diff --git a/Dipolar-Gas-Simulator/+Scripts/run_locally.m b/Dipolar-Gas-Simulator/+Scripts/run_locally.m index 2f72c10..26c662a 100644 --- a/Dipolar-Gas-Simulator/+Scripts/run_locally.m +++ b/Dipolar-Gas-Simulator/+Scripts/run_locally.m @@ -174,15 +174,15 @@ solver.Potential = pot.trap(); OptionsStruct = struct; -OptionsStruct.NumberOfAtoms = 4.0102e+07; +OptionsStruct.NumberOfAtoms = 4.148e+07; OptionsStruct.DipolarPolarAngle = 0; OptionsStruct.DipolarAzimuthAngle = 0; -OptionsStruct.ScatteringLength = 101.9903; +OptionsStruct.ScatteringLength = 101.35; OptionsStruct.TrapFrequencies = [0, 0, 72.4]; OptionsStruct.TrapPotentialType = 'None'; -OptionsStruct.NumberOfGridPoints = [128, 128]; +OptionsStruct.NumberOfGridPoints = [256, 256]; OptionsStruct.Dimensions = [100, 100]; OptionsStruct.TimeStepSize = 500E-6; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s @@ -192,7 +192,7 @@ OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; -OptionsStruct.VariationalWidth = 5; +OptionsStruct.VariationalWidth = 6; OptionsStruct.WidthLowerBound = 1; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; diff --git a/Estimations/RotonInstability/AnalyzeResults.m b/Estimations/RotonInstability/AnalyzeResults.m new file mode 100644 index 0000000..95703ba --- /dev/null +++ b/Estimations/RotonInstability/AnalyzeResults.m @@ -0,0 +1,364 @@ +%% Across range of a_s, n + +% load('.\Results\ExtractingKRoton_Result_Below1000.mat') +% load('.\Results\ExtractingKRoton_Result_Above1000.mat') +load('.\Results\ExtractingKRoton_Result_Above10000.mat') + +PlanckConstantReduced = 6.62607015E-34/(2*pi); +AtomicMassUnit = 1.660539066E-27; +Dy164Mass = 163.929174751*AtomicMassUnit; +VacuumPermeability = 1.25663706212E-6; +BohrMagneton = 9.274009994E-24; +BohrRadius = 5.2917721067E-11; +DyMagneticMoment = 9.93*BohrMagneton; + +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + +% Create a tiled layout with tighter spacing +figure(17) +clf +set(gcf,'Position',[50 50 1800 500]) +t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid + +% First subplot +nexttile; % Equivalent to subplot(2, 2, 1) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + eps_dd_values = data_struct(idx).eps_dd_values; + plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('$\epsilon_{dd}$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Second subplot +nexttile; % Equivalent to subplot(2, 2, 2) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + n_values = data_struct(idx).n_values; + plot(theta_values, n_values * 1E-15, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('$n (\times 10^{3} \mu m^{-2})$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Third subplot +nexttile; % Equivalent to subplot(2, 2, 3) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + k_roton_values = data_struct(idx).k_roton_values; + plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex'); +grid on +legend('location', 'northeast','fontsize', 10, 'Interpreter','latex') + +% Adjust layout to minimize space +t.TileSpacing = 'compact'; % Minimize space between tiles +t.Padding = 'compact'; % Minimize padding around the layout + +% Convert to units relevant to experiment + +% Create a tiled layout with tighter spacing +figure(18) +clf +set(gcf,'Position',[50 50 1800 500]) +t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid + +% First subplot +nexttile; % Equivalent to subplot(2, 2, 1) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + eps_dd_values = data_struct(idx).eps_dd_values; + plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('$a_s (\times a_o)$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'southeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Second subplot +nexttile; % Equivalent to subplot(2, 2, 2) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + n_values = data_struct(idx).n_values; + Lx = 10e-6; + Ly = 10e-6; + AtomNumber = n_values .* Lx * Ly; + plot(theta_values, AtomNumber * 1e-5, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('Atom number in a trap of area 100 $\mu m^2 (\times 10^{5})$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Third subplot +nexttile; % Equivalent to subplot(2, 2, 3) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + lambda_roton_values = (2 * pi) ./ data_struct(idx).k_roton_values; + plot(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$\lambda_{roton} (\mu m)$','fontsize',16,'interpreter','latex'); +grid on +legend('location', 'northeast','fontsize', 10, 'Interpreter','latex') + +% Adjust layout to minimize space +t.TileSpacing = 'compact'; % Minimize space between tiles +t.Padding = 'compact'; % Minimize padding around the layout + +%% Fixed Density results + +load('.\Results\ExtractingKRoton_Result_FixedDensity_phi0.mat') + +PlanckConstantReduced = 6.62607015E-34/(2*pi); +AtomicMassUnit = 1.660539066E-27; +Dy164Mass = 163.929174751*AtomicMassUnit; +VacuumPermeability = 1.25663706212E-6; +BohrMagneton = 9.274009994E-24; +BohrRadius = 5.2917721067E-11; +DyMagneticMoment = 9.93*BohrMagneton; + +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + +% Create a tiled layout with tighter spacing +figure(19) +clf +set(gcf,'Position',[50 50 1200 500]) +t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid + +% First subplot +nexttile; +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + eps_dd_values = data_struct(idx).eps_dd_values; + plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('$\epsilon_{dd}$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Second subplot +nexttile; +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + k_roton_values = data_struct(idx).k_roton_values; + plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex'); +grid on +legend('location', 'northeast','fontsize', 10, 'Interpreter','latex') + +% Adjust layout to minimize space +t.TileSpacing = 'compact'; % Minimize space between tiles +t.Padding = 'compact'; % Minimize padding around the layout + +% Create a tiled layout with tighter spacing +figure(20) +clf +set(gcf,'Position',[50 50 1200 500]) +t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid + +% First subplot +nexttile; +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + eps_dd_values = data_struct(idx).eps_dd_values; + plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('$a_s (\times a_o)$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'northwest', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Second subplot +nexttile; +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + lambda_roton_values = (2 * pi) ./ data_struct(idx).k_roton_values; + semilogy(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +% ylim([0 2]) +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$\lambda_{roton} (\mu m)$','fontsize',16,'interpreter','latex'); +grid on +legend('location', 'southeast','fontsize', 10, 'Interpreter','latex') + +% Adjust layout to minimize space +t.TileSpacing = 'compact'; % Minimize space between tiles +t.Padding = 'compact'; % Minimize padding around the layout + +%% Fixed Density results - compare two orthogonal directions + +data0 = load('.\Results\ExtractingKRoton_Result_FixedDensity_phi0.mat'); +data90 = load('.\Results\ExtractingKRoton_Result_FixedDensity_phi90.mat'); + +PlanckConstantReduced = 6.62607015E-34/(2*pi); +AtomicMassUnit = 1.660539066E-27; +Dy164Mass = 163.929174751*AtomicMassUnit; +VacuumPermeability = 1.25663706212E-6; +BohrMagneton = 9.274009994E-24; +BohrRadius = 5.2917721067E-11; +DyMagneticMoment = 9.93*BohrMagneton; + +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + +% Create a tiled layout with tighter spacing +figure(21) +clf +set(gcf,'Position',[50 50 1200 500]) +t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid + +idx = 4; + +% First subplot +nexttile; +theta_values = data0.data_struct(idx).theta_values; +eps_dd_values = data0.data_struct(idx).eps_dd_values; +plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']); +hold on +theta_values = data90.data_struct(idx).theta_values; +eps_dd_values = data90.data_struct(idx).eps_dd_values; +plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']); +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('$\epsilon_{dd}$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Second subplot +nexttile; +theta_values = data0.data_struct(idx).theta_values; +k_roton_values = data0.data_struct(idx).k_roton_values; +plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']); +hold on +theta_values = data90.data_struct(idx).theta_values; +k_roton_values = data90.data_struct(idx).k_roton_values; +plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']); +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex'); +grid on +legend('location', 'northeast','fontsize', 10, 'Interpreter','latex') + +% Adjust layout to minimize space +t.TileSpacing = 'compact'; % Minimize space between tiles +t.Padding = 'compact'; % Minimize padding around the layout + + +% Create a tiled layout with tighter spacing +figure(22) +clf +set(gcf,'Position',[50 50 1200 500]) +t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid + +% First subplot +nexttile; +theta_values = data0.data_struct(idx).theta_values; +eps_dd_values = data0.data_struct(idx).eps_dd_values; +plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']); +hold on +theta_values = data90.data_struct(idx).theta_values; +eps_dd_values = data90.data_struct(idx).eps_dd_values; +plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']); +xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex'); +ylabel('$a_s (\times a_o)$', 'fontsize', 16, 'interpreter', 'latex'); +grid on +legend('location', 'northwest', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size + +% Second subplot +nexttile; +theta_values = data0.data_struct(idx).theta_values; +k_roton_values = data0.data_struct(idx).k_roton_values; +lambda_roton_values = (2 * pi) ./ k_roton_values; +semilogy(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']); +hold on +theta_values = data90.data_struct(idx).theta_values; +k_roton_values = data90.data_struct(idx).k_roton_values; +lambda_roton_values = (2 * pi) ./ k_roton_values; +semilogy(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']); +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$\lambda_{roton} (\mu m)$','fontsize',16,'interpreter','latex'); +grid on +legend('location', 'northwest','fontsize', 10, 'Interpreter','latex') + +% Adjust layout to minimize space +t.TileSpacing = 'compact'; % Minimize space between tiles +t.Padding = 'compact'; % Minimize padding around the layout + +%% +%{ +figure(13) +clf +set(gcf,'Position',[50 50 950 750]) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + eps_dd_values = data_struct(idx).eps_dd_values; + plot(theta_values, eps_dd_values, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$\epsilon_{dd}$','fontsize',16,'interpreter','latex'); +% title([''],'fontsize',16,'interpreter','latex') +grid on +legend('location', 'northeast','fontsize', 16, 'Interpreter','latex') + +figure(14) +clf +set(gcf,'Position',[50 50 950 750]) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + eps_dd_values = data_struct(idx).eps_dd_values; + plot(theta_values, (1./eps_dd_values) * (add/BohrRadius), '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$a_s (\times a_o)$','fontsize',16,'interpreter','latex'); +% title([''],'fontsize',16,'interpreter','latex') +grid on +legend('location', 'southeast','fontsize', 16, 'Interpreter','latex') + +figure(15) +clf +set(gcf,'Position',[50 50 950 750]) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + n_values = data_struct(idx).n_values; + plot(theta_values, n_values * 1E-15, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$n (\times 10^{3} \mu m^{-2})$','fontsize',16,'interpreter','latex'); +% title([''],'fontsize',16,'interpreter','latex') +grid on +legend('location', 'northeast','fontsize', 16, 'Interpreter','latex') + +figure(16) +clf +set(gcf,'Position',[50 50 950 750]) +for idx = 1:length(data_struct) + theta_values = data_struct(idx).theta_values; + k_roton_values = data_struct(idx).k_roton_values; + plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']); + hold on +end +xlabel('$\theta$','fontsize',16,'interpreter','latex'); +ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex'); +% title([''],'fontsize',16,'interpreter','latex') +grid on +legend('location', 'northeast','fontsize', 16, 'Interpreter','latex') +%} diff --git a/Estimations/RotonInstability/DipolarDispersion2D.m b/Estimations/RotonInstability/DipolarDispersion2D.m new file mode 100644 index 0000000..b487963 --- /dev/null +++ b/Estimations/RotonInstability/DipolarDispersion2D.m @@ -0,0 +1,251 @@ +%% Physical constants +PlanckConstant = 6.62607015E-34; +PlanckConstantReduced = 6.62607015E-34/(2*pi); +FineStructureConstant = 7.2973525698E-3; +ElectronMass = 9.10938291E-31; +GravitationalConstant = 6.67384E-11; +ProtonMass = 1.672621777E-27; +AtomicMassUnit = 1.660539066E-27; +BohrRadius = 5.2917721067E-11; +BohrMagneton = 9.274009994E-24; +BoltzmannConstant = 1.38064852E-23; +StandardGravityAcceleration = 9.80665; +SpeedOfLight = 299792458; +StefanBoltzmannConstant = 5.670373E-8; +ElectronCharge = 1.602176634E-19; +VacuumPermeability = 1.25663706212E-6; +DielectricConstant = 8.8541878128E-12; +ElectronGyromagneticFactor = -2.00231930436153; +AvogadroConstant = 6.02214076E23; +ZeroKelvin = 273.15; +GravitationalAcceleration = 9.80553; +VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); +HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); +AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 + +% Dy specific constants +Dy164Mass = 163.929174751*AtomicMassUnit; +Dy164IsotopicAbundance = 0.2826; +DyMagneticMoment = 9.93*BohrMagneton; + +%% 2-D DDI Potential in k-space, with Gaussian ansatz width determined by constrained minimization +% With user-defined values of interaction, density and tilt + +% w0 = 2*pi*61.6316; % Angular frequency unit [s^-1] +% l0 = sqrt(PlanckConstantReduced/(Dy164Mass*w0)); +% % Defining a harmonic oscillator length - heredue to the choice of w0, l0 +% is 1 micrometer + +wz = 2 * pi * 300; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length + +% Number of grid points in each direction +Params.Nx = 128; +Params.Ny = 128; +Params.Lx = 150*1e-6; +Params.Ly = 150*1e-6; +[Transf] = setupSpace(Params); + +nadd2s = 0.110; % Number density * add^2 +as_to_add = 0.782; % 1/edd +Params.theta = 57; % Polar angle of dipole moment +Params.eta = 0; % Azimuthal angle of dipole moment + +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +gdd = VacuumPermeability*DyMagneticMoment^2/3; + +x0 = 5; +Aineq = []; +Bineq = []; +Aeq = []; +Beq = []; +lb = [1]; +ub = [10]; +nonlcon = []; +fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + +AtomNumberDensity = nadd2s / add^2; % Number density of atoms +as = as_to_add * add; % Scattering length +eps_dd = add/as; % Relative interaction strength +gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength +TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); +sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + +MeanWidth = sigma * lz; + +% == 2-D DDI Potential in k-space == % +VDk = compute2DPotentialInMomentumSpace(Transf, Params, MeanWidth); +VDk_fftshifted = fftshift(VDk); + +figure(8) +clf +set(gcf,'Position',[50 50 950 750]) +imagesc(fftshift(Transf.kx)*1e-6, fftshift(Transf.ky)*1e-6, VDk_fftshifted); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +cbar1 = colorbar; +cbar1.Label.Interpreter = 'latex'; +xlabel('$k_x l_o$','fontsize',16,'interpreter','latex'); +ylabel('$k_y l_o$','fontsize',16,'interpreter','latex'); +title(['2-D DDI Potential: $\theta = ',num2str(Params.theta), '; \eta = ', num2str(Params.eta),'$'],'fontsize',16,'interpreter','latex') + +% == Quantum Fluctuations term == % +gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); +gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); +gQF = gamma5 * gammaQF; + +EpsilonK = zeros(length(Transf.ky), length(Transf.kx)); +gs_tilde = gs / (sqrt(2*pi) * MeanWidth); + +% == Dispersion relation == % +for idx = 1:length(Transf.kx) + for jdx = 1:length(Transf.ky) + DeltaK = ((PlanckConstantReduced^2 .* (Transf.kx(idx).^2 + Transf.ky(jdx).^2)) ./ (2 * Dy164Mass)) + (2 * AtomNumberDensity * gs_tilde) + ((2 * AtomNumberDensity) .* VDk_fftshifted(jdx, idx)) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK(jdx, idx) = sqrt(((PlanckConstantReduced^2 .* (Transf.kx(idx).^2 + Transf.ky(jdx).^2)) ./ (2 * Dy164Mass)) .* DeltaK); + end +end + +EpsilonK = double(imag(EpsilonK) ~= 0); % 'isreal' returns 0 for complex numbers and 1 for real numbers, so we negate it + +figure(9) +clf +set(gcf,'Position',[50 50 950 750]) +imagesc(fftshift(Transf.kx)*1e-6, fftshift(Transf.ky)*1e-6, EpsilonK); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +cbar1 = colorbar; +cbar1.Label.Interpreter = 'latex'; +xlabel('$k_x l_o$','fontsize',16,'interpreter','latex'); +ylabel('$k_y l_o$','fontsize',16,'interpreter','latex'); +title(['2-D Dispersion: $\theta = ',num2str(Params.theta), '; \eta = ', num2str(Params.eta),'$'],'fontsize',16,'interpreter','latex') + +%% Cycle through angles + +% Define values for theta and eta +theta_values = 0:10:90; % Range of theta values (you can modify this) +eta_values = 0:10:90; % Range of eta values (you can modify this) + +% Set up VideoWriter object to produce a movie +% v = VideoWriter('potential_movie', 'MPEG-4'); % Create a video object +% v.FrameRate = 5; % Frame rate of the video +% open(v); % Open the video file + +% Loop over theta and eta values +for theta = theta_values + for eta = eta_values + % Update Params with current theta and eta + Params.theta = theta; + Params.eta = eta; + + % Compute the potential for the current theta and eta + % == 2-D DDI Potential in k-space == % + VDk = compute2DPotentialInMomentumSpace(Transf, Params, MeanWidth); + VDk_fftshifted = fftshift(VDk); + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + EpsilonK = zeros(length(Transf.ky), length(Transf.kx)); + gs_tilde = gs / (sqrt(2*pi) * MeanWidth); + + % == Dispersion relation == % + for idx = 1:length(Transf.kx) + for jdx = 1:length(Transf.ky) + DeltaK = ((PlanckConstantReduced^2 .* (Transf.kx(idx).^2 + Transf.ky(jdx).^2)) ./ (2 * Dy164Mass)) + (2 * AtomNumberDensity * gs_tilde) + ((2 * AtomNumberDensity) .