Latest fully functional script - added complete PCA functionality - computes the PCA results and packs in to results struct, included plotting functionality of the PCA results in addition.
This commit is contained in:
parent
c9ed8be2f2
commit
cd96f83fb6
@ -1,111 +1,26 @@
|
||||
function conductPCA(od_imgs, scan_reference_values, scan_parameter_values, doPlot, doSave, saveDir)
|
||||
|
||||
%% Performs PCA on optical density images, visualizes and optionally saves results.
|
||||
function results = conductPCA(od_imgs)
|
||||
%% computePCAfromImages: Performs PCA on optical density images and returns results in a struct
|
||||
%
|
||||
% Inputs:
|
||||
% od_imgs - cell array of OD images
|
||||
% scan_reference_values - array of unique control parameter values
|
||||
% scan_parameter_values - array mapping each image to a control parameter
|
||||
% doPlot - logical, true to plot figures
|
||||
% doSave - logical, true to save figures
|
||||
% saveDir - directory to save figures if doSave is true
|
||||
% od_imgs - cell array of OD images
|
||||
%
|
||||
% Requires:
|
||||
% +Calculator/computeCumulants.m
|
||||
% Outputs:
|
||||
% pcaResults - struct containing PCA outputs:
|
||||
% .coeff - PCA coefficients (principal components)
|
||||
% .score - PCA scores for each image
|
||||
% .explained - variance explained by each PC
|
||||
% .Nx, .Ny - dimensions of individual images
|
||||
|
||||
if nargin < 4, doPlot = true; end
|
||||
if nargin < 5, doSave = false; end
|
||||
if nargin < 6, saveDir = pwd; end
|
||||
|
||||
%% PCA computation
|
||||
allImgs3D = cat(3, od_imgs{:});
|
||||
[Nx, Ny] = size(allImgs3D(:,:,1));
|
||||
Xall = reshape(allImgs3D, [], numel(od_imgs))';
|
||||
[coeff, score, ~, ~, explained] = pca(Xall);
|
||||
|
||||
figCount = 1;
|
||||
|
||||
%% --- Figure 1: PC1 Image ---
|
||||
if doPlot
|
||||
pc1_vector = coeff(:,1);
|
||||
pc1_image = reshape(pc1_vector, Nx, Ny);
|
||||
figure(figCount); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]);
|
||||
imagesc(pc1_image); axis image off; colormap(Colormaps.coolwarm()); colorbar;
|
||||
title(sprintf('First Principal Component (PC1) Image - Explains %.2f%% Variance', explained(1)));
|
||||
if doSave, saveas(gcf, fullfile(saveDir, 'PC1_Image.png')); end
|
||||
figCount = figCount + 1;
|
||||
end
|
||||
|
||||
%% --- Figure 2: PC1 Scores Scatter ---
|
||||
if doPlot
|
||||
numGroups = numel(scan_reference_values);
|
||||
colors = lines(numGroups);
|
||||
figure(figCount); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]); hold on;
|
||||
for g = 1:numGroups
|
||||
idx = scan_parameter_values == scan_reference_values(g);
|
||||
scatter(repmat(scan_reference_values(g), sum(idx),1), score(idx,1), 36, colors(g,:), 'filled');
|
||||
end
|
||||
xlabel('Control Parameter'); ylabel('PC1 Score');
|
||||
title('Evolution of PC1 Scores'); grid on;
|
||||
if doSave, saveas(gcf, fullfile(saveDir, 'PC1_Scatter.png')); end
|
||||
figCount = figCount + 1;
|
||||
end
|
||||
|
||||
%% --- Figure 3: PC1 Distributions ---
|
||||
if doPlot
|
||||
figure(figCount); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]);
|
||||
hold on;
|
||||
for g = 1:numGroups
|
||||
idx = scan_parameter_values == scan_reference_values(g);
|
||||
data = score(idx,1);
|
||||
histogram(data, 'Normalization', 'pdf', 'FaceColor', colors(g,:), 'FaceAlpha', 0.3);
|
||||
[f, xi] = ksdensity(data);
|
||||
