Latest script.

This commit is contained in:
Karthik 2024-11-06 00:03:06 +01:00
parent 5e130e2d93
commit a8a0901eaf

View File

@ -68,7 +68,8 @@ xlabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex')
ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex') ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex')
grid on grid on
%% Bogoliubov excitation spectrum for quasi-2D dipolar gas with QF correction %% For different interaction strengths
AtomNumber = 1E5; % Total atom number in the system AtomNumber = 1E5; % Total atom number in the system
wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
@ -123,7 +124,8 @@ ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex')
grid on grid on
legend('location', 'northwest','fontsize',16, 'Interpreter','latex') legend('location', 'northwest','fontsize',16, 'Interpreter','latex')
%% Bogoliubov excitation spectrum for quasi-2D dipolar gas with QF correction %% For 3 points on the roton instability boundary
wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
alpha = 0; % Polar angle of dipole moment alpha = 0; % Polar angle of dipole moment
@ -175,6 +177,9 @@ ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex')
grid on grid on
legend('location', 'northwest','fontsize',16, 'Interpreter','latex') legend('location', 'northwest','fontsize',16, 'Interpreter','latex')
%% Mean widths of the variational Gaussian ansatz - extremize the total mean field energy per particle wrt to the variational parameter
%% %%
function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi) function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi)
Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2))); Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2)));