd;o4{w8+hYobuyx(XnP>>TNsR<2^7P#7rYOiqUy+Q@8_0aI_uZ86*L9 zWELbpk?(}6$kn#h>(un~nPlPEJssu~W)4(ZnWosq=~Sx{$f9hgIQ%}BcJzt7c!SP> zBFl`p*W=9&jBNW|)Rxz8r9t$;(|70;n*bA;fxqPOvbl?S5Y&ZaU{@E~8nOU<^{ux2 z&{p#yI%K+Wf@cXNU4VjK6b`v1p;Eo~AL_LdN$QMkieXihs2=o+pZdk_bTh<;PJtE2 zz{bTPJbkZHF?|^EY>pZJY-Q1K&Q~I9eEUh8K|gOC&~=PqV+>BR%`B1I_!%ERET?t; zbb$g~4usN-Snz;H-`OQ*V2D`qYgy=+)O`pIe#etnQF2h z88~(jKHOd?FT5&tTH*q_mU@W3M#``3qn3?V#R5{uV_6Iv!P0wt|Lg$CN$XhYml((y zk^%c=zTW32=BY(>?BalnD<+_q__Z8+xb7zQo(XQ65jZ)F4P8h1hfJ9+; zFenZAeJpYNG($2S$ebMMWhbDwQaa0v=B&+&X0vfxABjj`@O6kR@=5{=sP&+oVbB6a zr?GYYD^eaABOx*1Kh#+QKxGb|QZ|71ILr*6(*dD5)^nEM%IYZNJy6=pN->Z=)o49M zfLo$emE@P5m^b;N!X?3c1-KP^VV%G&`DH zK({}wWY1O`l)jSI-1`>GWWUi)XTzc9$Ca^}*)*exRHPYv>GgDCO9h0a(*?7vc^vzR z?>rWaBio43H*{DSzoaWu>fA~-VEIRG0meNdKH@gstY^S2Z6LA5VTJo+4)8xIio#|U7p(F6WL!p%kzhvj#c@C} zFrE*tZ^J8b@0?%(jbqwDPLVHDFT zSNkm~#I|DAg;otKL9pfPzq=JJSE*W9sRob5Go%HnbL1%VRREz=vI_KYPiFgd6c^H~ zjOTKQ#y*(Ej>@FC@h)sLuql7LPg?wiAUy_<{NR&IClE}RLk747xh6`H*qbXVPBZ3H z0lw_bwpBFuK?Ec6UuDul_N;D4mjI#TD$7;GIc}4RJl2#rI4*}sRhkVhNx%GqFjCQ3&S@-j zlI3`(aU3=GaJlpfHREll4X^J{NSd7GNFC@Zynp>hTHYoXG|;T1DcA;+%v6;r$wD50 z6wUe}TazL&ShIqcZEI3Cz&26k^X~khN^A->v)8xbUV^KHI9}{;AEcmDITXx!FHo%{ z;@Jg1rT$#wKWj-C0buE5D3k9le?*GTEdX3HcR z6HDMYUD%@Nhk)WPvwM=b^=?w|u@A)BCV(VTs?9RbPg}9E{8XOM*#-4>H=h*OJBH2^ zHN>#ZEZO5#zh)5ypS?I-XtYVZDx0NFbmZ3{N%8z39)&P)-_a3?CtA59?(odt+zX-1 z+*EKYlfu~Vy7?8W)Ee`u$AD{r<#dBi@oCzJ4$n=gmn4eMvzDRaG11HQ@chKA&t`6~ zCc%~>neIaqZhrYI&R8a~)xg1QFR#K>{1<2|6OHlb5Vrw-vHhggDP{&v!&oud<8?az z#=V9lqAz>ln}n$9vH|L%HukD4;NyNi+Xe<>rPK9D;`-@%|r@!Cz!Lgncq@DbhXRHg?(kC_9f6do)pp#q0jS$=gPg!tOT zsP6WQ{Q${|W}P0h*$R{^c#izgHy&^&vPg~lNg|&qkf-^>iDoWF0?f!e2qA};gqtft zb*lA?i&py?R>6chvZwKhWnTuc@pEWvO&rFi>z}3YsTG1$A0p8G@T~m#ss^d%FezkQ z>>qaNg24msksKAGZv?