plot(xi, f, 'Color', colors(g,:), 'LineWidth', 2);
|
||||
end
|
||||
xlabel('PC1 Score'); ylabel('Probability Density');
|
||||
title('PC1 Score Distributions by Group');
|
||||
legend(arrayfun(@num2str, scan_reference_values, 'UniformOutput', false), 'Location', 'Best');
|
||||
grid on;
|
||||
if doSave, saveas(gcf, fullfile(saveDir, 'PC1_Distributions.png')); end
|
||||
figCount = figCount + 1;
|
||||
end
|
||||
|
||||
%% --- Figure 4: Boxplot of PC1 Scores ---
|
||||
if doPlot
|
||||
figure(figCount); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]);
|
||||
boxplot(score(:,1), scan_parameter_values);
|
||||
xlabel('Control Parameter'); ylabel('PC1 Score');
|
||||
title('PC1 Score Boxplots by Group'); grid on;
|
||||
if doSave, saveas(gcf, fullfile(saveDir, 'PC1_Boxplot.png')); end
|
||||
figCount = figCount + 1;
|
||||
end
|
||||
|
||||
%% --- Figure 5: Mean ± SEM of PC1 Scores ---
|
||||
if doPlot
|
||||
meanScores = arrayfun(@(g) mean(score(scan_parameter_values == g,1)), scan_reference_values);
|
||||
semScores = arrayfun(@(g) std(score(scan_parameter_values == g,1))/sqrt(sum(scan_parameter_values == g)), scan_reference_values);
|
||||
figure(figCount); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]);
|
||||
errorbar(scan_reference_values, meanScores, semScores, '-o', 'LineWidth', 2);
|
||||
xlabel('Control Parameter'); ylabel('Mean PC1 Score ± SEM');
|
||||
title('Mean ± SEM of PC1 Scores'); grid on;
|
||||
if doSave, saveas(gcf, fullfile(saveDir, 'PC1_MeanSEM.png')); end
|
||||
figCount = figCount + 1;
|
||||
end
|
||||
|
||||
%% --- Figure 6: Binder Cumulant ---
|
||||
if doPlot
|
||||
binderVals = arrayfun(@(g) ...
|
||||
Calculator.computeCumulants(score(scan_parameter_values == g,1)), ...
|
||||
scan_reference_values);
|
||||
figure(figCount); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]);
|
||||
plot(scan_reference_values, binderVals, '-o', 'LineWidth', 2);
|
||||
xlabel('Control Parameter'); ylabel('Binder Cumulant (PC1)');
|
||||
title('Binder Cumulant of PC1 Scores'); grid on;
|
||||
if doSave, saveas(gcf, fullfile(saveDir, 'PC1_BinderCumulant.png')); end
|
||||
end
|
||||
|
||||
%% --- ANOVA Test ---
|
||||
p = anova1(score(:,1), arrayfun(@num2str, scan_parameter_values, 'UniformOutput', false), 'off');
|
||||
fprintf('[INFO] ANOVA p-value for PC1 score differences between groups: %.4e\n', p);
|
||||
|
||||
results = struct( ...
|
||||
'coeff', coeff, ...
|
||||
'score', score, ...
|
||||
'explained', explained, ...
|
||||
'Nx', Nx, ...
|
||||
'Ny', Ny ...
|
||||
);
|
||||
end
|
||||
|
@ -52,21 +52,26 @@ function [results, scan_parameter_values] = performAnalysis(options)
|
||||
|
||||
spectral_analysis_results = Analyzer.conductSpectralAnalysis(od_imgs, scan_parameter_values, options);
|
||||
|
||||
N_shots = length(od_imgs);
|
||||
N_shots = length(od_imgs);
|
||||
|
||||
% Extract angular correlations
|
||||
full_g2_results = Analyzer.extractAutocorrelation(...
|
||||
full_g2_results = Analyzer.extractAutocorrelation(...
|
||||
spectral_analysis_results.theta_vals, ...
|
||||
spectral_analysis_results.angular_spectral_distribution, ...
|
||||
scan_parameter_values, N_shots, options.N_angular_bins);
|
||||
|
||||
custom_g_results = Analyzer.extractCustomCorrelation(...
|
||||
custom_g_results = Analyzer.extractCustomCorrelation(...
|
||||
spectral_analysis_results.angular_spectral_distribution, ...