* VDk_fftshifted(jdx, idx)) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK(jdx, idx) = sqrt(((PlanckConstantReduced^2 .* (Transf.kx(idx).^2 + Transf.ky(jdx).^2)) ./ (2 * Dy164Mass)) .* DeltaK); + end + end + + EpsilonK = double(imag(EpsilonK) ~= 0); % 'isreal' returns 0 for complex numbers and 1 for real numbers, so we negate it + + % Plot the result + figure(10) + clf + set(gcf,'Position',[50 50 950 750]) + imagesc(fftshift(Transf.kx)*1e-6, fftshift(Transf.ky)*1e-6, EpsilonK); % Specify x and y data for axes + set(gca, 'YDir', 'normal'); % Correct the y-axis direction + cbar1 = colorbar; + cbar1.Label.Interpreter = 'latex'; + xlabel('$k_x l_o$','fontsize',16,'interpreter','latex'); + ylabel('$k_y l_o$','fontsize',16,'interpreter','latex'); + title(['2-D Dispersion: $\theta = ',num2str(Params.theta), '; \eta = ', num2str(Params.eta),'$'],'fontsize',16,'interpreter','latex') + + % Capture the frame and write to video + % frame = getframe(gcf); % Capture the current figure + % writeVideo(v, frame); % Write the frame to the video + end +end + +% Close the video file +% close(v); + +%% +function [Transf] = setupSpace(Params) + + Transf.Xmax = 0.5*Params.Lx; + Transf.Ymax = 0.5*Params.Ly; + + Nx = Params.Nx; + Ny = Params.Ny; + + % Fourier grids + x = linspace(-0.5*Params.Lx,0.5*Params.Lx-Params.Lx/Params.Nx,Params.Nx); + Kmax = pi*Params.Nx/Params.Lx; + kx = linspace(-Kmax,Kmax,Nx+1); + kx = kx(1:end-1); + dkx = kx(2)-kx(1); + kx = fftshift(kx); + + y = linspace(-0.5*Params.Ly,0.5*Params.Ly-Params.Ly/Params.Ny,Params.Ny); + Kmax = pi*Params.Ny/Params.Ly; + ky = linspace(-Kmax,Kmax,Ny+1); + ky = ky(1:end-1); + dky = ky(2)-ky(1); + ky = fftshift(ky); + + [Transf.X,Transf.Y] = ndgrid(x,y); + [Transf.KX,Transf.KY] = ndgrid(kx,ky); + Transf.x = x; + Transf.y = y; + Transf.kx = kx; + Transf.ky = ky; + Transf.dx = x(2)-x(1); + Transf.dy = y(2)-y(1); + Transf.dkx = dkx; + Transf.dky = dky; +end + +function VDk = compute2DPotentialInMomentumSpace(Transf, Params, MeanWidth) +% == Calculating the DDI potential in Fourier space with appropriate cutoff == % + % Angles of the dipole moment are defined in and away from the X-Z plane + % Interaction in K space + QX = Transf.KX*MeanWidth/sqrt(2); + QY = Transf.KY*MeanWidth/sqrt(2); + + Qsq = QX.^2 + QY.^2; + absQ = sqrt(Qsq); + QDsq = QX.^2*cos(Params.eta)^2 + QY.^2*sin(Params.eta)^2; % eta here is the azimuthal angle of the dipole moment (angle from the x-axis) + + % Bare interaction + Fpar = -1 + 3*sqrt(pi)*QDsq.*erfcx(absQ)./absQ; % Scaled complementary error function erfcx(x) = e^(x^2) * erfc(x) + Fperp = 2 - 3*sqrt(pi).*absQ.*erfcx(absQ); + Fpar(absQ == 0) = -1; + + % Full DDI + VDk = (Fpar*sin(Params.theta)^2 + Fperp*cos(Params.theta)^2); % theta here is the polar angle of the dipole moment (angle from the z-axis) +end + +function ret = computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced) + eps_dd = add/as; % Relative interaction strength + MeanWidth = x * lz; + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); % Quantum Fluctuations term + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2))); + Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2)); + ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz); +end + + + diff --git a/Estimations/RotonInstability/ExtractingKRoton.m b/Estimations/RotonInstability/ExtractingKRoton.m new file mode 100644 index 0000000..bb7ce0f --- /dev/null +++ b/Estimations/RotonInstability/ExtractingKRoton.m @@ -0,0 +1,503 @@ +%% Physical constants +PlanckConstant = 6.62607015E-34; +PlanckConstantReduced = 6.62607015E-34/(2*pi); +FineStructureConstant = 7.2973525698E-3; +ElectronMass = 9.10938291E-31; +GravitationalConstant = 6.67384E-11; +ProtonMass = 1.672621777E-27; +AtomicMassUnit = 1.660539066E-27; +BohrRadius = 5.2917721067E-11; +BohrMagneton = 9.274009994E-24; +BoltzmannConstant = 1.38064852E-23; +StandardGravityAcceleration = 9.80665; +SpeedOfLight = 299792458; +StefanBoltzmannConstant = 5.670373E-8; +ElectronCharge = 1.602176634E-19; +VacuumPermeability = 1.25663706212E-6; +DielectricConstant = 8.8541878128E-12; +ElectronGyromagneticFactor = -2.00231930436153; +AvogadroConstant = 6.02214076E23; +ZeroKelvin = 273.15; +GravitationalAcceleration = 9.80553; +VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); +HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); +AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 + +% Dy specific constants +Dy164Mass = 163.929174751*AtomicMassUnit; +Dy164IsotopicAbundance = 0.2826; +DyMagneticMoment = 9.93*BohrMagneton; + +%% Extracting values from the roton instability boundary for tilted dipoles + +%-------TEST-------% +% nadd2s = 0.05:0.005:0.25; +% as_to_add = 0.76:0.001:0.81; + +%-------DEPLOY-------% +nadd2s = 0.005:0.005:0.5; +as_to_add = 0.250:0.001:1.15; + +data_struct = struct; + +% wz_values = [150, 300, 500, 750]; +% kvec = linspace(0, 5e6, 1000); % Vector of magnitudes of k vector + +wz_values = [1000, 3000, 5000, 7000]; +kvec = linspace(0, 15e6, 1000); % Vector of magnitudes of k vector + +% wz_values = [10000, 13000, 15000]; +% kvec = linspace(0, 25e6, 1000); % Vector of magnitudes of k vector + +theta_values = 0:5:45; % Range of theta values +phi = 0; % Azimuthal angle of momentum vector + +for mainloop_idx = 1:length(wz_values) + format long + + PlanckConstantReduced = 6.62607015E-34/(2*pi); + AtomicMassUnit = 1.660539066E-27; + Dy164Mass = 163.929174751*AtomicMassUnit; + VacuumPermeability = 1.25663706212E-6; + BohrMagneton = 9.274009994E-24; + DyMagneticMoment = 9.93*BohrMagneton; + + wz = 2 * pi * wz_values(mainloop_idx); % Trap frequency in the tight confinement direction + lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length + add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + gdd = VacuumPermeability*DyMagneticMoment^2/3; + var_widths = zeros(length(as_to_add), length(nadd2s)); + + x0 = 5; + Aineq = []; + Bineq = []; + Aeq = []; + Beq = []; + lb = [1]; + ub = [10]; + nonlcon = []; + fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + + for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + as = (as_to_add(jdx) * add); % Scattering length + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + var_widths(jdx, idx) = sigma; + end + end + + eps_dd_values = zeros(length(theta_values), 1); + n_values = zeros(length(theta_values), 1); + k_roton_values = zeros(length(theta_values), 1); + + for idx = 1:length(theta_values) + theta = theta_values(idx); + [eps_dd_values(idx), n_values(idx), k_roton_values(idx)] = extractFromBoundaryCurve(theta, phi, nadd2s, as_to_add, var_widths, wz, lz, kvec); + end + + data_struct(mainloop_idx).wz_value = wz / (2 * pi); + data_struct(mainloop_idx).theta_values = theta_values; + data_struct(mainloop_idx).eps_dd_values = eps_dd_values; + data_struct(mainloop_idx).n_values = n_values; + data_struct(mainloop_idx).k_roton_values = k_roton_values; + + %{ + figure(13) + clf + set(gcf,'Position',[50 50 950 750]) + plot(theta_values, eps_dd_values, '-o', LineWidth=2.0) + xlabel('$\theta$','fontsize',16,'interpreter','latex'); + ylabel('$\epsilon_{dd}$','fontsize',16,'interpreter','latex'); + % title([''],'fontsize',16,'interpreter','latex') + grid on + + figure(14) + clf + set(gcf,'Position',[50 50 950 750]) + plot(theta_values, (1./eps_dd_values) * (add/BohrRadius), '-o', LineWidth=2.0) + xlabel('$\theta$','fontsize',16,'interpreter','latex'); + ylabel('$a_s (\times a_o)$','fontsize',16,'interpreter','latex'); + % title([''],'fontsize',16,'interpreter','latex') + grid on + + figure(15) + clf + set(gcf,'Position',[50 50 950 750]) + plot(theta_values, n_values * 1E-15, '-o', LineWidth=2.0) + xlabel('$\theta$','fontsize',16,'interpreter','latex'); + ylabel('$n (\times 10^{3} \mu m^{-2})$','fontsize',16,'interpreter','latex'); + % title([''],'fontsize',16,'interpreter','latex') + grid on + + figure(16) + clf + set(gcf,'Position',[50 50 950 750]) + plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0) + xlabel('$\theta$','fontsize',16,'interpreter','latex'); + ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex'); + % title([''],'fontsize',16,'interpreter','latex') + grid on + %} +end + +save('.\Results\ExtractingKRoton_Result.mat', 'data_struct'); + +%% Extracting values from the roton instability boundary for tilted dipoles - fixed atom number, trap frequency + +%-------DEPLOY-------% + +N = 1E5; +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +area = 100; % in square micrometers +ppmum = N / area; +nadd2s = ppmum*1E12*add^2; +as_to_add = 0.150:0.001:1.15; + +data_struct = struct; + +wz_values = [500, 750, 1000, 2000]; +kvec = linspace(0, 15e6, 1000); % Vector of magnitudes of k vector + +theta_values = 0:5:90; % Range of theta values +phi = 90; % Azimuthal angle of momentum vector + +for mainloop_idx = 1:length(wz_values) + format long + + PlanckConstantReduced = 6.62607015E-34/(2*pi); + AtomicMassUnit = 1.660539066E-27; + Dy164Mass = 163.929174751*AtomicMassUnit; + VacuumPermeability = 1.25663706212E-6; + BohrMagneton = 9.274009994E-24; + DyMagneticMoment = 9.93*BohrMagneton; + + wz = 2 * pi * wz_values(mainloop_idx); % Trap frequency in the tight confinement direction + lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length + add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + gdd = VacuumPermeability*DyMagneticMoment^2/3; + var_widths = zeros(length(as_to_add), length(nadd2s)); + + x0 = 5; + Aineq = []; + Bineq = []; + Aeq = []; + Beq = []; + lb = [1]; + ub = [10]; + nonlcon = []; + fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + + for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + as = (as_to_add(jdx) * add); % Scattering length + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + var_widths(jdx, idx) = sigma; + end + end + + eps_dd_values = zeros(length(theta_values), 1); + k_roton_values = zeros(length(theta_values), 1); + + for idx = 1:length(theta_values) + theta = theta_values(idx); + [eps_dd_values(idx), k_roton_values(idx)] = extractFromBoundaryPoint(theta, phi, nadd2s, as_to_add, var_widths, wz, lz, kvec); + end + + data_struct(mainloop_idx).wz_value = wz / (2 * pi); + data_struct(mainloop_idx).theta_values = theta_values; + data_struct(mainloop_idx).eps_dd_values = eps_dd_values; + data_struct(mainloop_idx).k_roton_values = k_roton_values; + +end + +save('.\Results\ExtractingKRoton_Result_FixedDensity_phi90.mat', 'data_struct'); +%% +function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi) + Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2))); + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + Fka = (3 * cos(deg2rad(theta))^2 - 1) + ((3 * Go) .* ((sin(deg2rad(theta))^2 .* sin(deg2rad(phi))^2) - cos(deg2rad(theta))^2)); + Ukk = (gs + (gdd * Fka)) * gamma4; +end + +function ret = computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced) + eps_dd = add/as; % Relative interaction strength + MeanWidth = x * lz; + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); % Quantum Fluctuations term + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2))); + Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2)); + ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz); +end + +function [eps_dd, AtomNumberDensity, k_roton] = extractFromBoundaryCurve(theta, phi, nadd2s, as_to_add, var_widths, wz, lz, kvec) + + format long + + PlanckConstantReduced = 6.62607015E-34/(2*pi); + AtomicMassUnit = 1.660539066E-27; + Dy164Mass = 163.929174751*AtomicMassUnit; + VacuumPermeability = 1.25663706212E-6; + BohrMagneton = 9.274009994E-24; + DyMagneticMoment = 9.93*BohrMagneton; + add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + gdd = VacuumPermeability*DyMagneticMoment^2/3; + phase_diagram = zeros(length(as_to_add), length(nadd2s)); + w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction + l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length + + for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + as = (as_to_add(jdx) * add); % Scattering length + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(kvec, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) .* DeltaK); + phase_diagram(jdx, idx) = ~isreal(EpsilonK); + end + end + %{ + figure(11) + clf + set(gcf,'Position',[50 50 950 750]) + imagesc(nadd2s, as_to_add, phase_diagram); % Specify x and y data for axes + set(gca, 'YDir', 'normal'); % Correct the y-axis direction + colorbar; % Add a colorbar + xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); + ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + title(['$\theta = ',num2str(theta), '; \phi = 0','$', '(Along Y)'],'fontsize',16,'interpreter','latex') + %} + %-------------% + + matrix = phase_diagram; + + % Initialize arrays to store row and column indices of transitions + row_indices = []; + col_indices = []; + + % Loop through the matrix to find transitions from 0 to 1 + [rows, cols] = size(matrix); + for j = 1:cols + for i = 2:rows + if matrix(i-1, j) == 1 && matrix(i, j) == 0 + row_indices = [row_indices; i-1]; + col_indices = [col_indices; j]; + break; % Stop after the first transition in the column + end + end + end + + % Now extract the values from the corresponding vectors + xvals = zeros(length(col_indices), 1); + yvals = zeros(length(row_indices), 1); + for k = 1:length(row_indices) + row = row_indices(k); + col = col_indices(k); + xvals(k) = nadd2s(col); + yvals(k) = as_to_add(row); + end + + instability_boundary = [xvals, yvals]; + + %-------------% + + % Degree of the polynomial to fit + n = 5; % For a quadratic fit + + % Fit the polynomial + p = polyfit(xvals, yvals, n); + + % Display the polynomial coefficients + % disp('Polynomial coefficients:'); + % disp(p); + + % Evaluate the polynomial at points in x + y_fit = polyval(p, xvals); + + %{ + % Plot the original data and the fitted polynomial curve + figure(12); + clf + set(gcf,'Position',[50 50 950 750]) + plot(xvals, yvals, 'o', 'LineWidth', 2.0, 'DisplayName', 'Extracted boundary points'); % Original data + hold on; + plot(xvals, y_fit, '-r','LineWidth', 2.0, 'DisplayName', ['Polynomial Fit (degree ' num2str(n) ')']); % Fitted curve + ylim([min(as_to_add) max(as_to_add)]) + xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); + ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex') + title(['$\theta = ',num2str(theta), '; \phi = 0','$', '(Along Y)'],'fontsize',16,'interpreter','latex') + legend('show'); + grid on; + %} + [val, idx] = max(y_fit); + + % Round down to 4 decimal places + rounded_val = floor(val * 10^4) / 10^4; + % Find nearest from original vector of boundary points + [~, nearest_idx] = min(abs(instability_boundary(:, 2) - rounded_val)); + nearest_val = instability_boundary(nearest_idx, 2); + % Choose the scalar value between the two + if ~isscalar(nearest_val) + val = rounded_val; + else + val = nearest_val; + idx = nearest_idx; + end + + AtomNumberDensity = xvals(idx) / add^2; % Areal density of atoms + as = val * add; % Scattering length + eps_dd = 1/val; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + x0 = 5; + Aineq = []; + Bineq = []; + Aeq = []; + Beq = []; + lb = [1]; + ub = [10]; + nonlcon = []; + fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + MeanWidth = sigma * lz; % Mean width of Gaussian ansatz + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(kvec, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + DeltaK = ((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) .* DeltaK); + k_roton_indices = find(imag(EpsilonK) ~= 0); + if ~isempty(k_roton_indices) + k_roton = median(kvec(k_roton_indices)); + else + k_roton = NaN; + end +end + +function [eps_dd, k_roton] = extractFromBoundaryPoint(theta, phi, nadd2s, as_to_add, var_widths, wz, lz, kvec) + + format long + + PlanckConstantReduced = 6.62607015E-34/(2*pi); + AtomicMassUnit = 1.660539066E-27; + Dy164Mass = 163.929174751*AtomicMassUnit; + VacuumPermeability = 1.25663706212E-6; + BohrMagneton = 9.274009994E-24; + DyMagneticMoment = 9.93*BohrMagneton; + add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + gdd = VacuumPermeability*DyMagneticMoment^2/3; + phase_diagram = zeros(length(as_to_add), length(nadd2s)); + w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction + l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length + + for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + as = (as_to_add(jdx) * add); % Scattering length + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(kvec, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) .* DeltaK); + phase_diagram(jdx, idx) = ~isreal(EpsilonK); + end + end + + matrix = phase_diagram; + + % Initialize arrays to store row and column indices of transitions + row_indices = []; + col_indices = []; + + % Loop through the matrix to find transitions from 0 to 1 + [rows, cols] = size(matrix); + for j = 1:cols + for i = 2:rows + if matrix(i-1, j) == 1 && matrix(i, j) == 0 + row_indices = [row_indices; i-1]; + col_indices = [col_indices; j]; + break; % Stop after the first transition in the column + end + end + end + + % Now extract the values from the corresponding vectors + xvals = zeros(length(col_indices), 1); + yvals = zeros(length(row_indices), 1); + for k = 1:length(row_indices) + row = row_indices(k); + col = col_indices(k); + xvals(k) = nadd2s(col); + yvals(k) = as_to_add(row); + end + + instability_boundary = [xvals, yvals]; + + if ~isempty(instability_boundary) + val = instability_boundary(2); + AtomNumberDensity = instability_boundary(1) / add^2; % Areal density of atoms + as = val * add; % Scattering length + eps_dd = 1/val; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + x0 = 5; + Aineq = []; + Bineq = []; + Aeq = []; + Beq = []; + lb = [1]; + ub = [10]; + nonlcon = []; + fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + MeanWidth = sigma * lz; % Mean width of Gaussian ansatz + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(kvec, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + DeltaK = ((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* kvec.^2) ./ (2 * Dy164Mass)) .