Latest scripts for testing of energy minimization via CGD.

This commit is contained in:
Karthik 2025-03-31 14:09:32 +02:00
parent 0acacc2362
commit abe402313e
4 changed files with 80 additions and 42 deletions

View File

@ -23,6 +23,7 @@ OptionsStruct.UseApproximationForLHY = true;
OptionsStruct.IncludeDDICutOff = true;
OptionsStruct.CutoffType = 'Cylindrical';
OptionsStruct.SimulationMode = 'EnergyMinimization'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution' | 'EnergyMinimization'
OptionsStruct.MaxIterationsForCGD = 10;
OptionsStruct.TimeStepSize = 1E-4; % in s
OptionsStruct.MinimumTimeStepSize = 2E-10; % in s
OptionsStruct.TimeCutOff = 2E6; % in s

View File

@ -45,10 +45,10 @@ sim.Potential = pot.trap();
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 4E5;
OptionsStruct.NumberOfAtoms = 8E5;
OptionsStruct.DipolarPolarAngle = deg2rad(0);
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 87;
OptionsStruct.ScatteringLength = 85;
AspectRatio = 2.0;
HorizontalTrapFrequency = 125;
@ -63,7 +63,7 @@ OptionsStruct.IncludeDDICutOff = true;
OptionsStruct.CutoffType = 'Cylindrical';
OptionsStruct.SimulationMode = 'ImaginaryTimeEvolution'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution'
OptionsStruct.TimeStepSize = 1E-4; % in s
OptionsStruct.MinimumTimeStepSize = 2E-10; % in s
OptionsStruct.MinimumTimeStepSize = 1E-10; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-08;
@ -73,7 +73,7 @@ OptionsStruct.PlotLive = false;
OptionsStruct.JobNumber = 0;
OptionsStruct.RunOnGPU = true;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Results/Data_3D/BeyondSSD_Labyrinth';
OptionsStruct.SaveDirectory = './Results/Data_3D/ApproximateLHY/BeyondSSD_Labyrinth';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct

View File

@ -17,6 +17,7 @@ classdef DipolarGas < handle & matlab.mixin.Copyable
EnergyTolerance;
ResidualTolerance;
NoiseScaleFactor;
MaxIterationsForCGD;
Calculator;
@ -69,6 +70,8 @@ classdef DipolarGas < handle & matlab.mixin.Copyable
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'NoiseScaleFactor', 4,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'MaxIterationsForCGD', 100,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'IncludeDDICutOff', true,...
@islogical);
@ -104,6 +107,7 @@ classdef DipolarGas < handle & matlab.mixin.Copyable
this.EnergyTolerance = p.Results.EnergyTolerance;
this.ResidualTolerance = p.Results.ResidualTolerance;
this.NoiseScaleFactor = p.Results.NoiseScaleFactor;
this.MaxIterationsForCGD = p.Results.MaxIterationsForCGD;
this.IncludeDDICutOff = p.Results.IncludeDDICutOff;
this.UseApproximationForLHY = p.Results.UseApproximationForLHY;