|
||||
scan_parameter_values, N_shots, options.N_angular_bins);
|
||||
|
||||
fprintf('\n[INFO] Spectral analysis complete!\n');
|
||||
|
||||
% PCA
|
||||
% Conduct PCA
|
||||
fprintf('\n[INFO] Initiating Principal Component Analysis...\n');
|
||||
|
||||
pca_results = Analyzer.conductPCA(od_imgs);
|
||||
|
||||
fprintf('\n[INFO] Principal Component Analysis complete!\n');
|
||||
|
||||
% Lattice Reconstruction
|
||||
|
||||
@ -75,4 +80,5 @@ function [results, scan_parameter_values] = performAnalysis(options)
|
||||
results.spectral_analysis_results = spectral_analysis_results;
|
||||
results.full_g2_results = full_g2_results;
|
||||
results.custom_g_results = custom_g_results;
|
||||
results.pca_results = pca_results;
|
||||
end
|
@ -25,8 +25,14 @@ function [od_imgs, scan_parameter_values, file_list] = collectODImages(options)
|
||||
reuseVarsExist = evalin('base', ...
|
||||
'exist(''od_imgs'',''var'') && exist(''scan_parameter_values'',''var'') && exist(''file_list'',''var'') && exist(''prior_options'',''var'')');
|
||||
|
||||
% --- Respect SAVE_TO_WORKSPACE flag from batchAnalyze ---
|
||||
if isfield(options, 'SAVE_TO_WORKSPACE') && ~options.SAVE_TO_WORKSPACE
|
||||
if ~isfield(options, 'SAVE_TO_WORKSPACE')
|
||||
% ===== Estimate dataset memory and get per-run estimates =====
|
||||
dataSource = makeDataSource(options.folderPath);
|
||||
[options.SAVE_TO_WORKSPACE, ~] = Helper.estimateDatasetMemory(dataSource, options);
|
||||
end
|
||||
|
||||
% --- Respect SAVE_TO_WORKSPACE flag ---
|
||||
if ~options.SAVE_TO_WORKSPACE
|
||||
% Force reprocessing: skip all workspace reuse
|
||||
reuseVarsExist = false;
|
||||
end
|
||||
@ -62,7 +68,7 @@ function [od_imgs, scan_parameter_values, file_list] = collectODImages(options)
|
||||
evalin('base', 'exist(''prior_options'',''var'')');
|
||||
|
||||
% --- Respect SAVE_TO_WORKSPACE flag ---
|
||||
if isfield(options, 'SAVE_TO_WORKSPACE') && ~options.SAVE_TO_WORKSPACE
|
||||
if ~options.SAVE_TO_WORKSPACE
|
||||
fullDataExists = false; % force recompute even if workspace vars exist
|
||||
end
|
||||
|
||||
@ -208,13 +214,13 @@ function [od_imgs, scan_parameter_values, file_list] = collectODImages(options)
|
||||
file_list = raw_file_list;
|
||||
end
|
||||
|
||||
% --- Save processed dataset and options for reuse ---
|
||||
% --- Save processed dataset and options to workspace for reuse ---
|
||||
assignin('base', 'od_imgs', od_imgs);
|
||||
assignin('base', 'scan_parameter_values', scan_parameter_values);
|
||||
assignin('base', 'file_list', file_list);
|
||||
assignin('base', 'prior_options', options);
|
||||
|
||||
% --- Save OD images as figures if requested ---
|
||||
% --- Save OD images as figures to disk if requested ---
|
||||
if ~options.skipSaveOD
|
||||
saveODFigures(od_imgs, options.saveDirectory);
|
||||
end
|
||||
@ -269,3 +275,33 @@ function saveODFigures(od_imgs, saveDirectory)
|
||||
end
|
||||
fprintf('[INFO] OD figures saved successfully.\n');
|
||||
end
|
||||
|
||||
function dataSources = makeDataSource(folderPath)
|
||||
% Split by file separators (handles / or \)
|
||||
parts = regexp(folderPath, '[\\/]', 'split');
|
||||
|
||||
% Remove empty parts caused by leading slashes
|
||||
parts = parts(~cellfun('isempty', parts));
|
||||
|
||||
% Extract sequence, date, and run number
|
||||
% Now the indices are correct:
|
||||
% parts = {'DyLabNAS', 'Data', 'StructuralPhaseTransition', '2025', '08', '13', '0062'}
|
||||
sequence = parts{3}; % "StructuralPhaseTransition"
|
||||
year = parts{4}; % "2025"
|
||||
month = parts{5}; % "08"
|
||||
day = parts{6}; % "13"
|
||||
runStr = parts{7}; % "0062"
|
||||
|
||||
% Build date string
|
||||
dateStr = sprintf('%s/%s/%s', year, month, day);
|
||||
|
||||
% Convert run string to number
|
||||
runNum = str2double(runStr);
|
||||
|
||||
% Construct struct inside a cell array
|
||||
dataSources = {
|
||||
struct('sequence', sequence, ...
