Added back the captured atom counting and the jackknife error estimation method as developed by Jianshun Gao, retained the bootstrap method and the counting that goes with it now corrected to prevent counting the same atoms repeatedly and also to reduce the atom count if they are lost. There is now an agreement between the two methods as to what the loading rate is with the bootstrap method giving a slightly lower estimate.
This commit is contained in:
parent
5407da354b
commit
c19a514027
@ -1,9 +1,9 @@
|
||||
function [LoadingRate, StandardError, ConfidenceInterval] = calculateLoadingRate(this, ovenObj)
|
||||
n = this.NumberOfAtoms;
|
||||
DynamicalQuantities = this.ParticleDynamicalQuantities;
|
||||
NumberOfTimeSteps = int64(this.SimulationTime/this.TimeStep);
|
||||
NumberOfLoadedAtoms = zeros(1, NumberOfTimeSteps);
|
||||
CollisionEvents = zeros(1, n);
|
||||
NumberOfLoadedAtoms = zeros(1, n);
|
||||
|
||||
|
||||
% Include the stochastic process of background collisions
|
||||
for AtomIndex = 1:n
|
||||
@ -12,17 +12,42 @@ function [LoadingRate, StandardError, ConfidenceInterval] = calculateLoadingRate
|
||||
end
|
||||
|
||||
% Count the number of loaded atoms subject to conditions
|
||||
for TimeIndex = 1:NumberOfTimeSteps
|
||||
if TimeIndex ~= 1
|
||||
NumberOfLoadedAtoms(TimeIndex) = NumberOfLoadedAtoms(TimeIndex-1);
|
||||
end
|
||||
for AtomIndex = 1:n
|
||||
Position = squeeze(DynamicalQuantities(AtomIndex, TimeIndex, 1:3))';
|
||||
if this.exitCondition(Position, CollisionEvents(AtomIndex))
|
||||
NumberOfLoadedAtoms(TimeIndex) = NumberOfLoadedAtoms(TimeIndex) + 1;
|
||||
|
||||
switch this.ErrorEstimationMethod
|
||||
case 'bootstrap'
|
||||
NumberOfTimeSteps = int64(this.SimulationTime/this.TimeStep);
|
||||
NumberOfLoadedAtoms = zeros(1, NumberOfTimeSteps);
|
||||
LoadedAtomIndices = [];
|
||||
for TimeIndex = 1:NumberOfTimeSteps
|
||||
if TimeIndex ~= 1
|
||||
NumberOfLoadedAtoms(TimeIndex) = NumberOfLoadedAtoms(TimeIndex-1);
|
||||
end
|
||||
for AtomIndex = 1:n
|
||||
Position = squeeze(DynamicalQuantities(AtomIndex, TimeIndex, 1:3))';
|
||||
if this.exitCondition(Position, CollisionEvents(AtomIndex))
|
||||
if ~ismember(AtomIndex, LoadedAtomIndices)
|
||||
NumberOfLoadedAtoms(TimeIndex) = NumberOfLoadedAtoms(TimeIndex) + 1;
|
||||
LoadedAtomIndices(end+1) = AtomIndex;
|
||||
end
|
||||
else
|
||||
if ismember(AtomIndex, LoadedAtomIndices)
|
||||
NumberOfLoadedAtoms(TimeIndex) = NumberOfLoadedAtoms(TimeIndex) - 1;
|
||||
LoadedAtomIndices(LoadedAtomIndices==AtomIndex) = [];
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
[LoadingRate, StandardError, ConfidenceInterval] = this.bootstrapErrorEstimation(ovenObj, NumberOfLoadedAtoms);
|
||||
case 'jackknife'
|
||||
for AtomIndex = 1:n
|
||||
if AtomIndex ~= 1
|
||||