* DeltaK); + k_roton_indices = find(imag(EpsilonK) ~= 0); + if ~isempty(k_roton_indices) + k_roton = median(kvec(k_roton_indices)); + else + k_roton = NaN; + end + else + eps_dd = NaN; + k_roton = NaN; + end +end \ No newline at end of file diff --git a/Estimations/RotonInstability/FeshbachResonances.nb b/Estimations/RotonInstability/FeshbachResonances.nb new file mode 100644 index 0000000..e43f15e --- /dev/null +++ b/Estimations/RotonInstability/FeshbachResonances.nb @@ -0,0 +1,1526 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 12.2' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 77877, 1518] +NotebookOptionsPosition[ 76510, 1486] +NotebookOutlinePosition[ 77008, 1504] +CellTagsIndexPosition[ 76965, 1501] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ +Cell[BoxData[{ + RowBox[{ + RowBox[{"PlanckConstant", "=", + RowBox[{"6.62606957", " ", + SuperscriptBox["10", + RowBox[{"-", "34"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"PlanckConstantReduced", "=", + FractionBox["PlanckConstant", + RowBox[{"2", " ", "\[Pi]"}]]}], ";"}], "\n", + RowBox[{ + RowBox[{"FineStructureConstant", "=", + RowBox[{"7.2973525698", " ", + SuperscriptBox["10", + RowBox[{"-", "3"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"ElectronMass", "=", + RowBox[{"9.10938291", " ", + SuperscriptBox["10", + RowBox[{"-", "31"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"GravitationalConstant", "=", + RowBox[{"6.67384", " ", + SuperscriptBox["10", + RowBox[{"-", "11"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"ProtonMass", "=", + RowBox[{"1.672621777", " ", + SuperscriptBox["10", + RowBox[{"-", "27"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"AtomicMassUnit", "=", + RowBox[{"1.66053878283", " ", + SuperscriptBox["10", + RowBox[{"-", "27"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"BohrRadius", "=", + RowBox[{"0.52917721092", " ", + SuperscriptBox["10", + RowBox[{"-", "10"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"BohrMagneton", "=", + RowBox[{"927.400968", " ", + SuperscriptBox["10", + RowBox[{"-", "26"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"BoltzmannConstant", "=", + RowBox[{"1.3806488", " ", + SuperscriptBox["10", + RowBox[{"-", "23"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"StandardGravityAcceleration", "=", "9.80665"}], ";"}], "\n", + RowBox[{ + RowBox[{"SpeedOfLight", "=", "299792458"}], ";"}], "\n", + RowBox[{ + RowBox[{"StefanBoltzmannConstant", "=", + RowBox[{"5.670373", " ", + SuperscriptBox["10", + RowBox[{"-", "8"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"ElectronCharge", "=", + RowBox[{"1.602176565", " ", + SuperscriptBox["10", + RowBox[{"-", "19"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"VacuumPermeability", "=", + RowBox[{"4", "\[Pi]", " ", + SuperscriptBox["10", + RowBox[{"-", "7"}]]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"DielectricConstant", "=", + FractionBox["1", + RowBox[{ + SuperscriptBox["SpeedOfLight", "2"], " ", "VacuumPermeability"}]]}], + ";"}], "\n", + RowBox[{ + RowBox[{"ElectronGyromagneticFactor", "=", + RowBox[{"-", "2.00231930436153"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"AvogadroConstant", "=", + RowBox[{"6.02214129", " ", + SuperscriptBox["10", "23"]}]}], ";"}]}], "Input", + CellChangeTimes->{ + 3.9462898535670986`*^9, {3.946289960548875*^9, 3.9462899947154675`*^9}, { + 3.9462971681147823`*^9, 3.9462971786756124`*^9}, {3.94629883673812*^9, + 3.9462988374090405`*^9}}, + CellLabel->"In[3]:=",ExpressionUUID->"62f7b3c0-151e-42a7-bd14-2c7024749c6f"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"scatteringLength", "[", "B_", "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"abkg", ",", "resonanceB", ",", "resonancewB", ",", "as"}], + "}"}], ",", + RowBox[{"(*", + RowBox[{"Set", " ", "background", " ", "scattering", " ", "length"}], + "*)"}], + RowBox[{ + RowBox[{"abkg", "=", + RowBox[{"85.5", "*", "BohrRadius"}]}], ";", + RowBox[{"(*", + RowBox[{ + "BohrRadius", " ", "should", " ", "be", " ", "defined", " ", + "beforehand"}], "*)"}], + RowBox[{"(*", + RowBox[{"Resonance", " ", "positions", " ", "and", " ", "widths"}], + "*)"}], + RowBox[{"resonanceB", "=", + RowBox[{"{", + RowBox[{ + "1.295", ",", "1.306", ",", "2.174", ",", "2.336", ",", "2.591", ",", + "2.74", ",", "2.803", ",", "2.78", ",", "3.357", ",", "4.949", ",", + "5.083", ",", "7.172", ",", "7.204", ",", "7.134", ",", "76.9"}], + "}"}]}], ";", "\[IndentingNewLine]", + RowBox[{"resonancewB", "=", + RowBox[{"{", + RowBox[{ + "0.009", ",", "0.010", ",", "0.0005", ",", "0.0005", ",", "0.001", ",", + "0.0005", ",", "0.021", ",", "0.015", ",", "0.043", ",", "0.0005", + ",", "0.130", ",", "0.024", ",", "0.0005", ",", "0.036", ",", "3.1"}], + "}"}]}], ";", "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{"Get", " ", "scattering", " ", "length"}], "*)"}], + RowBox[{"as", "=", + RowBox[{"abkg", "*", + RowBox[{"Product", "[", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{ + RowBox[{"resonancewB", "[", + RowBox[{"[", "j", "]"}], "]"}], "/", + RowBox[{"(", + RowBox[{"B", "-", + RowBox[{"resonanceB", "[", + RowBox[{"[", "j", "]"}], "]"}]}], ")"}]}]}], ")"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "1", ",", + RowBox[{"Length", "[", "resonanceB", "]"}]}], "}"}]}], "]"}]}]}], + ";", "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{"Return", " ", "scattering", " ", "length"}], "*)"}], + RowBox[{"as", "/", "BohrRadius"}]}]}], "]"}]}], "\n", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"scatteringLength", "[", "b", "]"}], ",", " ", + RowBox[{"{", + RowBox[{"b", ",", " ", "0", ",", " ", "8"}], "}"}], ",", " ", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2.5"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "150"}], "}"}]}], "}"}]}], ",", + RowBox[{"FrameLabel", "\[Rule]", + RowBox[{"{", + RowBox[{ + "\"\\"", ",", "\"\\""}], + "}"}]}], ",", + RowBox[{"PlotRangeClipping", "\[Rule]", "True"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"FontSize", "\[Rule]", "14"}], "}"}]}], ",", + RowBox[{"Frame", "\[Rule]", "True"}], ",", " ", + RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", + RowBox[{"TicksStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"FontSize", "\[Rule]", "14"}], "}"}]}], ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"{", "Thick", "}"}]}], ",", + RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",", + RowBox[{"ImageSize", "\[Rule]", + RowBox[{"{", + RowBox[{"800", ",", "495"}], "}"}]}], ",", + RowBox[{"AspectRatio", "\[Rule]", "Full"}]}], "]"}]}], "Input", + CellChangeTimes->{{3.946298626684884*^9, 3.946298627172211*^9}, { + 3.9462986848238554`*^9, 3.9462987262215877`*^9}, {3.946298822465828*^9, + 3.9462988704810686`*^9}, {3.946298989364349*^9, 3.946298992368571*^9}, { + 3.9462990341129494`*^9, 3.946299053088297*^9}, {3.9462991029805555`*^9, + 3.946299104687995*^9}, {3.946299143481086*^9, 3.9462993374952354`*^9}, { + 3.9462994016976433`*^9, 3.94629940724636*^9}, {3.9462994625206733`*^9, + 3.946299472231315*^9}, {3.9462995502251225`*^9, 3.946299611028179*^9}, { + 3.946299685440056*^9, 3.946299719781707*^9}, {3.946299802805818*^9, + 3.946299822797445*^9}}, + CellLabel->"In[21]:=",ExpressionUUID->"461e8a7b-9e39-408e-a5f3-38960ab44ff7"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.24720000000000014`, 0.24, 0.6], Thickness[Large], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwVkgk01fkbxmmVJLsYiRb9m3QtjTV6X25RlhJTvr+LGxcjLUO2UEgJhWnG +VsaWdVBUQmlclCUtiEnK2ujat7soldL/znvOe97zOec5z3nPcx51lo+95xIR +EZFrwv3vWnmOddSPX9r9lVcj+se8Iy6jK/sOKnlAPhk8PC/kndnXM+4pBYDZ +S+6YyydHtG7tLs9UigJHmdWt2z87oqPHPDtRKRmsv7umPPviiP1aMfQEpXww +NjhzXG7REW/IH4y+olQB1gtu7r3LCEaK3dt6WakRzJQtUqxkCf5o+UdsuW8j +DHb9da5VyJ2XfMZ7nzSC4tXnT+3kCG5eqnmTFtQE4fPsa0SeYPO3fNqrzmbo +8XeRPaVIUEKQqrch/ikE70xXKPmB4PX+UHrlYhvEO2xdHrKZoJkKlT9wuB0u +H3EaX7WF4ATDYLlYaTu8+Oy0P13IqlMh7qU7XoJN9nxEnQZBH2/9LSJ9LyHj +c9DAmm0EZTxuFxUYdoIG55Bqww6ChMq5zeW9gi3XOyVSDQjO9v4snqvcBX1e +gcwdhgSjmWKeDvQuqKwR128S8j13H+Wq5C7wM8oL/WhEUPJX00tnDV7D2KKG +/1ETgk0X3jJWhHVD9KjaR2szgrq3pFeoiPWABs3dN9Wa4FNak2urdg8s0iVO +og1B17vBf4dTPeDjuGftpJATqgZ9/y3pAfXVzofMDxAcqy/tLbTtBaPu5tFP +dgSzuvbf1Unqg8Ys7+iYIwRXf490tlQdhOhb2nk/sYR5eTsyNS0GwbBUNoAv +5M2vNF2lfx0EZXqS7F13gruLu9172YNgar65SduTYHVxauV92jt4rd+x0fgY +wWmHqRrrtndw1ELVOehXgoeLrj33XzMEG5g/ZeSeJZjhcsHmF/Uh0CAKs2Hn +CA7JnGolekMQKvX0ECNMmHeYebupyxCcDcyyU4ggeNl+unNl6RA8se86m36B +IPureU+6zXsQTbXi9F0muOXQzFhDHAe41mTcLo2gcoSlsVcOBzTUHz/2/pOg +VOmNOPH7HGC4Cuyi0gl+EXOgHRriAM379+zaTIIv6+/7DxgOg/TF8yn7cgmG +akcufhoeBuBfu1l1U/gPs+dgxsIwaE786TB9i6BH/M4ckB4B/WRdcY0yggfH +hunRJiPgzVnJzrwjzOuG1WXZpBGw2rTkQ2Elwba1cnI0HIWs0mK+Rj3BBtNT +nh2HR0H5/cyLyEcEH5xorgo4MQpzBf9sH3xMMO9JMPV36ijkq4+m5TQRDI7o +z9o3PQoq9jY6Fs8Jbpwt3Ob+5xj0Ba0sV+gmeKbNCK7PjYN9VOLHjTxhn2iV +w0/FJmATf1VlI59gfoJ2/ILKBGjb/zjlPUeww2brW+beCdhNuX2unSe4/bmc +/5bUCeAdWS+Tskhw8MlsYbnBJGTVdR5YlKAwaOsJW471JPBd+44PSFIoETMi +kHedBFU9h/nHUhQaWfRjSOwkFPh/uJkmR2FS47MeeDsJdt+/5UeoUGj5qECy +NXQK6lKWHMMdFA6oqVcu/jYFhRURBqe1KAw4n+GknTcFFUYv3vylQ2EOJBUl +PZ8CVlHXVw19ChfY580ZKtPQP6U67AMU3n7oFDTKngYRm7Wxlg4UWih3qyh1 +TkNnTUTh+8MU9oXYN1iNTEP6EaWcGELhKqP9UmWSMyDxz7PWURcK3e/rlwQc +nQHTsv6Ha7wpVKyQHhAVnQXFgqF2pUgKneMXfuYozEJR85jWb1EU5noMP2/W +nAWPXYFRa2Mp1JSvro4js6C/VOew8VUKzYNcU+TvzMKJXLaJcRaFsQesJD41 +zcJFXNG9IZfCVo2fLvb0zsJ4ed4++UIKb01efNC+lAsOk/3uOmUU6mc4FiZr +cUFc2thkVx2FVOyLfy8Zc4V9yDe+1UDhuQCz9Wf2cmEiS42j3ULhI5vtyZQT +F0ru3As/00GhzbfFSNUYLtw4Prtq9TCFbsxCl6IBLpR5cFZMSTEwyuqHtLRx +Lvz9omR4XIGBhfq/v7oyx4XKRwWvVq5n4JRkqPUpcR6MZbBsi7YxMKjO1khX +nweP1p38PXMPA9NuPg7YZMYDKF9zmW3NwJprBnfkbHigOBPCWenAQFFf9a3z +bjzwW2Kot5HFwHi1D3I1CTyIVGzWyb7AwDKJ43al13lQYd35gB7HwI5PA3FZ +eTzo1EybU09moEJHy5LIah54qno7pBQy0IhtutuvkQct13Qrte4w0Lm4PMS9 +nQelteEHJB8yMCcyg7t3mAfujPpT+W0MbDwlrWnA5cHr3e9+Y71l4AgV7fW/ +BaH++IEtfhwGaur6DohL8yExM8w2ZYGBVUP0F+0mfDDUuf3Yi+aEr/dF8hIs ++aB7NXHN5C4n/FhWq2Bjz4dGuozJ0H4nNDhr5NbixYerjOk9e72ckPwbFB3t +x4dlFoVNtUFOGGxZcXNPGB84uVXxT6Kd8IGs1sf6RD44qMfQi4qc8E3IyR8i +MvkwdVf0UuJDJ/w0WIymRXxgH7zYqd3qhIa3NsdVs/lAzj1aen9O6C/DunOm +hQ+ZDqMyD1Y5Y3BwdpfeP3zIaZGpyd7gjNV7lNXKx/hAP90YyDrgjD0ljnt9 +BXxgrbOXcfNyxi9SKcdpi3zo1StkJ0Q6o3H/2soSWQF8S9WSbK12RgbdtueY +qgDqtuUmyb5xxtDiK981tgmgOGU+jjvvjA8Dl1vl7RaAIEuJNW/igj295j5u ++wUQE2uy3Jflgl/Mzidv+FkA24NvvFl/xQWVi9jV/UwB8O5VqOtVuOAuyYWB +dG8B9EdptHPfuaBzgOEyRoAAltyu+CNJionnegK3rYsQwFumH82bzsSaQq5/ +crIAymbaPGUrmNgnQUuzzxZAXKvRTjafiV/9TtRKlQjg2L7EzP36R1HlbdH7 +tgoBnDwd4G8fcRRNYUQsoU4AG6x7e+PajiKzYBPN+pkAJNf/ouop44rhq90c +VnUJoLnh5XCUmStmnc4KfjIo9HP8oGkS6Iq13b2ZlyYEkE4CFc3KXHHAVKmB +/kEAKZtC4k9Pu+Ji3pExUZE5aN/lWDWw0w1VxZPX1IvPge26nfV9F9xwt2+H +brj8HLSokcZ1fW7IfC1JTNTmIDQp/+N9MxaGm9iEfflxDqS+r5uJqmKh/qhp +0cPtcyDy39Sz8P/bgH9e + "]], LineBox[CompressedData[" +1:eJwtkQs0VQkXx8+hB3mVxEWIhKb08Ka0N3lF8rz3nENKRqIiUZLy1jRJEymi +kaYyGr6ICl9FRYPkOVN5xqSihwp17r2uxx3fWt9ea6//+q/1+6/9X2trBxzw +3C1BEETm7P5Pox3lOu7Ks0D8f04EdfqEKbHwKapxqZeHJka9KyiK1GShWOsd +Zzp3PQYFHhJFG7DgOlF/aW2KJVJvbJ3jjFiQo/LqxsYBnQIW5SZvZOHVKkjn +/G6Llq8HPvzswELC6tpmnw92+IN/ieUv7iwoV+8dCu1xQPWB46cyfViwORhl +KpnqhLI7XLovBrJg+XpZXMwcZ5zuU115OYyFfrNwUwsvF/zi+z76WjQLUutW +vk+M3Yr9PRWNN5JYKO20cF90yhXbmBOckjQWFEw6wo/GbMNHXV7Bt7NYOCGz +uy+U64a3KJ2qqissDKhkzT0m746/vRydX1PEgsTb8pSnIe54jvuQqrvDwlfH +vqab1e6Y/PxMYWMNCyHqLhVSMh54yGu7oKWRhejAB20XPT2Q5zGR1dXHQtGF +8qpnf3mgY3vD0KshFiaJntMRsp5o4ZZl9mZ01h8fLvWz9URVV+OXn+fwwbc6 +9VTAdU9c0EzqfZPnw5p9mWcUOzxR5Nx+WMjhw+Wiq9lmk57Y5xS6RNKQD2nR +fzqVOXlhS8OG3VLmfJA40TgQuN8LaxwW3JWz4cPHqfO9jr94Yb5doTeHywdZ +P4XKFS1emF53+LrGTj7Y90vq+n30wgRbu+86IXzYmNXXZT3PGwPwdaZhLB9W +5l9Ipay80eth6Rujk3ygaqOL/+vpjXab4owtMvgQn2fXrLLXG1dsVP/btoAP +4gvXgqWyvPG9OVeRbuFDb9vwqMVbb+yuWB7g18kHrp7bqCTfG5tMx8sCXvNB +4/CGJWvnc7HY+KxHKMuHlrB57Q36XPy13O+3CDEfunOMR+zMuZi2fvXYEWkB +uJGUt40DF8PWPk1P0hCASZdkfkcAF3eWZP9zUl8Al2hy88FwLrobBq07s14A +JYGv6gtjuWi0SrI9214A2+U95D9ncZHVs1a4GSqAwd9VRB5/cnHToG1DarQA +Nsni4wUdXPwpzyk+OFkAcdJKdFgfF5WVvL8uzxHA33G59vbjXDQj97XlPhGA +p4mRR4YaD+MehJ+MbhPAjXbbbFKXh/VHooDXIwAZzjEDM0MeUl8SSxeNCsDV ++nYru4mH0b0Xz/6sLgQlQrZdxp+Hj7IuOwbpCaGuW0Glbw8PpTyvizevF8LV +t3LihAM8zGksPSB2EIJBbb+8WxwP792td4uKEEKPz/XfdXN5OHX2u0LgUyF8 ++vimsv4ZD+1cRA02z4XwecuMcVwHD9PmEQlaA0KIcxgeWtrJQ41YmdGe70Ig +O3myiwd5uGmvTrvHsglwbNsfzOfzMN7OPR2OTEDDBrNTuhoUNoq5ThpJEyDx +3ibpsjaFC+/7EpNpE/DXyTBzaT0Kr6zfE15xdQIigo1Ola+h8JFmnLth6wSE +JksN7wQKJSaKF6qvEMEPh++tPrSDQvUW22+wVgTKu/QvD++i0OS37heBliIw +0PoY6bmbwt1b5l8qcRVB36aIZQr7Z+/nBKywjRJBs46PaOVRCs9aqVqFNIgg +dJlehNw5Cpce/+nHypBJ2KabnZb5kEJTdw2HvshJ8C9xjLOrpXCb7h0DMm4S +PsrdOTD2hML45tefnc9NQkVy2G1oonBwqXV0/71JiFTnuN16TuEf1d/S5spO +waKVjSPf31NoJvav8CqZgsKanMAMBRq3uj5Ksq+aghirLuv+RTT+eEnLzbx2 +CizlDsWvVKIx3bx/WO3lFEQ9e3HwPofGDwd8VQenp6BunHOiVZvGX//hHg93 +nQZj438SHxjTSNY6254ZmYZPm8K2ylA0chYWycfzpyHfaK62NUPjmh3SveHE +DCy449Ab5kujj6gh0ltpBmT8NA3/2knjHSP7AvWNM5ByyD42J5jGoGsgVXR6 +Bpo6uQUmMTQ2p5i01v8gBv/cmndf82i0UngmkWEqhibfktigKzTeyNll7oti +mKv6orH/Ko3JJb9c+coVQ7WQ0/i8cJbveh/BSRRDhdrF8q6yWX5VnsreTjGM +WCVnetfTqFxhvNVkUAybn1WOjjbSmIJNCTMjYogeKTiT/ozGW0WTh7aQBJ4O +tJPtaafx9EOD/lfKBHarLFTL7aXR9kPSrXm2BI7vzv/6fYzGo2tam/Y5EqjU +B4Nd32fzkarv2rcSmJa/Tq9OQKPmTKnqJYrADlnFV8XTNE4ovkpaG0og90nW +WKc0g+tog7zzEQS2aP9sLZRlMCgvsnLiCIEjMVxCZyGDz/UXjNQlEegWlKR/ +XpnBWxvNufRFAp06hsvm6jI4nJh0oDqPwJKdzLoUfQY1G1pO6VwjcH32tJ3i +KgbTPAJrRm4SyGYPjO8yYrAuq7TL4/Zsvq3VXs+MQVGvaLyiisAzqXtuii0Z +DA7K0E+sm+1n6GYxYcNgfnGfzVAjgZ/3Pr6v4cDgy1H97S6tBFZlWa3yd2bQ +7lhN+pJuAhPGUva5eDF47JF0cUw/gV8yq59OUgyWz+X+OfCGwNx7awO7tzOo +lf5p4o8vBG5THztsvIfBml3xf5R/I1Dg7abmt5/BHcaLmftCApcktI7VH2Rw +ek6h1JNpAm9IyE0fPcLgry+tqpolSDQXflZKjGVww43WPS/mk/hEmb/3QzKD +PUcDVPplSXxYIDCtS2XwqAu/fmgRidTy6TydcwxyNFKjviqTaDawYY52LoOV +XzT0hOokqj3v/bv/KoO8R2UvCG0SYdnq5T/9h0F+hv0JaT0SrW9oXdpWyeCF +H7tNFFeR+Pjc09DkOgZNTEPfqq0j0dfR8WFax+y/5pHnl5uSWOZYtlj8msHI +rvObV1uRaKFw/OldlkHFIoNvJkDi4rzD6pLyPlh27MFVazsSu4YzneUMfdDd +1d3TYQuJ+E77dibPB0c135Ju20iMjDEceZzhg2dHj5RRXiQucdqzA7/44Jpa +mV3+NIl5lS9nFmT5Ymtm/sIQPxK1CvPoodV+GL4x6fqynSQWTHPWlIfswH8B +7mM1NQ== + "]], LineBox[CompressedData[" +1:eJwVjH1MzHEAh/t+J0tcIzqytI7IxtSWbkr4yHlLOM7LfX+9TVM5L5cjyejF +eUmSjju6smxc6UTSWq68FL0petEqL6n0si7KS+U2cWnyx7Pnn2ePICRieyi1 +sLBwG+e/h5taNGoZAcQJQ4NRO+Db+r0+SUEQ06fZ3RO7G1/uKWM1UQT5ygaz +lifFhRj+koyTBD5ehtL+YClctua0Z8UTFBl+RM68LkWV08rkB+cIBC8KrXqe +ShE23OhtuEhwtKJGHNQqhWVF6NfSFAK/dR/La4akyLz2+0a1huBc0efWyZYM +ovDkTY1pBBJXuUlix9CzTGD+cJOg6bHIUTaPQWldmNOtI1hsTQ80uTII2jZw +A3qCZlW87U8vhue5bZNMuQR13ZZ2NmsZxsQTZJZFBGZjT+SfXQwZc7WzbJ4R +7DIYQ2yDGbxNi6r5ZQS1G56XFIUxnEyVuCysJch7GD3FHMkw0n6717eTQGw8 +W/bkMkNqnvCapJcgvnijpE7DIDz9ShTQT7DiRGNgVTrDMedh3SETwY7EMNWZ +OwzD+1eHqKwoVs25ODHzGcMV75ZpaTyKGSPitohyBjcb2YtbthSKtdEKUQ2D +PF/lVOBAkWlccpXfwjDw61NHixuFe65W9eYbw6PwlDJfIYVX79HX3SaG+Hcr +75Qup8g6XFq5aJSBb8g4dHcdxbcTH7ITJ3PoWrB5m6MfxTFZoZNhOof710eX +qrdR3DsVdGuzAwefKP/RUwEUnn0vE6xdOfCM1p1DeyiipLpEmSeH9zsfl4eF +U3iEfLbPFnHQVcqyPx6kaCgOx28xB7mHfZL4CAVP4tOpD+LgmVUtrzw+3r+d +3j5bzmGCXfR2rxiK0Dh/wac4Dg1nXYR5SgpViez4Kw2HdNNbe+cLFOu7WNL8 +BxxC957/q02m0A1sibWq5+DW7NHFU1MMTl2onTPCwbymt0KppRjqd+5QuPuj +qkCj/5VBEZfAFyal+OPKPNGlgzqKaen6jenCAASof0Z06SnkEWMOHY2BmNuq +8OvLGf/vU4+MrQ7GP6x6WKE= + "]], LineBox[CompressedData[" +1:eJwVjntQVGUAR5f7fUYtRigzIk8VBFITsUC0kP3xGkFjVeR1792L8k5nB5Qo +RCUfgAMGrLmMkokgUMrmCjiCwDrIaw2XAVcyBpsMho0WNg1wBIkRSc/MmfPv +WRWfFp7EiEQivze+bfUhrS/XwGB57MF3ZsWRuDNiZo9mBnKHSzlSSTROh9e/ +vtXKYJM00KgWYrC7Y9/Imi4GdZ5r5UMjMXD42Ore5fsMnicGkG0bWRiv3K2x +fsDgLrMjZDSJxc0laUX5jxgcTkjQRBeyyD7pdGj+MYPdPV/fWq9iETLVG5E+ +xCC+y9kjuYOFdVz2ZuNfDM4taGw6B1j8qf/IQWZi0Gjx+7AwxqIGfyzoJxgE +NSmvTbxkkVH3rSF4mkF2ymLJy0UcJCs/+6VljkG/l0dW31IO4rMm1QYRwck1 +zT2NThzK00LTbS0I9CmyonQvDgeGZiOLrQjCQ0Pd8v04eO28toUsI7DsE9Vv +DuGg8zA3e7aSoFm3X1rHcZh51qVo20RQm/XKNSSbQ7uQ8aW3L8G+u0rfyjwO +hb0u0Sp/gtYb0XamIg7O6lNOJZ8ThFzUJUVe5hAmhzolnqB/fOz6QiuHapNG +Z1lMMKwTTv9jxiP1wk6XA0qCbsWvoaliHj5BhqPaUgJJQ88Rc2seujLx+mNV +BJ6Fhqqc1TymdrGK8SaCsJ+qgh+G8GiZf2oMaiWQNrpovcN55KpOoKKT4HgG +G97K81hOr01F9RGcinaJC0zj4Xd7Zk+XgSBPo05nS3m8m3jm+opxgjiVaaVd +FY9+K6dFR/8lsDJW5Cy5wSPpQHDjxv8ILrXrTXVdPAodS5aXW1KMGm4obKd5 +ROncD81ZU7S9943rjJkMKzI19yNtKdY9GFiz7gMZbupHjixeTVHmP3qvaa0M +j3M2PsnaQmHeG3A1LEWGSk+t929+FOIdY1UDmTLIn8QUewZRfHq7clBcIIPI +54TEKKVwlsc0dKpl0BmsSwMiKAJfjLFZ7TIoz16dLGMpnhdptvkNyOBm6rsS +kUixdau9axkRMHk+fq52P8W5Rq3/jw4CWgJnwi3SKH6IHcur8BGQO1nwc3IG +hdVDheJFhICwMkfakUUxwecvuH8lYNn2epnj8Te/11O5qVIBwzNBDYdzKV43 +ct3SdgGqqsH3HxVQ5Pe6FKknBGTskidvUFBYXDAMebjFwm9+ofVMCUWojVLi +/kUszFVKm7+/p/gu87zeXhMLfZT7Qf9yCsng9NKnH+7FRaLpvlRNcay+o2y9 +di8S66SrZmsoEhbsPHNj98FDGMnaU0vxqmTozuXtcQi7/Yk68iaF6C1t8fgf +YlKrLQ== + "]], LineBox[CompressedData[" +1:eJwVj30s1HEAhy9+35Vm5vVICDVOZ7cV/zhmnyhZOxt68XYvv995aazNy5i3 +pJCRyoomtqhYZhFuixJHXPJ27tKLvOStI8xLdZcyvfFsz56/HwdpfHC0HovF +ct52p43+sQ1lnRQcwhNHq6eCcMb4yGSXgsJqp84lqDYEdh0Kd5sBCgqDvNge +WRgWY0NvpKoorM3Hj/6Wh0PGXpkfeUfBs0k+IzofgcyebG/eOIULTBm7ZioC +xxPMygqnKRTUW60G8oUwsq1d12gomDQpG82uCoFzuZ8+L1HoGDWyUXUJkVQs +GZxbo/DN1WXf0g8havo8n89qKbQV22pOOYnwYZdV7cwvCh4tPlu+p0XY46kr +nf5DYUwy4daTJQI/WZ0zpUfwpSGMn/ZIhMqFAvGkIcFc6NCVDJ0I6gPRggkT +AjU3mJ1jLYZe2DH+OJugLqa1ygdixAxuWny0J9hMPPq9v0gMXlOc8q07QXJ/ +tbbCWQJ6ye/FiAfB8DqXKwqU4Lbjwbo33gRe+pr7VhkSbJRO5Kn8CUoEG/qb +agk4w61JwwEEr3ObLcR/JQjfXUorgwluLQ/1VrJpyNMFXoNCAtN2m6Q/J2l8 +lXEODzAELMtDW6ZSGo4rlFV/DEFRnyDKLYtGvrhD25tAkN48ptC20HhWVj77 +KoXAwlvR2/eexrI6RaXIIDC8Jss126AR4Mt73J1HsN90SHfHk8Gli3vLXxYS +XHfV2dsxDJqeLuR33SQ4a+5UIi9gMLfWndxZQvCAF2D6RMbAnFMlld8lWJyM +TOVOM/BjMgM77hFYJvy8nG0kRVpFiHf7Q4LIqFmvf5Bi0tDYuq2eoOKEQSyn +WQqj2TjlYsP2zw5dUvwHh1IY7A== + "]], LineBox[CompressedData[" +1:eJwtlXlQkwcTxiPS980bKaDlA1pCOVQah0OqXIrIw1kDFElIQkgIJCCMVMsl +akGUs8GjyKGW8kkpRUBEioQGkEIpCgJyCH6KGZRaFJQKQkGRqlBtOv125pn9 +Y2f39+z+s2bhsdxIDRqNFqXWPznXdPWdskICtP/HN9MruMNnCZxwLPtJo9QQ +i1df7cP3BOa/ZO88/uMG8P47f+ZiJQGjUA7Dq3AT6uOfNOnXEKgwOl/ue8YR +OuwHI+kKAlVt20yaXjljr+nI0tNGAl1hPE7emCt6/xwyFrYSGK3eb1twyQ2s +wR7XjisEHDJLbr5x94C8sl1m000gwz4kyVDhiYnDlzOL+gmEKV9Gm771ghu/ +rkLzfwRkNoUI/fgTlFhVdceqCDzbmf2n0HcHlleWPrk7SsBwraKEFsCG6F7h +Ku+HBMp9ZxMG3HxwuT7XWjFJQI+jilaZ+0L/ePZO5gwBccTQjt8XfLFPlhqf +/YxAwBGL5mPNfrDRjW2Q/EWgz5lVUW7ij68mo1Q9GiQOSIW/sTv8MdUW+moz +ncQLF2p5XLITFZ/7uzDeI9HXsVae4RIADS/vsP2GJJg/WJfEpAZAytyePmZM +grMmKHBDWwCYfdbXGlkkggLn92ls5iC5bP2kmQ0J+eOg0znRHKiSjKmczSQ6 +jcocr37LQQHr3U8jtpOIbov0GXjLwdxbzdgbHiSq4y1sZ6y58Fct521hkzBX +ynk+Ii4o+dPbOjwSeZ0m+htruYiSTCwmB6v5RfWeU8NcdNqNGj4OJdEwcMrP +Z5mLtPG+kNZoEhbXs7x8vQKxiIsTu1NJhCStO4jeQLSWT589mEViqpflYDAZ +iAy6VaD8GIkWbcs+25U8aA/VXDl3isRfTim23C08WITVltw/T8L6ebGOUwkP +T6/O8mdqSKQsbbXXa+Sh3mLju8sKEiO3ph/ED/CwffbSofdbSSgXG3Ouv+ZB +cFgh5A2RoNprV6cF8MF8MK8TMUxieNdcBy2Sj4eem7rj75Kg2634wjKJjxit +H+1zJ0hURBuPnyzlQ35Wuab3JYkj5smShWk+Gpqb+l3N6Fj7uLZq+aAAycYv +M/0t6CiQD87UHRUA6U7OEks6EnVaB1yLBOjf0Xwh2Z6OP762dF1sFmBC9ZO8 +gU3HglXaNO21AHqLP8MygY6pMpskHAhC4qZOpX6Huj8mLVa5R4goO9PS/B41 +b3/eM0WKEEKHlBNaN+i4YZMz0p0jhPNWu3CNEToKPzIReNcJoeFerjM7S8et +3w2ybi0KseBBW9q9QMfG20VhI/RgPPIKeTz+Su3nedx6LaNg9LD1fh7RpNDl +afwfTQQjl5P12bUPKOzKUH1z+qtgpAWO8WFKYW56TaCwNBgJ/G1uLespeDt0 +6UUogyEIXjBQ2FLIV1W5Sn4NBlO261qxN4WLKxQrxZtF0I5orzPwo/Bh48k7 +/WwRaJHM4gIOhbFK+uAFqQjju28nHA2h4K67vaYlV4TqOE/TxAR1/WL5/Mxz +EYoTSlf9cZDCxqpJ8yhtMXISlxejD1PYtkvOT90gRtwXyoGwoxRKhvtqmmRi +hCfrNt/NocCXMKueHBGDl7K3nH+KgtHJVZ89LBbDMW3dId8SCpHHbzH498Rg +ZaRFdZ1T7xfQ5ji5JMYHWaMctwsUaooeTsUZh+BN9mmWo1LNr9RKrYgIQWeu +5h3zXgpHr07YxbwJQWO+9Mq3gxR8mvOH81kSVJ1qrTEcpmASkDfrwZPgRGFi +pvaY+p7MM1a/1EmQUjQUc+wRBYGTrUHnAwlizlqJNKcpuKia8gb1QsH9bsL2 +9QsKDo4HXAvSQ+H5PZj7lyhk5VX+UtISCvtzxeQcjYHSIbdAyctQGJ7n3X+0 +ioHurVnzN5LDwLhQd126mgFccl1PuxKG5Wqthnv6DMgOJTTGvSPFb7WdJ26a +MbDFycw7ky/F0Izm000fMZA5epzukCZFu5WX32kr9Xwiw3jvD1LU7fmy5sXH +DIjujvtE/CpFafU1rSBHBu5rEwkyXRnynrzz+eVtDEToOs81eMuQzvIeeN+d +Acqnnt2SJkN4ZVfOqB8DVh2N9OwV4eA+ImZduAzk7dkz788Oh8e6T/y/C2KA +1d9TefPrcGQsNXa4ixj//pP2cPwNZf+2KQ== + "]], LineBox[CompressedData[" +1:eJwtVmk0lQsXJlS85xzO++YqjUijWyqFkp4i83CcwZkcx3FDKSRDhoqUJHJv +xJWURrrRJUqiDGWKlEQyJdV1FUlFGtDnW9+319prr2c9w9r739Zy92N7TJGT +k8uc7P/OSMOHSlhDQO7/VW10osjQgMBJ65WGr/4c2lS498nMU8YEklTUqLdp +M5FZyAz9bkqgv21aQIWfLv4ccWoTmxOYttdzvO3SrzhqkGh815qApU36gZyY +1QgJaDo1z5GAl23C/cJ/1mJ7Pvk9gkugOSv5ss5XIwg/skU9QgJBAV7MpNoN +sNFPKt4iJWCVkHqBkppivd9TzUvbCCxJu5hkJAOW/U2FK3kTyJ7mVGC0bzM0 +33M6PP0IpI32t8gf2oIf3s2nl4ZN7tOTK9F2MQd3neTEiggCCXnTW8Z1tiJH +vvfImsMErA/p8oxfboVr6qj/xgQC5zwy6UXGlrj1W6TXliQCfCLj69XnllBb +qSyxTJ3M+86P3+ZnhYoqTSunCwQKsmsEWUesoXni4kbnLAK1j+aLLKfbYI+L +3hpxzqS+7x63+5ANFn7eOM+jkMBjpd64s9622F9aTXmXEDCbd6X64DNbPIt1 +VPYrJ2ByrFu5daMdYhbIhkPqCFiYM7aP/bTDy/63b/c/JmBUOa/TUWwPo1t7 +uqOaCbgp7sXcAnu8sz9cF/+CwFCZatEXgQPMZtHLT7yevFdlFkeW5YD0N8k3 +U/oI7Krruqrw2QH24Vnnzn2a5LVUko5GOSLTQj/l8iiB4fR/e/OqHTHBvB13 +dYwA545yuIMiC3lX6oJvTKXh6Wmv4FlmLFDP3tvVatIg6FtFP3aThV3ng7c0 +zKeh+L5KM9XIQuWun4ZNC2nwOZNV0fmWhWAFpk7nCho0yYY5DrOd0KZv8O3D +Fhp2cNinooKdsHrszuCwJQ3p+7wlXXFOOFaz9c03OxrWyg9P5J5zgokr/7EC +n4Y7d+Wcm2qdkBEXdlljJw2DioNZiRQbX50VTs/ZTUPIiYLetbpssLTj/9AK +oiHKd1Fo0Do2ptw+E748goaOvqimVj4bHr3lTpuSaPhlkNZ1KIWN5ZunTXiW +0NDuHxDaqcRB3tXsxc/LaahfRwTepDgwmMFysq6m4fOGAZGNFgcm/6ZeWv6E +hqVvPSvyNnDgcHyZ7VAvDV6B2hev+HDQ9OVRoGyABv6alb5poRzw3QLONn2c +5E1YifxoDtzW3Pl4Y4wGvbiOVevTOdjTZp8aStKhU/vP0Qc1HHzZ8qninQYd ++6hnTpuaOAjPSekXz6VDfuXcpLhODg5HdJuaLqGjMuPwnJwhDlJ0/f+ZYkqH ++icZb7kGF7f9T66O30HHRtPjC0YkXJh2GLmM+9KR/rzliLUnF/fMu6J9A+lI +rY9tj/Llok5jURsrgo4DSzs+Zh7govPurQj1ZDoe9jA51We4kFPpeHi2nI6w +D/2+L1q5sLyg5XVdg4H3xPyhVFMeDFIZi6rnMLAu80C9ljkPCxJ+vGnXYmDf +7vlmGdY8fA9tcVfUY6BHLbwvhMvDNadYVz4YSC4dGczZwQMl/5E3vp0Bclje +xiyRh25publ1MQNt3csU2F08PORdU3AtY4Brlnu7poeHItu0e3sqGXCdPW5s +2MtDomEg0h8xUPh6lKb4gYetqktMPrxi4MNIOymQc0Z26e9rkglVqNtNVMlp +O2PvXKl2j4sqFtay67/KnOHO0nfulKmiyKcvr9LDGQ6H5I+1eqrCoHeb2/Ed +zlj09uLHht2qqJpzV6ru74zmG33lxYdVwXiUnSkf6Qx9uz3SkzmqsBhu+kdw +xhl9YdHplmOq0FkWWejxzBl6Azyi1V4Nww1/v/rLnA9KdWh65Xc1bLlhJ/xk +KEDT3WMx1uNqGGJLN93aIEDiLt2pj3+qwaH2e/mBTQKQdSKFdkUmbDpWVKlb +TuLoqvEPDCbUix9oejgLoPYj7dNsHSYm9vETkoIEoP27tTPAlgndjsSDsYUC +PEx+Kfpmz0T4Bv3ZxcUCxJuHtx1gMRHxZ/nwYKkAxIW8Z7G8Sb9pzSWPGgFU +JLOfZEiZSEu7l3P0uQDTnw5V1QcwsSE3J6HghwCKZadzddIncZ4Ce6aFEO0m +5lbdZ5lQceyzF9kKkVs88DLtPBPxP698ucgSQlS4kSSzmHA8Qy93EAtx/Vp3 +oFw+EzO8S92V/IVwTddZ31XDRHDotm7mWSEMNB82pdYxEfb+XWvnRSGUUwN3 +chsm/fubg6//JcSNpKr0+iYmBnTeGYbcFIKI8/p5u4uJyOLTzyMahCgKza5M ++czEas8S/bSfQiSMciTsL0z8anSzmDlVhN+Cxkbo35iYuyo/KJkmAsPffnH0 +BBNW3Vnr780SwWP7h9gAZRJRN+w5hQYikPw1jqz5JNb75Dqt8xFhp0FJm7It +ibVTj1QbvxOhvLElp8iehMGYReH+TyKo+wxFeLFIGGo4KrZ8F6Hssu6iKh6J +3JaJKWWEGJTGH3si3UjwT814HbtCjJJv24jRIBLJ25ettAsRQy0l4sXlEBKe +PJrt0EExPFanXeeGk5ARnVXX4sRQ3fmYnx9JoqFEmBWcIcZvncaXfOJI6M+r +ENvXikGUMTa+OUdiKdPdJ2q+C9zES9WSLpJYMM3g8ddlLrg5avZ6cyaJvbqN +K0+sc4FUPzQ2I5tEnOGFpGUOLig4/7pFVEjChHZtBxXhAvHhIt8n9SQcgg0y +dvS5IG/B082Rj0ikl/hvE35xgdLd9zNWPiFRHz1AC1GUIHdEuyT+GQkrRyt1 +Cy0JFLyOT7PqIXHyZpiqmUSCbGv3c6VfSAQ7aXAauiUw0NMy3fSNBJV3Xzx9 +SIJSxsuOsh8kFqkpFOyXc0XjU4lGhRyFCqvEU3O0XTEsESbcV6EA2sB19nZX +7MdMPXM6hTNtfwtiwlwxVaf1QaUqBW7x0PQpx10xq4+rVD2DgtO9K46N+a4w +3cPaVzuPAvv2nFUKU6So4apqWmtRYDU9iE77RQqW4aNbD3QorF0YrRyzXAr3 +MdvPdUsoNGu6h293liLmiKV3w2oKO+yCMn/Pk6IxzVTQZEHhW2UYzdvEDcL9 +4yNsawp3lBZfGLN2wyvpnaSnthSuth9mPeG7YXjh+sfNLAp+75brWAe6YVbu +WotWEQVJnDl1Pc8NF04Mv+ZLKEws2CtKLHeDXmDBwedSCjfWv8qvbXSDqfGq +u23bJvWDDhJ8coP7fT2DTl8KWd75g4XGMvRf7n/i4k9h99JR09N2MgQeverX +FUBhecrMkiGpDDH2S7JfhFCYe1XZV/6oDDmtOto9URSUDok+27yQYW3xqzJZ +NIX2j7peViMylKafl7yKofDHr3Gdb2juaJTNP/U6nkLQeP3i2abuGOnXVOtN +oWA4cGnz73+5Iz/lWHlzKvW/f7LcHf8B9CpvIA== + "]], LineBox[CompressedData[" +1:eJwtVnk0lQv3pgwlKZz35Zz3lAwXZUhKQpcnJEM453DOMR5jVNccbjJliitC +0VwabpGUkjSJUAiVoZCrVBJKbsiXED+/9X17rWfttf/Yz9rPevbaayt6B3N2 +LBASEno0j//PhhqnRtS7aRD6X+juqs473EPDOnvTVN3knybxlin5ZZ9o8G/g +pfzuuxJtgp1uOkM0RG39fuFKnyJUImzoxV9oYPhJXj0fp4LG89JHLn6jIexs +/1KNiNWgTZ85cHiKBhH9/qZ8k3Xwk04wk/pFw4uMezPXbXRxT81XKH2OhhP+ +8k1CrPUQOK7ZlyBCYLF+e3SFqR4Kr5UHhkgR+NvHr+pp1yZM1Z5YM7ycwJxF +p7ZViQFsu2MG/GUJOHa6sUz2G2JMzMzLQ55AW3Nvub/MZmz2fOFop0SAyFRR +m5sxxqHIUulGFQJpiaHN+cUmeJ+R93yrGoFFwzbfZDWBA/dcLX/XJJCTHVVe +1Qq0yAwaaW4k4MWJIiLETaG0ummyYBMB2kjAzbssU0SYXL+tbERgql7yeOBx +UzACwtdSICBK12xwVzaD7xMhZQlrAmZxvedPq5uj/J++3pTtBF7md+Xf8jPH +4rG608L2BCYsIrxyL5rj+spM8qcDgchOnaBO+lZM/kmXGHQnYPdHuKfdz62w +PjRT5+NJQN4oou+ctgXO/N2b1Os9P8/xZ1a/vC1g2nrpV4c/AXNLQdBIgwUy +1uiOPgklsPBVTLtH+jYovrHuuphCYMnBvSpmg5ZIrzEq4aYRkLxcd5xDs8JY +geYB8YMEkv8a17toYoWaMKkNf2QTiKlWiaVyreC7qC1L9xSB9PG49YMbrFG4 +3nlb9Q0Co+/zlkU722A53XrlnlsEMkXZ8SejbRA1azihUk6A7K42NThjA+un +zItpDwik4pWPUK8NvgjezdrXEWgOv1Mk7L4d2un+5W//IeCm1DEwYW6Lo8FO +mdlvCdyZHVtk7GmLOUcrX9P3BMqm8rw1om3RoqAhc/kTgagCG9qvEluE3h4J +DBwlEKtxmLxG2KHsXcRvM2Ikwto+nDjXZgdmnd/MtcUkanPsaoWG7JByld/u +IUlC9GHKoZVzduBFGiTUSpPoiX768dgae/xY8qsnnUkiNuLlv+fj7GGon5xL +1yUx29hlLyTFQoc3feOZDSSSzVq3VZEs7Dl0vXOVPgntO0TcTgUWivu7GOqb +SbSuaBGO1mFhZa7W+Y0WJDLPMNOvsFlYMNpxzcGFxKK/WGEh2SycZQbYd7qR +KEk3Lp88xoKRpfCoiweJfYH134LzWQjP19jg7Uti2cYhC83rLHyy3X8/JGie +b6+XUl8jC01Fq+szE0l0xIe4RAuzsbOjcqd0yjx/8Y2dUovYEFngKJGXSsKu +paD/iBQbxs5xtqczSAyZRAxGUmzcEG9vLzpKopqpv/TCBjZyfWPe1ReRqE8y +0yv1ZcNt5Yufwu0k/Ot/16+pYEOKHnb7wSsSWdYuhp41bFTLEqERXSQQUHd/ +vJ4N1cWug4NvSLi0eFVPt7Hx7/injheDJCrdYy8fGWQj8ensrTOz83qWnifn +pDkoDNcOMlgjh4ViGYsOCThwCW5dPa4ph0LzziHSh4Olu8P7i9fKYbGQ8fPj +/hyEedx3W6Unh5Fa6x+pIRwYWVvYiEMOO5plGWQiB88VBOqvuHJouvdDd+Hf +HEw0Zn4ISZDDkT0Bs/l9HPQsebVzJkkODrk1o1oDHNRsZ/6bekAOOtYxlXc+ +c5D9vGj67EE5FI+9k6ka5WBNWz3tWZ4cati1A2fmOBC8Ft62ukgOJDur9xLD +AXUDEVfft8lh2JgOVTsHHBcRhHNU5HH00rOqzmIHzPrI6bWqyoNeGVR+osQB +vrUtE/ar5ZEW2tXoXOoAnUSzP2215fF0cm7HyzsOaJhT32e5SR4i0iyZshoH +/JgajzfeLg9dLeV0pS4H8Eb/OrgmXB6T+k4pH4UdIfv29oUFj+VBxM/qaXEc +IRqb4GgQSoeJyu6c3TOOKBsd/lm1h46GaZ39E7OO8PVzyreIpOM/a2tDE4S5 +eGy/9rNDNB1LrBZFnRbjIlnpTXxQCh3NV/a/6V3OhUjDpqsXT9AxmkVzv/Ab +FwtkvwlL1dBxoxA921lclKa6FuQ+pqPzQ9BLMQcuvGfqtlP1dNA7zr+o4XJR +03/mmHozHWbjk9/hykXiXRstsw46puPaJPh+XAgLCpz2fqbjzemDW8ZjuBC6 +Iij5IMPAZ2WJboNiLuqGO4PyCcb8/ak9m17CRYYOW9tNnoHdmo1hvaVcyN01 +u/ZqBQM2aq9z8u5xoV2vfrVBnYF3qe4VevVcuPWPXb5uzEBi1lk2v4+Le4qp +Z/ftZiCWdt23SoGHuB1CAv1ABn7LypesUObB/ErUiu/BDCSnXaupUuOhRSfg +dGAEA7bL+a971vIwaMI+6bl/vq6N5oWCB1JAHbU4ykDI1xUSyj48hJ0syZSp +YeAAzWa4pYSHOzMnU2seM+C9PudNXxkPM4IDCWH1DNx8abNw4X0eUpXdI9qa +GUDJ8Bu/xzycLpZwP9zJwL37XyqbXvPwpHKHpsxXBtreLp+1EOdDQpGtWvMv +A1Ea67o2L+WDlbR5VdgYAwaNG4PNZPno3iZLa/vBgJEh3ShZgY+RlkfTOQso +MGdWXHq7iQ/5PqpJWp6CaEJZBieYD/et4k+qGRQUskRakiL5uFAwVhm6gkLO +KZnS5lg+NAOelrYqUfC/uS2hIIOPLRORJ3O0KByc9U/OucrHAb537hYdCtG0 +iH+ybvHRfM/20KguhbG95y8WPeCDF6eSyN5EYTZWzH5TMx+7xdt2SZtR+MWz +fd4wwkfJroc+1VspLFPot6j6wcf3pkL3UEsKJeemBV1CTojPjme32lLY3Zok +FinrhFy6lkGOE4XyLUO/7TN0wkONtEXSQRRuTrY0ncp2wsaXcs8Oh1DQrgj2 +Cz3lhBsxBTm0PRQuPcz3iLjshAvP6hjyeykkF6blLn3ohLRgUS2FRAqeiXWv +Lg07QVg+b/RcMgXVGY0B2k8n7HukUq6USmGmfGzmoagzAqXNTVQzKFToiao+ +UXAG51YiW+sohWPxhFAPzxlNrjJkyXEKtz8EutjvcIa5yIVunVPz/b0bDkuG +O0OfW+2z4RwFow8mWkGHncH8MRdhVETB9eNnhly7M47mZxk+LKbwNbOsUfGj +M5ZZKswZl1DwlaZFZUw4Y8EJ4zTTMgrdDLtdWXQXDBjGnrSqpCDxma9Q5ucC +zz5Jj6ZHFIbGk/iq0S7oPnha2baWQp7LgT/ks13Q3POgmNVAQfx9FzP7gQtK +46Yq+W0UWt8xCnbSXaGhlp70+iUFsYqpzXt0XfH3C7qlayeFrVdbrbS2u+LY +KoNWQQ+Fzk4G53mCK2Jq/uzb8YlCQf86tbL/uGJit3jhwCAFBl90Wo10Q5Ds +sYBdXyiwSmVu5G10g5dv+UTAt3l/lql9ytrnhm5Ji/sjYxTGZ5eL6591g+Pt +V3EhExTY3ZEBS2vdYCE2IR4+RWHXY9rr1OXueHQ9uXlihoLz0bUX7QzcYcCn +5fw5N78fnkkB6T7u0Cxcz4gWYWKyIsHvdoU7pK3DNBOlmCiaqjVKSxbgXPWy +JYbSTCjmN3LcHwmgY3BtaFSWiehLMQEjswLYqQ9e9qIzQdSsDV2e4oE3+Skp +dCYTj9RKvsg+80CAnLJv60om6me8htwkPZEuJlDcosJE15ezoZICT9Djpucm +VZlguJ3yNE73ROHE8bc3VjNx8582/693PbEpcOPDnZpMSJHDPuzPnqj/2H5q +1VomLh9KGC5c6QWeW+i+rnVM3FBv8zDkeeFTu5Rz9gYmqvR+KnJzvCBSa0UK +GTLx03V/6klZbxwxHPh+ZzMTX3m/FM+5ekOpNLk92ISJjKtXXg4VeqN65q7I +OjD/++8/8sb/ASmiIlE= + "]], LineBox[CompressedData[" +1:eJwVk3s4lfkWx91ymyK3GXXe3/uelKQkGQyZ9I3dtm3bvryvaXehvV1Kj3HJ +uBSHqI7STR6nVBpOzY48pewhqUjG0K4xXczuYpQyipSMHIxuOHv+WM/3Wf+s +5/Nd37XmRCayGw309PS+1dXfap+4mtqppbCw5M70K/7zgG9Us6I7KPisnvp4 +TrMERja9zYOdFCjXq2NfLHKH5t78uK1dFJQ5Y0cYPw/sy99sp99NweUX3llv +Zy9Ymb+Jse2l8Nqq8sGCkz64r1lsVfqSwjvn/SXVX/riWG7iVafXFPqth0+J +1F+D1h+Z7jtE4e2yhzuH41agp9HjUsswBdX2iW63NUBZZppCPErh5bafB/qG +AZd373+MeE+BjYpRnbf0x1Ct7/qBjxTGLo6O3Tjsj+rkLKPUSQr+Te9mjdoE +wGdIT55nSNCV0ttpb8ADv8/k04UZBAErf69Tla+C2emgMu+ZBJMPVxo1TePj +14j94mZrAqe8Aokkgg+uy+LUgy8ItLtr7+ZbBOLzE1KhYjZBeNydjuPKQHSu +KRzppwiMBH943KkKhPK+Hf/THILfFDz3QL4A8wrlQ7nzCJpsxbV3DwrwUnL8 +mKUTgfVSs3ozrQAJbdSAgwtBY5W/1kAehH81zy0I8iIoW+hv2RgohF/ORh+t +N8Eq8ki/KFsIA78zPWG+BHqvPBZ01AqRd2Wh5xYQ7G3eseUZCUaRemlnkZDg +uHDBprKuYKxNSN71zxCCzV4a+53mIlAutS5nJQT81flNvl4iqM54Z18LJfBM +zh5M2ieCunTFvBcbCP4zdMBIzykEIxkjJhERBCEehYVOwSHwkp8Z6IoiCC0f +zMhOCEG9pWXNo80E8ryUoCfVIbiR83Rl23cEaQXeBz+5i2EaXugoSCVwO3zT +IkwmRrAP36x1q84/LzWBShTj3vD5e42ZBC0pezZpK8R4HJmlqN5NsO3Dr5XH +7CSgVywNWLKXYE2LvkP2EgmU/+idX7mf4Eh08pt+gQR9WtGfZQUE+uo4dWiG +BG95VNbxYoLBdWXj/Y8kMHaqL865oMs3VDU/AFIEGSZun1AT1MzN6jAWSnHg +mUNkRg3BVzy4/cBJYXVsn3PKZQJh37W2qE1SUGbrLsc0EygarjW77JPCfeDd +A/FDgtVT6rr8NilSNZVX2jp0+/Utb/XQSnFZpSwRPCY4ueeD+/VOKZaH3Yz2 +7yaY5pRQuOuVFILbR0c8X+vu4XLFis5pMoRXeVmRSR3/26qEpctkuLTuncU9 +PRqavvj0HshgYXx1+i5DGusC40IyA2VoCltu+sqUxp/uPby4UBkczHlTF21o +sDXq9cJ4GfqiZYMiZxpj0i3RYSdk8JtpMzC1iMbaqTTjOydlOFp/v7/alUZJ +1tgfruUyCKzXvLD3oJEkMtl7XS3D2esbHr/wo/FG4qfv2CpDwuy4W5mhNNy3 +f//X8gEZbrQu1iyR09gzzXtV65AMTNJQS89aGi2njGdgVIZ7mu+aBAoazIDt +85kTMrinptfZxtKwPG+odLRgMX53d1lltq6/1FsW4MoiJ/fUjidnaShsYq4l +x7CYsdVEGHGeRtVrWpwXy6J4c7x1X5WOx7pCVBTPoibYRzV0kYZnlddgaTKL +Pqv2FoPrOn9f2VEbs1kEl+qZOmtptGsC/3p4hMXndYr81I80EiZjK243slBV +tK7+MEGjVuow6vETC7fiRUy2HoNfVsU8Ofozi6Cs8aq8aQwOvmi5JL3JIjPg +UPsJSwa8/B9GD7Wz6LnbaNs8l8FiSYWh5DmL8/3khIWIwbmfHunPNuKQV5Kr +fCpmcEsxU8oz5hDNDjpekDHgt0VrYk05UA0N6hA5A6P/emyonM5h36H1Nw5E +Mkg/UxxmaMfp/vT4sHk6g8n3zkVmjhwc/m0rMClnkGQf+XWdP4dJ78wZjyoY +eOeZ7Ezncfh98Plv5ecYZMxWzvThcyiQ14Tzf9TxsdRcdRCHqYVscm4Dg7Ak +82fbpRyetB8qNdQyiErbJj8dzuHy7vEo7QMGJS+Efn4KDod9Fc6qDt38Omgf +KDkEl7le9H/KIFU4i56M4nB12+1bO17pePoN2r+M5VC02POQ7A0DS/lEc/23 +HJJ6vg+dM8TAOiEwf2U8hwWiuGdNowy6q+1a+Vs4GOnfP10wzuDYmqJlN5I4 +dNf6xio/MNhKKUsCkjk0xKqWuE0wqBQH/a8xhcNR5rOxqSkGRfX2ft5pHP4P +lU3W/A== + "]], + LineBox[{{4.951551020408163, 139.37596259923768`}, {4.952725024990185, + 150.}}], + LineBox[{{7.196012175022929, 0.}, {7.19644978787316, + 0.680122364067862}, {7.198928048521438, 4.3576005303963}, { + 7.201406309169715, 8.366240097856897}, {7.201448979591836, + 8.448952703871816}}], + LineBox[{{2.794950454536869, 0.}, {2.7969872680162746`, + 52.52496966501432}, {2.7991671838755243`, 150.}}]}, + Annotation[#, "Charting`Private`Tag$11333#1"]& ], {}}, {}}, + AspectRatio->Full, + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + AxesStyle->Directive[ + GrayLevel[0], + AbsoluteThickness[0.2]], + BaseStyle->Automatic, + DisplayFunction->Identity, + Frame->{{True, True}, {True, True}}, + FrameLabel->{{ + FormBox["\"Scattering Length (x BohrRadius)\"", TraditionalForm], None}, { + FormBox["\"B (G)\"", TraditionalForm], None}}, + FrameStyle->Directive[ + GrayLevel[0], + AbsoluteThickness[0.2]], + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + FrameTicksStyle->GrayLevel[0], + GridLines->{Automatic, Automatic}, + GridLinesStyle->Automatic, + ImagePadding->All, + ImageSize->{800, 495}, + LabelStyle->{FontSize -> 14}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "PointSizeFunction" -> None, "ScalingFunctions" -> + None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{0, 2.5}, {0, 150}}, + PlotRangeClipping->True, + PlotRangePadding->{{0, 0}, {0, 0}}, + Ticks->{Automatic, Automatic}, + TicksStyle->{FontSize -> 14}]], "Output", + CellChangeTimes->{ + 3.9462995040442867`*^9, {3.946299583927579*^9, 3.946299611442181*^9}, + 3.9462996528493867`*^9, {3.9462996867124157`*^9, 3.946299720405142*^9}, { + 3.94629980609776*^9, 3.946299830136408*^9}, 3.9463000847462177`*^9, + 3.946301602975066*^9, {3.94654225425524*^9, 3.9465422604126263`*^9}}, + CellLabel->"Out[22]=",ExpressionUUID->"fe3d2ab1-2e60-4c87-b304-9af09b512293"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"scatteringLength", "[", "b", "]"}], ",", " ", + RowBox[{"{", + RowBox[{"b", ",", " ", "0", ",", " ", "8"}], "}"}], ",", " ", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"1.317", ",", "2.173"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "150"}], "}"}]}], "}"}]}], ",", + RowBox[{"FrameLabel", "\[Rule]", + RowBox[{"{", + RowBox[{ + "\"\\"", ",", "\"\\""}], + "}"}]}], ",", + RowBox[{"PlotRangeClipping", "\[Rule]", "True"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"FontSize", "\[Rule]", "14"}], "}"}]}], ",", + RowBox[{"Frame", "\[Rule]", "True"}], ",", " ", + RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", + RowBox[{"TicksStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"FontSize", "\[Rule]", "14"}], "}"}]}], ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"{", "Thick", "}"}]}], ",", + RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",", + RowBox[{"ImageSize", "\[Rule]", + RowBox[{"{", + RowBox[{"800", ",", "495"}], "}"}]}], ",", + RowBox[{"AspectRatio", "\[Rule]", "Full"}]}], "]"}]], "Input", + CellChangeTimes->{{3.946300123196314*^9, 3.9463001547081313`*^9}, { + 3.946300433237008*^9, 3.9463004333250217`*^9}, {3.946300466694854*^9, + 3.9463004847154093`*^9}, {3.946300534787926*^9, 3.9463005348354373`*^9}}, + CellLabel->"In[23]:=",ExpressionUUID->"e3efdc46-0d6e-4d16-ae45-a127d2ef7398"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.24720000000000014`, 0.24, 0.6], Thickness[Large], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwVkgk01fkbxmmVJLsYiRb9m3QtjTV6X25RlhJTvr+LGxcjLUO2UEgJhWnG +VsaWdVBUQmlclCUtiEnK2ujat7soldL/znvOe97zOec5z3nPcx51lo+95xIR +EZFrwv3vWnmOddSPX9r9lVcj+se8Iy6jK/sOKnlAPhk8PC/kndnXM+4pBYDZ +S+6YyydHtG7tLs9UigJHmdWt2z87oqPHPDtRKRmsv7umPPviiP1aMfQEpXww +NjhzXG7REW/IH4y+olQB1gtu7r3LCEaK3dt6WakRzJQtUqxkCf5o+UdsuW8j +DHb9da5VyJ2XfMZ7nzSC4tXnT+3kCG5eqnmTFtQE4fPsa0SeYPO3fNqrzmbo +8XeRPaVIUEKQqrch/ikE70xXKPmB4PX+UHrlYhvEO2xdHrKZoJkKlT9wuB0u +H3EaX7WF4ATDYLlYaTu8+Oy0P13IqlMh7qU7XoJN9nxEnQZBH2/9LSJ9LyHj +c9DAmm0EZTxuFxUYdoIG55Bqww6ChMq5zeW9gi3XOyVSDQjO9v4snqvcBX1e +gcwdhgSjmWKeDvQuqKwR128S8j13H+Wq5C7wM8oL/WhEUPJX00tnDV7D2KKG +/1ETgk0X3jJWhHVD9KjaR2szgrq3pFeoiPWABs3dN9Wa4FNak2urdg8s0iVO +og1B17vBf4dTPeDjuGftpJATqgZ9/y3pAfXVzofMDxAcqy/tLbTtBaPu5tFP +dgSzuvbf1Unqg8Ys7+iYIwRXf490tlQdhOhb2nk/sYR5eTsyNS0GwbBUNoAv +5M2vNF2lfx0EZXqS7F13gruLu9172YNgar65SduTYHVxauV92jt4rd+x0fgY +wWmHqRrrtndw1ELVOehXgoeLrj33XzMEG5g/ZeSeJZjhcsHmF/Uh0CAKs2Hn +CA7JnGolekMQKvX0ECNMmHeYebupyxCcDcyyU4ggeNl+unNl6RA8se86m36B +IPureU+6zXsQTbXi9F0muOXQzFhDHAe41mTcLo2gcoSlsVcOBzTUHz/2/pOg +VOmNOPH7HGC4Cuyi0gl+EXOgHRriAM379+zaTIIv6+/7DxgOg/TF8yn7cgmG +akcufhoeBuBfu1l1U/gPs+dgxsIwaE786TB9i6BH/M4ckB4B/WRdcY0yggfH +hunRJiPgzVnJzrwjzOuG1WXZpBGw2rTkQ2Elwba1cnI0HIWs0mK+Rj3BBtNT +nh2HR0H5/cyLyEcEH5xorgo4MQpzBf9sH3xMMO9JMPV36ijkq4+m5TQRDI7o +z9o3PQoq9jY6Fs8Jbpwt3Ob+5xj0Ba0sV+gmeKbNCK7PjYN9VOLHjTxhn2iV +w0/FJmATf1VlI59gfoJ2/ILKBGjb/zjlPUeww2brW+beCdhNuX2unSe4/bmc +/5bUCeAdWS+Tskhw8MlsYbnBJGTVdR5YlKAwaOsJW471JPBd+44PSFIoETMi +kHedBFU9h/nHUhQaWfRjSOwkFPh/uJkmR2FS47MeeDsJdt+/5UeoUGj5qECy +NXQK6lKWHMMdFA6oqVcu/jYFhRURBqe1KAw4n+GknTcFFUYv3vylQ2EOJBUl +PZ8CVlHXVw19ChfY580ZKtPQP6U67AMU3n7oFDTKngYRm7Wxlg4UWih3qyh1 +TkNnTUTh+8MU9oXYN1iNTEP6EaWcGELhKqP9UmWSMyDxz7PWURcK3e/rlwQc +nQHTsv6Ha7wpVKyQHhAVnQXFgqF2pUgKneMXfuYozEJR85jWb1EU5noMP2/W +nAWPXYFRa2Mp1JSvro4js6C/VOew8VUKzYNcU+TvzMKJXLaJcRaFsQesJD41 +zcJFXNG9IZfCVo2fLvb0zsJ4ed4++UIKb01efNC+lAsOk/3uOmUU6mc4FiZr +cUFc2thkVx2FVOyLfy8Zc4V9yDe+1UDhuQCz9Wf2cmEiS42j3ULhI5vtyZQT +F0ru3As/00GhzbfFSNUYLtw4Prtq9TCFbsxCl6IBLpR5cFZMSTEwyuqHtLRx +Lvz9omR4XIGBhfq/v7oyx4XKRwWvVq5n4JRkqPUpcR6MZbBsi7YxMKjO1khX +nweP1p38PXMPA9NuPg7YZMYDKF9zmW3NwJprBnfkbHigOBPCWenAQFFf9a3z +bjzwW2Kot5HFwHi1D3I1CTyIVGzWyb7AwDKJ43al13lQYd35gB7HwI5PA3FZ +eTzo1EybU09moEJHy5LIah54qno7pBQy0IhtutuvkQct13Qrte4w0Lm4PMS9 +nQelteEHJB8yMCcyg7t3mAfujPpT+W0MbDwlrWnA5cHr3e9+Y71l4AgV7fW/ +BaH++IEtfhwGaur6DohL8yExM8w2ZYGBVUP0F+0mfDDUuf3Yi+aEr/dF8hIs ++aB7NXHN5C4n/FhWq2Bjz4dGuozJ0H4nNDhr5NbixYerjOk9e72ckPwbFB3t +x4dlFoVNtUFOGGxZcXNPGB84uVXxT6Kd8IGs1sf6RD44qMfQi4qc8E3IyR8i +MvkwdVf0UuJDJ/w0WIymRXxgH7zYqd3qhIa3NsdVs/lAzj1aen9O6C/DunOm +hQ+ZDqMyD1Y5Y3BwdpfeP3zIaZGpyd7gjNV7lNXKx/hAP90YyDrgjD0ljnt9 +BXxgrbOXcfNyxi9SKcdpi3zo1StkJ0Q6o3H/2soSWQF8S9WSbK12RgbdtueY +qgDqtuUmyb5xxtDiK981tgmgOGU+jjvvjA8Dl1vl7RaAIEuJNW/igj295j5u ++wUQE2uy3Jflgl/Mzidv+FkA24NvvFl/xQWVi9jV/UwB8O5VqOtVuOAuyYWB +dG8B9EdptHPfuaBzgOEyRoAAltyu+CNJionnegK3rYsQwFumH82bzsSaQq5/ +crIAymbaPGUrmNgnQUuzzxZAXKvRTjafiV/9TtRKlQjg2L7EzP36R1HlbdH7 +tgoBnDwd4G8fcRRNYUQsoU4AG6x7e+PajiKzYBPN+pkAJNf/ouop44rhq90c +VnUJoLnh5XCUmStmnc4KfjIo9HP8oGkS6Iq13b2ZlyYEkE4CFc3KXHHAVKmB +/kEAKZtC4k9Pu+Ji3pExUZE5aN/lWDWw0w1VxZPX1IvPge26nfV9F9xwt2+H +brj8HLSokcZ1fW7IfC1JTNTmIDQp/+N9MxaGm9iEfflxDqS+r5uJqmKh/qhp +0cPtcyDy39Sz8P/bgH9e + "]], LineBox[CompressedData[" +1:eJwtkQs0VQkXx8+hB3mVxEWIhKb08Ka0N3lF8rz3nENKRqIiUZLy1jRJEymi +kaYyGr6ICl9FRYPkOVN5xqSihwp17r2uxx3fWt9ea6//+q/1+6/9X2trBxzw +3C1BEETm7P5Pox3lOu7Ks0D8f04EdfqEKbHwKapxqZeHJka9KyiK1GShWOsd +Zzp3PQYFHhJFG7DgOlF/aW2KJVJvbJ3jjFiQo/LqxsYBnQIW5SZvZOHVKkjn +/G6Llq8HPvzswELC6tpmnw92+IN/ieUv7iwoV+8dCu1xQPWB46cyfViwORhl +KpnqhLI7XLovBrJg+XpZXMwcZ5zuU115OYyFfrNwUwsvF/zi+z76WjQLUutW +vk+M3Yr9PRWNN5JYKO20cF90yhXbmBOckjQWFEw6wo/GbMNHXV7Bt7NYOCGz +uy+U64a3KJ2qqissDKhkzT0m746/vRydX1PEgsTb8pSnIe54jvuQqrvDwlfH +vqab1e6Y/PxMYWMNCyHqLhVSMh54yGu7oKWRhejAB20XPT2Q5zGR1dXHQtGF +8qpnf3mgY3vD0KshFiaJntMRsp5o4ZZl9mZ01h8fLvWz9URVV+OXn+fwwbc6 +9VTAdU9c0EzqfZPnw5p9mWcUOzxR5Nx+WMjhw+Wiq9lmk57Y5xS6RNKQD2nR +fzqVOXlhS8OG3VLmfJA40TgQuN8LaxwW3JWz4cPHqfO9jr94Yb5doTeHywdZ +P4XKFS1emF53+LrGTj7Y90vq+n30wgRbu+86IXzYmNXXZT3PGwPwdaZhLB9W +5l9Ipay80eth6Rujk3ygaqOL/+vpjXab4owtMvgQn2fXrLLXG1dsVP/btoAP +4gvXgqWyvPG9OVeRbuFDb9vwqMVbb+yuWB7g18kHrp7bqCTfG5tMx8sCXvNB +4/CGJWvnc7HY+KxHKMuHlrB57Q36XPy13O+3CDEfunOMR+zMuZi2fvXYEWkB +uJGUt40DF8PWPk1P0hCASZdkfkcAF3eWZP9zUl8Al2hy88FwLrobBq07s14A +JYGv6gtjuWi0SrI9214A2+U95D9ncZHVs1a4GSqAwd9VRB5/cnHToG1DarQA +Nsni4wUdXPwpzyk+OFkAcdJKdFgfF5WVvL8uzxHA33G59vbjXDQj97XlPhGA +p4mRR4YaD+MehJ+MbhPAjXbbbFKXh/VHooDXIwAZzjEDM0MeUl8SSxeNCsDV ++nYru4mH0b0Xz/6sLgQlQrZdxp+Hj7IuOwbpCaGuW0Glbw8PpTyvizevF8LV +t3LihAM8zGksPSB2EIJBbb+8WxwP792td4uKEEKPz/XfdXN5OHX2u0LgUyF8 ++vimsv4ZD+1cRA02z4XwecuMcVwHD9PmEQlaA0KIcxgeWtrJQ41YmdGe70Ig +O3myiwd5uGmvTrvHsglwbNsfzOfzMN7OPR2OTEDDBrNTuhoUNoq5ThpJEyDx +3ibpsjaFC+/7EpNpE/DXyTBzaT0Kr6zfE15xdQIigo1Ola+h8JFmnLth6wSE +JksN7wQKJSaKF6qvEMEPh++tPrSDQvUW22+wVgTKu/QvD++i0OS37heBliIw +0PoY6bmbwt1b5l8qcRVB36aIZQr7Z+/nBKywjRJBs46PaOVRCs9aqVqFNIgg +dJlehNw5Cpce/+nHypBJ2KabnZb5kEJTdw2HvshJ8C9xjLOrpXCb7h0DMm4S +PsrdOTD2hML45tefnc9NQkVy2G1oonBwqXV0/71JiFTnuN16TuEf1d/S5spO +waKVjSPf31NoJvav8CqZgsKanMAMBRq3uj5Ksq+aghirLuv+RTT+eEnLzbx2 +CizlDsWvVKIx3bx/WO3lFEQ9e3HwPofGDwd8VQenp6BunHOiVZvGX//hHg93 +nQZj438SHxjTSNY6254ZmYZPm8K2ylA0chYWycfzpyHfaK62NUPjmh3SveHE +DCy449Ab5kujj6gh0ltpBmT8NA3/2knjHSP7AvWNM5ByyD42J5jGoGsgVXR6 +Bpo6uQUmMTQ2p5i01v8gBv/cmndf82i0UngmkWEqhibfktigKzTeyNll7oti +mKv6orH/Ko3JJb9c+coVQ7WQ0/i8cJbveh/BSRRDhdrF8q6yWX5VnsreTjGM +WCVnetfTqFxhvNVkUAybn1WOjjbSmIJNCTMjYogeKTiT/ozGW0WTh7aQBJ4O +tJPtaafx9EOD/lfKBHarLFTL7aXR9kPSrXm2BI7vzv/6fYzGo2tam/Y5EqjU +B4Nd32fzkarv2rcSmJa/Tq9OQKPmTKnqJYrADlnFV8XTNE4ovkpaG0og90nW +WKc0g+tog7zzEQS2aP9sLZRlMCgvsnLiCIEjMVxCZyGDz/UXjNQlEegWlKR/ +XpnBWxvNufRFAp06hsvm6jI4nJh0oDqPwJKdzLoUfQY1G1pO6VwjcH32tJ3i +KgbTPAJrRm4SyGYPjO8yYrAuq7TL4/Zsvq3VXs+MQVGvaLyiisAzqXtuii0Z +DA7K0E+sm+1n6GYxYcNgfnGfzVAjgZ/3Pr6v4cDgy1H97S6tBFZlWa3yd2bQ +7lhN+pJuAhPGUva5eDF47JF0cUw/gV8yq59OUgyWz+X+OfCGwNx7awO7tzOo +lf5p4o8vBG5THztsvIfBml3xf5R/I1Dg7abmt5/BHcaLmftCApcktI7VH2Rw +ek6h1JNpAm9IyE0fPcLgry+tqpolSDQXflZKjGVww43WPS/mk/hEmb/3QzKD +PUcDVPplSXxYIDCtS2XwqAu/fmgRidTy6TydcwxyNFKjviqTaDawYY52LoOV +XzT0hOokqj3v/bv/KoO8R2UvCG0SYdnq5T/9h0F+hv0JaT0SrW9oXdpWyeCF +H7tNFFeR+Pjc09DkOgZNTEPfqq0j0dfR8WFax+y/5pHnl5uSWOZYtlj8msHI +rvObV1uRaKFw/OldlkHFIoNvJkDi4rzD6pLyPlh27MFVazsSu4YzneUMfdDd +1d3TYQuJ+E77dibPB0c135Ju20iMjDEceZzhg2dHj5RRXiQucdqzA7/44Jpa +mV3+NIl5lS9nFmT5Ymtm/sIQPxK1CvPoodV+GL4x6fqynSQWTHPWlIfswH8B +7mM1NQ== + "]], LineBox[CompressedData[" +1:eJwVjH1MzHEAh/t+J0tcIzqytI7IxtSWbkr4yHlLOM7LfX+9TVM5L5cjyejF +eUmSjju6smxc6UTSWq68FL0petEqL6n0si7KS+U2cWnyx7Pnn2ePICRieyi1 +sLBwG+e/h5taNGoZAcQJQ4NRO+Db+r0+SUEQ06fZ3RO7G1/uKWM1UQT5ygaz +lifFhRj+koyTBD5ehtL+YClctua0Z8UTFBl+RM68LkWV08rkB+cIBC8KrXqe +ShE23OhtuEhwtKJGHNQqhWVF6NfSFAK/dR/La4akyLz2+0a1huBc0efWyZYM +ovDkTY1pBBJXuUlix9CzTGD+cJOg6bHIUTaPQWldmNOtI1hsTQ80uTII2jZw +A3qCZlW87U8vhue5bZNMuQR13ZZ2NmsZxsQTZJZFBGZjT+SfXQwZc7WzbJ4R +7DIYQ2yDGbxNi6r5ZQS1G56XFIUxnEyVuCysJch7GD3FHMkw0n6717eTQGw8 +W/bkMkNqnvCapJcgvnijpE7DIDz9ShTQT7DiRGNgVTrDMedh3SETwY7EMNWZ +OwzD+1eHqKwoVs25ODHzGcMV75ZpaTyKGSPitohyBjcb2YtbthSKtdEKUQ2D +PF/lVOBAkWlccpXfwjDw61NHixuFe65W9eYbw6PwlDJfIYVX79HX3SaG+Hcr +75Qup8g6XFq5aJSBb8g4dHcdxbcTH7ITJ3PoWrB5m6MfxTFZoZNhOof710eX +qrdR3DsVdGuzAwefKP/RUwEUnn0vE6xdOfCM1p1DeyiipLpEmSeH9zsfl4eF +U3iEfLbPFnHQVcqyPx6kaCgOx28xB7mHfZL4CAVP4tOpD+LgmVUtrzw+3r+d +3j5bzmGCXfR2rxiK0Dh/wac4Dg1nXYR5SgpViez4Kw2HdNNbe+cLFOu7WNL8 +BxxC957/q02m0A1sibWq5+DW7NHFU1MMTl2onTPCwbymt0KppRjqd+5QuPuj +qkCj/5VBEZfAFyal+OPKPNGlgzqKaen6jenCAASof0Z06SnkEWMOHY2BmNuq +8OvLGf/vU4+MrQ7GP6x6WKE= + "]], LineBox[CompressedData[" +1:eJwVjntQVGUAR5f7fUYtRigzIk8VBFITsUC0kP3xGkFjVeR1792L8k5nB5Qo +RCUfgAMGrLmMkokgUMrmCjiCwDrIaw2XAVcyBpsMho0WNg1wBIkRSc/MmfPv +WRWfFp7EiEQivze+bfUhrS/XwGB57MF3ZsWRuDNiZo9mBnKHSzlSSTROh9e/ +vtXKYJM00KgWYrC7Y9/Imi4GdZ5r5UMjMXD42Ore5fsMnicGkG0bWRiv3K2x +fsDgLrMjZDSJxc0laUX5jxgcTkjQRBeyyD7pdGj+MYPdPV/fWq9iETLVG5E+ +xCC+y9kjuYOFdVz2ZuNfDM4taGw6B1j8qf/IQWZi0Gjx+7AwxqIGfyzoJxgE +NSmvTbxkkVH3rSF4mkF2ymLJy0UcJCs/+6VljkG/l0dW31IO4rMm1QYRwck1 +zT2NThzK00LTbS0I9CmyonQvDgeGZiOLrQjCQ0Pd8v04eO28toUsI7DsE9Vv +DuGg8zA3e7aSoFm3X1rHcZh51qVo20RQm/XKNSSbQ7uQ8aW3L8G+u0rfyjwO +hb0u0Sp/gtYb0XamIg7O6lNOJZ8ThFzUJUVe5hAmhzolnqB/fOz6QiuHapNG +Z1lMMKwTTv9jxiP1wk6XA0qCbsWvoaliHj5BhqPaUgJJQ88Rc2seujLx+mNV +BJ6Fhqqc1TymdrGK8SaCsJ+qgh+G8GiZf2oMaiWQNrpovcN55KpOoKKT4HgG +G97K81hOr01F9RGcinaJC0zj4Xd7Zk+XgSBPo05nS3m8m3jm+opxgjiVaaVd +FY9+K6dFR/8lsDJW5Cy5wSPpQHDjxv8ILrXrTXVdPAodS5aXW1KMGm4obKd5 +ROncD81ZU7S9943rjJkMKzI19yNtKdY9GFiz7gMZbupHjixeTVHmP3qvaa0M +j3M2PsnaQmHeG3A1LEWGSk+t929+FOIdY1UDmTLIn8QUewZRfHq7clBcIIPI +54TEKKVwlsc0dKpl0BmsSwMiKAJfjLFZ7TIoz16dLGMpnhdptvkNyOBm6rsS +kUixdau9axkRMHk+fq52P8W5Rq3/jw4CWgJnwi3SKH6IHcur8BGQO1nwc3IG +hdVDheJFhICwMkfakUUxwecvuH8lYNn2epnj8Te/11O5qVIBwzNBDYdzKV43 +ct3SdgGqqsH3HxVQ5Pe6FKknBGTskidvUFBYXDAMebjFwm9+ofVMCUWojVLi +/kUszFVKm7+/p/gu87zeXhMLfZT7Qf9yCsng9NKnH+7FRaLpvlRNcay+o2y9 +di8S66SrZmsoEhbsPHNj98FDGMnaU0vxqmTozuXtcQi7/Yk68iaF6C1t8fgf +YlKrLQ== + "]], LineBox[CompressedData[" +1:eJwVj30s1HEAhy9+35Vm5vVICDVOZ7cV/zhmnyhZOxt68XYvv995aazNy5i3 +pJCRyoomtqhYZhFuixJHXPJ27tKLvOStI8xLdZcyvfFsz56/HwdpfHC0HovF +ct52p43+sQ1lnRQcwhNHq6eCcMb4yGSXgsJqp84lqDYEdh0Kd5sBCgqDvNge +WRgWY0NvpKoorM3Hj/6Wh0PGXpkfeUfBs0k+IzofgcyebG/eOIULTBm7ZioC +xxPMygqnKRTUW60G8oUwsq1d12gomDQpG82uCoFzuZ8+L1HoGDWyUXUJkVQs +GZxbo/DN1WXf0g8havo8n89qKbQV22pOOYnwYZdV7cwvCh4tPlu+p0XY46kr +nf5DYUwy4daTJQI/WZ0zpUfwpSGMn/ZIhMqFAvGkIcFc6NCVDJ0I6gPRggkT +AjU3mJ1jLYZe2DH+OJugLqa1ygdixAxuWny0J9hMPPq9v0gMXlOc8q07QXJ/ +tbbCWQJ6ye/FiAfB8DqXKwqU4Lbjwbo33gRe+pr7VhkSbJRO5Kn8CUoEG/qb +agk4w61JwwEEr3ObLcR/JQjfXUorgwluLQ/1VrJpyNMFXoNCAtN2m6Q/J2l8 +lXEODzAELMtDW6ZSGo4rlFV/DEFRnyDKLYtGvrhD25tAkN48ptC20HhWVj77 +KoXAwlvR2/eexrI6RaXIIDC8Jss126AR4Mt73J1HsN90SHfHk8Gli3vLXxYS +XHfV2dsxDJqeLuR33SQ4a+5UIi9gMLfWndxZQvCAF2D6RMbAnFMlld8lWJyM +TOVOM/BjMgM77hFYJvy8nG0kRVpFiHf7Q4LIqFmvf5Bi0tDYuq2eoOKEQSyn +WQqj2TjlYsP2zw5dUvwHh1IY7A== + "]], LineBox[CompressedData[" +1:eJwtlXlQkwcTxiPS980bKaDlA1pCOVQah0OqXIrIw1kDFElIQkgIJCCMVMsl +akGUs8GjyKGW8kkpRUBEioQGkEIpCgJyCH6KGZRaFJQKQkGRqlBtOv125pn9 +Y2f39+z+s2bhsdxIDRqNFqXWPznXdPWdskICtP/HN9MruMNnCZxwLPtJo9QQ +i1df7cP3BOa/ZO88/uMG8P47f+ZiJQGjUA7Dq3AT6uOfNOnXEKgwOl/ue8YR +OuwHI+kKAlVt20yaXjljr+nI0tNGAl1hPE7emCt6/xwyFrYSGK3eb1twyQ2s +wR7XjisEHDJLbr5x94C8sl1m000gwz4kyVDhiYnDlzOL+gmEKV9Gm771ghu/ +rkLzfwRkNoUI/fgTlFhVdceqCDzbmf2n0HcHlleWPrk7SsBwraKEFsCG6F7h +Ku+HBMp9ZxMG3HxwuT7XWjFJQI+jilaZ+0L/ePZO5gwBccTQjt8XfLFPlhqf +/YxAwBGL5mPNfrDRjW2Q/EWgz5lVUW7ij68mo1Q9GiQOSIW/sTv8MdUW+moz +ncQLF2p5XLITFZ/7uzDeI9HXsVae4RIADS/vsP2GJJg/WJfEpAZAytyePmZM +grMmKHBDWwCYfdbXGlkkggLn92ls5iC5bP2kmQ0J+eOg0znRHKiSjKmczSQ6 +jcocr37LQQHr3U8jtpOIbov0GXjLwdxbzdgbHiSq4y1sZ6y58Fct521hkzBX +ynk+Ii4o+dPbOjwSeZ0m+htruYiSTCwmB6v5RfWeU8NcdNqNGj4OJdEwcMrP +Z5mLtPG+kNZoEhbXs7x8vQKxiIsTu1NJhCStO4jeQLSWT589mEViqpflYDAZ +iAy6VaD8GIkWbcs+25U8aA/VXDl3isRfTim23C08WITVltw/T8L6ebGOUwkP +T6/O8mdqSKQsbbXXa+Sh3mLju8sKEiO3ph/ED/CwffbSofdbSSgXG3Ouv+ZB +cFgh5A2RoNprV6cF8MF8MK8TMUxieNdcBy2Sj4eem7rj75Kg2634wjKJjxit +H+1zJ0hURBuPnyzlQ35Wuab3JYkj5smShWk+Gpqb+l3N6Fj7uLZq+aAAycYv +M/0t6CiQD87UHRUA6U7OEks6EnVaB1yLBOjf0Xwh2Z6OP762dF1sFmBC9ZO8 +gU3HglXaNO21AHqLP8MygY6pMpskHAhC4qZOpX6Huj8mLVa5R4goO9PS/B41 +b3/eM0WKEEKHlBNaN+i4YZMz0p0jhPNWu3CNEToKPzIReNcJoeFerjM7S8et +3w2ybi0KseBBW9q9QMfG20VhI/RgPPIKeTz+Su3nedx6LaNg9LD1fh7RpNDl +afwfTQQjl5P12bUPKOzKUH1z+qtgpAWO8WFKYW56TaCwNBgJ/G1uLespeDt0 +6UUogyEIXjBQ2FLIV1W5Sn4NBlO261qxN4WLKxQrxZtF0I5orzPwo/Bh48k7 +/WwRaJHM4gIOhbFK+uAFqQjju28nHA2h4K67vaYlV4TqOE/TxAR1/WL5/Mxz +EYoTSlf9cZDCxqpJ8yhtMXISlxejD1PYtkvOT90gRtwXyoGwoxRKhvtqmmRi +hCfrNt/NocCXMKueHBGDl7K3nH+KgtHJVZ89LBbDMW3dId8SCpHHbzH498Rg +ZaRFdZ1T7xfQ5ji5JMYHWaMctwsUaooeTsUZh+BN9mmWo1LNr9RKrYgIQWeu +5h3zXgpHr07YxbwJQWO+9Mq3gxR8mvOH81kSVJ1qrTEcpmASkDfrwZPgRGFi +pvaY+p7MM1a/1EmQUjQUc+wRBYGTrUHnAwlizlqJNKcpuKia8gb1QsH9bsL2 +9QsKDo4HXAvSQ+H5PZj7lyhk5VX+UtISCvtzxeQcjYHSIbdAyctQGJ7n3X+0 +ioHurVnzN5LDwLhQd126mgFccl1PuxKG5Wqthnv6DMgOJTTGvSPFb7WdJ26a +MbDFycw7ky/F0Izm000fMZA5epzukCZFu5WX32kr9Xwiw3jvD1LU7fmy5sXH +DIjujvtE/CpFafU1rSBHBu5rEwkyXRnynrzz+eVtDEToOs81eMuQzvIeeN+d +Acqnnt2SJkN4ZVfOqB8DVh2N9OwV4eA+ImZduAzk7dkz788Oh8e6T/y/C2KA +1d9TefPrcGQsNXa4ixj//pP2cPwNZf+2KQ== + "]], LineBox[CompressedData[" +1:eJwtVmk0lQsXJlS85xzO++YqjUijWyqFkp4i83CcwZkcx3FDKSRDhoqUJHJv +xJWURrrRJUqiDGWKlEQyJdV1FUlFGtDnW9+319prr2c9w9r739Zy92N7TJGT +k8uc7P/OSMOHSlhDQO7/VW10osjQgMBJ65WGr/4c2lS498nMU8YEklTUqLdp +M5FZyAz9bkqgv21aQIWfLv4ccWoTmxOYttdzvO3SrzhqkGh815qApU36gZyY +1QgJaDo1z5GAl23C/cJ/1mJ7Pvk9gkugOSv5ss5XIwg/skU9QgJBAV7MpNoN +sNFPKt4iJWCVkHqBkppivd9TzUvbCCxJu5hkJAOW/U2FK3kTyJ7mVGC0bzM0 +33M6PP0IpI32t8gf2oIf3s2nl4ZN7tOTK9F2MQd3neTEiggCCXnTW8Z1tiJH +vvfImsMErA/p8oxfboVr6qj/xgQC5zwy6UXGlrj1W6TXliQCfCLj69XnllBb +qSyxTJ3M+86P3+ZnhYoqTSunCwQKsmsEWUesoXni4kbnLAK1j+aLLKfbYI+L +3hpxzqS+7x63+5ANFn7eOM+jkMBjpd64s9622F9aTXmXEDCbd6X64DNbPIt1 +VPYrJ2ByrFu5daMdYhbIhkPqCFiYM7aP/bTDy/63b/c/JmBUOa/TUWwPo1t7 +uqOaCbgp7sXcAnu8sz9cF/+CwFCZatEXgQPMZtHLT7yevFdlFkeW5YD0N8k3 +U/oI7Krruqrw2QH24Vnnzn2a5LVUko5GOSLTQj/l8iiB4fR/e/OqHTHBvB13 +dYwA545yuIMiC3lX6oJvTKXh6Wmv4FlmLFDP3tvVatIg6FtFP3aThV3ng7c0 +zKeh+L5KM9XIQuWun4ZNC2nwOZNV0fmWhWAFpk7nCho0yYY5DrOd0KZv8O3D +Fhp2cNinooKdsHrszuCwJQ3p+7wlXXFOOFaz9c03OxrWyg9P5J5zgokr/7EC +n4Y7d+Wcm2qdkBEXdlljJw2DioNZiRQbX50VTs/ZTUPIiYLetbpssLTj/9AK +oiHKd1Fo0Do2ptw+E748goaOvqimVj4bHr3lTpuSaPhlkNZ1KIWN5ZunTXiW +0NDuHxDaqcRB3tXsxc/LaahfRwTepDgwmMFysq6m4fOGAZGNFgcm/6ZeWv6E +hqVvPSvyNnDgcHyZ7VAvDV6B2hev+HDQ9OVRoGyABv6alb5poRzw3QLONn2c +5E1YifxoDtzW3Pl4Y4wGvbiOVevTOdjTZp8aStKhU/vP0Qc1HHzZ8qninQYd ++6hnTpuaOAjPSekXz6VDfuXcpLhODg5HdJuaLqGjMuPwnJwhDlJ0/f+ZYkqH ++icZb7kGF7f9T66O30HHRtPjC0YkXJh2GLmM+9KR/rzliLUnF/fMu6J9A+lI +rY9tj/Llok5jURsrgo4DSzs+Zh7govPurQj1ZDoe9jA51We4kFPpeHi2nI6w +D/2+L1q5sLyg5XVdg4H3xPyhVFMeDFIZi6rnMLAu80C9ljkPCxJ+vGnXYmDf +7vlmGdY8fA9tcVfUY6BHLbwvhMvDNadYVz4YSC4dGczZwQMl/5E3vp0Bclje +xiyRh25publ1MQNt3csU2F08PORdU3AtY4Brlnu7poeHItu0e3sqGXCdPW5s +2MtDomEg0h8xUPh6lKb4gYetqktMPrxi4MNIOymQc0Z26e9rkglVqNtNVMlp +O2PvXKl2j4sqFtay67/KnOHO0nfulKmiyKcvr9LDGQ6H5I+1eqrCoHeb2/Ed +zlj09uLHht2qqJpzV6ru74zmG33lxYdVwXiUnSkf6Qx9uz3SkzmqsBhu+kdw +xhl9YdHplmOq0FkWWejxzBl6Azyi1V4Nww1/v/rLnA9KdWh65Xc1bLlhJ/xk +KEDT3WMx1uNqGGJLN93aIEDiLt2pj3+qwaH2e/mBTQKQdSKFdkUmbDpWVKlb +TuLoqvEPDCbUix9oejgLoPYj7dNsHSYm9vETkoIEoP27tTPAlgndjsSDsYUC +PEx+Kfpmz0T4Bv3ZxcUCxJuHtx1gMRHxZ/nwYKkAxIW8Z7G8Sb9pzSWPGgFU +JLOfZEiZSEu7l3P0uQDTnw5V1QcwsSE3J6HghwCKZadzddIncZ4Ce6aFEO0m +5lbdZ5lQceyzF9kKkVs88DLtPBPxP698ucgSQlS4kSSzmHA8Qy93EAtx/Vp3 +oFw+EzO8S92V/IVwTddZ31XDRHDotm7mWSEMNB82pdYxEfb+XWvnRSGUUwN3 +chsm/fubg6//JcSNpKr0+iYmBnTeGYbcFIKI8/p5u4uJyOLTzyMahCgKza5M ++czEas8S/bSfQiSMciTsL0z8anSzmDlVhN+Cxkbo35iYuyo/KJkmAsPffnH0 +BBNW3Vnr780SwWP7h9gAZRJRN+w5hQYikPw1jqz5JNb75Dqt8xFhp0FJm7It +ibVTj1QbvxOhvLElp8iehMGYReH+TyKo+wxFeLFIGGo4KrZ8F6Hssu6iKh6J +3JaJKWWEGJTGH3si3UjwT814HbtCjJJv24jRIBLJ25ettAsRQy0l4sXlEBKe +PJrt0EExPFanXeeGk5ARnVXX4sRQ3fmYnx9JoqFEmBWcIcZvncaXfOJI6M+r +ENvXikGUMTa+OUdiKdPdJ2q+C9zES9WSLpJYMM3g8ddlLrg5avZ6cyaJvbqN +K0+sc4FUPzQ2I5tEnOGFpGUOLig4/7pFVEjChHZtBxXhAvHhIt8n9SQcgg0y +dvS5IG/B082Rj0ikl/hvE35xgdLd9zNWPiFRHz1AC1GUIHdEuyT+GQkrRyt1 +Cy0JFLyOT7PqIXHyZpiqmUSCbGv3c6VfSAQ7aXAauiUw0NMy3fSNBJV3Xzx9 +SIJSxsuOsh8kFqkpFOyXc0XjU4lGhRyFCqvEU3O0XTEsESbcV6EA2sB19nZX +7MdMPXM6hTNtfwtiwlwxVaf1QaUqBW7x0PQpx10xq4+rVD2DgtO9K46N+a4w +3cPaVzuPAvv2nFUKU6So4apqWmtRYDU9iE77RQqW4aNbD3QorF0YrRyzXAr3 +MdvPdUsoNGu6h293liLmiKV3w2oKO+yCMn/Pk6IxzVTQZEHhW2UYzdvEDcL9 +4yNsawp3lBZfGLN2wyvpnaSnthSuth9mPeG7YXjh+sfNLAp+75brWAe6YVbu +WotWEQVJnDl1Pc8NF04Mv+ZLKEws2CtKLHeDXmDBwedSCjfWv8qvbXSDqfGq +u23bJvWDDhJ8coP7fT2DTl8KWd75g4XGMvRf7n/i4k9h99JR09N2MgQeverX +FUBhecrMkiGpDDH2S7JfhFCYe1XZV/6oDDmtOto9URSUDok+27yQYW3xqzJZ +NIX2j7peViMylKafl7yKofDHr3Gdb2juaJTNP/U6nkLQeP3i2abuGOnXVOtN +oWA4cGnz73+5Iz/lWHlzKvW/f7LcHf8B9CpvIA== + "]], LineBox[CompressedData[" +1:eJwtVnk0lQv3pgwlKZz35Zz3lAwXZUhKQpcnJEM453DOMR5jVNccbjJliitC +0VwabpGUkjSJUAiVoZCrVBJKbsiXED+/9X17rWfttf/Yz9rPevbaayt6B3N2 +LBASEno0j//PhhqnRtS7aRD6X+juqs473EPDOnvTVN3knybxlin5ZZ9o8G/g +pfzuuxJtgp1uOkM0RG39fuFKnyJUImzoxV9oYPhJXj0fp4LG89JHLn6jIexs +/1KNiNWgTZ85cHiKBhH9/qZ8k3Xwk04wk/pFw4uMezPXbXRxT81XKH2OhhP+ +8k1CrPUQOK7ZlyBCYLF+e3SFqR4Kr5UHhkgR+NvHr+pp1yZM1Z5YM7ycwJxF +p7ZViQFsu2MG/GUJOHa6sUz2G2JMzMzLQ55AW3Nvub/MZmz2fOFop0SAyFRR +m5sxxqHIUulGFQJpiaHN+cUmeJ+R93yrGoFFwzbfZDWBA/dcLX/XJJCTHVVe +1Qq0yAwaaW4k4MWJIiLETaG0ummyYBMB2kjAzbssU0SYXL+tbERgql7yeOBx +UzACwtdSICBK12xwVzaD7xMhZQlrAmZxvedPq5uj/J++3pTtBF7md+Xf8jPH +4rG608L2BCYsIrxyL5rj+spM8qcDgchOnaBO+lZM/kmXGHQnYPdHuKfdz62w +PjRT5+NJQN4oou+ctgXO/N2b1Os9P8/xZ1a/vC1g2nrpV4c/AXNLQdBIgwUy +1uiOPgklsPBVTLtH+jYovrHuuphCYMnBvSpmg5ZIrzEq4aYRkLxcd5xDs8JY +geYB8YMEkv8a17toYoWaMKkNf2QTiKlWiaVyreC7qC1L9xSB9PG49YMbrFG4 +3nlb9Q0Co+/zlkU722A53XrlnlsEMkXZ8SejbRA1azihUk6A7K42NThjA+un +zItpDwik4pWPUK8NvgjezdrXEWgOv1Mk7L4d2un+5W//IeCm1DEwYW6Lo8FO +mdlvCdyZHVtk7GmLOUcrX9P3BMqm8rw1om3RoqAhc/kTgagCG9qvEluE3h4J +DBwlEKtxmLxG2KHsXcRvM2Ikwto+nDjXZgdmnd/MtcUkanPsaoWG7JByld/u +IUlC9GHKoZVzduBFGiTUSpPoiX768dgae/xY8qsnnUkiNuLlv+fj7GGon5xL +1yUx29hlLyTFQoc3feOZDSSSzVq3VZEs7Dl0vXOVPgntO0TcTgUWivu7GOqb +SbSuaBGO1mFhZa7W+Y0WJDLPMNOvsFlYMNpxzcGFxKK/WGEh2SycZQbYd7qR +KEk3Lp88xoKRpfCoiweJfYH134LzWQjP19jg7Uti2cYhC83rLHyy3X8/JGie +b6+XUl8jC01Fq+szE0l0xIe4RAuzsbOjcqd0yjx/8Y2dUovYEFngKJGXSsKu +paD/iBQbxs5xtqczSAyZRAxGUmzcEG9vLzpKopqpv/TCBjZyfWPe1ReRqE8y +0yv1ZcNt5Yufwu0k/Ot/16+pYEOKHnb7wSsSWdYuhp41bFTLEqERXSQQUHd/ +vJ4N1cWug4NvSLi0eFVPt7Hx7/injheDJCrdYy8fGWQj8ensrTOz83qWnifn +pDkoDNcOMlgjh4ViGYsOCThwCW5dPa4ph0LzziHSh4Olu8P7i9fKYbGQ8fPj +/hyEedx3W6Unh5Fa6x+pIRwYWVvYiEMOO5plGWQiB88VBOqvuHJouvdDd+Hf +HEw0Zn4ISZDDkT0Bs/l9HPQsebVzJkkODrk1o1oDHNRsZ/6bekAOOtYxlXc+ +c5D9vGj67EE5FI+9k6ka5WBNWz3tWZ4cati1A2fmOBC8Ft62ukgOJDur9xLD +AXUDEVfft8lh2JgOVTsHHBcRhHNU5HH00rOqzmIHzPrI6bWqyoNeGVR+osQB +vrUtE/ar5ZEW2tXoXOoAnUSzP2215fF0cm7HyzsOaJhT32e5SR4i0iyZshoH +/JgajzfeLg9dLeV0pS4H8Eb/OrgmXB6T+k4pH4UdIfv29oUFj+VBxM/qaXEc +IRqb4GgQSoeJyu6c3TOOKBsd/lm1h46GaZ39E7OO8PVzyreIpOM/a2tDE4S5 +eGy/9rNDNB1LrBZFnRbjIlnpTXxQCh3NV/a/6V3OhUjDpqsXT9AxmkVzv/Ab +FwtkvwlL1dBxoxA921lclKa6FuQ+pqPzQ9BLMQcuvGfqtlP1dNA7zr+o4XJR +03/mmHozHWbjk9/hykXiXRstsw46puPaJPh+XAgLCpz2fqbjzemDW8ZjuBC6 +Iij5IMPAZ2WJboNiLuqGO4PyCcb8/ak9m17CRYYOW9tNnoHdmo1hvaVcyN01 +u/ZqBQM2aq9z8u5xoV2vfrVBnYF3qe4VevVcuPWPXb5uzEBi1lk2v4+Le4qp +Z/ftZiCWdt23SoGHuB1CAv1ABn7LypesUObB/ErUiu/BDCSnXaupUuOhRSfg +dGAEA7bL+a971vIwaMI+6bl/vq6N5oWCB1JAHbU4ykDI1xUSyj48hJ0syZSp +YeAAzWa4pYSHOzMnU2seM+C9PudNXxkPM4IDCWH1DNx8abNw4X0eUpXdI9qa +GUDJ8Bu/xzycLpZwP9zJwL37XyqbXvPwpHKHpsxXBtreLp+1EOdDQpGtWvMv +A1Ea67o2L+WDlbR5VdgYAwaNG4PNZPno3iZLa/vBgJEh3ShZgY+RlkfTOQso +MGdWXHq7iQ/5PqpJWp6CaEJZBieYD/et4k+qGRQUskRakiL5uFAwVhm6gkLO +KZnS5lg+NAOelrYqUfC/uS2hIIOPLRORJ3O0KByc9U/OucrHAb537hYdCtG0 +iH+ybvHRfM/20KguhbG95y8WPeCDF6eSyN5EYTZWzH5TMx+7xdt2SZtR+MWz +fd4wwkfJroc+1VspLFPot6j6wcf3pkL3UEsKJeemBV1CTojPjme32lLY3Zok +FinrhFy6lkGOE4XyLUO/7TN0wkONtEXSQRRuTrY0ncp2wsaXcs8Oh1DQrgj2 +Cz3lhBsxBTm0PRQuPcz3iLjshAvP6hjyeykkF6blLn3ohLRgUS2FRAqeiXWv +Lg07QVg+b/RcMgXVGY0B2k8n7HukUq6USmGmfGzmoagzAqXNTVQzKFToiao+ +UXAG51YiW+sohWPxhFAPzxlNrjJkyXEKtz8EutjvcIa5yIVunVPz/b0bDkuG +O0OfW+2z4RwFow8mWkGHncH8MRdhVETB9eNnhly7M47mZxk+LKbwNbOsUfGj +M5ZZKswZl1DwlaZFZUw4Y8EJ4zTTMgrdDLtdWXQXDBjGnrSqpCDxma9Q5ucC +zz5Jj6ZHFIbGk/iq0S7oPnha2baWQp7LgT/ks13Q3POgmNVAQfx9FzP7gQtK +46Yq+W0UWt8xCnbSXaGhlp70+iUFsYqpzXt0XfH3C7qlayeFrVdbrbS2u+LY +KoNWQQ+Fzk4G53mCK2Jq/uzb8YlCQf86tbL/uGJit3jhwCAFBl90Wo10Q5Ds +sYBdXyiwSmVu5G10g5dv+UTAt3l/lql9ytrnhm5Ji/sjYxTGZ5eL6591g+Pt +V3EhExTY3ZEBS2vdYCE2IR4+RWHXY9rr1OXueHQ9uXlihoLz0bUX7QzcYcCn +5fw5N78fnkkB6T7u0Cxcz4gWYWKyIsHvdoU7pK3DNBOlmCiaqjVKSxbgXPWy +JYbSTCjmN3LcHwmgY3BtaFSWiehLMQEjswLYqQ9e9qIzQdSsDV2e4oE3+Skp +dCYTj9RKvsg+80CAnLJv60om6me8htwkPZEuJlDcosJE15ezoZICT9Djpucm +VZlguJ3yNE73ROHE8bc3VjNx8582/693PbEpcOPDnZpMSJHDPuzPnqj/2H5q +1VomLh9KGC5c6QWeW+i+rnVM3FBv8zDkeeFTu5Rz9gYmqvR+KnJzvCBSa0UK +GTLx03V/6klZbxwxHPh+ZzMTX3m/FM+5ekOpNLk92ISJjKtXXg4VeqN65q7I +OjD/++8/8sb/ASmiIlE= + "]], LineBox[CompressedData[" +1:eJwVk3s4lfkWx91ymyK3GXXe3/uelKQkGQyZ9I3dtm3bvryvaXehvV1Kj3HJ +uBSHqI7STR6nVBpOzY48pewhqUjG0K4xXczuYpQyipSMHIxuOHv+WM/3Wf+s +5/Nd37XmRCayGw309PS+1dXfap+4mtqppbCw5M70K/7zgG9Us6I7KPisnvp4 +TrMERja9zYOdFCjXq2NfLHKH5t78uK1dFJQ5Y0cYPw/sy99sp99NweUX3llv +Zy9Ymb+Jse2l8Nqq8sGCkz64r1lsVfqSwjvn/SXVX/riWG7iVafXFPqth0+J +1F+D1h+Z7jtE4e2yhzuH41agp9HjUsswBdX2iW63NUBZZppCPErh5bafB/qG +AZd373+MeE+BjYpRnbf0x1Ct7/qBjxTGLo6O3Tjsj+rkLKPUSQr+Te9mjdoE +wGdIT55nSNCV0ttpb8ADv8/k04UZBAErf69Tla+C2emgMu+ZBJMPVxo1TePj +14j94mZrAqe8Aokkgg+uy+LUgy8ItLtr7+ZbBOLzE1KhYjZBeNydjuPKQHSu +KRzppwiMBH943KkKhPK+Hf/THILfFDz3QL4A8wrlQ7nzCJpsxbV3DwrwUnL8 +mKUTgfVSs3ozrQAJbdSAgwtBY5W/1kAehH81zy0I8iIoW+hv2RgohF/ORh+t +N8Eq8ki/KFsIA78zPWG+BHqvPBZ01AqRd2Wh5xYQ7G3eseUZCUaRemlnkZDg +uHDBprKuYKxNSN71zxCCzV4a+53mIlAutS5nJQT81flNvl4iqM54Z18LJfBM +zh5M2ieCunTFvBcbCP4zdMBIzykEIxkjJhERBCEehYVOwSHwkp8Z6IoiCC0f +zMhOCEG9pWXNo80E8ryUoCfVIbiR83Rl23cEaQXeBz+5i2EaXugoSCVwO3zT +IkwmRrAP36x1q84/LzWBShTj3vD5e42ZBC0pezZpK8R4HJmlqN5NsO3Dr5XH +7CSgVywNWLKXYE2LvkP2EgmU/+idX7mf4Eh08pt+gQR9WtGfZQUE+uo4dWiG +BG95VNbxYoLBdWXj/Y8kMHaqL865oMs3VDU/AFIEGSZun1AT1MzN6jAWSnHg +mUNkRg3BVzy4/cBJYXVsn3PKZQJh37W2qE1SUGbrLsc0EygarjW77JPCfeDd +A/FDgtVT6rr8NilSNZVX2jp0+/Utb/XQSnFZpSwRPCY4ueeD+/VOKZaH3Yz2 +7yaY5pRQuOuVFILbR0c8X+vu4XLFis5pMoRXeVmRSR3/26qEpctkuLTuncU9 +PRqavvj0HshgYXx1+i5DGusC40IyA2VoCltu+sqUxp/uPby4UBkczHlTF21o +sDXq9cJ4GfqiZYMiZxpj0i3RYSdk8JtpMzC1iMbaqTTjOydlOFp/v7/alUZJ +1tgfruUyCKzXvLD3oJEkMtl7XS3D2esbHr/wo/FG4qfv2CpDwuy4W5mhNNy3 +f//X8gEZbrQu1iyR09gzzXtV65AMTNJQS89aGi2njGdgVIZ7mu+aBAoazIDt +85kTMrinptfZxtKwPG+odLRgMX53d1lltq6/1FsW4MoiJ/fUjidnaShsYq4l +x7CYsdVEGHGeRtVrWpwXy6J4c7x1X5WOx7pCVBTPoibYRzV0kYZnlddgaTKL +Pqv2FoPrOn9f2VEbs1kEl+qZOmtptGsC/3p4hMXndYr81I80EiZjK243slBV +tK7+MEGjVuow6vETC7fiRUy2HoNfVsU8Ofozi6Cs8aq8aQwOvmi5JL3JIjPg +UPsJSwa8/B9GD7Wz6LnbaNs8l8FiSYWh5DmL8/3khIWIwbmfHunPNuKQV5Kr +fCpmcEsxU8oz5hDNDjpekDHgt0VrYk05UA0N6hA5A6P/emyonM5h36H1Nw5E +Mkg/UxxmaMfp/vT4sHk6g8n3zkVmjhwc/m0rMClnkGQf+XWdP4dJ78wZjyoY +eOeZ7Ezncfh98Plv5ecYZMxWzvThcyiQ14Tzf9TxsdRcdRCHqYVscm4Dg7Ak +82fbpRyetB8qNdQyiErbJj8dzuHy7vEo7QMGJS+Efn4KDod9Fc6qDt38Omgf +KDkEl7le9H/KIFU4i56M4nB12+1bO17pePoN2r+M5VC02POQ7A0DS/lEc/23 +HJJ6vg+dM8TAOiEwf2U8hwWiuGdNowy6q+1a+Vs4GOnfP10wzuDYmqJlN5I4 +dNf6xio/MNhKKUsCkjk0xKqWuE0wqBQH/a8xhcNR5rOxqSkGRfX2ft5pHP4P +lU3W/A== + "]], + LineBox[{{4.951551020408163, 139.37596259923768`}, {4.952725024990185, + 150.}}], + LineBox[{{7.196012175022929, 0.}, {7.19644978787316, + 0.680122364067862}, {7.198928048521438, 4.3576005303963}, { + 7.201406309169715, 8.366240097856897}, {7.201448979591836, + 8.448952703871816}}], + LineBox[{{2.794950454536869, 0.