Latest scripts for testing of energy minimization via CGD.
This commit is contained in:
parent
0acacc2362
commit
abe402313e
@ -23,6 +23,7 @@ OptionsStruct.UseApproximationForLHY = true;
|
||||
OptionsStruct.IncludeDDICutOff = true;
|
||||
OptionsStruct.CutoffType = 'Cylindrical';
|
||||
OptionsStruct.SimulationMode = 'EnergyMinimization'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution' | 'EnergyMinimization'
|
||||
OptionsStruct.MaxIterationsForCGD = 10;
|
||||
OptionsStruct.TimeStepSize = 1E-4; % in s
|
||||
OptionsStruct.MinimumTimeStepSize = 2E-10; % in s
|
||||
OptionsStruct.TimeCutOff = 2E6; % in s
|
||||
|
@ -45,10 +45,10 @@ sim.Potential = pot.trap();
|
||||
|
||||
OptionsStruct = struct;
|
||||
|
||||
OptionsStruct.NumberOfAtoms = 4E5;
|
||||
OptionsStruct.NumberOfAtoms = 8E5;
|
||||
OptionsStruct.DipolarPolarAngle = deg2rad(0);
|
||||
OptionsStruct.DipolarAzimuthAngle = 0;
|
||||
OptionsStruct.ScatteringLength = 87;
|
||||
OptionsStruct.ScatteringLength = 85;
|
||||
|
||||
AspectRatio = 2.0;
|
||||
HorizontalTrapFrequency = 125;
|
||||
@ -63,7 +63,7 @@ OptionsStruct.IncludeDDICutOff = true;
|
||||
OptionsStruct.CutoffType = 'Cylindrical';
|
||||
OptionsStruct.SimulationMode = 'ImaginaryTimeEvolution'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution'
|
||||
OptionsStruct.TimeStepSize = 1E-4; % in s
|
||||
OptionsStruct.MinimumTimeStepSize = 2E-10; % in s
|
||||
OptionsStruct.MinimumTimeStepSize = 1E-10; % in s
|
||||
OptionsStruct.TimeCutOff = 2E6; % in s
|
||||
OptionsStruct.EnergyTolerance = 5E-10;
|
||||
OptionsStruct.ResidualTolerance = 1E-08;
|
||||
@ -73,7 +73,7 @@ OptionsStruct.PlotLive = false;
|
||||
OptionsStruct.JobNumber = 0;
|
||||
OptionsStruct.RunOnGPU = true;
|
||||
OptionsStruct.SaveData = true;
|
||||
OptionsStruct.SaveDirectory = './Results/Data_3D/BeyondSSD_Labyrinth';
|
||||
OptionsStruct.SaveDirectory = './Results/Data_3D/ApproximateLHY/BeyondSSD_Labyrinth';
|
||||
options = Helper.convertstruct2cell(OptionsStruct);
|
||||
clear OptionsStruct
|
||||
|
||||
|
@ -17,6 +17,7 @@ classdef DipolarGas < handle & matlab.mixin.Copyable
|
||||
EnergyTolerance;
|
||||
ResidualTolerance;
|
||||
NoiseScaleFactor;
|
||||
MaxIterationsForCGD;
|
||||
|
||||
Calculator;
|
||||
|
||||
@ -69,6 +70,8 @@ classdef DipolarGas < handle & matlab.mixin.Copyable
|
||||
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
|
||||
addParameter(p, 'NoiseScaleFactor', 4,...
|
||||
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
|
||||
addParameter(p, 'MaxIterationsForCGD', 100,...
|
||||
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
|
||||
|
||||
addParameter(p, 'IncludeDDICutOff', true,...
|
||||
@islogical);
|
||||
@ -104,6 +107,7 @@ classdef DipolarGas < handle & matlab.mixin.Copyable
|
||||
this.EnergyTolerance = p.Results.EnergyTolerance;
|
||||
this.ResidualTolerance = p.Results.ResidualTolerance;
|
||||
this.NoiseScaleFactor = p.Results.NoiseScaleFactor;
|
||||
this.MaxIterationsForCGD = p.Results.MaxIterationsForCGD;
|
||||
|
||||
this.IncludeDDICutOff = p.Results.IncludeDDICutOff;
|
||||
this.UseApproximationForLHY = p.Results.UseApproximationForLHY;
|
||||
|
@ -1,4 +1,4 @@
|
||||
function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V)
|
||||
function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V)
|
||||
|
||||
format long;
|
||||
|
||||
@ -8,35 +8,58 @@ function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V)
|
||||
% Convergence Criteria:
|
||||
Epsilon = 1E-5;
|
||||
|
||||
% Gradient Calculation
|
||||
J = compute_gradient(psi, Params, Transf, VDk, V); % Gradient at initial point
|
||||
S = -J; % Initial search direction
|
||||
|
||||
% Iteration Counter:
|
||||
i = 1;
|
||||
|
||||
% Minimization
|
||||
while norm(S(:)) > Epsilon % Halting Criterion
|
||||
% Initialize the PrematureExitFlag to false
|
||||
PrematureExitFlag = false;
|
||||
|
||||
% Minimization Loop
|
||||
while true
|
||||
% Compute gradient
|
||||
J = compute_gradient(psi, Params, Transf, VDk, V);
|
||||
|
||||
% Check stopping criterion (Gradient norm)
|
||||
if norm(J(:)) < Epsilon
|
||||
disp('Tolerance reached: Gradient norm is below the specified epsilon.');
|