View File

@ -1,4 +1,4 @@
function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V)
function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V)
format long;
@ -8,35 +8,58 @@ function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V)
% Convergence Criteria:
Epsilon = 1E-5;
% Gradient Calculation
J = compute_gradient(psi, Params, Transf, VDk, V); % Gradient at initial point
S = -J; % Initial search direction
% Iteration Counter:
i = 1;
% Minimization
while norm(S(:)) > Epsilon % Halting Criterion
% Initialize the PrematureExitFlag to false
PrematureExitFlag = false;
% Minimization Loop
while true
% Compute gradient
J = compute_gradient(psi, Params, Transf, VDk, V);
% Check stopping criterion (Gradient norm)
if norm(J(:)) < Epsilon
disp('Tolerance reached: Gradient norm is below the specified epsilon.');
PrematureExitFlag = true; % Set flag to indicate premature exit
break;
elseif i >= this.MaxIterationsForCGD
disp('Maximum number of iterations for CGD reached.');
PrematureExitFlag = true; % Set flag to indicate premature exit
break;
end
% Initialize search direction if first iteration
if i == 1
S = -J;
else
% Update search direction
S = update_search_direction(S, J, J_old);
end
% Step Size Optimization (Line Search)
alpha = optimize_step_size(f, psi, S, Params, Transf, VDk, V);
% Update the solution
x_o_new = psi + alpha * S;
% Update the gradient and search direction
alpha = optimize_step_size(f, psi, S, Params, Transf, VDk, V);
% Update solution
psi = psi + alpha * S;
% Normalize psi
Norm = sum(abs(psi(:)).^2) * Transf.dx * Transf.dy * Transf.dz;
psi = sqrt(Params.N) * psi / sqrt(Norm);
% Store old gradient
J_old = J;
J = compute_gradient(x_o_new, Params, Transf, VDk, V);
S = update_search_direction(S, J, J_old);
% Update for next iteration
psi = x_o_new;
Norm = sum(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz;
psi = sqrt(Params.N)*psi/sqrt(Norm);
i = i + 1;
end
disp('Minimum found!');
fprintf('Number of Iterations for Convergence: %d\n\n', i);
% Check if loop ended prematurely
if PrematureExitFlag
disp('Optimizer ended prematurely without convergence to a minimum.');
else
disp('Minimum found!');
fprintf('Number of Iterations for Convergence: %d\n\n', i);
end
muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
@ -48,26 +71,31 @@ end
%% Helper functions
% Numerical Gradient Calculation using the finite differences method
function J = compute_gradient(psi, Params, Transf, VDk, V)
function J = compute_gradient(psi, Params, Transf, VDk, V)
% Kinetic energy
KEop = 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
H_o = KEop + V;
% Operators
%Contact interactions
Hint = Params.gs*abs(psi).^2;
% Kinetic energy
KEop = 0.5 * (Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
HKin = @(w) real(ifft(KEop.*fft(w)));
% Trap Potential
HV = @(w) V.*w;
% Contact interactions
Hint = @(w) (Params.gs*abs(psi).^2).*w;
% DDIs
frho = fftn(abs(psi).^2);
Phi = real(ifftn(frho.*VDk));
Hddi = Params.gdd*Phi;
%Quantum fluctuations
Hqf = Params.gammaQF*abs(psi).^3;
H = H_o + Hint + Hddi + Hqf;
Hddi = @(w) (Params.gdd*Phi).*w;
J = H.*psi;
% Quantum fluctuations
Hqf = @(w) (Params.gammaQF*abs(psi).^3).*w;
H = @(w) HKin(w) + HV(w) + Hint(w) + Hddi(w) + Hqf(w);
J = H(psi);
end
@ -81,7 +109,7 @@ function alpha = optimize_step_size(f, X, S, Params, Transf, VDk, V)
grad = compute_gradient(X, Params, Transf, VDk, V); % Compute gradient once
f_X = f(X); % Evaluate f(X) once
for k = 1:max_iter
% Evaluate Armijo condition with precomputed f(X) and grad
if f(X + alpha * S) <= f_X + c * alpha * (S(:)' * grad(:))
@ -98,8 +126,13 @@ function alpha = optimize_step_size(f, X, S, Params, Transf, VDk, V)
end
% Update Search Direction (Polak-Ribiere method)
% Update Search Direction
function S_new = update_search_direction(S, J_new, J_old)
beta = (norm(J_new(:))^2) / (norm(J_old(:))^2);
% (Fletcher-Reeves method)
% beta = (norm(J_new(:))^2) / (norm(J_old(:))^2);
% S_new = -J_new + beta * S;
% (Polak-Ribiere method)
beta = max(0, (J_new(:)' * (J_new(:) - J_old(:))) / (norm(J_old(:))^2));
S_new = -J_new + beta * S;
end