New script for data analysis.

This commit is contained in:
Karthik 2025-04-08 21:38:06 +02:00
parent 905f768993
commit c5ebb76b9d

View File

@ -0,0 +1,477 @@
%% Parameters
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", "/images/Vertical_Axis_Camera/in_situ_absorption"];
folderPath = "C:/Users/Karthik/Documents/GitRepositories/Calculations/Data-Analyzer/";
run = '0013';
folderPath = strcat(folderPath, run);
cam = 5;
angle = 0;
center = [1285, 2105];
span = [200, 200];
fraction = [0.1, 0.1];
pixel_size = 5.86e-6;
removeFringes = false;
%% Compute OD image, rotate and extract ROI for analysis
% Get a list of all files in the folder with the desired file name pattern.
filePattern = fullfile(folderPath, '*.h5');
files = dir(filePattern);
refimages = zeros(span(1) + 1, span(2) + 1, length(files));
absimages = zeros(span(1) + 1, span(2) + 1, length(files));
for k = 1 : length(files)
baseFileName = files(k).name;
fullFileName = fullfile(files(k).folder, baseFileName);
fprintf(1, 'Now reading %s\n', fullFileName);
atm_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle));
bkg_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
dark_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)';
absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img), center, span), fraction)';
end
% Fringe removal
if removeFringes
optrefimages = removefringesInImage(absimages, refimages);
absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :);
nimgs = size(absimages_fringe_removed,3);
od_imgs = cell(1, nimgs);
for i = 1:nimgs
od_imgs{i} = absimages_fringe_removed(:, :, i);
end
else
nimgs = size(absimages(:, :, :),3);
od_imgs = cell(1, nimgs);
for i = 1:nimgs
od_imgs{i} = absimages(:, :, i);
end
end
%% Display Images
figure(1)
clf
set(gcf,'Position',[50 50 950 750])
% Calculate the x and y limits for the cropped image
y_min = center(1) - span(2) / 2;
y_max = center(1) + span(2) / 2;
x_min = center(2) - span(1) / 2;
x_max = center(2) + span(1) / 2;
% Generate x and y arrays representing the original coordinates for each pixel
x_range = linspace(x_min, x_max, span(1));
y_range = linspace(y_min, y_max, span(2));
% Display the cropped image
for k = 1 : length(od_imgs)
imagesc(x_range, y_range, od_imgs{k})
axis equal tight;
hcb = colorbar;
hL = ylabel(hcb, 'Optical Density', 'FontSize', 16);
set(hL,'Rotation',-90);
colormap jet;
set(gca,'CLim',[0 3.0]);
set(gca,'YDir','normal')
set(gca, 'YTick', linspace(y_min, y_max, 5)); % Define y ticks
set(gca, 'YTickLabel', flip(linspace(y_min, y_max, 5))); % Flip only the labels
xlabel('Horizontal', 'Interpreter', 'tex','FontSize',16);
ylabel('Vertical', 'Interpreter', 'tex','FontSize',16);
drawnow
pause(0.5)
end
%% Get rotation angles
theta_values = zeros(1, length(files));
% Get information about the '/globals' group
for k = 1 : length(files)
baseFileName = files(k).name;
fullFileName = fullfile(files(k).folder, baseFileName);
info = h5info(fullFileName, '/globals');
for i = 1:length(info.Attributes)
if strcmp(info.Attributes(i).Name, 'rot_mag_fin_pol_angle')
theta_values(k) = 180 - info.Attributes(i).Value;
end
end
end
%% Run Fourier analysis over images
fft_imgs = cell(1, nimgs);
% Create VideoWriter object for movie
videoFile = VideoWriter('Single_Shot_FFT.avi', 'Motion JPEG AVI');
videoFile.FrameRate = 2; % Set the frame rate (frames per second)
open(videoFile); % Open the video file to write
% Display the cropped image
for k = 1 : length(od_imgs)
IMG = od_imgs{k};
[IMGFFT, IMGBIN] = computeFourierTransform(IMG);
figure(2);
clf
set(gcf,'Position',[50 50 1500 550])
set(gca,'FontSize',16,'Box','On','Linewidth',2);
t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact'); % 1x2 grid
% Calculate the x and y limits for the cropped image
y_min = center(1) - span(2) / 2;
y_max = center(1) + span(2) / 2;
x_min = center(2) - span(1) / 2;
x_max = center(2) + span(1) / 2;
% Generate x and y arrays representing the original coordinates for each pixel
x_range = linspace(x_min, x_max, span(1));
y_range = linspace(y_min, y_max, span(2));
% Display the cropped image
nexttile
imagesc(x_range, y_range, IMG)
% Define normalized positions (relative to axis limits)
x_offset = 0.025; % 5% offset from the edges
y_offset = 0.025; % 5% offset from the edges
% Top-right corner (normalized axis coordinates)
text(1 - x_offset, 1 - y_offset, ['Angle: ', num2str(theta_values(k), '%.1f')], ...