|
||||
'date', dateStr, ...
|
||||
'runs', runNum)
|
||||
};
|
||||
end
|
||||
|
@ -10,7 +10,7 @@ function [SAVE_TO_WORKSPACE, runMemoryGB] = estimateDatasetMemory(dataSources, o
|
||||
[~, sys] = memory;
|
||||
availableRAM = sys.PhysicalMemory.Available;
|
||||
else
|
||||
availableRAM = 16e9; % fallback: 16 GB if not Windows
|
||||
availableRAM = 8e9; % fallback: 8 GB if not Windows
|
||||
end
|
||||
|
||||
SAVE_TO_WORKSPACE = true; % default, may change per run
|
||||
@ -58,10 +58,10 @@ function [SAVE_TO_WORKSPACE, runMemoryGB] = estimateDatasetMemory(dataSources, o
|
||||
% Decide workspace flag per run by comparing with 50% of available RAM
|
||||
if runBytes > 0.75 * availableRAM
|
||||
SAVE_TO_WORKSPACE = false;
|
||||
fprintf('[INFO] Estimated size on memory of Run %s/%s too large (%.2f GB). Not saving to workspace.\n', ...
|
||||
fprintf('\n[INFO] Estimated size on memory of Run %s/%s too large (%.2f GB). Will save partially to workspace if not done so already.\n', ...
|
||||
ds.sequence, runID, runBytes/1e9);
|
||||
else
|
||||
fprintf('[INFO] Estimated size on memory of Run %s/%s = %.2f GB. Will save to workspace.\n', ...
|
||||
fprintf('\n[INFO] Estimated size on memory of Run %s/%s = %.2f GB. Will save completely to workspace if not done so already.\n', ...
|
||||
ds.sequence, runID, runBytes/1e9);
|
||||
end
|
||||
end
|
||||
|
@ -4,8 +4,8 @@ function plotPDF(dataCell, referenceValues, varargin)
|
||||
% Usage:
|
||||
% Plotter.plotPDF(dataCell, referenceValues, ...
|
||||
% 'PlotType', 'histogram', ... % 'histogram' (default) or 'kde'
|
||||
% 'NumBins', 50, ... % number of histogram bins
|
||||
% 'NormalizeHist', true, ... % normalize hist counts to probability density
|
||||
% 'NumberOfBins', 50, ... % number of histogram bins
|
||||
% 'NormalizeHistogram', true, ... % normalize hist counts to probability density
|
||||
% 'Title', 'My Title', ...
|
||||
% 'XLabel', 'Scan Parameter', ...
|
||||
% 'YLabel', 'Data Values', ...