>ZEzt5?dzd3{k}brf65O=-3s{Afe{L0W{CckQa{jDL-@ln> zsY~|@r2OYRh1mMzEATKGnO&3r}7TI#bp9*PtMPN=!Sx*um#r0rVym_R%8hf^2wTI2xl5hLk)^@&MVpcE8 z!sn^}qaF-SO?CJG8<#o!j^=wygB%>3Fp0AMK52<7)%sf2*+*ay`A3XWmILUQX2doQ z-K^%g0Hbi#rg;9eu!hZ=%EPyF#wJB~1Bk7X5Zw#p-*N$y@I+eqiZZ5TLk%8#uxPVt zW$;*r*Xch0sR572fv(o$zsKW$?L=w!K>;-&RnzyA%Dfa1+Xk)}EN;k4Shf|k*L~ay z-x#kWQDZr)=S41j#AZjkK^4)(Jij5UIR`bGkxf>pNuuT4To@jD&&~OQcLt#V@=7nX zhrLx3YXdrx{r;#BA-zIrls~^*P}KMBU|;k5f;`GKiFYjWrFknN8jSx8=_|e%6wb+X z?p6C@^@<^H-RY@_Aq^B<@zr=cl5ZwKSyB~Qp)4v&N{wjeqXP1aK19#}l+Zre7_R;d zg6>-Q71IWvl-rjy_lL4el3|jhhEh+*_h=(q)3yV0Efi)w;ze7|U1ehloO~1>sKiTL zCV11i@kj$s4)^KnUav!Aym5H|XQ@_4+xe{wq<&k}GJcs9r(5;Huk;HdS@;i3iOM9e zMj@ej4RN9Vsa8Zop75j|lv4d~_ZUCZHUoO2pR;T_;9u54iIWLJIIg{g)<+47mm0Si zBDYI;7<<(S%+Swi={JQjFr+dSBm?3utPuSdBVwlD>5BYV7DbTbhYmXGIpbfD_TN$g zlu_1Ey%_YAC!>*g&nwoz>0Ix;UzWavr)|nX;VWfi3Zo1QItF6j&&W+fkT*h86aL?V zaINcT=t}PK*uNW%tou@4ET3iP&$~;YEy&G+F}miJsN4XeB^7rBR6OOEE9mm5R>_g4 zXY(cKbC1jUWi-@XY1T@fhvP;KSF|2Z<0=&>#_Z|z`l=~kxZM6(Z4L+$w3$C^la9qX zLvPR*rr#6wnMhs_#uf(>3J*dG>bFQV$hsbuKb;v)S&2nXPhxoD_UGMk+92NHW*L!` zBIS&5nVhXkd*oI@gu1=btrhV*Oa8_mB@68IcyfhCZ(i^_Hh6iNNdU19mkh9}#k}g4 z7ByM2aA&eHKB4N1rdB#1$z^xHW!cn6ryoqRN8P0hYjVeImfA@Ik}o!=TGzivpRKCF z$_+9>mr-T?Bf(6X#O`C@LauImuO@hf8qXhsooNO%FD`-4=*`=GX})i_tz<_uJMAqXIu@IB3LeJURRYAmHZC+B-s8wM_8-v!&C3ehx~U|NkmwwZWNKWnHG|H zY+q4B7Fm=v#tpypUNd)(v)-g-ehU<$Da;8*RwBZ%0-5aNuNxwtlDC?JE5h&PP7Qkf zXn|uE4cWI@qb+y^{U!cFv*R1Yb6_(fM`aR<8j$`u@`e_01%Hb2y5!D-dFlO#rhO^A zn-*rC<<5H=6iwX5rVP^sPRb_S)h~2wTcLQN#-eHDk;ovZE1sRPZzg9zi=dZBArani zCV%XJ*tJ-JH5#W|hCyANzxSLy(5_Y-o0C{p($|ZBg#)H*VT@5_6XkMVcFjp@`DGk$n`c4XXl5!dX!