||||
PrematureExitFlag = true; % Set flag to indicate premature exit
|
||||
break;
|
||||
elseif i >= this.MaxIterationsForCGD
|
||||
disp('Maximum number of iterations for CGD reached.');
|
||||
PrematureExitFlag = true; % Set flag to indicate premature exit
|
||||
break;
|
||||
end
|
||||
|
||||
% Initialize search direction if first iteration
|
||||
if i == 1
|
||||
S = -J;
|
||||
else
|
||||
% Update search direction
|
||||
S = update_search_direction(S, J, J_old);
|
||||
end
|
||||
|
||||
% Step Size Optimization (Line Search)
|
||||
alpha = optimize_step_size(f, psi, S, Params, Transf, VDk, V);
|
||||
|
||||
% Update the solution
|
||||
x_o_new = psi + alpha * S;
|
||||
|
||||
% Update the gradient and search direction
|
||||
alpha = optimize_step_size(f, psi, S, Params, Transf, VDk, V);
|
||||
|
||||
% Update solution
|
||||
psi = psi + alpha * S;
|
||||
|
||||
% Normalize psi
|
||||
Norm = sum(abs(psi(:)).^2) * Transf.dx * Transf.dy * Transf.dz;
|
||||
psi = sqrt(Params.N) * psi / sqrt(Norm);
|
||||
|
||||
% Store old gradient
|
||||
J_old = J;
|
||||
J = compute_gradient(x_o_new, Params, Transf, VDk, V);
|
||||
S = update_search_direction(S, J, J_old);
|
||||
|
||||
% Update for next iteration
|
||||
psi = x_o_new;
|
||||
Norm = sum(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz;
|
||||
psi = sqrt(Params.N)*psi/sqrt(Norm);
|
||||
i = i + 1;
|
||||
end
|
||||
|
||||
disp('Minimum found!');
|
||||
fprintf('Number of Iterations for Convergence: %d\n\n', i);
|
||||
% Check if loop ended prematurely
|
||||
if PrematureExitFlag
|
||||
disp('Optimizer ended prematurely without convergence to a minimum.');
|
||||
else
|
||||
disp('Minimum found!');
|
||||
fprintf('Number of Iterations for Convergence: %d\n\n', i);
|
||||
end
|
||||
|
||||
muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
|
||||
|
||||
@ -48,26 +71,31 @@ end
|
||||
|
||||
%% Helper functions
|
||||
% Numerical Gradient Calculation using the finite differences method
|
||||
function J = compute_gradient(psi, Params, Transf, VDk, V)
|
||||
function J = compute_gradient(psi, Params, Transf, VDk, V)
|
||||
|
||||
% Kinetic energy
|
||||
KEop = 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
|
||||
H_o = KEop + V;
|
||||
% Operators
|
||||
|
||||
%Contact interactions
|
||||
Hint = Params.gs*abs(psi).^2;
|
||||
% Kinetic energy
|
||||
KEop = 0.5 * (Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
|
||||
HKin = @(w) real(ifft(KEop.*fft(w)));
|
||||
|
||||
% Trap Potential
|
||||
HV = @(w) V.*w;
|
||||
|
||||
% Contact interactions
|
||||
Hint = @(w) (Params.gs*abs(psi).^2).*w;
|
||||
|
||||
% DDIs
|
||||
frho = fftn(abs(psi).^2);
|
||||
Phi = real(ifftn(frho.*VDk));
|
||||
Hddi = Params.gdd*Phi;
|
||||
|
||||
%Quantum fluctuations
|
||||
Hqf = Params.gammaQF*abs(psi).^3;
|
||||
|
||||
H = H_o + Hint + Hddi + Hqf;
|
||||
Hddi = @(w) (Params.gdd*Phi).*w;
|
||||
|
||||
J = H.*psi;
|
||||
% Quantum fluctuations
|
||||
Hqf = @(w) (Params.gammaQF*abs(psi).^3).*w;
|
||||
|
||||
H = @(w) HKin(w) + HV(w) + Hint(w) + Hddi(w) + Hqf(w);
|
||||
|
||||
J = H(psi);
|
||||
|
||||
end
|
||||
|
||||
@ -81,7 +109,7 @@ function alpha = optimize_step_size(f, X, S, Params, Transf, VDk, V)
|
||||
|
||||
grad = compute_gradient(X, Params, Transf, VDk, V); % Compute gradient once
|
||||
f_X = f(X); % Evaluate f(X) once
|
||||
|
||||
|
||||
for k = 1:max_iter
|
||||
% Evaluate Armijo condition with precomputed f(X) and grad
|
||||
if f(X + alpha * S) <= f_X + c * alpha * (S(:)' * grad(:))
|
||||
@ -98,8 +126,13 @@ function alpha = optimize_step_size(f, X, S, Params, Transf, VDk, V)
|
||||
|
||||
end
|
||||
|
||||
% Update Search Direction (Polak-Ribiere method)
|
||||
% Update Search Direction
|
||||
function S_new = update_search_direction(S, J_new, J_old)
|
||||
beta = (norm(J_new(:))^2) / (norm(J_old(:))^2);
|
||||
% (Fletcher-Reeves method)
|
||||
% beta = (norm(J_new(:))^2) / (norm(J_old(:))^2);
|
||||
% S_new = -J_new + beta * S;
|
||||
|
||||
% (Polak-Ribiere method)
|
||||
beta = max(0, (J_new(:)' * (J_new(:) - J_old(:))) / (norm(J_old(:))^2));
|
||||
S_new = -J_new + beta * S;
|
||||
end
|
Loading…
Reference in New Issue
Block a user