Added function to calculate trap frequency, corrected a plotting bug.
This commit is contained in:
parent
60b9def24e
commit
a8d4d00e41
@ -57,10 +57,19 @@ def single_gaussian_beam_potential_harmonic_approximation(positions: "np.ndarray
|
||||
U = - depth * (1 - (2 * (positions[0,:]/waists[0])**2) - (2 * (positions[2,:]/waists[1])**2) - (0.5 * positions[1,:]**2 * np.sum(np.reciprocal(z_R(waists, wavelength)))**2))
|
||||
return U
|
||||
|
||||
def harmonic_potential(pos, v, offset):
|
||||
U_Harmonic = ((0.5 * 164*u.u * (2 * np.pi * v*u.Hz)**2 * (pos*u.um)**2)/ac.k_B).to(u.uK) + offset*u.uK
|
||||
def harmonic_potential(pos, v, offset, m = 164*u.u):
|
||||
U_Harmonic = ((0.5 * m * (2 * np.pi * v*u.Hz)**2 * (pos*u.um)**2)/ac.k_B).to(u.uK) + offset*u.uK
|
||||
return U_Harmonic.value
|
||||
|
||||
def calculateTrapFrequency(w_x, w_z, Power, Polarizability, m = 164*u.u, dir = 'x'):
|
||||
TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability)
|
||||
TrapFrequency = np.nan
|
||||
if dir == 'x':
|
||||
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth / (m*w_x**2))).decompose()
|
||||
elif dir == 'z':
|
||||
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth/ (m*w_z**2))).decompose()
|
||||
return round(TrapFrequency.value, 2)*u.Hz
|
||||
|
||||
def extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, axis):
|
||||
tmp_pos = Positions[axis, :]
|
||||
center_idx = np.where(tmp_pos == 0)[0][0]
|
||||
@ -107,11 +116,14 @@ def plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels):
|
||||
dv = dv / 1e3 # in kHz
|
||||
unit = 'kHz'
|
||||
tf_label = '\u03BD = %.1f \u00B1 %.2f %s'% tuple([v,dv,unit])
|
||||
if i % 2 == 0 and j < len(Powers):
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], '--',label = 'P = ' + str(Powers[j]) + ' W; ' + TrapDepthLabels[j] + '; ' + tf_label)
|
||||
elif i % 2 != 0 and j < len(Powers):
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[j]) + ' W; ' + tf_label)
|
||||
j = j + 1
|
||||
if np.size(ComputedPotentials, 0) == len(Powers):
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[i]) + ' W; ' + TrapDepthLabels[i] + '; ' + tf_label)
|
||||
else:
|
||||
if i % 2 == 0 and j < len(Powers):
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], '--',label = 'P = ' + str(Powers[j]) + ' W; ' + TrapDepthLabels[j] + '; ' + tf_label)
|
||||
elif i % 2 != 0 and j < len(Powers):
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[j]) + ' W; ' + tf_label)
|
||||
j = j + 1
|
||||
if axis == 0:
|
||||
dir = 'X'
|
||||
elif axis == 1:
|
||||
@ -129,7 +141,7 @@ def plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels):
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Powers = [0.1, 0.5, 2]
|
||||
# Powers = [5, 10, 20, 30, 40]
|
||||
# Powers = [5, 20, 40]
|
||||
Powers = [40]
|
||||
Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
|
||||
w_x, w_z = 34*u.um, 27.5*u.um # Beam Waists in the x and y directions
|
||||
@ -143,14 +155,14 @@ if __name__ == '__main__':
|
||||
ComputedPotentials = []
|
||||
TrapDepthLabels = []
|
||||
|
||||
gravity = False
|
||||
gravity = True
|
||||
astigmatism = True
|
||||
|
||||
tilt_gravity = True
|
||||
theta = 1 # in degrees
|
||||
theta = 5 # in degrees
|
||||
tilt_axis = [1, 0, 0] # lab space coordinates are rotated about x-axis in reference frame of beam
|
||||
|
||||
disp_foci = 1.5 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism)
|
||||
disp_foci = 3 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism)
|
||||
|
||||
for p in Powers:
|
||||
|
||||
@ -214,11 +226,13 @@ if __name__ == '__main__':
|
||||
else:
|
||||
TrappingPotential = IdealTrappingPotential
|
||||
|
||||
# v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x')
|
||||
# v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z')
|
||||
|
||||
# v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, axis)
|
||||
# plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt, pcov)
|
||||
|
||||
ComputedPotentials.append(TrappingPotential)
|
||||
|
||||
# print(np.shape(ComputedPotentials))
|
||||
ComputedPotentials = np.asarray(ComputedPotentials)
|
||||
plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels)
|
Loading…
Reference in New Issue
Block a user