}, {2.7969872680162746`, + 52.52496966501432}, {2.7991671838755243`, 150.}}]}, + Annotation[#, "Charting`Private`Tag$13001#1"]& ], {}}, {}}, + AspectRatio->Full, + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{1.317, 0}, + AxesStyle->Directive[ + GrayLevel[0], + AbsoluteThickness[0.2]], + BaseStyle->Automatic, + DisplayFunction->Identity, + Frame->{{True, True}, {True, True}}, + FrameLabel->{{ + FormBox["\"Scattering Length (x BohrRadius)\"", TraditionalForm], None}, { + FormBox["\"B (G)\"", TraditionalForm], None}}, + FrameStyle->Directive[ + GrayLevel[0], + AbsoluteThickness[0.2]], + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + FrameTicksStyle->GrayLevel[0], + GridLines->{Automatic, Automatic}, + GridLinesStyle->Automatic, + ImagePadding->All, + ImageSize->{800, 495}, + LabelStyle->{FontSize -> 14}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "PointSizeFunction" -> None, "ScalingFunctions" -> + None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{1.317, 2.173}, {0, 150}}, + PlotRangeClipping->True, + PlotRangePadding->{{0, 0}, {0, 0}}, + Ticks->{Automatic, Automatic}, + TicksStyle->{FontSize -> 14}]], "Output", + CellChangeTimes->{{3.9463001299682417`*^9, 3.9463001551784124`*^9}, + 3.9463004341960926`*^9, {3.9463004674544535`*^9, 3.946300485191087*^9}, + 3.9463005365743866`*^9, 3.946301604695448*^9, 3.946542264199359*^9}, + CellLabel->"Out[23]=",ExpressionUUID->"61a6f7d5-c877-497e-90e9-8dd81c619ca2"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"scatteringLength", "[", "1.317", "]"}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"scatteringLength", "[", "2.173", "]"}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"BValues", "=", + RowBox[{"Range", "[", + RowBox[{"1.317", ",", "2.173", ",", "0.001"}], "]"}]}], ";"}], " ", + RowBox[{"(*", + RowBox[{"Define", " ", "range", " ", "for", " ", "B"}], + "*)"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"asValues", "=", + RowBox[{"scatteringLength", "/@", "BValues"}]}], ";"}], " ", + RowBox[{"(*", + RowBox[{ + "Compute", " ", "scattering", " ", "length", " ", "for", " ", "each", " ", + "value", " ", "of", " ", "B"}], "*)"}]}], "\[IndentingNewLine]", + RowBox[{"ListLinePlot", "[", + RowBox[{ + RowBox[{"Transpose", "[", + RowBox[{"{", + RowBox[{"asValues", ",", "BValues"}], "}"}], "]"}], ",", + RowBox[{"FrameLabel", "\[Rule]", + RowBox[{"{", + RowBox[{ + "\"\\"", ",", "\"\\""}], + "}"}]}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"FontSize", "\[Rule]", "14"}], "}"}]}], ",", + RowBox[{"Frame", "\[Rule]", "True"}], ",", " ", + RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", + RowBox[{"TicksStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"FontSize", "\[Rule]", "14"}], "}"}]}], ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"{", "Thick", "}"}]}], ",", + RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",", + RowBox[{"ImageSize", "\[Rule]", + RowBox[{"{", + RowBox[{"800", ",", "495"}], "}"}]}], ",", + RowBox[{"AspectRatio", "\[Rule]", "Full"}]}], "]"}]}], "Input", + CellChangeTimes->{{3.946300369035057*^9, 3.9463005626365848`*^9}, { + 3.946301228472893*^9, 3.946301357506851*^9}, {3.94630141955521*^9, + 3.9463014214585342`*^9}, {3.946301914200554*^9, 3.9463019301266484`*^9}}, + CellLabel->"In[24]:=",ExpressionUUID->"329ec9a4-f739-4bf2-bff9-e5d541d4c8fa"], + +Cell[BoxData[ + GraphicsBox[{{}, {{}, {}, + {RGBColor[0.24720000000000014`, 0.24, 0.6], Thickness[Large], + LineBox[CompressedData[" +1:eJw12ndcTu8bB/DzGMkKycrIikL5oYzIdSsjSvN5zsjeK1siEUKKhKxkUyoi +e++klBGVkZVVyYxnr9/pfK/7+cfrvDyvu3tc9+d9dV51mDw/cFoNhmGEmgxT +/W/tv6Xd56lsyHu/uN3zrJVQ37ru48i8TmRkgxrdo5srIbhej75ZnXuQ8zlL +bx60VULao+duAS96kXbrKwMut1PCo/S7OZZDXUnMkIlfnnZUQvsgJ+7D1P7k +r7FwWUUXJWyt/Lj1pedAMv5q9YhK2OghNOxW4U6k4XoqYczi97eKnAjpI32U +cOLJH48t/kPI/l/Hs737KWHvBKss5wkexPJkm+CpA5WwI7aq5aMxnmTRzG0/ +IkAJLQNWt3X1GkredrZYs9NTCbfOq6KV9sPIiNJwm1MjlOBiccN6tmoYOSsN +KI4f437o3tXhpHq0935KmNBi6VOrJSNIdPNXj9VBSmgQvXfigE5e5M+z0ZMb +80r41unXrua5XmRs/F2lw1gltMozf588fSQRJycuWRzvQnK7B/qRpJc0QSVc +Nhy79jpmFEnKap+5aKYSCuXOQV2aeJPq2W0KUYL9n+Pe9tu9yQL3ei+OLlDC +8+PjQ0c09CEl2lWzry9Rwtf7r6ZUrfUhwy5W76ASfpwZuXvtXx+SKS1YXP/c +eyt9Jowmtj2rV6wErjIhcH/2aCIdx3olkGYvP1xz9CXS9sWI+1P3sFPFRl8i +LTdOCdsMvRtO+uxLpOltU8LgZlxK8CA/Ig23Uwmr1O5fLbf5kUTpo4T+bIOy +vR/9SC3WyunsfiXk6efYH2jpT+ZZR91+eFgJ22O9s2MH+5Pq3fuUrISjy+w7 +d5niT8TFlunTlLB44a0bazb4k1PSgSghetuG9xmp/qSlNKASZsRG3LiS60+q +Rxt2UQkPusfEnqvwJ+Lhuo6/qoRmypVxqZYBhB9QXYFKiGzeyCW5SwCpPg3x +SCB8q6HTBc8A4iQdsBK6ph4Y9WlCANktTVAJn1bXqBywIoBUV/Orx0oY2+Vm ++t2dAaR6dn+eieez/cD+DacDiHgY4okoYXU7X/8tOQFEKucSJfR0tXpW+iGA +SOX3Xglgs+/GRk0AkcrlkxKmHlIMiW0USKTjLVOCk8WZLj/sA4l0HJXi/uW0 +eHVpYCCRtu+X+P9WLiG//QOJtNy/Smi98MbhfdMCiTQ9tRLybQt+3lkeSKTh +9GJ9FLxfPS0ukDDSRwX3lwz02HwokIjFktCylgpOzPd553YukBSJt62XpQrO +lCy9H3o/kFTv3sgGKnDoe/F/Q14EknSpoFWw56ey8+HyQGIjHYgKai/qsTRR +G0gipQFVsPex+0OnekGkerSTbVRQc1t60iTbICL/lCyWtPjzGzYa1L9bEKm+ +vW87q+DU16XF5wcEEUfpgqjA1XPjwtdeQSRBOmAVNPsc8+cEF0RM1XHQSwX9 +/wy37TE9iEjX11UFfh2fbx23JIg8r75uA1QwOqXXW4+1QUS6Hu4qcNJ/mPMu +PoikShdOBb4XR8f33h9EpPIbpoIHTZ3XDEkPIiulBatgsv7BlIaXgoh0vKNV +kGfRyXPPvSASWH0cASrw/Ne1+ecnQUTaPlYFquenblWVBJGu0gVWwZhOKxtl +lwURaXrjVfD8j8u9CX+DiKF6uMkq+Ne0b/QdUxCZLn1U8EaxSP29rpwUdKy+ +wSqI2eR66JONnAyUAlUFST4fTSl2cpIiBYIKLrU6trZ/NzlpLBW0CjYmtYhL +dJGTFdKBqGD/gYpFeYPlpLr6tKtUIJsyN+KJl5z4V8dzlAo65Hf7mhIoJ1Kc +Rqvgd9XU0sCxcmIvBYwKuiYk7iicJidSXMWrYHeWtrXTfDnRVcdLggr6zHwT +M26ZnEhxsFsF3ie6lU1fIydPqq9vkgqO67L7jIqVE+m6HVRB8tWf0y0T5OSY +FFgq0Fvvnn8kSU6kcj6ugi0t7ru0OiYny6WCUcGshNKdc0/KiVQumSpYc8Fy +zqHzcuJbfbznq+tTsf7sdTmRjuOyCj6c6376WJacdJICUAXFZctOhuXLibTc +2+J+r9O69SiUE0319LJUkD861PpeiZxIw+WooEsH/edBn+TkUX71RwVeB1pN +2PtNTvpJIKlgrFMzhzd/5OSIFKgqqBHf+mMNrZxIvL0Sx7MJ7daIUZAwqaBV +QI6cS5TVURCJj1IVfE94f+91QwXxkQZUwZTUI/2TbBREiucKFcyuvTDKs7WC +dJACWgV1FmV2L+ygIFL8/VHBnTdvz492UBCVFFcq+OF55kCms4JI8aIV68GG +TDO6KIgUB0YVrLZpt8ZloIJI17eGGt58jZjBDlGQQ1Lgq+HKkFGxU0YoiHQ9 +6qnh2HsffuxoBZHK2UoNqwlxHxKkQM/VsHb4r8PWgoKMkhashps3Rn9/Ol6B +nqvBr2RrZMRUBXquhv23h19vNluBnqvBwmous3++gvyTPFdD9tYNx61DFei5 +Gto3z6wXFq5Az9Vwa+751Q8jFei5GtyT7cY3XK8gBySQ1DBifYASYhXouRoG +CfG7Jscr0HM1dKnbbGvoDgV6roaKOHvn5YkK4iUdiBpuZNtem3tAgZ6L37+0 +JDLoqAI9V0Nmn/I73VIV6Lkaftac++DvSQWpkjxXw6FI7+enzijQczXsPunY +dexFBXouru9ji5qGqwr0XA3J+n3JW24p0HM1lDa5622TpUDP1bCzqG2vuBwF +eq6GoeHv47X5CvRcDXlDXh0SChTouRp6pcUmZRQp0HPxPNy6XVS+UqDnamhS +97R973cK9FwNGcWv2k75qEDP1bDsh3vBxq8K9FwN7dJGLjz6TYGeq+HaJV/n +cz8V6LkaPJrG9rtcpUDPxfO52P3aWZUCPVeDqsn4r0d0CvRcDWr30V82mhTo +uRqM/5w+Ta3Boudq0PkNrdfPgkXP1WDp8y3KXJdFz9Vwt9WuZTcbsui5eF79 +PzRa0oRFz9VQe1LMgvbNWPRcDd0Hrb59ryWLnquh5++vnce3YdFzNRxe2fLu +LzsWPVfDqaqMa8s6sei5uD9Loly0XVj0XA3FHW74LuzGoufi/uTndS91YtFz +8XziF3736sWi52o455GdmerCoudq6JY7cA/Tn0XP1ZA4+Mgd/4Eseq6GwRY9 +vBMHs+i5GmZfWRj4egiLnov3TxP6r+kwFj1Xw712aaOHe7HouRoWvf6+fKE3 +i55r4Hra7h07fVn0XAM57ssunw1g0XMNBGa9NOfIWfRcAx6t1q57ybHouQZC +PtycUBrMoucaeLZxfPqncSx6roHCAZcj3k9k0XMNdD2R8bNwCouei8/lGS2y +prPouTie+ZJVxiwWPddAs4PjvsWHsOi5BiIP3L8dMp9FzzVQGnrquOciFj3X +wMljC87bhLLouQa+WcgM78NY9FwD/rZ/tyeHs+i5Brb1WRE3bSWLnmtg2LEF +ZrvVLHqugY7P/AyFa1n0XAPZMGj3uvUseq6BqOgan5w3sui5Bkq8bKuex7Lo +uQZuW6YWL45j0XMNjK8decRqK4uea2CkseOMY9tZ9FwD7pW5rq47WfRcAxUX +xtnd2c2i5xq4WrjSxWsvi55r4EHF6vUP97HouQYGBSzt6HWQRc81MCOla+s7 +h1n0XANOYBvpeoxFzzWwev/WcckpLHqugbwXm+43TmPRcw04avLvh51g0XMN +vAwsDnmdwaLnGuhR+D2nfyaLnovnObxV+fazLHqugbZbHF+Wn2fRcw2M+3gm +xe0Si55rYJam4aSNV1j0XNzf7pNtnl1j0XPxfPbve9TiJouea6DT6KWJwm0W +PRfP33HJut13WfRcA8fale8tyGLRcw0kNK8qr/OARc81cFO/Otwtl0XPNfD2 +dNCYWXkseq6BGmbtrh2PWPRcA7s2F/W//oRFzzXw+qqtz4cCFj3XgCyuoIQp +ZNFzDZRHFVe1LWbRcw28Ci1J6veSRc/F+U+aWTr6NYuea8DK7c2jiW9Y9Fwj +9iNz5yx4xxIpTn9oILZ2j6yIDyx6roFNaebS9R9Z9Fw8r1YnHm/6zKLnGqgf +nZew5SuLnmvAYfMrty3lLHquhT1vHR/FfmPRcy1c+fcjaN13Fj3XwtRLLi/D +f7LouRaqWldOnvebRc+1IM99YxhfxaLnWqhz/vwpn38seq4Fz0vG1f1ULHqu +hW/dOkXYaVj0XAuTly5MraVj0XMtmA82tyrTs+i5Fma96ngh28ii51roUDcm ++aiZRc+1UOFvV7ZSxqHnWvDadnCNoiaHnmth5bfjEd1qc+i5Fia4XXtvsODQ +cy2U7x5yNt+SQ8+18Clvoz6xHoeea4E8yLo7tQGHnmuhpHnjRk5WHHquhdfy +kLKqRhx6roUzu+8GXmzCoedayHv3iQtryqHnWhi0Msbo2oxDz7Vwd41iVFVz +juyTwNRCu7bPh55syaHnWuhiEfZ3ii2HnmvhYsnBsa3acOi5ForX7dqQ35Yj +w6WC0UL2li1hK+049FwL7jEprj06cOi5Fh5OLM9+2ZFDz7Uw6dLIXlGdOfJb +8lwLnQeeDO/ehUPPtRCuf5ta0JVDz7Ww5HrinVBHDj3XQpxX9MMW3TmyV/Jc +C7m3B+Ze6sGh5+J6KwfcUzhz6LkW3FZX3fjTk0PPtZARmnVzUy+ODJUKWgt+ +I40PO/Xh0HNx/iNflV1x4dBzLXQribL17cuh51oYc7fFzA/9OPRcC42mHixa +MIBDz8X9qddsptmNQ8/F83eY0nnzIA49F+t719RGLQZz6LkWCos+Ox0CDj3X +wrTRh9Z1HcKh51qI2TC0ZYYHh55rYeasBT/+N5RDz7VwPey85blhHHquhUSL +hHl9RnDouRaswlZ3OuvFoeda+Dj3U/eeozj0XAuyes02p3tz6LkWRtpO8uo8 +mkPPtWARaDFtny+Hnos/L6LvV2t/Dj0X6yOz+dPoAA4914HNmltd9IEceq6D +cc7uP0PkHHqug5Li+G5vFRx6roPE5BPvvTkOPdfBWWZ5kys8h57r4OXFwnud +gzn0XAc1e2zVbRnDoec6GLN+4RX1WA4918Gowj61Jozn0HMdPCLR77ImcOi5 +Dvr1aeLjOIlDz3XwPiLEf/NkDj3XweLVjr9+TOHQcx0IwuPuvtM49FwHUTVe +1M2YzqHnOlgRcWFzvZkceq4DVVXBpemzOPRcHK80dsud2Rx6roMD/VxtWodw +6LkObke08Vk8l0PPdZBStXbAw3kceq4D58uH39st4NBzHdz7ljpkyUIOPdfB +1we3Jj9YxKHnOtj3qNbwVks49FwHu17H/ZwVyqHnOrg6euaEK0s59FwH/e0T +k+os49BzHTRt2zZFvpxDz3VQ91H5mkPhHHqug/9ll/eqXMGh5zownZZdcVnJ +oefieqY2tl25ikPPdfC04TcuK5JDz3XQBMaG1lvDoec6cLF2CvVby6HnOlgz +pHVwQhSHnuvg+5B3XYrXcei5DtzHdXnXYgOHnuvAL2/fWj6aQ891MCDvU/M9 +Gzn0XAf6a7v2F8dw6LkOtrqMamWziUPPddCizebN/ps59FwHlnc+aTfFcei5 +Dnb8LpiSvYUj0vZdF/erYUG+OZ5Dz8XzsVf067+NQ891kGCZnzx/O4ee60A9 +fr9tSgJHJM7zdVB8vduekh0ceq6D/ZeftG+8i0PPdeBlLr3ouZtDz3Xwc+aZ +sUv3cETi6K0OLjbYaJOayKHnOjgoT//wci+Hnovzb8Lds9zHoefiz9v04Ga/ +/Rx6roMhST2Lph3g0HNxP87fsEw4yKHn4s837R1z6xCHnuvAc3Llk2+HOfRc +B+EHH81odpRDz/UQOWaMPRzj0HM9XOmTVm9mMoee62HS4+xWW1M49FwPAypv +yi8d59BzPbRZsvvG21QOPddDu7gAtmY6h57rIe1YRXuHExx6rgfHKM7O5ySH +nushPXhL0PwMDj3XQ4viiFvbTnHouR5CHRpOO3eaQ8/1ENXafnhhJoee6yG1 +XcrUf2eo53oYqJh7t+k56rkeHh0LmtT7PPVcD073nDz9L1DP9SAfmj9r7kXq +uR4qj+uLYy5Rz/Xwcvq6zcmXqed6WMp033z7CvVcD6frZL54fZV6rofCnk8X +/LtGPdeL+TNUaHiDeq6HRQfubLe/ST3XQ+AEbTv3W9RzPcz2TTQH3aae68V8 +8u47+w71XA/jp17MirxLPddDliri5I571HM93E4e/Cs1i3quh84Ldm+5fp96 +rof873abn2RTz/WQoJhbUfqAeq6HadubpP7NoZ7r4a9nUm6th9RzPSge7/Rr +lkc918OhKTED7fOp53pwsdJvcXlEPdeD8mqIt+dj6rk4vue4RQFPqOd6SA7z +qj3hKfVcrA+H47VDCqjnesjo+WvJsmfUc/H8IxLk655Tz/XQw7ZWSnwhR35K +nuvhgtup2XuLqOd6eAGGo8eKqefi97MUQadeUM/10PiYXfill9RzPey1uN7q +9ivquR68p8f2yXlNPddDbmJZzpMS6rkeprxxKil+Qz3Xw4Li83PevqWei99P +Lljx6R31XKyvL8UNKt5Tz/XgcNmm/c8P1HM9HM57ebGqlHquB37avGeqj9Rz +Pbyd0W6J7hP1XA/OY3ruN36mnushaMkXX+Yr9dwAhn1rY2uUUc8NoAwfHlCr +nHpugLVh847VrqCeG+B+tut6i2/UcwN8mVf0z6KSem6AQX7r/ll8p54bYGzX +sPUWP6jnBmh/4ENq7Z/UcwPM9fozodYv6rkBBme+OFHjN/XcAG3H3I5j/lDP +DdChoMjC9Id6boDhR0lLfRX13ADMoq731H+p5wYo/nvK8t8/6rkBDuu1Fb+U +1HMDVK5ynFmpop4boM++seu+qqnnBmh4OBNKNdRzA0xqPCSpREs9N4Aiteue +Ih313ABLZ0b0e6KnnhsgZLciPMdAPTeAc+6DSXeM1HMDrPj85ecVE/XcAD8c +7nQ8a6aeG4B3mWVKY3j03ABPLb+vPSzj0XMDlDVhz+ypwaPnBpjf7WxsfE0e +PTfAt8N1G2+oxaPnBigdMtUjojaPnhtgXlBOx0UWPHpugJXH3M7OqMOj5wbQ +b775Z6wlj54bwO+f4mNAXR49N0AgK1s/vB6Pnhtga86t1271efTcAMHmLZ+d +G/DouXgegXOOdmzIo+cGsMzya9ncikfPDXBN1ndo3UY8em6AxXObOxjE5/88 +N8DM9uVZPxvz6LlYb78PtS5twqPn4viLXZ2eW/P4+7kBBlgm6rKa8ui5AZyK +bqy7aMOj5wZQF+zIP96MR8/F9eY2fL6nOY+eGyB8UovEmBY8em6AWrYH7cJb +8ui5AZpx22bMbsWj5wY4M/nVwmBbHj03wN2Fk2BUax49F59TrQsGtOHRcwN8 +sCvq6tiWR88NcLIsfmjLdjx6Lt6fho4Odex49NwAvQ6uf64Un//zXBwvM2bE +5/Y8ei7ehwkt1z/rwKPnYn0XNY273ZFHz41gFThu4qlOPHpuhIVdi8xJnXn0 +3AhhWcEhMfY8em6EwIv5KUu78Oi5EQZmWGZO6cqj50aYv7pyo78Dj54bYVXv +gN7ujjx6bgR/pU2GYzcePTeCk3MTXbPuPHpuBPVyO9saPXj03AhNzrS0+ik+ +/+e5ETZUFha/cuLRcyNUruseet+ZR8+NsKv934rMnjx6boQFGbK++/7Ho+dG +MM3qERzdi0fPjbCofAS3qDePnhthmrWD87g+PHpuhMZOh96PcOHRcyPYvV0b +0tuVR8+NkNTtSFGbvjx6boSsdU9a1+nHo+dGGJBdAn/E5/88N8LB/rs9Svrz +6LkRzuwp6Hx/AI+eG6GRbXDZKTcePTeC+xxz7J6BPHouns+V+MZrB/HouRGi +z79cNsedR8+NkL/9eJZ8MI+eG6FGs9x/7sCj50Zwia1bryvh0XMjxD13qd14 +CI+eG8FvZvMyjfj8n+dGuCwszyz14NFzI7xjHSY/9OTRcyOsz/xhODuUR8+N +4DYuYU3SMB49N0ID48ffUcN59NwI694me4eM4NFzI6QZj22Xe/HouTj/JmnZ +g0by6LkR4qPDyzuP4tFzI3yOKdU08ObRcyN8q5Wi+Sc+/+e5WD9p8eVvfHj0 +XDyfv9Nys0bz6LkRDjj+Tjrpy6PnRtBPVU7c4ceTPdIEjVBzx6BWEf48em4E +n1Wb708J4NFzI3zPOTHdO5BHz40wSzfR2DuIJx7ShTPC31WLYm3lPHpuhMiT +KVY1FDx6Ls4v+15shfj8n+dGmFBrq/kpy5PvkudGaLGtYO5ljkfPjVBvh2/x +QZ5Hz41Qp8+jAdECj54bQburaeK8YJ7skjwX5/u77J9iDI+em6DXisa+7mN5 +9NwEPdYFJXcex6PnJvAOCdPXH8+T/wLBBMUZHgF/xef/PDfB3g8rjr+ewKPn +Joi/WWG6M5FHz00w1yGIT5vEk2+S5yZgu0We3zqZR89NMJJxtVk2hUfPTdCy +9aBlE6by6LkJGtmPLR0+jSc7pAM2wVmLcf7O03n03ARplRbZzWbw6LkJzozo +6GkUn//z3ATzS8JyPs/kyWApsEyw9cpTNn8Wj56boNBb9fPcbB49N4Edf3Zb +0hwePTfBjdpPICqER8/F9X1srps9l0fPTbCkXH4ncB6PnptgxVr5Lrf5PJGW +Gyx+f3vp8o4LePTcBK+X5oTUW8ij5yYIalQ8v0p8/s9zE0TfexH1ehFPJH5n +m2DUxqS0u4up5yYI/fKrNH0J9dwEZfqjTgmh1HMTRG6KjluxlCcSH+Em+J92 +do2pYdRzE7RV2MX5LKOem+DzxKXOrsup5yaos8ujrG04T6T422QCvx7cZYsV +1HMTjGm/8civFdRzE0x0S095GUE9N8EVm4T7d1byRLq+SSaw7dSKObGKem6C +gVeacjsiqefi/KzH5K1cTT03wSYuZ9yMNTyRyu+kCdJTXRsFrKWem2BGx1Uf +3KKo5yZY9nXls87rqOfi/DpZf7Vaz+Pv5yaANq3aaNdTz03w9n+LQj9toJ6b +4OcXY9WjaOq5CXx/7N95eSP13AR7nF3HH42hnpug4Mnx0Vtiqecm6Dy4ZOry +TdRzE9Tud/HY1M3UcxPwBe2t/OOo5ya4vaHWkYFbqOcm8HT3mdQ1nnpuApP/ +Z5+mW6nnJmhz4Oo081bquQnqbbp5snIb9dwEudalHV9up56bIOmJTW5WAvXc +BOdr+x46s4N6bobQU2vTDuyknpthR1T6l027qOdmOFPvlmL5buq5GeDwNd30 +PdRzM0zeuL9Inkg9N0PYnyllHnup52bYUq9xr15J1HPx/+snn7PbRz03Q76H +wwKr/dRzMxzqdHiGcT/13Az2Qa2Svh+gnpuhzaV99d8cpJ6bQR814GreIeq5 +Gax8mNRrh6nnZoi3qlV84gj13AwDRgQP23eUem6GYSZb9eZj1HMz5L2c+H1l +MvXcDMscR3aZn0I9N8Nj2b/kicep52Y457kuJDCVem6GpHN2K4amUc/N0KD+ +r2d906nnZkio3y7U8QT13AwTt5dMbnOSem6GQSeF/Y0yqOdmcE5/ZF/zFPXc +DBv7LjCqTlHPzbB99kr7ytPUczP8/uxy8H0m9dwMfh9ezSk8Qz0X5+N9bnPu +Weq5Gbze16956xz13Ay5A3s/PX+eem6GhcZlyvQL1HMzhL/qu+TwReq5GdZe +zh695xL13Ax9nkVHxV+mnpuhIvdt8+gr1HMz1Mj/X93Iq9RzM9ie/DEm7Br1 +3Azda21ovOA69dwMR+QLHGbdoJ6bgbd3SJ58k3puhqVdnTeOvUU9N8Nm3vI5 +e5t6bobTXTyiA+5Qz8X57gxJ8blLPTfDnqntenvdo56b4XPff92HZlHPxe9f +27qT3Keem+Hyi30L3LOp52J9Pntw0+0B9Vycb+SDNf1zqOdmGLmQv9Y3l3pu +hrqdB891fUg9N8OrXp6JLnnUczOsXDdgiEs+9dwML2J0010eUc/NMHj2jAau +j6nnZrAjs/r0fUI9F+cT+Odtv6fUc4YU+GobuhXQ+86QgbFR9wc9o74zpPHg +JAvynN5/huzLkz/3LKTeM6Qr89jJq4jmgTjeGOeWo4up/wy5EHx8R+ALnoRK ++cCQi7eXJPMvaT/AkO5idzXhFc0Lhpite8VNf037A4Y0vfVo5rwSmh8M2WK0 +/bj0De0XxPk+2qyPfEvzhCHrlx29FPOO9g8MiVZVttzxnid2UkEzpL8/0/Hg +B9pPMKTScmNReinNG4YYYvv3vfSR9hcMObmnaHjWJ5o/4nzv9Kr37DPtN8Tn +185RH77QPGLIyFU3z//6yuP7BIb4bP142FxG84kh2+9ljG5cQfsRhnx3HHqt +wzeaVwyxf1Dyo08l7U/E9Xa7UT78O80vhoRbDT0d/IP2K+L8TO+Hzv9J84wh +3Wo3y1j3i8f3EQw5Oj6icu9vmm8MqdX3fs2zf2g/wxCHmRe0uVU07xhyw69b +wce/tL9hyJvEVlsM/2j+MeRRp+0uLVS032HI1I/Xc3qraR6K83v+1tdPQ/sf +cT+18rwQLc1HhvSadtBjk472QwzJ9+SvpOtpXjLEv6abS56B9kcMWRZhd/m7 +keYnQxKcao9qZObx/QdDmkTV+9WbETBPGXKo5+KTnEzA/okhfXekRq+sIWC+ +MmTAgIEbjtUUsJ9iyB7hc0Z+LQHzliHvVkfXUtUWsL9iyCx3l63t6wiYvwxJ +KuvK+VgK+P6EIS8jn0xYXlfAPGbIw6O5mcfrCdh/MUTYX+7/or6A+cyQrZtc +Rlg2FLAfY8jS1B973awEzGuxnk9uCZrXSMD+jCFj/Z8sO9pYwPxmyMp/Kdav +mwj4/oUhv6f7OVo3FTDPGQLPR9z3thGwfxPvzyvu14ZmAuY7Q6wfb8+811zA +fo4hC53GWNdoKWDeM6RT/+ntPFoJ2N8xRJ9z612UrYD5z5CPEx6Pe9BawPc3 +Yr3N5FIatBXQA4ak34i6F9ROwP6PIY1CP9/eZyegDwzRVIall7UXsB9kSI79 +6c0uHQX0Qry/4YuXRHUSsD9kyIv9PeYXdhbQD4Z8qfkgtmsXAd//iPM/cbUo +oquAnoh5JLeeUOggYP8o7ofj4r7O3QT0hSHtKjqHxHYXsJ8U8yDBtklFDwG9 +Ycj5FH3fUc4C9pcM2WVw+p3RU0B/GHJ35Ac/m14Cvj8S95dtNntlbwE9YkiU +6nRQRR8B+0+GVLyO7Mi7CugTQ3zB70duXwH7UYbU3/knb3B/Ab1iyP2+QS8u +DhCwP2WII8Q69h4ooF8M8dxb/jZzkIDvnxjiOrdRkz6DBfRM3P8/NUsvg4D9 +K0OOfR0212OIgL4xZPXVsuInHgL2s2Je7Uolk4YK6B1DXMIaP1ENE7C/FfNn +w5bUrSME9E/cz7JEpfNIAf++hCELXIo+FIwS0EOG9FS67F7uI2D/y5BcX0ev +Lr4C+siQ6yPz7F/6CdgPM8SjttW0+AABvRTzZ8g/d58gAftjhsRceFhppRDQ +T7H+T83IeMEK+PcpDFFsX3A/hRfQU4ZUlSaHRwQL2D8zpO7yvi2FsQL6ypCW +JbY/B40XsJ8WxwtfHuAwUUBvxTyv3Wx/68kC9tcMsSq/36vFVAH9ZYh2MhPW +erqAf6/KkLDLM0scZgroMUNuDworgtkC9t9i/nk5f54YIqDPDFk89XP85nkC +9uMMcfKzn3NvgYBeM6RFjYymFosF7M/F/XFd3UcRKqDfYl7GdVl7JkwgeVK/ +zpDlHvWzW4cL6LmMtHhet3hHhICey8juyU5JbSMF9FxGzs1Mt760RkDPZaTT +49b+k9cJ6LmM+DlZrW4fLaDnMnLl15dvVTECei4jO0N6al5vFtBzGVnccU7v +1/ECei4jd+7O8a7aLqDnMtJ10MQO9rsE9FxG+i9Ky1qSKKDnMpLf7ciqT/sE +9FxG3ozc+GrxIQE9l5HyfnfSHI4J6LmMVHy/3bJ2qoCey0hmyPczDU4K6LmM +ZFz4utAzU0DPZcQt5/nLjPMCei5+P82DCbgioOfifKwPXeh9U0DPZeTF76C9 +wj0BPZeRonKZ96McAd8nyMiDtJfxux4LJFfyXEY6zFq+51ahgJ7LyOBer4bL +SwT0XEbSX6THTf4ooOcy8vvSxnJdhYCey0jJ4sWq/1UJ6Ln480vTPNroBfRc +Rgpjfvi8qhWMnstI+/K3FbGNgtFzGVlrnWk3tnUwei4jsY4nLqx1CEbPZeTU +yuJcj37B6LmMWAyp+vV3RDB6LiM5i1ZnWI4JRs9lJM/+2blWC4PRcxk59Pjm +AHVsMHouI0dqTrmZlRaMnstI253nRnd9Eoyeywj7YNWyXcZg9FxGXJ6OPFfV +fwx6LiMBcfVtzkaPQc/F9d1M+BuqHIOey8jcjAayNYlj0XOxviIjI1qlj0PP +ZYQc+Nze+uEE9FxGmg8bNSyr6RT0XEb+D/XJTrg= + "]]}}, {{}, {}}}, + AspectRatio->Full, + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{67.50782601366832, 1.2694444444444448`}, + AxesStyle->Directive[ + GrayLevel[0], + AbsoluteThickness[0.2]], + BaseStyle->Automatic, + DisplayFunction->Identity, + Frame->{{True, True}, {True, True}}, + FrameLabel->{{ + FormBox["\"B (G)\"", TraditionalForm], None}, { + FormBox["\"Scattering Length (x BohrRadius)\"", TraditionalForm], None}}, + FrameStyle->Directive[ + GrayLevel[0], + AbsoluteThickness[0.2]], + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + FrameTicksStyle->GrayLevel[0], + GridLines->{Automatic, Automatic}, + GridLinesStyle->Automatic, + ImageSize->{800, 495}, + LabelStyle->{FontSize -> 14}, + Method->{ + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, + PlotRange->{{67.50782601366832, 118.299952122563}, {1.2694444444444448`, + 2.173}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}, + TicksStyle->{FontSize -> 14}]], "Output", + CellChangeTimes->{{3.9463013099729557`*^9, 3.9463013581064157`*^9}, + 3.946301421896168*^9, 3.9463016066577034`*^9, {3.9463019162280746`*^9, + 3.946301930548483*^9}, 3.946302069709379*^9, 3.946542268549102*^9}, + CellLabel->"Out[28]=",ExpressionUUID->"b41db075-8f6a-413f-b3d4-d969247576da"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"targetas", "=", "71.54"}], ";", + RowBox[{"(*", + RowBox[{ + "Define", " ", "the", " ", "target", " ", "scattering", " ", "length"}], + "*)"}], "\[IndentingNewLine]", + RowBox[{"closestIndex", "=", + RowBox[{"First", "[", + RowBox[{"Ordering", "[", + RowBox[{ + RowBox[{"Abs", "[", + RowBox[{"asValues", "-", "targetas"}], "]"}], ",", "1"}], "]"}], + "]"}]}], ";", " ", + RowBox[{"(*", + RowBox[{ + "Find", " ", "the", " ", "closest", " ", "value", " ", "in", " ", + "a_sValues", " ", "and", " ", "return", " ", "the", " ", "corresponding", + " ", "B", " ", "value"}], "*)"}], "\[IndentingNewLine]", + RowBox[{"closestB", "=", + RowBox[{"BValues", "[", + RowBox[{"[", "closestIndex", "]"}], "]"}]}], ";", " ", + RowBox[{"(*", + RowBox[{"Index", " ", "of", " ", "closest", " ", "a_s", " ", "value"}], + "*)"}], + RowBox[{"(*", + RowBox[{ + "Retrieve", " ", "the", " ", "corresponding", " ", "B", " ", "value"}], + "*)"}], "\n", "closestB", " ", + RowBox[{"(*", + RowBox[{"Print", " ", "the", " ", "closest", " ", "B", " ", "value"}], + "*)"}]}]], "Input", + CellChangeTimes->{{3.9463020828630404`*^9, 3.946302083661174*^9}, { + 3.946302156269303*^9, 3.94630215681246*^9}, {3.9463034223154163`*^9, + 3.946303436732597*^9}, {3.9463035203877*^9, 3.946303520594941*^9}, { + 3.9465422755424795`*^9, 3.9465422880260324`*^9}, {3.9465428460626583`*^9, + 3.9465428496456966`*^9}}, + CellLabel->"In[31]:=",ExpressionUUID->"ab4fae22-f7a0-4405-95b8-21ba98484316"], + +Cell[BoxData["1.367`"], "Output", + CellChangeTimes->{{3.946302071185437*^9, 3.9463020838485684`*^9}, + 3.9463021572281528`*^9, {3.9463034228704424`*^9, 3.9463034369863443`*^9}, + 3.946303520848451*^9, {3.9465422768162155`*^9, 3.9465422889198856`*^9}, + 3.946542850289748*^9}, + CellLabel->"Out[31]=",ExpressionUUID->"538f6375-f1c3-4276-85ef-0fef1f723b6b"] +}, Open ]] +}, +WindowSize->{1904, 981}, +WindowMargins->{{1920, Automatic}, {Automatic, 0}}, +TaggingRules->{ + "WelcomeScreenSettings" -> {"FEStarting" -> False}, "TryRealOnly" -> False}, +FrontEndVersion->"12.2 for Microsoft Windows (64-bit) (December 12, 2020)", +StyleDefinitions->"Default.nb", +ExpressionUUID->"845021d5-1056-4669-8b9e-6ad0bd0c74a1" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[558, 20, 2766, 86, 395, "Input",ExpressionUUID->"62f7b3c0-151e-42a7-bd14-2c7024749c6f"], +Cell[CellGroupData[{ +Cell[3349, 110, 4164, 99, 143, "Input",ExpressionUUID->"461e8a7b-9e39-408e-a5f3-38960ab44ff7"], +Cell[7516, 211, 24540, 433, 512, "Output",ExpressionUUID->"fe3d2ab1-2e60-4c87-b304-9af09b512293"] +}, Open ]], +Cell[CellGroupData[{ +Cell[32093, 649, 1572, 37, 48, "Input",ExpressionUUID->"e3efdc46-0d6e-4d16-ae45-a127d2ef7398"], +Cell[33668, 688, 24453, 431, 512, "Output",ExpressionUUID->"61a6f7d5-c877-497e-90e9-8dd81c619ca2"] +}, Open ]], +Cell[CellGroupData[{ +Cell[58158, 1124, 2017, 51, 124, "Input",ExpressionUUID->"329ec9a4-f739-4bf2-bff9-e5d541d4c8fa"], +Cell[60178, 1177, 14370, 257, 512, "Output",ExpressionUUID->"b41db075-8f6a-413f-b3d4-d969247576da"] +}, Open ]], +Cell[CellGroupData[{ +Cell[74585, 1439, 1546, 37, 105, "Input",ExpressionUUID->"ab4fae22-f7a0-4405-95b8-21ba98484316"], +Cell[76134, 1478, 360, 5, 32, "Output",ExpressionUUID->"538f6375-f1c3-4276-85ef-0fef1f723b6b"] +}, Open ]] +} +] +*) + diff --git a/Estimations/RotonInstability/RIBForTiltedDipoles.m b/Estimations/RotonInstability/RIBForTiltedDipoles.m new file mode 100644 index 0000000..d5e398a --- /dev/null +++ b/Estimations/RotonInstability/RIBForTiltedDipoles.m @@ -0,0 +1,146 @@ +%% Physical constants +PlanckConstant = 6.62607015E-34; +PlanckConstantReduced = 6.62607015E-34/(2*pi); +FineStructureConstant = 7.2973525698E-3; +ElectronMass = 9.10938291E-31; +GravitationalConstant = 6.67384E-11; +ProtonMass = 1.672621777E-27; +AtomicMassUnit = 1.660539066E-27; +BohrRadius = 5.2917721067E-11; +BohrMagneton = 9.274009994E-24; +BoltzmannConstant = 1.38064852E-23; +StandardGravityAcceleration = 9.80665; +SpeedOfLight = 299792458; +StefanBoltzmannConstant = 5.670373E-8; +ElectronCharge = 1.602176634E-19; +VacuumPermeability = 1.25663706212E-6; +DielectricConstant = 8.8541878128E-12; +ElectronGyromagneticFactor = -2.00231930436153; +AvogadroConstant = 6.02214076E23; +ZeroKelvin = 273.15; +GravitationalAcceleration = 9.80553; +VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); +HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); +AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 + +% Dy specific constants +Dy164Mass = 163.929174751*AtomicMassUnit; +Dy164IsotopicAbundance = 0.2826; +DyMagneticMoment = 9.93*BohrMagneton; + +%% Roton instability boundary for tilted dipoles + +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +gdd = VacuumPermeability*DyMagneticMoment^2/3; + +nadd2s = 0.05:0.001:0.25; +as_to_add = 0.76:0.001:0.81; +var_widths = zeros(length(as_to_add), length(nadd2s)); + +x0 = 5; +Aineq = []; +Bineq = []; +Aeq = []; +Beq = []; +lb = [1]; +ub = [10]; +nonlcon = []; +fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + as = (as_to_add(jdx) * add); % Scattering length + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + var_widths(jdx, idx) = sigma; + end +end + +% ====================================================================================================================================================== % + +theta = 0; % Polar angle of dipole moment +phi = 0; % Azimuthal angle of momentum vector +k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector +instability_boundary = zeros(length(as_to_add), length(nadd2s)); +ScatteringLengths = zeros(length(as_to_add), 1); +AtomNumber = zeros(length(nadd2s), 1); +w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction +l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length +tsize = 10 * l0; + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(jdx) * add); % Scattering length + ScatteringLengths(jdx) = as/BohrRadius; + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + instability_boundary(jdx, idx) = ~isreal(EpsilonK); + end +end + +nadd2s_from_figure = [0.04974, 0.05383, 0.05655, 0.06609, 0.06916, 0.07291, 0.07836, 0.08517, 0.09063, 0.0978, 0.10459, 0.11345, 0.11822, 0.12231, 0.12674, 0.13117, 0.13560, 0.14003, 0.14548, 0.15127, 0.15775, 0.16660, 0.17546, 0.18364, 0.19557, 0.20579, 0.21839, 0.23850, 0.25144]; +as_to_add_from_figure = [0.76383, 0.76766, 0.76974, 0.77543, 0.77675, 0.77828, 0.78003, 0.78178, 0.78288, 0.7840, 0.78474, 0.78540, 0.78562, 0.78572, 0.78583, 0.78583, 0.78583, 0.78583, 0.78567, 0.78551, 0.78529, 0.78485, 0.78441, 0.78386, 0.78310, 0.78233, 0.78135, 0.77970, 0.77861]; + +figure(6) +clf +set(gcf,'Position',[50 50 950 750]) +% + +imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes +hold on +plot(nadd2s_from_figure, as_to_add_from_figure, 'r*-', 'LineWidth', 2); % Plot the curve (red line) +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +colorbar; % Add a colorbar +xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); +ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + +%{ +imagesc(AtomNumber*1E-5, ScatteringLengths, instability_boundary); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +cbar1 = colorbar; +cbar1.Label.Interpreter = 'latex'; +ylabel(cbar1,'$(\times 10^{-31})$','FontSize',16,'Rotation',270) +xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex'); +ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex'); +%} + +title('Roton instability boundary','fontsize',16,'interpreter','latex') + +%% +function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi) + Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2))); + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + Fka = (3 * cos(deg2rad(theta))^2 - 1) + ((3 * Go) .* ((sin(deg2rad(theta))^2 .* sin(deg2rad(phi))^2) - cos(deg2rad(theta))^2)); + Ukk = (gs + (gdd * Fka)) * gamma4; +end + +function ret = computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced) + eps_dd = add/as; % Relative interaction strength + MeanWidth = x * lz; + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); % Quantum Fluctuations term + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2))); + Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2)); + ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz); +end \ No newline at end of file diff --git a/Estimations/RotonInstability/RIBForTiltedDipoles_TwoDirections.m b/Estimations/RotonInstability/RIBForTiltedDipoles_TwoDirections.m new file mode 100644 index 0000000..03dfe28 --- /dev/null +++ b/Estimations/RotonInstability/RIBForTiltedDipoles_TwoDirections.m @@ -0,0 +1,318 @@ +%% Physical constants +PlanckConstant = 6.62607015E-34; +PlanckConstantReduced = 6.62607015E-34/(2*pi); +FineStructureConstant = 7.2973525698E-3; +ElectronMass = 9.10938291E-31; +GravitationalConstant = 6.67384E-11; +ProtonMass = 1.672621777E-27; +AtomicMassUnit = 1.660539066E-27; +BohrRadius = 5.2917721067E-11; +BohrMagneton = 9.274009994E-24; +BoltzmannConstant = 1.38064852E-23; +StandardGravityAcceleration = 9.80665; +SpeedOfLight = 299792458; +StefanBoltzmannConstant = 5.670373E-8; +ElectronCharge = 1.602176634E-19; +VacuumPermeability = 1.25663706212E-6; +DielectricConstant = 8.8541878128E-12; +ElectronGyromagneticFactor = -2.00231930436153; +AvogadroConstant = 6.02214076E23; +ZeroKelvin = 273.15; +GravitationalAcceleration = 9.80553; +VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); +HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); +AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 + +% Dy specific constants +Dy164Mass = 163.929174751*AtomicMassUnit; +Dy164IsotopicAbundance = 0.2826; +DyMagneticMoment = 9.93*BohrMagneton; + +%% Roton instability boundary for tilted dipoles + +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +gdd = VacuumPermeability*DyMagneticMoment^2/3; + +nadd2s = 0.005:0.0025:0.5; +as_to_add = 0.3:0.025:0.95; +var_widths = zeros(length(as_to_add), length(nadd2s)); + +x0 = 5; +Aineq = []; +Bineq = []; +Aeq = []; +Beq = []; +lb = [1]; +ub = [10]; +nonlcon = []; +fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + as = (as_to_add(jdx) * add); % Scattering length + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + var_widths(jdx, idx) = sigma; + end +end + +%% ====================================================================================================================================================== % + +figure(7) +clf +set(gcf,'Position',[50 50 1850 750]) + +theta = 66; % Polar angle of dipole moment +phi = 0; % Azimuthal angle of momentum vector +k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector +instability_boundary = zeros(length(as_to_add), length(nadd2s)); +ScatteringLengths = zeros(length(as_to_add), 1); +AtomNumber = zeros(length(nadd2s), 1); +w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction +l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length +tsize = 10 * l0; + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(jdx) * add); % Scattering length + ScatteringLengths(jdx) = as/BohrRadius; + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + instability_boundary(jdx, idx) = ~isreal(EpsilonK); + end +end + +subplot(1, 2, 1); % 1 row, 2 columns, first subplot +imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +colorbar; % Add a colorbar +caxis([0 1]) +xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); +ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + +title(['Along Y: $\theta = ',num2str(theta), '; \phi = ', num2str(phi),'$'],'fontsize',16,'interpreter','latex') + +theta = 66; % Polar angle of dipole moment +phi = 90; % Azimuthal angle of momentum vector +k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector +instability_boundary = zeros(length(as_to_add), length(nadd2s)); +ScatteringLengths = zeros(length(as_to_add), 1); +AtomNumber = zeros(length(nadd2s), 1); +w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction +l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length +tsize = 10 * l0; + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(jdx) * add); % Scattering length + ScatteringLengths(jdx) = as/BohrRadius; + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + instability_boundary(jdx, idx) = ~isreal(EpsilonK); + end +end + +% set(gcf,'Position',[50 50 950 750]) +subplot(1, 2, 2); % 1 row, 2 columns, first subplot +imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +colorbar; % Add a colorbar +caxis([0 1]) +xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); +ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + +title(['Along X: $\theta = ',num2str(theta), '; \phi = ', num2str(phi),'$'],'fontsize',16,'interpreter','latex') + +%{ +imagesc(AtomNumber*1E-5, ScatteringLengths, instability_boundary); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +cbar1 = colorbar; +cbar1.Label.Interpreter = 'latex'; +caxis([0 1]) +% ylabel(cbar1,'$(\times 10^{-31})$','FontSize',16,'Rotation',270) +xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex'); +ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex'); +%} + +sgtitle('Mean-field instability boundary','fontsize',16,'interpreter','latex') + +%% Cycle through angles + +% Define values for theta and phi +theta_values = 0:2:90; % Range of theta values (you can modify this) + +% Set up VideoWriter object to produce a movie +v = VideoWriter('rib_movie', 'MPEG-4'); % Create a video object +v.FrameRate = 5; % Frame rate of the video +open(v); % Open the video file + +for theta = theta_values + figure(7) + clf + set(gcf,'Position',[50 50 1850 750]) + phi = 0; % Azimuthal angle of momentum vector + k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector + instability_boundary = zeros(length(as_to_add), length(nadd2s)); + ScatteringLengths = zeros(length(as_to_add), 1); + AtomNumber = zeros(length(nadd2s), 1); + w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction + l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length + tsize = 10 * l0; + + for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(jdx) * add); % Scattering length + ScatteringLengths(jdx) = as/BohrRadius; + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + instability_boundary(jdx, idx) = ~isreal(EpsilonK); + end + end + + subplot(1, 2, 1); % 1 row, 2 columns, first subplot + imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes + set(gca, 'YDir', 'normal'); % Correct the y-axis direction + colorbar; % Add a colorbar + caxis([0 1]) + xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); + ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + + title(['Along Y: $\theta = ',num2str(theta), '; \phi = ', num2str(phi),'$'],'fontsize',16,'interpreter','latex') + + phi = 90; % Azimuthal angle of momentum vector + k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector + instability_boundary = zeros(length(as_to_add), length(nadd2s)); + ScatteringLengths = zeros(length(as_to_add), 1); + AtomNumber = zeros(length(nadd2s), 1); + w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction + l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length + tsize = 10 * l0; + + for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(jdx) * add); % Scattering length + ScatteringLengths(jdx) = as/BohrRadius; + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + instability_boundary(jdx, idx) = ~isreal(EpsilonK); + end + end + + % set(gcf,'Position',[50 50 950 750]) + subplot(1, 2, 2); % 1 row, 2 columns, first subplot + imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes + set(gca, 'YDir', 'normal'); % Correct the y-axis direction + colorbar; % Add a colorbar + caxis([0 1]) + xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); + ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + + title(['Along X: $\theta = ',num2str(theta), '; \phi = ', num2str(phi),'$'],'fontsize',16,'interpreter','latex') + + %{ + imagesc(AtomNumber*1E-5, ScatteringLengths, instability_boundary); % Specify x and y data for axes + set(gca, 'YDir', 'normal'); % Correct the y-axis direction + cbar1 = colorbar; + cbar1.Label.Interpreter = 'latex'; + caxis([0 1]) + % ylabel(cbar1,'$(\times 10^{-31})$','FontSize',16,'Rotation',270) + xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex'); + ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex'); + %} + + % Capture the frame and write to video + frame = getframe(gcf); % Capture the current figure + writeVideo(v, frame); % Write the frame to the video + + % sgtitle('Mean-field instability boundary','fontsize',16,'interpreter','latex') +end + +% Close the video file +close(v); + +%% +function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi) + Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2))); + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + Fka = (3 * cos(deg2rad(theta))^2 - 1) + ((3 * Go) .* ((sin(deg2rad(theta))^2 .* sin(deg2rad(phi))^2) - cos(deg2rad(theta))^2)); + Ukk = (gs + (gdd * Fka)) * gamma4; +end + +function ret = computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced) + eps_dd = add/as; % Relative interaction strength + MeanWidth = x * lz; + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); % Quantum Fluctuations term + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2))); + Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2)); + ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz); +end + + + diff --git a/Estimations/RotonInstability/ReproduceBlairBlakieResults.m b/Estimations/RotonInstability/ReproduceBlairBlakieResults.m new file mode 100644 index 0000000..f718de5 --- /dev/null +++ b/Estimations/RotonInstability/ReproduceBlairBlakieResults.m @@ -0,0 +1,335 @@ +%% Physical constants +PlanckConstant = 6.62607015E-34; +PlanckConstantReduced = 6.62607015E-34/(2*pi); +FineStructureConstant = 7.2973525698E-3; +ElectronMass = 9.10938291E-31; +GravitationalConstant = 6.67384E-11; +ProtonMass = 1.672621777E-27; +AtomicMassUnit = 1.660539066E-27; +BohrRadius = 5.2917721067E-11; +BohrMagneton = 9.274009994E-24; +BoltzmannConstant = 1.38064852E-23; +StandardGravityAcceleration = 9.80665; +SpeedOfLight = 299792458; +StefanBoltzmannConstant = 5.670373E-8; +ElectronCharge = 1.602176634E-19; +VacuumPermeability = 1.25663706212E-6; +DielectricConstant = 8.8541878128E-12; +ElectronGyromagneticFactor = -2.00231930436153; +AvogadroConstant = 6.02214076E23; +ZeroKelvin = 273.15; +GravitationalAcceleration = 9.80553; +VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); +HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); +AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 + +% Dy specific constants +Dy164Mass = 163.929174751*AtomicMassUnit; +Dy164IsotopicAbundance = 0.2826; +DyMagneticMoment = 9.93*BohrMagneton; + +%% Bogoliubov excitation spectrum for quasi-2D dipolar gas with QF correction +AtomNumber = 1E5; % Total atom number in the system +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +as = 102.515 * BohrRadius; % Scattering length +Trapsize = 7.5815 * lz; % Trap is assumed to be a box of finite extent , given here in units of the harmonic oscillator length +theta = 0; % Polar angle of dipole moment +phi = 0; % Azimuthal angle of momentum vector +MeanWidth = 5.7304888515 * lz; % Mean width of Gaussian ansatz +k = linspace(0, 2e6, 1000); % Vector of magnitudes of k vector + +% no = 2.0429e+15, eps_dd = 1.2755, as = 5.4249e-09 + +AtomNumberDensity = AtomNumber / Trapsize^2; % Areal density of atoms +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +eps_dd = add/as; % Relative interaction strength +gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength +gdd = VacuumPermeability*DyMagneticMoment^2/3; + +[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + +% == Quantum Fluctuations term == % +gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); +gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); +gQF = gamma5 * gammaQF; + +% == Dispersion relation == % +DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); +EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + +figure(1) +set(gcf,'Position',[50 50 950 750]) +xvals = (k .