'Color', 'white', 'FontWeight', 'bold', 'Interpreter', 'tex', 'FontSize', 20, 'Units', 'normalized', 'HorizontalAlignment', 'right', 'VerticalAlignment', 'top');
axis equal tight;
hcb = colorbar;
hL = ylabel(hcb, 'Optical Density', 'FontSize', 16);
set(hL,'Rotation',-90);
set(gca,'YDir','normal')
set(gca, 'YTick', linspace(y_min, y_max, 5)); % Define y ticks
set(gca, 'YTickLabel', flip(linspace(y_min, y_max, 5))); % Flip only the labels
xlabel('X', 'Interpreter', 'tex','FontSize',16);
ylabel('Y', 'Interpreter', 'tex','FontSize',16);
nexttile
imagesc(x_range, y_range, IMGBIN)
axis equal tight;
hcb = colorbar;
set(gca,'YDir','normal')
set(gca, 'YTick', linspace(y_min, y_max, 5)); % Define y ticks
set(gca, 'YTickLabel', flip(linspace(y_min, y_max, 5))); % Flip only the labels
xlabel('X', 'Interpreter', 'tex','FontSize',16);
ylabel('Y', 'Interpreter', 'tex','FontSize',16);
title('Denoised - Masked - Binarized','FontSize',16);
nexttile
[rows, cols] = size(IMGFFT);
zoom_size = 50; % Zoomed-in region around center
mid_x = floor(cols/2);
mid_y = floor(rows/2);
zoomedIMGFFT = IMGFFT(mid_y-zoom_size:mid_y+zoom_size, mid_x-zoom_size:mid_x+zoom_size);
fft_imgs{k} = zoomedIMGFFT;
imagesc(log(1 + zoomedIMGFFT));
% Define normalized positions (relative to axis limits)
x_offset = 0.025; % 5% offset from the edges
y_offset = 0.025; % 5% offset from the edges
% Top-right corner (normalized axis coordinates)
text(1 - x_offset, 1 - y_offset, ['Angle: ', num2str(theta_values(k), '%.1f')], ...
'Color', 'white', 'FontWeight', 'bold', 'Interpreter', 'tex', 'FontSize', 20, 'Units', 'normalized', 'HorizontalAlignment', 'right', 'VerticalAlignment', 'top');
axis equal tight;
hcb = colorbar;
set(gca,'YDir','normal')
xlabel('X', 'Interpreter', 'tex','FontSize',16);
ylabel('Y', 'Interpreter', 'tex','FontSize',16);
title('Fourier Power Spectrum','FontSize',16);
drawnow
pause(0.5)
% Capture the current frame and write it to the video
frame = getframe(gcf); % Capture the current figure as a frame
writeVideo(videoFile, frame); % Write the frame to the video
end
% Close the video file
close(videoFile);
%% Averaged FFT
% Assuming od_imgs is a cell array of size 4*n
n = length(fft_imgs) / 4; % Calculate n
fft_imgs_avg = cell(1, n); % Initialize the new cell array to hold the averaged images
for i = 1:n
% Take the 4 corresponding images from od_imgs
img1 = fft_imgs{4*i-3}; % 1st image in the group
img2 = fft_imgs{4*i-2}; % 2nd image in the group
img3 = fft_imgs{4*i-1}; % 3rd image in the group
img4 = fft_imgs{4*i}; % 4th image in the group
% Compute the average of these 4 images
avg_img = (img1 + img2 + img3 + img4) / 4;
% Store the averaged image in the new cell array
fft_imgs_avg{i} = avg_img;
end
% Create VideoWriter object for movie
videoFile = VideoWriter('Averaged_FFT.avi', 'Motion JPEG AVI');
videoFile.FrameRate = 2; % Set the frame rate (frames per second)
open(videoFile); % Open the video file to write
figure(3)
clf
set(gcf,'Position',[50 50 950 750])
% Display the cropped image
for k = 1 : length(fft_imgs_avg)
imagesc(log(1 + fft_imgs_avg{k}));
% Define normalized positions (relative to axis limits)
x_offset = 0.025; % 5% offset from the edges
y_offset = 0.025; % 5% offset from the edges
% Top-right corner (normalized axis coordinates)
text(1 - x_offset, 1 - y_offset, ['Angle: ', num2str(theta_values(k), '%.1f')], ...