|
||||
@ -35,8 +35,8 @@ function plotPDF(dataCell, referenceValues, varargin)
|
||||
addParameter(p, 'XLim', [], @(x) isempty(x) || numel(x)==2);
|
||||
addParameter(p, 'Colormap', @jet);
|
||||
addParameter(p, 'PlotType', 'histogram', @(x) any(validatestring(x,{'kde','histogram'})));
|
||||
addParameter(p, 'NumBins', 50, @isscalar);
|
||||
addParameter(p, 'NormalizeHist', true, @islogical);
|
||||
addParameter(p, 'NumberOfBins', 50, @isscalar);
|
||||
addParameter(p, 'NormalizeHistogram', true, @islogical);
|
||||
parse(p, varargin{:});
|
||||
opts = p.Results;
|
||||
|
||||
@ -56,7 +56,7 @@ function plotPDF(dataCell, referenceValues, varargin)
|
||||
y_grid = linspace(y_min, y_max, opts.NumPoints);
|
||||
pdf_matrix = zeros(numel(y_grid), N_params);
|
||||
else % Histogram
|
||||
edges = linspace(y_min, y_max, opts.NumBins+1);
|
||||
edges = linspace(y_min, y_max, opts.NumberOfBins+1);
|
||||
binCenters = (edges(1:end-1) + edges(2:end)) / 2;
|
||||
pdf_matrix = zeros(numel(binCenters), N_params);
|
||||
end
|
||||
@ -72,7 +72,7 @@ function plotPDF(dataCell, referenceValues, varargin)
|
||||
pdf_matrix(:, i) = f;
|
||||
else % Histogram
|
||||
counts = histcounts(data, edges);
|
||||
if opts.NormalizeHist
|
||||
if opts.NormalizeHistogram
|
||||
binWidth = edges(2) - edges(1);
|
||||
counts = counts / (sum(counts) * binWidth); % probability density
|
||||
end
|
||||
@ -99,7 +99,7 @@ function plotPDF(dataCell, referenceValues, varargin)
|
||||
if strcmpi(opts.PlotType,'kde')
|
||||
ylabel(c, 'PDF', 'Interpreter', 'latex', 'FontSize', opts.FontSize);
|
||||
else
|
||||
if opts.NormalizeHist
|
||||
if opts.NormalizeHistogram
|
||||
ylabel(c, 'Probability Density', 'Interpreter', 'latex', 'FontSize', opts.FontSize);
|
||||
else
|
||||
ylabel(c, 'Counts', 'Interpreter', 'latex', 'FontSize', opts.FontSize);
|
||||
|
@ -89,8 +89,8 @@ Plotter.plotPDF(compiled_results.custom_g_results.max_g2_all_per_scan_parameter_
|
||||
'SkipSaveFigures', options.skipSaveFigures, ...
|
||||
'SaveFileName', 'PDF_MaxG2AcrossTransition.fig', ...
|
||||
'SaveDirectory', figSaveDir, ...
|
||||
'NumBins', 20, ...
|
||||
'NormalizeHist', true, ...
|
||||
'NumberOfBins', 20, ...
|
||||
'NormalizeHistogram', true, ...
|
||||
'DataRange', [0 1.5], ...
|
||||
'Colormap', @Colormaps.coolwarm, ...
|
||||
'XLim', [min(options.scan_reference_values) max(options.scan_reference_values)]);
|
||||
@ -108,6 +108,15 @@ Plotter.plotCumulants(options.scan_reference_values, ...
|
||||
'SkipSaveFigures', options.skipSaveFigures, ...
|
||||
'SaveFileName', 'CumulantOfPeakOffsetAngularCorrelation.fig', ...
|
||||
'SaveDirectory', figSaveDir);
|
||||
|
||||
%% ------------------ 5. PCA ------------------
|
||||
Plotter.plotPCAResults(compiled_results.pca_results, scan_parameter_values, options.scan_reference_values, ...
|
||||
'FigNumRange', [7,8,9,10,11,12], ...
|
||||
'FontName', options.font, ...
|
||||
'SkipSaveFigures', options.skipSaveFigures, ...