* add); +yvals = EpsilonK ./ PlanckConstant; +plot(xvals, yvals,LineWidth=2.0) +title(horzcat(['$a_s = ',num2str(round(1/eps_dd,3)),'a_{dd}, '], ['na_{dd}^2 = ',num2str(round(AtomNumberDensity * add^2,4)),'$']),'fontsize',16,'interpreter','latex') +xlabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex') +ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex') +grid on + +%% For different interaction strengths + +AtomNumber = 1E5; % Total atom number in the system +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +Trapsize = 7.5815 * lz; % Trap is assumed to be a box of finite extent , given here in units of the harmonic oscillator length +theta = 0; % Polar angle of dipole moment +phi = 0; % Azimuthal angle of momentum vector +MeanWidth = 5.7304888515 * lz; % Mean width of Gaussian ansatz +k = linspace(0, 2e6, 1000); % Vector of magnitudes of k vector + +AtomNumberDensity = AtomNumber / Trapsize^2; % Areal density of atoms +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length + +ScatteringLengths = [108.5, 105.9, 103.3, 102.5150]; +eps_dds = zeros(1, length(ScatteringLengths)); +EpsilonKs = zeros(length(k), length(ScatteringLengths)); +for idx = 1:length(ScatteringLengths) + + as = ScatteringLengths(idx) * BohrRadius; % Scattering length + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + + eps_dds(idx) = eps_dd; + EpsilonKs(:,idx) = EpsilonK; +end + +figure(2) +clf +set(gcf,'Position',[50 50 950 750]) +xvals = (k .* add); +yvals = EpsilonKs(:, 1) ./ PlanckConstant; +plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(1/eps_dds(1),3)),'a_{dd}$']) +hold on +for idx = 2:length(ScatteringLengths) + yvals = EpsilonKs(:, idx) ./ PlanckConstant; + plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(1/eps_dds(idx),3)),'a_{dd}$']) +end +title(['$na_{dd}^2 = ',num2str(round(AtomNumberDensity * add^2,4)),'$'],'fontsize',16,'interpreter','latex') +xlabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex') +ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex') +grid on +legend('location', 'northwest','fontsize',16, 'Interpreter','latex') + +%% For 3 points on the roton instability boundary + +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +theta = 0; % Polar angle of dipole moment +phi = 0; % Azimuthal angle of momentum vector +k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector + +nadd2s = [0.0844, 0.0978, 0.123]; +as_to_add = [0.7730, 0.7840, 0.7819]; +var_widths = [4.97165, 5.7296048721, 5.93178]; + +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +EpsilonKs = zeros(length(k), length(nadd2s)); +ScatteringLengths = zeros(length(as_to_add), 1); +AtomNumber = zeros(length(nadd2s), 1); +w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction +l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length +tsize = 10 * l0; + +for idx = 1:length(nadd2s) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(idx) * add); % Scattering length + ScatteringLengths(idx) = as/BohrRadius; + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + EpsilonKs(:,idx) = EpsilonK; +end + +figure(3) +clf +set(gcf,'Position',[50 50 950 750]) +xvals = (k .* add); +yvals = EpsilonKs(:, 1) ./ PlanckConstant; +plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(as_to_add(1),4)),'a_{dd}, na_{dd}^2 = ',num2str(round(nadd2s(1),4)),'$']) +hold on +for idx = 2:length(nadd2s) + yvals = EpsilonKs(:, idx) ./ PlanckConstant; + plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(as_to_add(idx),4)),'a_{dd}, na_{dd}^2 = ',num2str(round(nadd2s(idx),4)),'$']) +end +xlabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex') +ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex') +grid on +legend('location', 'northwest','fontsize',16, 'Interpreter','latex') + +%% Mean widths of the variational Gaussian ansatz - extremize the total mean field energy per particle wrt to the variational parameter + +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +gdd = VacuumPermeability*DyMagneticMoment^2/3; +AtomNumberDensity = 0.0978 / add^2; +as = 0.784 * add; % Scattering length +gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength +TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + +x0 = 5; +Aineq = []; +Bineq = []; +Aeq = []; +Beq = []; +lb = [1]; +ub = [7]; +nonlcon = []; +fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); +sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); +fprintf(['Variational width of Gaussian ansatz = ' num2str(sigma) ' * lz \n']) + +%% Mean widths of the variational Gaussian ansatz - extremize the total mean field energy per particle wrt to the variational parameter + +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +gdd = VacuumPermeability*DyMagneticMoment^2/3; + +nadd2s = 0.05:0.001:0.25; +as_to_add = 0.74:0.001:0.79; +var_widths = zeros(length(as_to_add), length(nadd2s)); + +x0 = 5; +Aineq = []; +Bineq = []; +Aeq = []; +Beq = []; +lb = [1]; +ub = [10]; +nonlcon = []; +fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + as = (as_to_add(jdx) * add); % Scattering length + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + var_widths(jdx, idx) = sigma; + end +end + +figure(4) +clf +set(gcf,'Position',[50 50 950 750]) +imagesc(nadd2s, as_to_add, var_widths); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +colorbar; % Add a colorbar +xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); +ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + +% ====================================================================================================================================================== % + +theta = 0; % Polar angle of dipole moment +phi = 0; % Azimuthal angle of momentum vector +k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector +instability_boundary = zeros(length(as_to_add), length(nadd2s)); +ScatteringLengths = zeros(length(as_to_add), 1); +AtomNumber = zeros(length(nadd2s), 1); +w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction +l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length +tsize = 10 * l0; + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(jdx) * add); % Scattering length + ScatteringLengths(jdx) = as/BohrRadius; + eps_dd = add/as; % Relative interaction strength + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + gdd = VacuumPermeability*DyMagneticMoment^2/3; + MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz + + [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space + + % == Quantum Fluctuations term == % + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + + % == Dispersion relation == % + DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); + EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + instability_boundary(jdx, idx) = ~isreal(EpsilonK); + end +end + +nadd2s_from_figure = [0.04974, 0.05383, 0.05655, 0.06609, 0.06916, 0.07291, 0.07836, 0.08517, 0.09063, 0.0978, 0.10459, 0.11345, 0.11822, 0.12231, 0.12674, 0.13117, 0.13560, 0.14003, 0.14548, 0.15127, 0.15775, 0.16660, 0.17546, 0.18364, 0.19557, 0.20579, 0.21839, 0.23850, 0.25144]; +as_to_add_from_figure = [0.76383, 0.76766, 0.76974, 0.77543, 0.77675, 0.77828, 0.78003, 0.78178, 0.78288, 0.7840, 0.78474, 0.78540, 0.78562, 0.78572, 0.78583, 0.78583, 0.78583, 0.78583, 0.78567, 0.78551, 0.78529, 0.78485, 0.78441, 0.78386, 0.78310, 0.78233, 0.78135, 0.77970, 0.77861]; + +figure(5) +clf +set(gcf,'Position',[50 50 950 750]) + + +imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes +hold on +plot(nadd2s_from_figure, as_to_add_from_figure, 'r*-', 'LineWidth', 2); % Plot the curve (red line) +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +colorbar; % Add a colorbar +xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); +ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); + +%{ +imagesc(AtomNumber*1E-5, ScatteringLengths, instability_boundary); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +cbar1 = colorbar; +cbar1.Label.Interpreter = 'latex'; +ylabel(cbar1,'$(\times 10^{-31})$','FontSize',16,'Rotation',270) +xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex'); +ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex'); +title('Roton instability boundary','fontsize',16,'interpreter','latex') +%} + +%% +function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi) + Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2))); + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + Fka = (3 * cos(deg2rad(theta))^2 - 1) + ((3 * Go) .* ((sin(deg2rad(theta))^2 .* sin(deg2rad(phi))^2) - cos(deg2rad(theta))^2)); + Ukk = (gs + (gdd * Fka)) * gamma4; +end + +function ret = computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced) + eps_dd = add/as; % Relative interaction strength + MeanWidth = x * lz; + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); % Quantum Fluctuations term + gamma4 = 1/(sqrt(2*pi) * MeanWidth); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2))); + Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2)); + ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz); +end + + + diff --git a/Estimations/RotonInstability/ScalingOfTheQFTerm.m b/Estimations/RotonInstability/ScalingOfTheQFTerm.m new file mode 100644 index 0000000..4c5ee06 --- /dev/null +++ b/Estimations/RotonInstability/ScalingOfTheQFTerm.m @@ -0,0 +1,89 @@ +%% Physical constants +PlanckConstant = 6.62607015E-34; +PlanckConstantReduced = 6.62607015E-34/(2*pi); +FineStructureConstant = 7.2973525698E-3; +ElectronMass = 9.10938291E-31; +GravitationalConstant = 6.67384E-11; +ProtonMass = 1.672621777E-27; +AtomicMassUnit = 1.660539066E-27; +BohrRadius = 5.2917721067E-11; +BohrMagneton = 9.274009994E-24; +BoltzmannConstant = 1.38064852E-23; +StandardGravityAcceleration = 9.80665; +SpeedOfLight = 299792458; +StefanBoltzmannConstant = 5.670373E-8; +ElectronCharge = 1.602176634E-19; +VacuumPermeability = 1.25663706212E-6; +DielectricConstant = 8.8541878128E-12; +ElectronGyromagneticFactor = -2.00231930436153; +AvogadroConstant = 6.02214076E23; +ZeroKelvin = 273.15; +GravitationalAcceleration = 9.80553; +VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); +HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); +AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 + +% Dy specific constants +Dy164Mass = 163.929174751*AtomicMassUnit; +Dy164IsotopicAbundance = 0.2826; +DyMagneticMoment = 9.93*BohrMagneton; + +%% Scaling of the QF term + +wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction +lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length +gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +gdd = VacuumPermeability*DyMagneticMoment^2/3; + +nadd2s = 0.05:0.01:0.25; +as_to_add = 0.76:0.01:0.81; + +QF = zeros(length(as_to_add), length(nadd2s)); +ScatteringLengths = zeros(length(as_to_add), 1); +AtomNumber = zeros(length(nadd2s), 1); +w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction +l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length +tsize = 10 * l0; + +x0 = 5; +Aineq = []; +Bineq = []; +Aeq = []; +Beq = []; +lb = [1]; +ub = [10]; +nonlcon = []; +fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); + +for idx = 1:length(nadd2s) + for jdx = 1:length(as_to_add) + AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms + AtomNumber(idx) = AtomNumberDensity*tsize^2; + as = (as_to_add(jdx) * add); % Scattering length + gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + ScatteringLengths(jdx) = as/BohrRadius; + TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); + sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); + eps_dd = add/as; % Relative interaction strength + + % == Quantum Fluctuations term == % + MeanWidth = sigma * lz; + gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); + gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); + gQF = gamma5 * gammaQF; + QF(jdx, idx) = 3 * gQF * AtomNumberDensity^(3/2); + end +end + +figure +clf +set(gcf,'Position',[50 50 950 750]) +imagesc(AtomNumber*1E-5, ScatteringLengths, QF * 1E31); % Specify x and y data for axes +set(gca, 'YDir', 'normal'); % Correct the y-axis direction +cbar1 = colorbar; +cbar1.Label.Interpreter = 'latex'; +ylabel(cbar1,'$(\times 10^{-31})$','FontSize',16,'Rotation',270) +xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex'); +ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex'); +title('Scaling of the quantum fluctuations term','fontsize',16,'interpreter','latex') \ No newline at end of file diff --git a/Estimations/RotonInstability/bwhpc_matlab_gpe_sim_cpu.slurm b/Estimations/RotonInstability/bwhpc_matlab_gpe_sim_cpu.slurm new file mode 100644 index 0000000..ad3e154 --- /dev/null +++ b/Estimations/RotonInstability/bwhpc_matlab_gpe_sim_cpu.slurm @@ -0,0 +1,38 @@ +#!/bin/bash +########### Begin SLURM header ########### +#Partition +#SBATCH --partition=cpu-single +# Request number of nodes and CPU cores per node for job +#SBATCH --nodes=1 +#SBATCH --ntasks-per-node=1 +#SBATCH --cpus-per-task=10 +#SBATCH --mem=2G +# Estimated wallclock time for job +#SBATCH --time=00:30:00 +#SBATCH --job-name=simulation +#SBATCH --error=simulation.err +#SBATCH --output=simulation.out + +########### End SLURM header ########## + +echo "Working Directory: $PWD" +echo "Running on host $HOSTNAME" +echo "Job id: $SLURM_JOB_ID" +echo "Job name: $SLURM_JOB_NAME" +echo "Number of nodes allocated to job: $SLURM_JOB_NUM_NODES" +echo "Number of cores allocated to job: $SLURM_JOB_CPUS_PER_NODE" + + +# Load module +module load math/matlab/R2023a + +echo Directory is `pwd` +echo "Initiating Job..." + +# Start a Matlab program +matlab -nodisplay -nosplash -r "ExtractingKRoton" + +# notice for tests +echo "Job terminated successfully" + +exit diff --git a/Estimations/RotonInstability/roton_instability_project.json b/Estimations/RotonInstability/roton_instability_project.json new file mode 100644 index 0000000..5036949 --- /dev/null +++ b/Estimations/RotonInstability/roton_instability_project.json @@ -0,0 +1 @@ +{"version":[4,2],"axesColl":[{"name":"XY","type":"XYAxes","isLogX":false,"isLogY":false,"noRotation":true,"calibrationPoints":[{"px":304.86283783783784,"py":633.6364864864864,"dx":"0.1","dy":"0.745","dz":null},{"px":694.7418918918919,"py":633.6364864864864,"dx":"0.2","dy":"0.745","dz":null},{"px":107.59864864864865,"py":573.8594594594595,"dx":"0.1","dy":"0.745","dz":null},{"px":107.59864864864865,"py":27.895945945945947,"dx":"0.2","dy":"0.79","dz":null}]}],"datasetColl":[{"name":"Default Dataset","axesName":"XY","colorRGB":[200,0,0,255],"metadataKeys":[],"data":[{"x":108.92702702702702,"y":345.3783783783784,"value":[0.04974446337308348,0.7638321167883212]},{"x":124.86756756756756,"y":298.88513513513516,"value":[0.053833049403747876,0.7676642335766424]},{"x":135.4945945945946,"y":273.6459459459459,"value":[0.05655877342419081,0.7697445255474452]},{"x":172.6891891891892,"y":204.57027027027027,"value":[0.06609880749574107,0.7754379562043796]},{"x":564.5608108108108,"y":90.32972972972973,"value":[0.1666098807495741,0.7848540145985402]},{"x":630.9797297297297,"y":102.28513513513514,"value":[0.1836456558773424,0.7838686131386862]},{"x":677.472972972973,"y":111.58378378378379,"value":[0.19557069846678027,0.7831021897810219]},{"x":717.3243243243244,"y":120.88243243243244,"value":[0.20579216354344126,0.7823357664233577]},{"x":766.4743243243244,"y":132.83783783783784,"value":[0.2183986371379898,0.7813503649635036]},{"x":844.8486486486487,"y":152.76351351351352,"value":[0.2385008517887564,0.7797080291970803]},{"x":895.327027027027,"y":166.0472972972973,"value":[0.25144804088586037,0.7786131386861314]},{"x":184.6445945945946,"y":188.62972972972972,"value":[0.06916524701873936,0.7767518248175183]},{"x":199.25675675675674,"y":170.03243243243244,"value":[0.07291311754684839,0.7782846715328468]},{"x":220.51081081081082,"y":148.7783783783784,"value":[0.07836456558773425,0.780036496350365]},{"x":247.07837837837837,"y":127.52432432432433,"value":[0.08517887563884158,0.7817883211678832]},{"x":268.3324324324324,"y":114.24054054054054,"value":[0.09063032367972744,0.7828832116788321]},{"x":322.79594594594596,"y":91.65810810810811,"value":[0.10459965928449745,0.7847445255474452]},{"x":357.33378378378376,"y":83.68783783783783,"value":[0.11345826235093698,0.7854014598540147]},{"x":375.93108108108106,"y":81.03108108108108,"value":[0.1182282793867121,0.7856204379562044]},{"x":391.8716216216216,"y":79.70270270270271,"value":[0.1223168654173765,0.7857299270072993]},{"x":409.14054054054054,"y":78.37432432432432,"value":[0.12674616695059626,0.7858394160583941]},{"x":426.40945945945947,"y":78.37432432432432,"value":[0.13117546848381603,0.7858394160583941]},{"x":443.6783783783784,"y":78.37432432432432,"value":[0.1356047700170358,0.7858394160583941]},{"x":460.9472972972973,"y":78.37432432432433,"value":[0.14003407155025555,0.7858394160583941]},{"x":482.2013513513514,"y":80.3668918918919,"value":[0.14548551959114142,0.7856751824817518]},{"x":504.7837837837838,"y":82.35945945945946,"value":[0.15127768313458265,0.7855109489051095]},{"x":530.022972972973,"y":85.01621621621622,"value":[0.1577512776831346,0.7852919708029197]},{"x":599.0986486486487,"y":95.64324324324325,"value":[0.17546848381601365,0.7844160583941606]}],"autoDetectionData":null}],"measurementColl":[]} \ No newline at end of file diff --git a/Estimations/RotonInstability/roton_instability_project.tar b/Estimations/RotonInstability/roton_instability_project.tar new file mode 100644 index 0000000..9be76ad Binary files /dev/null and b/Estimations/RotonInstability/roton_instability_project.tar differ