'Color', 'white', 'FontWeight', 'bold', 'Interpreter', 'tex', 'FontSize', 20, 'Units', 'normalized', 'HorizontalAlignment', 'right', 'VerticalAlignment', 'top');
axis equal tight;
hcb = colorbar;
set(gca,'YDir','normal')
xlabel('X', 'Interpreter', 'tex','FontSize',16);
ylabel('Y', 'Interpreter', 'tex','FontSize',16);
title('Averaged Fourier Power Spectrum','FontSize',16);
drawnow
pause(0.5)
% Capture the current frame and write it to the video
frame = getframe(gcf); % Capture the current figure as a frame
writeVideo(videoFile, frame); % Write the frame to the video
end
% Close the video file
close(videoFile);
%% Helper Functions
function [IMGFFT, IMGBIN] = computeFourierTransform(I)
% computeFourierSpectrum - Computes the 2D Fourier power spectrum
% of binarized and enhanced lattice image features, with optional central mask.
%
% Inputs:
% I - Grayscale or RGB image matrix
%
% Output:
% F_mag - 2D Fourier power spectrum (shifted)
% Preprocessing: Denoise
I_filt = imgaussfilt(I, 1); % adjust sigma as needed
% Elliptical mask parameters
[rows, cols] = size(I_filt);
[X, Y] = meshgrid(1:cols, 1:rows);
cx = cols / 2;
cy = rows / 2;
% Shifted coordinates
x = X - cx;
y = Y - cy;
% Ellipse semi-axes
rx = 0.4 * cols;
ry = 0.2 * rows;
% Rotation angle in degrees -> radians
theta_deg = 30; % Adjust as needed
theta = deg2rad(theta_deg);
% Rotated ellipse equation
cos_t = cos(theta);
sin_t = sin(theta);
x_rot = (x * cos_t + y * sin_t);
y_rot = (-x * sin_t + y * cos_t);
ellipseMask = (x_rot.^2) / rx^2 + (y_rot.^2) / ry^2 <= 1;
% Apply cutout mask
I_masked = I_filt .* ellipseMask;
% Apply global intensity threshold mask
intensity_thresh = 0.8;
intensity_mask = I_masked > intensity_thresh;
I_masked = I_masked .* intensity_mask;
% Adaptive binarization
IMGBIN = imbinarize(I_masked, 'adaptive', 'Sensitivity', 0.0);
% Compute 2D Fourier Transform
F = fft2(double(I));
IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center
% Define the radius for the circular region to exclude
region_radius = 4; % Adjust the radius as needed
% Create a circular mask
[~, center_idx] = max(IMGFFT(:));
[cx, cy] = ind2sub(size(IMGFFT), center_idx);
% Equation for a circle (centered at cx, cy)
center_region = (X - cx).^2 + (Y - cy).^2 <= region_radius^2;
% Define a scaling factor for the central region (e.g., reduce amplitude by 90%)
scaling_factor = 0.1; % Scale center region by 10%
% Apply the scaling factor to the center region
IMGFFT(center_region) = IMGFFT(center_region) * scaling_factor;
end
function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction)
% image must be a 2D numerical array
[dim1, dim2] = size(img);
s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction));
s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2);
s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction));
s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2);
ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
end
function ret = subtractBackgroundOffset(img, fraction)
% Remove the background from the image.