NumberOfLoadedAtoms(AtomIndex) = NumberOfLoadedAtoms(AtomIndex-1);
|
||||
end
|
||||
Position = squeeze(DynamicalQuantities(AtomIndex, end, 1:3))';
|
||||
if this.exitCondition(Position, CollisionEvents(AtomIndex))
|
||||
NumberOfLoadedAtoms(AtomIndex) = NumberOfLoadedAtoms(AtomIndex) + 1;
|
||||
end
|
||||
end
|
||||
[LoadingRate, StandardError, ConfidenceInterval] = jackknifeErrorEstimation(this, ovenObj, NumberOfLoadedAtoms);
|
||||
end
|
||||
|
||||
[LoadingRate, StandardError, ConfidenceInterval] = this.bootstrapErrorEstimation(ovenObj, NumberOfLoadedAtoms);
|
||||
end
|
||||
|
50
+Simulator/@TwoDimensionalMOT/jackknifeErrorEstimation.m
Normal file
50
+Simulator/@TwoDimensionalMOT/jackknifeErrorEstimation.m
Normal file
@ -0,0 +1,50 @@
|
||||
function [LoadingRate, StandardError, ConfidenceInterval] = jackknifeErrorEstimation(this, ovenObj, NumberOfLoadedAtoms)
|
||||
n = this.NumberOfAtoms;
|
||||
Autocorrelation = zeros(1, n);
|
||||
|
||||
for i = 1:n-1
|
||||
FirstTerm = 0;
|
||||
SecondTerm = 0;
|
||||
for j = 1:n-i
|
||||
FirstTerm = FirstTerm + NumberOfLoadedAtoms(j) / j;
|
||||
SecondTerm = SecondTerm + (NumberOfLoadedAtoms(i+j)) / (i+j);
|
||||
Autocorrelation(i) = Autocorrelation(i) + ((NumberOfLoadedAtoms(j) / j) .*(NumberOfLoadedAtoms(i+j) / (i+j)));
|
||||
end
|
||||
Autocorrelation(i) = (1/(n-i)) * (Autocorrelation(i) - ((1/(n-i)) * FirstTerm * SecondTerm));
|
||||
end
|
||||
|
||||
if Autocorrelation(1)~=0
|
||||
|
||||
Autocorrelation = Autocorrelation./Autocorrelation(1);
|
||||
|
||||
x = linspace(1,n,n);
|
||||
|
||||
[FitParams,~] = fit(x',Autocorrelation',"exp(-x/tau)", 'Startpoint', 100);
|
||||
CorrelationFactor = FitParams.tau;
|
||||
|
||||
SampleLength = 2*CorrelationFactor+1;
|
||||
NumberOfJackknifeSamples = floor(n/SampleLength);
|
||||
CaptureRatioInEachSample = zeros(1,NumberOfJackknifeSamples);
|
||||
SampleNumberLimit = min(NumberOfJackknifeSamples-1,5);
|
||||
for i=1:NumberOfJackknifeSamples-SampleNumberLimit
|
||||
CaptureRatioInEachSample(i) = NumberOfLoadedAtoms(n-ceil((i-1)*SampleLength))/(n-ceil((i-1)*SampleLength));
|
||||
end
|
||||
|
||||
MeanCaptureRatio = sum(CaptureRatioInEachSample) / (NumberOfJackknifeSamples-SampleNumberLimit);
|
||||
|
||||
LoadingRate = MeanCaptureRatio * ovenObj.ReducedFlux;
|
||||
|
||||
Variance=0;
|
||||
for i=1:NumberOfJackknifeSamples-SampleNumberLimit
|
||||
Variance=Variance+(CaptureRatioInEachSample(i) - MeanCaptureRatio)^2;
|
||||
end
|
||||
StandardError = sqrt(Variance/(NumberOfJackknifeSamples-SampleNumberLimit));
|
||||
|
||||
ConfidenceInterval = LoadingRate + 1.96*StandardError; % 95% Confidence Intervals
|
||||
|
||||
else
|
||||
LoadingRate = nan;
|
||||
StandardError = nan;
|
||||
ConfidenceInterval = [nan nan];
|
||||
end
|
||||
end
|
Loading…
Reference in New Issue
Block a user