#Z1C$+$V zg<2Libc|fw8^bx|$!ouGZCu*Hyz+Zmlm~B)^9tF%-kXZY*7=0IHy9T|Rj~a%rpdc1 zdOsMDu}Xh%GEvP*CDxN;B074Jx`h<0|K6>v|2T~99aS3Wq`mJ-e2#t)4S!B}@F!60 zl#FRuWLX=FCqDaC`s`31tBViVEp5UYr%N&^F8&7TEyUO1mh8gOTY9W13C8d~g#`{u z)E04XhJS!SZHh;zGkow|_zG!d@UQeoI*5Y{=;h9J3>oEgn5pSJn+x)SysIC1Q5GV{ zCt?NVsM2*@OlPY!O6Ub&&Rt^r`DeHUo#v ziFNMYoLRKnR#<7Eh5Re7PPhq+B0ME^EWA!!UEkT}7Dx3x9na)f_Ey>M|JFX z2989&AzTQ9jjp9+M#i3GNeK<65RsC77bRM3xiOe2q#`N15M`U} zr9#pU?|ILA&Uw%0^PUr~L-@nKz{~jVj#dlq zE7OmgmeOC(Ef7~a^ny|j@4qBc^o9Rx-|)|jDNlRy3CqWe0^O<~`)7;J7$lQc4vD6I z@E@r-z1xjtu2Cm$inY~z*0XA*wp{}g*k@SaV#mFjLqR+9_d7X`?oG5= z8g)=CG_~K|tDZLdIDWF?ckc}SWY3h(rmnIB)#dr3qTK`2=(6|rDh}=2?KfMNRE59Jcz^o3m}277l}o#>ta0}NxvN06XsQ>He#tS@e7bgD0K zfH%Swj5`czV^!@$A&meaU&;;iv-CtWc0NV%V^fIZUo8h>l;&)kUJuMG0B?@wq%8o; z2*VKNn-%qG!-&La2Lxy#HSm@}E~AuO_7v6gLbYE3cxVV>+|))g-y`un2W9gQglSY% zWcUR8p4ap(<>q1X@$o^3%mS3Ktviy)3(DQLp{7~-Je__{@^o?JAiIhWBVMI_cP0bJ z9j(hMIKa0gUSEYy8129)XBsW`Hl-OC#xbG=2!}yljQvYsx|&HA>#scQAJ2P3`na|_Ux^?&2sbDXkh|XF>}%!Fq2_dg*53v$ zjb_Ja<48%vl5fBBZg!yJTo5E;egG_D;XVe%!W~{rmgqI#lC`u_aqkIoYQ9BkI}TN_ z&DdV~&yEIPob1EjIFmSo5alj>eNzqP*4nc%JCJ5SJ*Q)3A6;GXcYj~1Aou>3!YW)% zwi|2BaU+RM%ZL?`>ea8Q=cnO!5J0GgldChgZL1^*EKDIzLFGRg7`6>!4(V8|W1qhv zrYa;&W$fwt@zNF*orVt$L7n0T1mTf?-wA2pFzEPUg?WshSbn3_nh6ysWBe*1PXxL7 zeezeA{bncoRmbG5R{@|z5ppnb?CQfD%Rm}gm}%aZoT5tXKrocR!h(YM&ch8(wUO*r zEBH<_PgjB6gN)?cw;lVQ;(Gvpu#l3wa96j+W(iH(?O`TR^5@!iebjR+#fQ4J*E$67 z8AkCQC?{Q06}*Y3w;U+=Rnt~SmtWkF3LiKXDQIGDo)x8pd1iON&VRV^2GV)S(tR8{ zBdOn-M3~Ivn~7eMiF5fSeb|-sl~ck%o70mh$~lut9*!Vu5J$6)Bpma>(v1g-F#tAl z!cjthtz3qRB&x(3_14)94_eWeSF7`?!)R&&?FUcP% z!qPGF%p}A>H$Bl@I4*(3ea?H2Hf ze{juc0uK|K0p*#=1Og??eaP&dSCjO@@J(ZnI?f|?n0lWrM;n|k#&>%+8y=*cjm&po z_Uv4hyew+uB;G3fZ9!QHd7d?