% :param dataArray: The image
% :type dataArray: xarray DataArray
% :param x_fraction: The fraction of the pixels used in x axis
% :type x_fraction: float
% :param y_fraction: The fraction of the pixels used in y axis
% :type y_fraction: float
% :return: The image after removing background
% :rtype: xarray DataArray
x_fraction = fraction(1);
y_fraction = fraction(2);
offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction);
ret = img - offset;
end
function ret = cropODImage(img, center, span)
% Crop the image according to the region of interest (ROI).
% :param dataSet: The images
% :type dataSet: xarray DataArray or DataSet
% :param center: The center of region of interest (ROI)
% :type center: tuple
% :param span: The span of region of interest (ROI)
% :type span: tuple
% :return: The cropped images
% :rtype: xarray DataArray or DataSet
x_start = floor(center(1) - span(1) / 2);
x_end = floor(center(1) + span(1) / 2);
y_start = floor(center(2) - span(2) / 2);
y_end = floor(center(2) + span(2) / 2);
ret = img(y_start:y_end, x_start:x_end);
end
function ret = calculateODImage(imageAtom, imageBackground, imageDark)
% Calculate the OD image for absorption imaging.
% :param imageAtom: The image with atoms
% :type imageAtom: numpy array
% :param imageBackground: The image without atoms
% :type imageBackground: numpy array
% :param imageDark: The image without light
% :type imageDark: numpy array
% :return: The OD images
% :rtype: numpy array
numerator = imageBackground - imageDark;
denominator = imageAtom - imageDark;
numerator(numerator == 0) = 1;
denominator(denominator == 0) = 1;
ret = -log(double(abs(denominator ./ numerator)));
if numel(ret) == 1
ret = ret(1);
end
end
function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
% removefringesInImage - Fringe removal and noise reduction from absorption images.
% Creates an optimal reference image for each absorption image in a set as
% a linear combination of reference images, with coefficients chosen to
% minimize the least-squares residuals between each absorption image and
% the optimal reference image. The coefficients are obtained by solving a
% linear set of equations using matrix inverse by LU decomposition.
%
% Application of the algorithm is described in C. F. Ockeloen et al, Improved
% detection of small atom numbers through image processing, arXiv:1007.2136 (2010).
%
% Syntax:
% [optrefimages] = removefringesInImage(absimages,refimages,bgmask);
%
% Required inputs:
% absimages - Absorption image data,
% typically 16 bit grayscale images
% refimages - Raw reference image data
% absimages and refimages are both cell arrays containing
% 2D array data. The number of refimages can differ from the
% number of absimages.
%
% Optional inputs:
% bgmask - Array specifying background region used,
% 1=background, 0=data. Defaults to all ones.
% Outputs:
% optrefimages - Cell array of optimal reference images,
% equal in size to absimages.
%
% Dependencies: none
%
% Authors: Shannon Whitlock, Caspar Ockeloen
% Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and
% S. Whitlock, Improved detection of small atom numbers through
% image processing, arXiv:1007.2136
% Email:
% May 2009; Last revision: 11 August 2010
% Process inputs
% Set variables, and flatten absorption and reference images
nimgs = size(absimages,3);
nimgsR = size(refimages,3);
xdim = size(absimages(:,:,1),2);
ydim = size(absimages(:,:,1),1);
R = single(reshape(refimages,xdim*ydim,nimgsR));
A = single(reshape(absimages,xdim*ydim,nimgs));
optrefimages=zeros(size(absimages)); % preallocate
if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end
k = find(bgmask(:)==1); % Index k specifying background region
% Ensure there are no duplicate reference images
% R=unique(R','rows')'; % comment this line if you run out of memory
% Decompose B = R*R' using singular value or LU decomposition
[L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition
for j=1:nimgs
b=R(k,:)'*A(k,j);
% Obtain coefficients c which minimise least-square residuals
lower.LT = true; upper.UT = true;
c = linsolve(U,linsolve(L,b(p,:),lower),upper);
% Compute optimised reference image
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
end
end