|
||||
'SaveDirectory', figSaveDir);
|
||||
|
||||
%%
|
||||
%{
|
||||
|
||||
%% ------------------ 6. Average of Spectra Plots ------------------
|
||||
|
@ -10,29 +10,29 @@ dataSources = {
|
||||
options = struct();
|
||||
|
||||
% File / paths
|
||||
options.baseDataFolder = '//DyLabNAS/Data';
|
||||
options.measurementName = 'BECToDroplets';
|
||||
scriptFullPath = mfilename('fullpath');
|
||||
options.saveDirectory = fileparts(scriptFullPath);
|
||||
options.baseDataFolder = '//DyLabNAS/Data';
|
||||
options.measurementName = 'BECToDroplets';
|
||||
scriptFullPath = mfilename('fullpath');
|
||||
options.saveDirectory = fileparts(scriptFullPath);
|
||||
|
||||
% Camera / imaging
|
||||
options.cam = 5;
|
||||
options.angle = 0;
|
||||
options.center = [1420, 2050];
|
||||
options.span = [200, 200];
|
||||
options.fraction = [0.1, 0.1];
|
||||
options.pixel_size = 5.86e-6; % in meters
|
||||
options.magnification = 24.6;
|
||||
options.removeFringes = false;
|
||||
options.ImagingMode = 'HighIntensity';
|
||||
options.PulseDuration = 5e-6; % in s
|
||||
options.cam = 5;
|
||||
options.angle = 0;
|
||||
options.center = [1420, 2050];
|
||||
options.span = [200, 200];
|
||||
options.fraction = [0.1, 0.1];
|
||||
options.pixel_size = 5.86e-6; % in meters
|
||||
options.magnification = 24.6;
|
||||
options.removeFringes = false;
|
||||
options.ImagingMode = 'HighIntensity';
|
||||
options.PulseDuration = 5e-6; % in s
|
||||
|
||||
% Fourier analysis settings
|
||||
options.theta_min = deg2rad(0);
|
||||
options.theta_max = deg2rad(180);
|
||||
options.N_radial_bins = 500;
|
||||
options.Radial_Sigma = 2;
|
||||
options.Radial_WindowSize = 5; % odd number
|
||||
options.theta_min = deg2rad(0);
|
||||
options.theta_max = deg2rad(180);
|
||||
options.N_radial_bins = 500;
|
||||
options.Radial_Sigma = 2;
|
||||
options.Radial_WindowSize = 5; % odd number
|
||||
|
||||
options.k_min = 1.2771; % μm⁻¹
|
||||
options.k_max = 2.5541; % μm⁻¹
|
||||
@ -43,7 +43,7 @@ options.Angular_WindowSize = 5;
|
||||
options.zoom_size = 50;
|
||||
|
||||
% Scan parameter
|
||||
options.scan_parameter = 'rot_mag_field';
|
||||
options.scan_parameter = 'rot_mag_field';
|
||||
|
||||
switch options.measurementName
|
||||
case 'BECToDroplets'
|
||||
|
@ -89,8 +89,8 @@ Plotter.plotPDF(compiled_results.custom_g_results.max_g2_all_per_scan_parameter_
|
||||
'SkipSaveFigures', options.skipSaveFigures, ...
|
||||
'SaveFileName', 'PDF_MaxG2AcrossTransition.fig', ...
|
||||
'SaveDirectory', figSaveDir, ...
|
||||
'NumBins', 20, ...
|
||||
'NormalizeHist', true, ...
|
||||
'NumberOfBins', 20, ...
|
||||
'NormalizeHistogram', true, ...
|
||||
'DataRange', [0 1.5], ...
|
||||
'Colormap', @Colormaps.coolwarm, ...
|
||||
'XLim', [min(options.scan_reference_values) max(options.scan_reference_values)]);
|
||||
|
@ -89,8 +89,8 @@ Plotter.plotPDF(compiled_results.custom_g_results.max_g2_all_per_scan_parameter_
|
||||
'SkipSaveFigures', options.skipSaveFigures, ...
|
||||
'SaveFileName', 'PDF_MaxG2AcrossTransition.fig', ...
|
||||
'SaveDirectory', figSaveDir, ...
|
||||
'NumBins', 20, ...
|
||||
'NormalizeHist', true, ...
|
||||
'NumberOfBins', 20, ...
|
||||
'NormalizeHistogram', true, ...
|
||||
'DataRange', [0 1.5], ...
|
||||
'Colormap', @Colormaps.coolwarm, ...
|
||||
'XLim', [min(options.scan_reference_values) max(options.scan_reference_values)]);
|
||||
|
@ -89,8 +89,8 @@ Plotter.plotPDF(compiled_results.custom_g_results.max_g2_all_per_scan_parameter_
|
||||
'SkipSaveFigures', options.skipSaveFigures, ...
|
||||
'SaveFileName', 'PDF_MaxG2AcrossTransition.fig', ...
|
||||
'SaveDirectory', figSaveDir, ...
|
||||
'NumBins', 20, ...
|
||||
'NormalizeHist', true, ...
|
||||
'NumberOfBins', 20, ...
|
||||
'NormalizeHistogram', true, ...
|
||||
'DataRange', [0 1.5], ...
|
||||
'Colormap', @Colormaps.coolwarm, ...
|
||||
'XLim', [min(options.scan_reference_values) max(options.scan_reference_values)]);
|
||||
|
Loading…
Reference in New Issue
Block a user