+4j^`pX|fxCUR|kYbpx^#o&Rh=18*9!-Ep)4SP*2zuGR6UGMDH!_p}Ze$)Y#eaeC{52M3)gt4wVF zV|hAshIbX3Y)Q17+C{8@wh|R)kT-sUXl#%BledqqEPC-Abb|tqrb2Z`;&%O+{gJg= z`Aj1R(d!(}LVc?D$sTB}6$ws@3vz|Kj;q#sDijpoys4Ntk$dmziIr2en$ zi;{?sj1=-`wkz{CCBWsGIy)>6;?gvJD4wHQ^oL?qYTeJ?d&SO78|@o_Xd%k&9{O_< z7Hr~=7!IVZ$oQh+zVa~WiX(-Ghwam!YZZLPEi~a32zH5JbTV+ISnNBHq#|Roj4r!D z-n0l4F_~zcp6WX0J8&sitXF(d0}u3A(?qw#t8_MqHVFx$EL`mCW!LS{bxYLJ{8R$m z$@pN_d16g*0R&tU?-W2nXgTE}D+KVdif_&9dfR3v{*tv-8Bjxc?wxBUEBz^XxP#y- zc+6A3Kg6W*jijK55%SW+olA`Jr)p4|a1HJO+iLgY$K#-YFM;WeFWe*&b!cZoiV5t_ z&T8={4yuG^gc=5Ws%%KRFL+w>tu&ZY%~$K&+0}*aCukTsiiwU?CTNUHS!Ei0#SE82rQxN) z!$H^Gto$TGsSbe?@xf7htRf_-(hz1g2|4xpZ zw35B@np^hs3nS>_DR?O*vvuy64S^_RYL`~hi}cfq3H<;(A}7@qVA)6~PlHC(bF!9v z0A>KZt_semKmTG<#i@{R%Qn@r0WyfO;2QsgYXBL?<$Dlvr@|9P{-V^m2p~blW?#JJ zy2vuaI5HzW$hi5@c0F~pTkm71no-g*qo3o@g~t&vb}QEp;`zWz#f4BF-&Jx!kImJD zZ?i0w)sS{HC_qqu^@CX!si^1R;d&mO+O&B)fA+ifd_44=iTOq;NvTW2bxG;$DayI2 z7;0;d7G&LAMEh%z2B(~Utb z^Yu?1hHBCBdM-Ee`Xmy2ph&M22?}}u;+vEu|6-wCysUC{=>bdn;b`D^q?>|IBNI<7 zKoth$EUdZQOLRh30o?u!F8|ovK_Fkmcnc6HJJf0ek($)6#+(=O z5iSduNAvi;vWt`CRXMuhm9j*ll<_ysrBv^Rsr1}=0GJrI;WK>@Q$Ss=8+joW z&}4$laay;)@T}--6Y3npY@7M%Q90P2K5vR#N=xV23vd1UHHMd<5o0X`3+KN)io>-a z5@Jd8qst@+I#vka$ zbsm{dl=^JJ9p&8TwV!^Vx0%Z3yUqr;Gm4IJ6GVB`$S#TjGY9wu@wDrYO8q5J4S8T~ z@JyuGSL0I&VT1f|+d5mg(j-&p0Bse`4xc@5G#Jn%otw9-*E|>Zn_wEeXyg$=cR10e zDxw97k{fw1iS962xPlS#HVjeM>vHcJLil)9ngN#%XL#DT`?e2|E{_OZ%J#a_1!r4X z-=Edx<%FnSM5bOO8`iA+%xkVI@I>s+AAtvf<`)f(E_k1|!<%m^J28nLR%A%1cX~;` z4sZt}A;%FxA8sJ|k(d>TozFgAJs^ooivpC+0StLHuy=9?Z3Lpf7q+U8>~2%n@NYm8+VMk8EW&3YIGm;6-BGdH+_Wobd z(LeuDn`2rKwz@(O%|qW2+B%T^`Sn+a literal 0 HcmV?d00001